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The mixedness of a quantum state is usually seen as an adversary to topological quantization of
observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic
pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that
certain directly observable many-body correlators preserve the integrity of topological invariants for mixed
Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body
momentum-translation operator and leads to a physical observable—the “ensemble geometric phase”
(EGP)—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic
limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled
spectral singularities (“purity-gap” closing points) of density matrices. While we identify the many-body
nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly
measure the latter in experiments with mesoscopic ensembles of ultracold atoms.
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I. INTRODUCTION

Topology has emerged as an important paradigm in the
classification of ground states in many-particle quantum
systems. Metaphorically speaking, topology enters the
stage when the ground-state wave function of a complex
quantum system contains “twists” (or “knots”), as a
function of defining system parameters. Relevant param-
eters sets may include, e.g., the quasiparticle momenta
labeling single-particle states in a translationally invariant
system, the collective phase governing the macroscopic
ground-state wave function of a superconductor, or the
parameters controlling an external drive or pump.
Where topology is present, it is characterized by integer-

valued invariants with a high degree of robustness with
regard to perturbations, including parametric deformations
of a Hamiltonian, translational symmetry breaking, or even
the addition of particle interactions to symmetry-protected
topological states in noninteracting systems. These invar-
iants are generally formulated in terms of the zero-temper-
ature ground state of topological quantum systems, which
implicitly assumes that the system can be described by

a single pure-state wave function. Realistic systems, how-
ever, are generally characterized by mixed states corre-
sponding to thermal, or even more exotic distributions.
Therefore, an obvious set of questions presents itself: to
what extent can the concept of topology be generalized to
finite-temperature states and, more broadly, to arbitrary
mixed states (described by a density matrix instead of a
state vector)? Also, even more ambitiously, are possible
formal generalizations connected to topologically quan-
tized observables?
The fact that density matrices lend themselves to topo-

logical classification is reflected in the definition of various
geometric phases and corresponding topological invariants.
An important example is given by the Uhlmann phase [1],
a formal generalization of the geometric Berry phase [2–4].
The definition of this phase is based on a gauge structure in
the space of positive-definite density matrices [1,5–8].
Recently, a different approach has been proposed [9] to
generalize the concept of topological order in the sense of
Ref. [10] to mixed states, based on the equivalence of
topologically identical states under local unitary transfor-
mations. While these approaches are formally elegant,
they do not directly relate to observables that are readily
representable in terms of system correlators [11].
In this work, we explore a distinct notion of parallel

transport for mixed states within the comparatively simple
class of symmetry-protected topological (SPT) insulators.
Our approach is conceptually different from previous
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works in that the starting point of our construction is a
many-body correlator that is directly observable, instead of
the entire density matrix. One of its defining features is its
reduction to common classifying topologies in the zero-
temperature limit, where thermal mixed states become
projectors onto quantum ground states. Our construction
can, therefore, be regarded as an extension of such notions
to finite temperatures or, more broadly, to ensembles of
mixed states. Most importantly, it shows that topological
quantization can survive mixedness at the cost of dealing
with genuine many-body correlators. Specifically, focusing
on translation-invariant one-dimensional (1D) lattice sys-
tems of fermions in Gaussian states, we identify a physical
many-body observable φE that approaches, in the thermo-
dynamic limit, a well-defined geometric phase for mixed
states. Although realistic distributions will often be gen-
erated by thermalization, the concept applies to generic
density matrices (subject to a few conditions spelled out
below). For this reason, we dub φE the “ensemble geo-
metric phase” (EGP).
Before describing our key results, we start by defining

the aforementioned notion of topological twists in the
context of SPT ground states. There, distinct topological
sectors are identified as distinct homotopy classes charac-
terizing how single-particle states fjψαig forming the
many-particle ground state of a SPT insulator vary with
parameter(s) α≡ fαig. Depending on the context, the
relevant parameters may be “internal,” such as the crys-
tal-momentum components αi ≡ ki of a translationally
invariant system, or “external,” such as the parameters αi ≡
ϕi of an imposed drive or pump protocol. The homotopy
classes characterizing the map α ↦ jψαi can be described
in terms of a UðnÞ Berry connection or gauge field
ðAiÞss0 ≡ ihψα;sj∂αiψα;si, where n is the number of bands
(indexed by s) composing the ground state. In this picture,
topological invariants can be understood as Chern classes
of this gauge field (or quantities that depend on the latter
[13]). More importantly, invariants are often related to (thus
quantized) measurable observables, such as Hall transport
coefficients. Where a direct connection to an observable
exists, high levels of stability, e.g., with regard to disorder
or particle interactions, are to be expected.
All these concepts are beautifully exemplified in the

Rice-Mele model—a paradigmatic model for noninteract-
ing topological insulators in 1D [14] (with two bands and
periodic boundary conditions; see Ref. [15] for a recent
review). In this model, a two-dimensional toroidal param-
eter space α≡ ðk;ϕÞ is defined by the system 1D Bloch
momentum k and an external pump parameter ϕ. The
relevant topological invariant then describes how many
times the parameter-dependent ground state of the system
completely covers an effective Bloch sphere during a full
cycle of the parameters. When the external parameter ϕ is
periodically and adiabatically varied in time, this invariant
describes the quantized charge pumped through the system.

Formally, the invariant is related to the Berry connection via
a Chern class. It can be understood as the winding in ϕ
space of the geometric (Berry) phase defined by the loop
integral of the connection over k (i.e., over the Brillouin
zone), which in the 1D context is commonly called a Zak
phase [16]. The Zak phase and the corresponding topo-
logical invariant are related to physical observables, i.e., to
the zero-temperature (ground-state) polarization, and to the
associated current flow.

A. Key results and outline

In this work, we consider the thermal equilibrium and
nonequilibrium analogs of the noninteracting 1D systems
discussed previously, and we extract topological informa-
tion from their mixed states. The backbone of our con-
struction is the expectation value of a many-particle
momentum-translation operator [17], which was consid-
ered for pure states in a seminal work by Resta on the
polarization of periodic systems [18]. Specifically, for
reasons that we motivate in Sec. II, we consider the EGP

φE ≡ Im ln TrðρeiδkX̂Þ; ð1Þ

where ρ is the relevant density matrix, δk≡ 2π/L is the
smallest possible momentum in a periodic system of size L,
and X̂ is themany-particle (center-of-mass)positionoperator.
The EGP is a natural generalization of the geometric Zak

phase relevant to pure quantum states. In particular, we
demonstrate below that the value of the EGP for a mixed
quantum state is given by the zero-temperature Zak phase
of the ground state up to corrections that vanish in the
thermodynamic limit. We thus find a positive answer to the
question of whether geometric and topological properties of
pure quantum states may retain their integrity at finite
temperatures or in general mixed quantum states. In fact,
our construction identifies an order parameter for topo-
logical phase transitions in general mixed quantum states.
By studying concrete examples in and out of equilibrium,
we demonstrate that topological phase transitions do exist
in mixed quantum states, revealed by nontrivial (integer)
changes in the winding of the EGP along a closed
parameter cycle. We emphasize that single-particle quan-
tities like the current, which can serve as topological order
parameters at T ¼ 0, are no longer related to a geometric
phase at any finite temperature and, thus, cannot provide
information on the existence of topological phase transi-
tions for mixed states. We will give the EGP topological
order parameter a concrete physical meaning by specifying
an experimental detection protocol based on many-body
interferometry.
In more detail, in Sec. III, we investigate the geometric

nature of the EGP in the context of noninteracting systems,
focusing on mixed states generically described by a
Gaussian density matrix ρ ∼ e−G. (We also consider trans-
lationally invariant lattice systems, for convenience.) All
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information about fermionic Gaussian states is encoded in
the Hermitian matrix G or, equivalently, in the covariance
matrix Γ collecting all expectation values of bilinears of
fermion creation and annihilation operators. It will be
convenient to think of G as a “fictitious Hamiltonian.”
The spectrumof thisHamiltonian—the “purity spectrum”—
describes the occupation probabilities of individual fer-
mionic modes, and we will show that the existence of a gap
in this spectrum—a “purity gap”—is required for the
robustness of our construction [see Fig. 1(b)].
In Secs. III A and III B, we show that the EGP defines a

geometric phase for mixed states in the thermodynamic
limit, in the sense that

φE ¼ φZ þ ΔðNÞ; ΔðNÞ ⟶N→∞
0; ð2Þ

where φZ is the Zak phase of the “ground state”—or lowest
“purity band”—of the fictitious Hamiltonian G, and ΔðNÞ
is a correction that vanishes in the limit of a large system
size N (number of unit cells) [see Fig. 1(a)]. More
explicitly, φZ is defined as the loop integral over the
Brillouin zone of the Uð1Þ gauge field or Berry connection
of the lowest purity band juk;0i, i.e., φZ ¼ H

dkAk, where
Ak ≡ ihuk;0j∂kuk;0i. Equation (2) establishes the emer-
gence, in the thermodynamic limit, of a bona fide Uð1Þ
geometric phase for mixed quantum states. The underlying

mechanism is discussed in Sec. III A [and illustrated in
Fig. 1(c),(d)]. The EGP is defined up to integer multiples of
2π (i.e., it is a “phase”), and its actual value on the unit
circle is observable.
The above findings have an important consequence for

EGP differences ΔφE accumulated over closed cycles in
parameter space ðk;ϕÞ (where ϕ is an external parameter as
above). Namely, we show that

ΔφE ¼
I

dϕ∂ϕφE ¼ C; ð3Þ

where C is the Chern number associated with the lowest
purity band juk;0i≡ ju0ðk;ϕÞi. This relation holds irrespec-
tive of the system size N, as the finite-size correction ΔðNÞ
in Eq. (2) cannot contribute to the integer winding of ∂ϕφE.
This demonstrates the existence of an exactly quantized
observable for mixed quantum states, with an explicit
connection to microscopic parameters of the system.
For pure states in the usual zero-temperature ground-

state scenario, the correction ΔðNÞ in Eq. (2) vanishes for
any system size N, such that φE ¼ φZ. Only in that case
does the temporal variation ∂ϕφE of the EGP with respect
to adiabatic changes of ϕ≡ ϕðtÞ coincide with the physical
charge current and the difference ΔφE accumulated per
adiabatic cycle correspond to the (quantized) transported

FIG. 1. Key results. (a) Topologically quantized pumping for Gaussian mixed states with translation invariance. The EGP φE of a
mixed state [Eq. (7)] reduces to the Zak phase of a pure state juk;0i as the system size N is increased. The state juk;0i corresponds to the
lowest band in the so-called “purity spectrum” [see (b)] of the state density matrix ρ. For thermal mixed states ρ ∼ e−βH , it coincides with
the zero-temperature ground state of the Hamiltonian H. When varying a parameter ϕ along a loop from 0 to 2π, the phase φEðϕÞ
changes by a topologically quantized value (2π in the above illustration). This holds irrespective of N and of the state mixedness. The
only requirement is a gap in the state purity spectrum. (b) Schematic purity spectrum showing the relevant gap Δ. The density matrix of
the state can be expressed as ρ ¼ e−G, where G ¼ − ln ρ is Hermitian [see, e.g., Eq. (8)]. This allows us to define the state “purity”
eigenvalues and eigenvectors in analogy with spectral features of a Hamiltonian (where “purity” refers to the fact that eigenvalues
indicate the degree of purity of ρ in each eigenspace [19]). (c),(d) Crucial difference between conventional few-body observables and
the many-body EGP considered in this work. While the former take the symbolic form approximately Tr½ρð…Þ� ¼ Tr½e−Gð…Þ�, the
phase φE has a more rigid structure approximately Tr½e−Gkð…Þe−Gkþ1ð…Þ…�, where Gk denotes the matrix G in the momentum sector k.
This structure corresponds to a path-ordered product over points k ¼ 1;…; N across the Brillouin zone (Sec. III A). In the state
eigenbasis fjuk;sig (where s ¼ 0; 1;…; n − 1 indexes purity bands), matrices e−G and e−Gk are diagonal and can be seen as “weight
factors.” In the conventional case depicted in (c) [where states juk;si represented by circles are connected by operators ð…Þ], a single
“selection” by weight factors occurs (indicated by a dashed line). For the EGP, in contrast, a thermodynamically large number of timesN
of selections come into play. As a result, connections to states juk;si with s > 0 are efficiently damped, and the EGP exhibits the Uð1Þ
geometric properties of juk;0i alone (up to corrections that vanish in the limit N → ∞).
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charge. At finite temperature or in the nonequilibrium
setting, in contrast, this connection breaks down. This can
be understood from the fact that charge transport is related
to the expectation value of a single-particle operator (the
current), while ΔφE is related to a many-particle correlator
[arbitrary powers of the single-particle operator X̂ contrib-
ute to Eq. (1)]. This underlines the different phenomenol-
ogy found in both cases: in charge transport, corrections to
the current are intensive and finite in the thermodynamic
limit, leading to the breakdown of exact quantization
[20,21]. In contrast, corrections to the EGP of thermal
or nonequilibrium mixed states vanish in the thermody-
namic limit, allowing for the strict quantization of ΔφE (to
nontrivial values).
In Sec. IV, we illustrate our general findings in minimal

two-band models corresponding to the finite-temperature
Rice-Mele model and to a nonequilibrium analog intro-
duced in Ref. [17]. In the thermal case, we demonstrate the
existence of a topological phase transition (signaled by
ΔφE) at infinite temperature where the purity gap closes. In
the other setting, we illustrate a chief feature of non-
equilibrium dynamics, namely, the possibility that the
purity gap closes at points where the “damping gap” of
the Liouvillian describing the dynamics does not close [19].
Such singular points give rise to an observable nonzero
ΔφE when encircled in parameter space, but are not
associated with more conventional signatures such as
divergent length and time scales in correlation functions.
Here, the requirement of adiabaticity in the conventional

zero-temperature setting—the smallness, as compared to
some spectral gap (the Hamiltonian gap), of the rate of
parameter changes along some path—is replaced by a
“purity adiabaticity” requirement: As detailed in Sec. III E,
the number of points at which the EGP must be measured
or “sampled” along the relevant closed path in parameter
space increases with decreasing purity gap. This reveals
another analogy—and important fundamental difference—
to the conventional zero-temperature setting: the adiaba-
ticity condition comparing dynamical (energy or damping)
scales is replaced, here, by a condition comparing dimen-
sionless numbers.
The many-body nature of the correlator corresponding to

the EGP [Eq. (1)] may shed doubts on its practical
observability. In Sec. V, however, we propose a scheme
harnessing the tools available in current experiments to
measure this phase in mesoscopic ensembles of ultracold
atoms, via Mach-Zehnder interferometry using photons.
At this point, we would like to mention some more

related works: the authors of Refs. [22,23] developed an
adiabatic response theory for nonequilibrium (Liouvillian)
dynamics for systems with few degrees of freedom, with a
recent generalization to a many-body context [24], where
the connection to Hamiltonian ground-state responses
has been elucidated. This construction yields geometric
phases and quantized invariants only in cases where the

(instantaneous) stationary state is pure, or mixed in a
specific fine-tuned way, in contrast to our situation.
Furthermore, observable geometric phases have been iden-
tified in pumping protocols for open quantum dots in the
high-temperature regime [25]. This construction builds up
on ideas for geometric phases in classical dissipative
systems [26], which, however, do not relate to the geo-
metric structure of the underlying quantum state.

II. RESTA POLARIZATION
AND ITS GENERALIZATION

In this section, our goal is to construct the ensemble
geometric phase φE, satisfying the following criteria:

(i) The EGP is defined up to integer multiples of 2π;
i.e., it is a “phase.”

(ii) Differential changes ∂ϕφEðϕÞ with respect to a
parameter ϕ are well defined and observable.

(iii) As a direct consequence of (i), the normalized
change ½1/ð2πÞ�ΔφE ≡ ½1/ð2πÞ� H dϕ∂ϕφEðϕÞ accu-
mulated over a closed loop in parameter space is
integer quantized.

(iv) The EGP has a simple enough physical meaning for
differencesΔφE to be measurable in a realistic setup.

(v) In limits where the relevant density matrix reduces to
a projector onto a ground state, the EGP coincides
with a conventional geometric phase (the Zak phase)
characterizing ground-state band structures. A sim-
ilar situation occurs when the EGP reduces to a
projector onto an arbitrary pure state.

In the following, we construct a quantity satisfying these
conditions and show how it defines a geometric phase for
mixed states. We then identify the topological nature of its
quantization property and define the notion of a quantized
adiabatic pump for mixed states.

A. Resta polarization

Key to our construction is a formulation of the electronic
polarization of periodic quantum systems pioneered in an
insightful paper by Resta [18]. Resta argues that the text-
book expression P¼hX̂i/L¼hψ0jX̂jψ0i (setting e¼ℏ¼1)
for the ground-state polarization of a 1D system with size L
in terms of the expectation value of the many-body position
operator X̂ ≡P

jx̂j (where x̂j is the position operator of
individual particles j) is not applicable when the system is
periodic as X̂ is not a proper operator in the space of
wave functions obeying periodic boundary conditions
ψðLÞ ¼ ψð0Þ. Instead, Resta suggests the alternative
formula

P ¼ 1

2π
Im lnhψ0jT̂jψ0i; T̂ ≡ eiδkX̂; ð4Þ

where δk ¼ 2π/L. In this form, the polarization is defined
modulo an integer (as required from the periodicity of the
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host system) and is expressed in terms of a phase.
Measurable incremental changes ΔP are more relevant
than the value ofP itself. In particular, the introduction of an
adiabatically slow time-dependent parameter ϕðtÞ leads to
the observable ∂tPðtÞ ¼ IðtÞ, corresponding to the elec-
tronic current. Importantly, the charge Q≡ ΔP ¼ H

dtIðtÞ
“pumped” during a cyclic protocol t ∈ ½0; τ�, with
ϕðτÞ ¼ ϕð0Þ, is integer quantized. This fact follows in full
generality from the observation that, for ground states
jψ0ðtÞi that are weakly time dependent, the derivative
∂tPðtÞ is equal to an expression derived by Thouless and
Niu [27] for the current flowing in linear response to
adiabatic changes. A more specific construction providing
a connection to the topological band theory of noninteract-
ing lattice systems considers jψ0i as a Slater determinant
formed from single-particle Bloch states jψk;si, where
k ∈ 2πZ/N (for a system of length L ¼ Na, with N unit
cells and lattice constant a ¼ 1), and s ¼ 0;…; n − 1 are
band indices. Noticing that the many-body operator T̂
introduced in Eq. (4) acts by translating all single-particle
momenta by δk (such that k → k − δk), it is then straight-
forward to verify [18] that

P ¼ 1

2π
Im ln

Y
k

detðSkÞ

≃
1

2π

I
dkTrðAkÞ≡ φZ

2π
; ð5Þ

where Sk is an np × np matrix (where np is the number of
particles in the system) formed by momentum-shifted
ground-state wave function overlaps, namely, ðSkÞs;s0 ≡
hψk;sjT̂jψk;s0 i ¼ hψk;sjψk−δk;s0 i ≃ δs;s0 þ iδkðAkÞs;s0 , with
ðAkÞs;s0 ≡ ihψk;sj∂kψk;s0 i. The first expression in Eq. (5)
identifies P as the (normalized) phase of a “Wilson loop”
corresponding to the product of overlap determinants
detðSkÞ across the Brillouin zone. The second expression
represents the same quantity as a discretized Berry phase,
and the third provides a continuum approximation in terms
of the Zak phase φZ ≡ H

dkTrðAkÞ (Ref. [16]), which
corresponds to the loop integral of the multiband UðnÞ
Berry connection Ak (where n is the number of bands).
The introduction of a time-dependent parameter

ϕ≡ ϕðtÞ leads to variations ΔP ¼ R
dt∂tP ¼ H

dϕ∂ϕP.
When performing a full adiabatic cycle, one finds

ΔP¼ i
2π

ZZ
dkdϕTrðh∂ϕψ0j∂kψ0i−h∂kψ0j∂ϕψ0iÞ; ð6Þ

where the expression in the integral is a trace over the Berry
curvature corresponding to the Berry connection Ak (and its
analog Aϕ for variations in ϕ). Equation (6) measures the
integer homotopy invariant of the map ðϕ; kÞ → jψ0i≡
jψ0ðk;ϕÞi from the torus defined by the two cyclic
parameters ðϕ; kÞ to the ground-state manifold; i.e., ΔP

corresponds to the number of times the ground-state wave
function jψ0ðk;ϕÞi fully “covers” the torus in the process
of a full parametric variation.

B. Generalization to mixed states: The EGP

Taking advantage of the above formulation of the Zak
phase of a pure state, we now turn to mixed states and
construct a generalization of Eq. (4) (see also Ref. [17])
designed to preserve all properties (i)–(v) above. We
consider mixed states that arise as the unique stationary
state of a gapped equilibrium or nonequilibrium quantum
evolution—the direct analog of gapped nondegenerate pure
states [19]. The corresponding density matrix ρ can be
decomposed in the generic form ρ ¼ P

mpmjψmihψmj,
where pm > 0 is the probability of finding the system in
state jψmi. A natural generalization of the Zak phase φZ
[given by Eqs. (4) and (5)] would be the average phase
φ̄Z ¼ P

mpmφZ;m, where φZ;m is the Zak phase of each
individual pure state jψmi. This choice, however, trivially
breaks property (i) above: The statistical average of phases
defined modulo 2π is generally not defined modulo 2π.
Here, instead, we consider the phase of the statistical
average

P
mpmhψmjT̂jψmi; i.e., we consider the “ensemble

geometric phase”

φE ¼ Im lnhT̂i; ð7Þ

where h…i≡ Trðρ…Þ.
Equation (7) is designed to satisfy the benchmark criteria

(i)–(v) above. In particular, we note that φE reduces to a
Zak phase φZ in the limit of pure states, which hints at the
geometric nature of the EGP for mixed states. Differential
changes ∂ϕφEðϕÞ∼ImðhT̂i−1∂ϕhT̂iÞ are physically observ-
able, as we will discuss in Sec. V, and changes
½1/ð2πÞ�ΔφE ≡ ½1/ð2πÞ� H dϕ∂ϕφEðϕÞ accumulated over
parameter cycles are by construction integer quantized.
For mixed states, ½1/ð2πÞ�ΔφE does not have the meaning
of a pumped electric charge as in the case of pure states
where it reduces to ΔP≡Q [Eqs. (5) and (6)].
Nevertheless, we will show that it can be measured in
many-body interferometric protocols.
In the following, we will demonstrate for a wide class of

mixed states—namely, Gaussian mixed states—that φE is
related to the Zak phase of a pure state up to corrections that
vanish in the thermodynamic limit, thereby establishing the
topological nature of the quantization of ½1/ð2πÞ�ΔφE.
Gaussian mixed states can be represented by a quadratic
Hermitian operator Ĝ, and ½1/ð2πÞ�ΔφE corresponds, as we
will show, to the ground-state topological invariant of the
latter. In the specific case of thermal Gaussian states ρ ∝
e−βĤ (the finite-temperature extensions of zero-temperature
ground states), the relevant operator is Ĝ ¼ βĤ (where β is
the inverse temperature), such that ΔφE reflects the top-
ology of the ground state of H. Remarkably, for a gapped
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Hamiltonian Ĥ, the quantity ½1/ð2πÞ�ΔφE remains quan-
tized and coincides with the ground-state topological
invariant ΔP of Ĥ at finite temperature, for as long as
Ĝ ¼ βĤ is gapped (i.e., up to infinite temperature where
β ¼ 0). In this regard, the observable ΔφE reflects the zero-
temperature ground-state invariant in a more robust way
than single-particle observables (such as linear-response
conductances) whose quantization is affected by intensive
(system-size independent) ratios of band gaps over temper-
ature (see, e.g., Refs. [20,21]).

III. GEOMETRIC PHASE AND TOPOLOGICAL
INVARIANT FOR MIXED STATES

In this section, we explicitly relate the EGP defined in
Eq. (7) to a geometric phase for mixed Gaussian states. To
this end, we consider a set fâ†i ; âig of fermionic creation
and annihilation operators, where i≡ ðr; sÞ is a composite
index, where r ¼ 0;…; N − 1 labels unit cells and the band
index s ¼ 0;…; n − 1 indexes fermionic sites in the unit
cell (with lattice constant a ¼ 1). We consider Gaussian
states defined by a density operator of the form

ρ ¼ 1

Z
exp

�
−
X
i;j

â†i Gijâj

�
; ð8Þ

with G is a Hermitian matrix and Z is a normalization
constant ensuring that TrðρÞ ¼ 1. The matrix G, which we
call the state “fictitious Hamiltonian,” plays a key role in
what follows: It uniquely identifies the state, and its
spectrum defines what we call the state “purity spectrum.”
The latter essentially corresponds to the spectrum of − ln ρ,
and its eigenvalues indicate the purity of the state in the
corresponding eigenspaces [19]. Note that G ¼ βH for a
thermal state ρ ∝ e−βĤ (where H is the matrix representa-
tion of Ĥ), as anticipated above.
The Gaussian density matrices that we focus on, defined

in Eq. (8), describe states that are fully characterized by
single-particle correlations of the form hâ†i âji, with vanish-
ing “anomalous” correlations hâ†i â†ji or hâiâji. Such states
are typically found in equilibrium or nonequilibrium
systems of noninteracting fermions without particle-
number fluctuations. It is straightforward to check that
operator expectation values calculated with respect to the
density matrix in Eq. (8) are given by

hâ†i âji ¼ ½fðGÞ�ij; ð9Þ

where fðGÞ ¼ ðeG þ 1Þ−1, with vanishing anomalous cor-
relations. The same information is often collected in the so-
called “covariance matrix” of the distribution, with matrix
elements

h½âj; â†i �i ¼
�
tanh

�
G
2

��
ij
: ð10Þ

Higher-order correlation functions can be calculated using
Wick’s theorem. Alternatively, and more efficiently here,
one may compute the operator correlation functions of
Gaussian states via a Grassmann integral, namely,

hÔðâ†; âÞi ¼ N
Z

dðψ̄ ;ψÞeψ̄f−1ðGÞψÔðψ̄ ;ψÞ; ð11Þ

where Ôðâ†; âÞ is a (normal-ordered) operator defined in
terms of the creation and annihilation operators; ψ̄ i and ψ i

are Grassmann variables; Ôðψ̄ ;ψÞ is obtained by the formal
replacement a†i → ψ̄ i, ai → ψ i; and N ¼ det½−fðGÞ� nor-
malizes the integral. We note that hâ†i âji → hψ̄ iψ ji ¼
½fðGÞ�ij readily follows from the Gaussian form of the

integral, and the combinatorial signs in hâ†i â†kâjâli ¼
−fðGÞijfðGÞkl þ fðGÞilfðGÞkj are faithfully reproduced
by the Grassmann anticommutation ψ iψ j ¼ −ψ jψ i.
We now use the above Grassmann representation to

calculate the operator expectation value hT̂i in Eq. (7). To
this end, we first express the operator in the form

T̂ðâ†; âÞ ¼ eiδk
P

i
â†i xiâi

¼
Y
i

ð1 − â†i âi þ â†i e
iδkxi âiÞ; ð12Þ

where we have defined ti ¼ expðiδkxiÞ. The normal order-
ing of this expression is a straightforward operation as the
indices i carried by the factors entering the product

Q
i are

all different and, hence, nontrivial commutators do not
appear. Next, we substitute T̂ðψ̄ ;ψÞ ¼ 1 − ψ̄ð1 − TÞψ ¼
exp½−Piψ̄ ið1 − tiÞψ i�, where T ≡ diagðtiÞ, into the
Grassmann integral to obtain

hT̂ðâ†; âÞi≡ hT̂i ¼ N
Z

dðψ̄ ;ψÞeψ̄ ½f−1ðGÞ−1þT�ψ

¼ det½−fðGÞ� det½−f−1ðGÞ þ 1 − T�
¼ det½1 − fðGÞ þ fðGÞT�; ð13Þ

which is still a formal expression at this point, since fðGÞ is
a highly nondiagonal matrix in position space. A more
tangible representation can be obtained by assuming that
the state is translation invariant [28], in which case the
matrix G can be prediagonalized in a “Bloch basis” as

G ¼
X
k

Gkjkihkj; ð14Þ

where hxjki ¼ N−1/2eixk. Here, Gk is an n × n Hermitian
matrix defined in band space, with elements ðGkÞs;s0 , which
can be cast in diagonal form,
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Gk ¼ UkBkU
†
k; Bk ≡ diagsðβk;sÞ; ð15Þ

where Uk is a unitary matrix collecting the “purity
eigenstates” (analogous to Bloch vectors) of the fictitious
Hamiltonian Gk representing the state, and Bk is a diagonal
matrix containing the purity eigenvalues βk;s ∈ R of the
latter, ordered in increasing order βk;1 ≤ … ≤ βk;n, for
convenience (see Fig. 1). The “Fermi functions” appearing
in Eq. (13) can then be expressed as

fðGÞ ¼
X
k

½UkfðBkÞU†
k�jkihkj; ð16Þ

where fðBkÞ ¼ ðeBk þ 1Þ−1. The matrix T in Eq. (13)
(originating from the many-body translation operator T̂)
takes an intuitive form in the Bloch basis: Writing
xi ≡ xr;s ≡ xr þ xs, where xs is the position shift of the
fermionic site s located in the unit cell r with position xr,
we obtain hkjTjk0i ¼ δk;k0þ1 [30]. [Note that we use k
interchangeably as a momentum index (k ¼ 0;…; N − 1)
and as the momentum itself (with a factor 2π/N).]
Consequently, the matrix T in Eq. (13) has the Bloch
representation

T ¼
X
k

jkþ 1ihkj; ð17Þ

i.e., T can be considered as a unit matrix on the diagonal
next to the principal diagonal.
The EGP defined in Eq. (7) corresponds to the complex

phase of hT̂i in Eq. (13). Since we are only interested in this
phase, we can write

φE ¼ Im ln det½1 − fðGÞ þ fðGÞT�
¼ Im ln det½1þ ð1 − fðGÞÞ−1fðGÞT�; ð18Þ

where we have observed that ln det½1 − fðGÞ� ¼
ln det½1 − fðBÞ� is real and, thus, does not contribute to
the imaginary part of φE. Note that this assumes that the
matrix 1 − fðGÞ is invertible, which is generically true for
mixed states [31]. To reduce φE to a more transparent form,
we use Eqs. (16) and (17), along with the identity
detð…Þ ¼ expTr lnð…Þ, to write

φE ¼ Im ln det½1þ ð1 − fðBÞÞ−1fðBÞU†TU�
¼ Im ln ðexpTr ln½1þ ð1 − fðBÞÞ−1fðBÞU†TU�Þ
¼ Im ln ½expTr lnð1þMTÞ�
¼ Im ln detð1þMTÞ; ð19Þ

where the trace and determinant act in band space, in the
last two equalities, and we have defined U ≡ fδk;k0Ukg,
B≡ fδk;k0Bkg, and MT is a path-ordered matrix product
(“transfer matrix”)

MT ≡ ð−1ÞNþ1
Y
k

fðBkþ1Þ
1 − fðBkþ1Þ

U†
kþ1Uk

¼ ð−1ÞNþ1
Y
k

e−BkUkþ1;k; ð20Þ

with “link matrices” defined as Ukþ1;k ¼ U†
kþ1Uk. The

matrices U ≡ fδk;k0Ukg and B≡ fδk;k0Bkg appearing in
Eq. (19) are block diagonal. In the crucial third equality in
Eq. (19), we have noted that U†TU¼P

kU
†
kþ1Ukjkþ1ihkj

is a matrix with blocks on the next-to-leading diagonal.
Matrices of this form, viz. A ¼ P

Akjkþ 1ihkj, have the
property that AN ¼ ðQkAkÞ1, while powers of A different
from multiples of N do not contain diagonal matrix
elements, and, hence, do not contribute to the expansion
of expressions of the form Tr lnð1þ AÞ. This feature was
used to arrive at the final expression in Eq. (19) containing
the transfer matrixMT . For convenience, we will assume an
odd number of sites throughout, such that the factor
ð−1ÞNþ1 in Eq. (20) can be omitted.
Equations (19) and (20) express the EGP as a path-

ordered product of link matrices Ukþ1;k with points
k ¼ 0;…; N − 1 along a closed loop corresponding to
the Brillouin zone. This structure is reminiscent of a
discretized Wilson loop [32], where Ukþ1;k plays the role
of a discrete UðnÞ gauge connection. In the following, we
will build on this observation to show how the EGP reduces
to a more simple Uð1Þ gauge structure in the limit of large
system sizes.

A. Gauge-reduction mechanism

Equations (19) and (20) directly relate the EGP to a path-
ordered product of two types of matrices: the link matrices
Ukþ1;k and the “weight factors” e−Bk ¼ diagsðe−βk;sÞ. The
link matrices describe the “geometry” underlying the band
structure of the mixed state ρ. This can be understood from
the fact that the n × n matrices Uk ≡ ðjuk;0i;…; juk;niÞ
contain the k-dependent Bloch eigenvectors diagonalizing
the fictitious Hamiltonian Gk representing the state [see
Eq. (8)]. In the limit of large N, where points k and kþ 1
are infinitesimally close, the link matrices take the unitary
form ðUkþ1;kÞss0 ¼ hukþ1;sjuk;s0 i ≃ 1 − δkhuk;sj∂kuk;s0 i≃
exp½iδkðAkÞss0 �, where Ak is the (non-Abelian) Berry
connection

ðAkÞss0 ¼ ihuk;sj∂kuk;s0 i: ð21Þ

Therefore, the link matrices Ukþ1;k describe the geometric
twist of the state band structure (or purity bands) when
moving from k to kþ 1 in the Brillouin zone.
The weight factors e−Bk ¼ diagsðe−βk;sÞ, on the other

hand, are purely real and determine the statistical weight
with which a given purity band s contributes to the EGP. It
is at this point that the many-body nature of the correlator
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hT̂i in Eq. (7) really kicks in: While conventional few-body
expectation values take the symbolic form approximately
Tr½e−Gð…Þ�, i.e., a structure where weight factors appear
once, here we have a much more rigid structure of the form
Tr½…ð…Þe−Gkþ1ð…Þe−Gk…�, in which selection through
weight factors occurs a thermodynamically large number of
times N (see Fig. 1). For mixed states with a purity gap
separating, e.g., a single, lowest purity band from the rest of
the purity spectrum [see Fig. 1(b)], weight factors efficiently
select the lowest band s ¼ 0 with weight βk;0 (for thermal
states approximately e−βĤ, we recall that βk;s ¼ βϵk;s, where
ϵk;s is the energy spectrum of the underlying Hamiltonian
Ĥ). In that case, as detailed below, Eq. (20) leads to a crucial
gauge reduction to a single Uð1Þ component:

φE ≃ Im ln
Y
k

e−βk;0eiδkAk;0 ; Ak;0 ≡ ihuk;0j∂kuk;0i: ð22Þ

As anticipated above, the relevant Berry connection for the
EGP is now the Uð1Þ Berry connection Ak;0 describing
geometric properties of the lowest purity band.
As we will demonstrate below, corrections to Eq. (22)

generally vanish in the thermodynamic limit N → ∞. In
addition, differences ½1/ð2πÞ�ΔφE ≡ ½1/ð2πÞ� H dϕ∂ϕφEðϕÞ
accumulated per parameter cycle are topologically quan-
tized irrespective of the system size N. The underlying
gauge-reduction mechanism applies, in particular, to the
thermal density matrices ρ ∼ expð−βĤÞ of topological
band insulators: While the probing of topological invariants
via conventional response coefficients generally leads to
compromised results for temperatures βΔϵ≳ 1 exceeding
the gap Δϵ of Ĥ, the observable ½1/ð2πÞ�ΔφE considered
here remains topologically quantized at finite temperature.
The only requirement is that the purity gap remains finite,
i.e., βΔϵ > 0. In the next section, we illustrate the reduction
of the EGP to a geometric phase and the scaling of
corrections in a simple two-band example. The case of
multiple bands and the role of band filling in the thermal
setting will be discussed subsequently.

B. Two-band example

In the following, we discuss the EGP in the illustrative
case of a two-band model with gapped purity spectrum
�βk ≠ 0. As a warm-up, we first examine the case in which
the density matrix reduces to a projector onto a pure state,
which corresponds to the limit βk ≡ β → ∞. In this setting,
the weight factors e−ð−βkÞ ¼ eβ → ∞ of the lower purity
band dominate over those of the upper band (with weights
e−β), and Eq. (22) reduces to

φE ≃ Im ln
Y
k

eβeiδkAk;0

≃ Im ln

�
eβN

Y
k

eiδkAk;0

�
⟶
N→∞

I
dkAk;0 ¼ φZ; ð23Þ

where all approximate equalities become exact in the
limit β → ∞. Note that the accumulated weight factorsQ

ke
β ¼ eβN drop out, as they do not contribute to the

imaginary part. Therefore, in the pure-state limit, the EGP
reduces to the Zak phase of the lower purity band, as
expected [33].
We now examine the case of mixed states, anticipating

that Eq. (23) will be reproduced up to corrections that
vanish in the thermodynamic limit. The EGP is given by the
path-ordered product defined by Eqs. (19) and (20). We
first parametrize the 2 × 2 unitary link matrices:

Ukþ1;k ≃ eiδkAk ≡ eiδkAk·σ; ð24Þ

whereAk ≡ ðA0
k;…;A3

kÞT is a real four-component vector,
andAk · σ ≡P

3
i¼0A

i
kσi is a shorthand for the expansion of

the 2 × 2 matrix Ak in terms of Pauli matrices (with
σ0 ≡ 1). In the two-band setting examined here, the
diagonal matrix e−Bk ≡ diagsðe−βk;sÞ in Eq. (20) takes the
form e−βkσ3 . For convenience, we decompose the link
matrices in the form

Ukþ1;k ¼ eiδk
P

i¼0;3
Ai

kσi þ δk
X
i¼1;2

Ai
kσi þOðδk2Þ

≡Udiag
kþ1;k þ Vk; ð25Þ

where Udiag
kþ1;k ≡ eiδkðA

0
kσ0þA3

kσ3Þ is diagonal in band space,
and Vk ≡ δkðA1

kσ1 þA2
kσ2Þ causes transitions between

bands. Defining Wk1;k2 ¼
Q

k2≤k≤k1U
diag
kþ1;ke

−βkσ3 , we may
then expand the “ln det” in Eq. (19) perturbatively in
transition matrix elements as

φE ¼ Im lndetðG−1 þVð1Þ þVð2Þ þ…Þ

¼ Im lndetG−1 þ ImTrGVð2Þ þ 1

2
ImTrðGVð1ÞÞ2 þ…;

G−1 ¼ 1þWN−1;0;

Vð1Þ ¼
X
k

WN−1;kVkWk−1;0;

Vð2Þ ¼
X
k>k0

WN−1;kVkWk−1;k0Vk0Wk0−1;0: ð26Þ

One may read these expressions in the spirit of time-
dependent perturbation theory, where k plays the role of
time, and Wkþ1;k corresponds to the unperturbed discrete
time-dependent propagator. The presence of weight matri-
ces in the “Green’s function” G implies that

G−1 ¼ 1þ eiδk
P

k

P
i¼0;3

Ai
kσie−

P
k
βkσ3

≈
�
1 0

0 eβ̄Neiδk
P

k
Ak;0

�
; ð27Þ
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where we have noticed that A0
k −A3

k ¼ ihuk;0j∂kuk;0i≡
Ak;0 is the Uð1Þ gauge field of the lowest purity band, and
we have defined the “average purity” of the lowest band
β̄ ¼ N−1P

kβk. The key point here is the exponential
enhancement approximately eβ̄N with system size N of
the lower-band contribution relative to that of the upper
band (with weight approximately e−β̄N). Inserting the
above expression for G−1 into Eq. (26) leads to a zer-
oth-order contribution that reproduces the result φE ¼ φZ

obtained in Eq. (23). While the exponential factor eβ̄N

drops out upon taking the imaginary part of the logarithm, it
does play a role in the experimental detection of the EGP.
We will return to this point in Sec. V.
Next, we examine perturbative corrections: In Eq. (26),

contributions with an odd number of interband-transition
matrices Vk vanish, and we focus on the leading second-order
contribution. Referring to Appendix B for details, we find that
corrections to the zeroth-order result φE ¼ φZ scale as

ΔðNÞ ¼ c½NΔβ�−2; ð28Þ

whereΔβ ¼ 2minkβk is the purity gap, and c is a real constant
independent of N and Δβ. Specifically, ΔðNÞ ∼ ðT/NÞ2 for
thermal equilibrium states, implying that the EGP retains its
zero-temperature value φE ¼ φZ even for finite N. Higher-
order corrections vanish with higher powers of N and, hence,
are of negligible relevance. To understand the power-law
suppression in an intuitive way, note that a thermodynamically
nonvanishing (independent of N) correction can only arise if
the smallness of the weight δk ∼ N−1 multiplying the k-local
action of the transition operators Vk gets compensated by an
unconstrained summation over k [since

P
kδk ¼ Oð1Þ].

However, excitations from k to k0 of the (symbolic) formP
k;k0 ðG0Þ1;kVkðG1Þk;k0Vk0Gk0;N from the lower band “0”

with “propagator” G0 to the excited band “1” with propagator
G1 get weighed by a factor approximately expð−Δβjk − k0jÞ,
on account of the spectral weights e−βk of the density matrix
penalizing excursions into the excited sector. This leads to
“confinement” jk − k0j ∼ 1/ðΔβÞ and implies that
δk2

P
k;k0e

−Δβjk−k0j ∼ 1/ðΔβNÞ. The fact that the correction
actually scales as 1/ðΔβNÞ2 with power 2 has to do with the
fact that the leading-order perturbative expression comes out
real, such that an additional factor 1/ðΔβNÞ must be paid to
obtain an imaginary contribution. The above mechanism
applies regardless of the order of perturbation theory and
establishes the strong robustness of the geometric phase for
mixed states defined by the EGP. Our perturbative calculations
detailed in Appendix B are supported by numerical simulations
for various equilibrium and nonequilibrium models presented
in Sec. IV.
To summarize, we have shown that the EGP of purity-

gapped fermionic Gaussian states with Bloch matrix
representation Gk satisfies φE ¼ φZ þ ΔðNÞ, where φZ
is the Zak phase of the lowest purity band [given by

Eq. (23)], and ΔðNÞ is a correction that vanishes in the
thermodynamic limit. For equilibrium thermal states
ρ ∝ e−Ĥk/T , the Zak phase is equal to 2π times the zero-
temperature ground-state polarization of Ĥk, and the
observable φE probes this value even at temperatures
T ∼ Δϵ of the order of or higher than the characteristic
band gaps Δϵ in the system.
We emphasize that the temperature dependence approx-

imately ðT/NÞ2 of corrections in φE is fundamentally
different from that in single-particle observables probing
topological quantization. In the latter case, corrections
generally scale exponentially (approximately e−Δϵ/T) with
temperature T ≲ Δϵ, independently of system size (see,
e.g., Ref. [29]), and crucially do not approach zero in the
thermodynamic limit. The general mechanism identified
here is also different from previous approaches focusing on
Uhlmann-type phases [5–8]: The latter are based on the
construction of a system-size-independent geometric phase
for density matrices, in contrast to the present construction,
where a gauge structure emerges only in the thermody-
namic limit. Finally, we note that the scaling of corrections
ΔðNÞ to φE ¼ φZ may be even more favorable in the
presence of specific symmetries. An example is provided
by the thermal density matrix of a Su-Schrieffer-Heeger
(SSH) chain [34]: In that case, the sublattice (chiral)
symmetry of the system leads to a Berry connection Ak
in Eq. (24), where one Pauli-matrix component is sym-
metry forbidden. Without going into detail, we mention that
this symmetry leads to a correction ΔðNÞ ∼ expð−β̄NÞ,
exponential with system size.

C. Topological nature of the quantized pumping

We have argued in Sec. II that the EGP difference
½1/ð2πÞ�ΔφE ¼ H

dϕ∂ϕφEðϕÞ per cycle in some parameter
ϕ is quantized in integer multiples of 2π, which is not
a priori obvious to reconcile with the finding that φE is
given by a geometric (Zak) phase plus a perturbative
correction ΔðNÞ. Since the EGP is defined modulo 2π,
however, the loop integral

H
dϕ∂ϕφEðϕÞ¼φEðϕfÞ−φEðϕiÞ

(where ϕi and ϕf ≡ ϕi are the start and end points of the
parameter cycle) must indeed be quantized in units of 2π
irrespective of N. To reveal the topological nature and,
hence, the robustness of this quantization, we first recall the
above result that

φEðϕÞ ¼ Im ln ei
H
BZ

dkA0ðk;ϕÞ þ ΔðNÞ; ð29Þ

where A0ðk;ϕÞ is the Berry connection of the lowest purity
band (which here depends on ϕ). Since ΔφE is quantized
irrespective of N, the correction ΔðNÞ cannot contribute to
its value. Instead, ΔφE is determined by the winding of the
Zak phase φZðϕÞ ¼

H
BZ dkA0ðk;ϕÞ as ϕ is varied from ϕi

and ϕf. This winding formally corresponds to an integer
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topological invariant known as the Chern number, and we
can write

1

2π
ΔφE ¼ 1

2π

ZZ
dϕdkF0ðk;ϕÞ ¼ C ∈ Z; ð30Þ

where F0ðk;ϕÞ≡ ∂ϕAk;0ðk;ϕÞ − ∂kAϕ;0ðk;ϕÞ is the Berry
curvature of the lowest purity band, defined in terms of the
Uð1Þ gauge potential Aj;0 ≡ −ihu0ðk;ϕÞj∂jju0ðk;ϕÞi
(where ju0ðk;ϕÞi are the Bloch vectors forming the lowest
purity band). Equation (30) shows that ΔφE is a topologi-
cally quantized integer which coincides with the Chern
number C of the lowest purity band—for any system
size N—which is one of the key results of this work.

D. Discussion

In the previous two sections, we have described our key
gauge-reduction mechanism in a simple two-band model
with a symmetric gapped purity spectrum (�βk ≠ 0 for all
k). The same considerations apply to the more general
situation where a single, lowest purity band is separated by
a gap from the rest of the purity spectrum. We obtain
Eq. (22) in that case [35], as anticipated above. In the
following, we consider the general case of n bands and
examine the role of the chemical potential (i.e., of band
filling) in the thermal setting. We recall that the purity
spectrum is given by βk;s ¼ βϵk;s for thermal states approx-

imately e−βĤ, where ϵk;s is the energy spectrum of Ĥ (and s
is the band index). If we work in the grand-canonical
ensemble and introduce a chemical potential μ, the relevant
states become approximately e−βðĤ−μÞ, and the correspond-
ing purity spectrum reads βk;s ¼ βðϵk;s − μÞ. Therefore,
purity eigenvalues βk;s are positive (negative) for states
located below (above) the chemical potential. In turn, the
weight matrix e−Bk ¼ diagsðe−βk;sÞ controlling the gauge-
reduction mechanism in Eq. (20) contains exponentially
decreasing (increasing) diagonal elements for states located
below (above) the chemical potential. We can thus dis-
tinguish between two cases, depending on whether the
chemical potential lies (i) within a gap or (ii) inside a band
(which would correspond to complete or partial filling,
respectively, at T ¼ 0).
In case (i), the direct analog of Eq. (22) reads

φE ≃ Im ln
Y
k

Y0

s

e−βk;seiδkAk;s ; Ak;s ≡ ihuk;sj∂kuk;si;

ð31Þ

where
Q0

s denotes the product over bands s located below
the chemical potential (“filled” bands). This can be under-
stood by noticing that, in the direct extension of Eq. (27) to
multiple bands, the contribution of all bands with expo-
nentially small weights

Q
ke

−βk;s ≪ 1 (the “unfilled” bands)
can be neglected. The EGP given by Eq. (31) then becomes

φE ¼ P0
s φZ;s þ ΔðNÞ, where φZ;s is the Zak phase of the

purity band s and the sum runs over filled bands [as before,
ΔðNÞ is a correction that vanishes in the thermodynamic
limit]. The corresponding topological invariant is
½1/ð2πÞ�ΔφE ¼ P0

s Cs, where Cs is the Chern number of
the band s located below the chemical potential. Therefore,
in the general case of multiple bands, ½1/ð2πÞ�ΔφE reduces
to its zero-temperature analog in a similar way as in the
two-band model detailed above.
In case (ii) where the chemical potential lies within a

specific band s0, the purity eigenvalues βk;s0 change sign at
certain values of k. As a result, the weight factors e−βk;s only
partially amplify the gauge-field contribution of the band s0,
and φE does not reduce to a sum of geometric (Zak) phases.
In that case, as expected, ½1/ð2πÞ�ΔφE is not a topological
invariant.

E. Measurement of ΔφE and purity
adiabaticity requirement

In the conventional zero-temperature setting, where
relevant states are pure (ground) states, topological order
parameters can be determined by measuring currents
integrated over a closed parameter cycle, as typically
envisioned in solid-state setups [27], or, equivalently, by
measuring the Zak-phase difference accumulated over a
cycle, as done in experiments with ultracold atoms [36].
Such measurements rely on a dynamical notion of adia-
baticity, where pump parameters must be varied slowly in
time as compared to the time scale set by some relevant gap
(typically, the Hamiltonian gap).
Here, we show that the requirements for measuring the

mixed-state topological order parameter defined by the
accumulated EGP difference ½1/ð2πÞ�ΔφE is more naturally
related to a purity adiabaticity criterion. To this aim, we
propose to determine the topological invariant ½1/ð2πÞ�ΔφE
from a set of M independent measurements of EPG values
φEðϕjÞ at a discrete set of points ϕj along some relevant
parameter cycle ϕ ∈ ½0; 2π�. The purity adiabaticity con-
dition expressed in terms of the dimensionless purity gap
Δβ and the dimensionless “sampling rate” (or inverse
“mesh size”) Δϕ≡ 1/M along the cycle (both assumed
to be constant, for simplicity) then reads

Δϕ ≪ Δβ; ð32Þ

to be contrasted with the usual dynamical adiabaticity
criterion _ϕ ≪ Δϵ, relating the rate of parameter changes to
an energy or damping gap (see also Appendix C).
To derive the above criterion, we examine how to extract

the integer-quantized topological invariant ½1/ð2πÞ�ΔφE
from a generically imperfect set of M distinct EGP
measurements φEðϕjÞ along the relevant cycle in ϕ (where
j ¼ 1;…;M). Following the approach of Ref. [32], we
discretize the integral ½1/ð2πÞ�ΔφE ¼ 1/ð2πÞ H dϕ∂ϕφE in
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a way that crucially preserves two key properties: (i) the
gauge invariance of ½1/ð2πÞ�ΔφE and (ii) its integer
quantization. Specifically, we define the Uð1Þ “link vari-
ables” UðϕjÞ≡ expði½φEðϕjþ1Þ − φEðϕjÞ�Þ and the corre-
sponding “lattice field strengths” FðϕjÞ≡ LnUðϕjÞ, where
“Ln” denotes the principal branch of the logarithm defined
such that −π < FðϕjÞ/i ≤ π. We then estimate the topo-
logical invariant of interest as the sum ½1/ð2πÞ�Δφ0

E ≡
1/ð2πiÞPjFðϕjÞ. Clearly, this quantity is invariant under
gauge transformations φEðϕjÞ → φEðϕjÞ þ 2πnj (where nj
is an arbitrary integer), and Δφ0

E → ΔφE as M → ∞.
Remarkably, ½1/ð2πÞ�Δφ0

E is additionally restricted, by
construction, to integer values [32]. As a result, one finds
that Δφ0

E ¼ ΔφE as long as the mesh sizeM (or number of
sampling points in parameter space) is larger than a critical
size Mc. In fact, ½1/ð2πÞ�Δφ0

E can only change (i.e., jump
by an integer value) when jFðϕjÞj ¼ π at some point j in
parameter space, which corresponds to a large discontinuity
jφEðϕjþ1Þ − φEðϕjÞj ¼ π [modulo 2π, as 2π jumps do not
contribute to UðϕjÞ�. Accordingly, the critical mesh size
can be estimated as the size below which the “admissibility
condition” jFðϕjÞj < π (for all j) breaks down.
In summary, the value ½1/ð2πÞ�Δφ0

E extracted from
independent EGP measurements via the above procedure
exactly coincides with the integer topological invariant
½1/ð2πÞ�ΔφE provided that φEðϕÞ is measured at a suffi-
ciently large number of points M > Mc. In general, the
critical mesh size Mc is controlled by the proximity of the
cyclic path ϕ ∈ ½0; 2π� to gap closing points (see, e.g.,
Ref. [37]): the latter can be seen as sources of Berry-type
curvature, in the sense that the field strength FðϕÞ is
concentrated at such points in the limit of an infinitesimal
mesh M → ∞. Here, the relevant gap is the purity gap.
Indeed, as we have demonstrated in Sec. IV, the EGP
winding ½1/ð2πÞ�ΔφE vanishes for parameter cycles that do
not encircle one (or more) purity-gap-closing point(s). This
allows us to define the above notion of purity adiabaticity
unique to thermal and nonequilibrium systems: to be able to
observe the topological invariant ½1/ð2πÞ�ΔφE, one must
sample a number M > Mc of EGP values that gets larger
and larger as one approaches purity-gap-closing points—
diverging exactly at such points [38]. This leads to the
criterion presented in Eq. (32).
We emphasize that measurement errors on the discrete

values φEðϕjÞ are irrelevant as long as the admissibility
condition jFðϕjÞj < π (for all j) remains satisfied (recall
that Δφ0

E cannot change without breaking this condition).
Therefore, errors can generically be compensated for by
(i) using a finer mesh and/or (ii) choosing parameter cycles
further away from purity-gap-closing point(s).
Unlike usual measurements of accumulated Zak phase

differences in the zero-temperature setting, the above
procedure for measuring ΔφE does not rely on any
dynamical protocol. This provides insight into why the

purity adiabaticity criterion in Eq. (32) involves a com-
parison of dimensionless numbers instead of dynamical
scales. Since the values φEðϕjÞ can be determined via
completely independent measurements, the system can
always be prepared with fixed parameters and measured
after the time required for reaching its stationary state
(controlled by possibly complex thermalization processes,
in the thermal Hamiltonian case, or by a given damping
gap, in the nonequilibrium Liouvillian case), with other-
wise no requirement for adiabaticity under dynamical
changes of parameters. For completeness, however, we
present in Appendix C a detailed analysis of dynamical
quasiadiabatic measurements ofΔφE, where parameters are
varied continuously in time. The advantage of such
measurements as opposed to independent ones as above
is that the state of the system follows the quasiadiabatic
evolution of parameters, which naturally fixes the gauge
and leads to continuous changes in φEðϕÞ. At the end of the
parameter cycle, the topological invariant ½1/ð2πÞ�ΔφE is
simply given by ½1/ð2πÞ�jφEðϕ ¼ 2πÞ − φEðϕ ¼ 0Þj. The
downside, however, is that this value generically deviates
from an integer, because of the dynamical errors that come
into play (see Appendix C).

IV. EQUILIBRIUM (THERMAL) AND
NONEQUILIBRIUM EXAMPLES

In this section, we demonstrate our analytical results
numerically in two illustrative examples: (i) the Rice-Mele
model in thermal equilibrium and (ii) its nonequilibrium
driven-dissipative analog introduced in Ref. [17]. Both
models are noninteracting and translationally invariant.
They exhibit Gaussian states ρ ∼ e−G [Eq. (8)], described
by a “fictitious Hamiltonian” G (or Gk, in momentum
space), and the EGP can be computed, e.g., using the path-
ordered formula found in Eqs. (19) and (20). We will
illustrate three key features: (i) the convergence, in the limit
of large system sizes, of the EGP φE to the Zak phase φZ of
the lower band of Gk (the lower purity band); (ii) the
quantization of the EGP difference ΔφE accumulated over
a closed cycle in parameter space, and the coincidence of
½1/ð2πÞ�ΔφE with the Chern number of the lower purity
band; and (iii) the direct connection between purity-gap-
closing and topological transitions in ½1/ð2πÞ�ΔφE.
We first examine the Rice-Mele model [14], defined by

the Hamiltonian

Ĥ ¼
X
r

ðt1â†r;1âr;0 þ t2â
†
rþ1;0âr;1 þ H:c:Þ

− Δ
X
r;s

ð−1Þsâ†r;sâr;s; ð33Þ

where r ¼ 0;…; N − 1 indexes unit cells and s ¼ 0, 1
indexes fermionic sites in the unit cell. The first line
describes the hopping of fermions on a 1D lattice with
alternating hopping amplitudes t1 and t2, and the second
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line describes a staggered potential. At Δ ¼ 0, the model
reduces to the SSH model [34]. It exhibits chiral symmetry,
which promotes the Zak phase to a topological invariant. In
that case, two topologically distinct phases (protected by
chiral symmetry) can be distinguished for t1 > t2 and
t1 < t2, respectively (separated by a gapless point at
t1 ¼ t2). The corresponding quantized values of the
Zak phase are φZ ¼ 0 and π (modulo 2π), respectively,
which corresponds to ground-state polarizations P ¼
φZ/ð2πÞ ¼ 0 and 1/2. In the Rice-Mele model, the param-
eter Δ provides a way to break chiral symmetry and,
hence, to adiabatically connect the two phases originating
from the SSH model and induce quantized polarization
changes ΔP (note that the two phases are not symmetry
protected anymore when Δ ≠ 0). In particular, adiabatic
cycles in parameter space ðt1 − t2;ΔÞ lead to an integer-
quantized polarization difference (i.e., a pumped charge)
ΔP ¼ 1 whenever the gapless point t1 ¼ t2, Δ ¼ 0 is
encircled. This process corresponds to a topological
(Thouless) pump.
We now examine the behavior of the Rice-Mele model at

finite temperature, where the EGP replaces the Zak phase
as the relevant probe for topology. The fictitious
Hamiltonian representing the thermal state ρ ∼ e−βHk ≡
e−Gk of the system is given by Gk ¼ βHk, where Hk is the
momentum-space Hamiltonian matrix H corresponding to
Eq. (33). It can be expressed in the form

Gk ¼ nk · σ≡ βkUkσ3U
†
k;

nk ¼ βðt1 þ t2 cosk; t2 sink;−ΔÞT; βk ¼ knkk; ð34Þ

where σ ¼ ðσ1; σ2; σ3ÞT is a vector of Pauli matrices. The
matrix Gk is diagonalized by the unitary matrices Uk, and
its spectrum (the purity spectrum) takes the form �βk, with
βk ¼ βϵk, where ϵk is the energy spectrum of the under-
lying HamiltonianHk [using notations similar to those used
before, as in Eq. (15)].
We have used the above representation as the input for

the numerical evaluation of Eqs. (19) and (20) [which
provide an exact reformulation of Eq. (7) for the EGP]. In
Fig. 2, we plot the difference jφE − φZj between the EGP
and the Zak phase for fixed system parameters t1 − t2,
Δ ≠ 0, over a wide range of β, including temperatures
much larger than the Hamiltonian gap (of order 1 for the
chosen parameters). For all but the largest values of T, the
data confirm the scaling approximately 1/N2 predicted by
perturbation theory [see Eq. (28)].
Next, we consider the EGP difference ΔφE accumulated

over a closed path in parameter space ðt1 − t2;ΔÞ encircling
the origin (the gapless point of Gk ¼ βHk). As argued in
previous sections, we expect ½1/ð2πÞ�ΔφE to be an integer
equal to the topologically quantized change (Chern num-
ber) ½1/ð2πÞ�ΔφZ of the Zak phase of the lowest band of
Gk ¼ βHk over the same parameter cycle. This equality
must hold regardless of the system size N and temperature
T. The inset of Fig. 2 confirms this behavior: as the
temperature is increased away from zero (β decreased away
from∞), the difference ½1/ð2πÞ�ΔφE remains quantized for
all system sizes N accessible numerically. Moreover, its
value indeed coincides with the value ½1/ð2πÞ�ΔφZ ¼ 1
corresponding to the quantized charge ΔP ¼ 1 that would
be pumped through the system at T ¼ 0. The topological
quantization of ½1/ð2πÞ�ΔφE requires the spectral gap of
Gk ¼ βHk (the purity gap) to be finite all along the chosen
cycle in parameter space (as required for purity adiaba-
ticity; see Sec. III E). More importantly, the nontrivial value
of ½1/ð2πÞ�ΔφE crucially depends on the existence of
purity-gap-closing points encircled by the parameter cycle.
In the thermal setting of interest here, the spectral gap
of Gk ¼ βHk can close either (i) via the closure of the
energy gap Δϵ of the underlying Hamiltonian Hk or (ii) at
infinite temperature, where β → 0. This leads to two
possibilities for topological phase transitions. In the inset
of Fig. 2, the value of ½1/ð2πÞ�ΔφE computed for a range of
negative to positive temperatures [39] illustrates these two
possibilities: (i) When jβj ≠ 0, the value of ½1/ð2πÞ�ΔφE is
nontrivial because the parameter cycle that we consider
encircles the purity-gap-closing point at the origin in
parameter space ðt1 − t2;ΔÞ. It would be zero otherwise.
(ii) When going from positive to negative temperatures, a
topological transition occurs, where ½1/ð2πÞ�ΔφE changes
sign. Intuitively, the reason for this “jump” is that at
positive/negative temperatures, the lower/upper band is

FIG. 2. Scaling of finite-size corrections jφE − φZj in the finite-
temperature Rice-Mele model, for different temperatures T ¼ 0.1,
1, 10, and 100, with t1 − t2 ¼ −1/4 and Δ ¼ ffiffiffi

3
p

/4 in Eq. (33).
Solid lines are fitting curves of approximatelyN−2, which provide
a good description of data points in the limit of large system sizes
N. Inset: Difference ½1/ð2πÞ�ΔφE accumulated per closed cycle in
ðt1 − t2;ΔÞ space encircling the purity-gap-closing point t2 ¼ t1,
Δ ¼ 0, as a function of inverse temperature β. The same plot is
found for N ¼ 8, 16, 32, showing that the quantization of
½1/ð2πÞ�ΔφE is independent of system size. As discussed in
the main text, a topological transition occurs at infinite temper-
ature (β ¼ 0), where the purity gap globally closes, highlighting
the key role of the latter.
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predominantly occupied. At β ¼ 0, occupation inversion
occurs, and the sign of φE changes. We note that negative
temperatures, strictly speaking, do not correspond to an
equilibrium situation anymore, although the generator of
dynamics is still a Hamiltonian operator alone.
We now turn to a second illustrative example provided

by the nonequilibrium analog of the Rice-Mele model
introduced in Ref. [17]. In that case, the relevant dynamics
is governed by a gapped Liouvillian (Markovian quantum
master equation) of the generic form

∂tρ ¼
X
r;s

ð2Lr;sρL
†
r;s − fL†

r;sLr;s; ρgÞ≡ LðρÞ; ð35Þ

where ρ is the density matrix of the system and Lr;s are so-
called Lindblad operators. This type of time evolution can
be realized, e.g., in quantum systems with an engineered
system-bath coupling. Provided that the bath energies are
separated from those of the system by a large energy scale,
Born-Markov and rotating-wave approximations become
applicable and lead to Lindblad master equations, as above
(see, e.g., Ref. [19] for details). Here we assume, for
simplicity, that the right-hand side of Eq. (35) does not
contain a coherent contribution approximately −i½Ĥ; ρ�.
The nonequilibrium Rice-Mele model analog of interest

is defined by the set of Lindblad operators

Lr;0¼
ffiffiffiffiffiffiffiffiffiffi
1þϵ

p ½ð1−λÞðâ†r;0þ âr;1Þþð1þλÞðâr;0− â†r;1Þ�;
Lr;1¼

ffiffiffiffiffiffiffiffiffi
1−ϵ

p
½ð1−λÞðâ†rþ1;0þ âr;1Þþð1þλÞðârþ1;0− â†r;1Þ�;

ð36Þ

where Lr;0 and Lr;1 act inside and between unit cells,
respectively, and, in this regard, are analogous to the two
hopping terms in Eq. (33). Referring to Ref. [17] for details,
we note that these operators are defined such that, on a time
scale approximately 1/Δd set by the so-called “damping
gap” Δd of the Liouvillian L [19], the dynamics drives an
arbitrary initial Gaussian state to a specific stationary
Gaussian state ρ satisfying LðρÞ ¼ 0. The latter does not
obey strict particle number conservation. Its mean particle
number hn̂i, however, is stationary, and fluctuations hδn̂i
around it are intensive, i.e., hδn̂i/hn̂i → 0 in the thermo-
dynamic limit. For all practical purposes, the Gaussian state
ρ ∼ e−Gk can then be described by a number-conserving
fictitious Hamiltonian Gk. Because of the specific form of
the Lindblad operators, the matrix Gk exhibits the same
structure as the Hamiltonian matrix Hk of the Rice-Mele
model. Specifically,Gk is given by Eq. (34), with β ¼ 1 (no
notion of temperature here), t1¼ 1

4
ð1þϵÞðλ2−1Þ/ðλ2þ1Þ,

t2 ¼ 1
4
ð1 − ϵÞðλ2 − 1Þ/ðλ2 þ 1Þ, and Δ ¼ λ/ðλ2 þ 1Þ. Since

t1 − t2 ∝ ϵ and Δ ∝ λ, the real parameters ðϵ; λÞ play
a role similar to that of the parameters ðt1 − t2;ΔÞ in the
Rice-Mele model. In particular, the origin ϵ ¼ λ ¼ 0
corresponds to a purity-gap-closing point. As in the thermal

case, the EGP of the stationary state can be computed using
Eqs. (19) and (20).
In Fig. 3, we show the computed difference jφE − φZj

between the EGP and the Zak phase of the lowest purity
band (lowest band of Gk). As in the thermal case, we verify
that φE → φZ in the thermodynamic limit, with power-law
scaling approximately N−2. Purity-gap-closing points play
the same key role here: In particular, we observe a
topological transition where the EGP difference
½1/ð2πÞ�ΔφE accumulated over a complete cycle in ðϵ; λÞ
parameter space “jumps” from trivial (0) to nontrivial
(1) when varying a parameter δ≡ δðϵ; λÞ, controlling
whether the purity-gap-closing point at ϵ ¼ λ ¼ 0 is
encircled (see insets of Fig. 3). In equilibrium thermal
systems, purity-gap-closing points necessarily coincide
with points at which the gap of the system Hamiltonian
closes, because of the tight correspondence Gk ¼ βHk. In
nonequilibrium systems, in contrast, purity-gap-closing
points need not coincide with points where the gap of
the system Liouvillian (nonequilibrium analog of a
Hamiltonian) closes. In fact, here, the gap of the
Liouvillian (the damping gap) is given by Δd ¼ 4½1þ
λ2ð2ϵ2 þ λ2 þ 2ðϵ2 − 1Þ cos kÞ�1/2 [40]. Clearly, it does not
close at the purity-gap-closing point ϵ ¼ λ ¼ 0. The damp-
ing gap plays a role similar to that of a Hamiltonian gap, in
the sense that it ensures the exponential decay of spatial
correlations [19]. Therefore, here, the fact that it remains
open at the point ϵ ¼ λ ¼ 0, where the purity gap closes

FIG. 3. Scaling of finite-size corrections jφE − φZj in the
nonequilibrium analog of the Rice-Mele model introduced in
Ref. [17], with parameters ϵ ¼ −

ffiffiffi
3

p
/4 and λ ¼ −1/4 in Eq. (36).

As in the thermal case (Fig. 2), the expected scaling behavior
approximately N−2 is verified. Inset (a): Difference ½1/ð2πÞ�ΔφE
accumulated per full cycle in ðϵ; λÞ parameter space, as a function
of a parameter δ controlling whether or not the purity-gap-closing
point at ϵ ¼ λ ¼ 0 is encircled [as illustrated in inset (b), with the
gapless point shown in red]. As in the thermal case, quantization
is observed irrespective of system size N, and a topological phase
transition occurs at δ ¼ 1, where the purity-gap-closing point
becomes encircled.
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and a topological transition occurs, exemplifies a remark-
able possibility unique to nonequilibrium systems: the fact
that topological transitions can occur without the appear-
ance of divergent length or time scales (see Ref. [19] for a
detailed discussion).

V. MEASUREMENT OF THE EGP

As shown above, the EGP of a thermal or nonequili-
brium state is not related to particle currents, which implies
that it cannot be measured via particle transport. In the
following, we propose an interferometric scheme to detect
it, building on an idea by Sjöqvist et al. [41]. To this end,
we recall that φE ¼ Im lnhT̂i is nothing but the argument of
the complex-valued observable hT̂i, i.e., φE ¼ arghT̂i,
where T̂ ¼ expðiδkPixiâ

†
i âiÞ [recall that xi denotes the

position of fermions on site i≡ ðr; sÞ, with creation and
annihilation operators â†i , âi].
We consider aMach-Zehnder interferometer whose lower

arm contains the system to be probed [Fig. 4(a)]—fermions
in a 1D lattice of length L corresponding to a few tens of
sites, as in typical setups with ultracold atoms. Photons
moving along the two directions defined by the interfer-
ometer geometry can be represented by a two-state wave
function, with upper and lower components describing
photons propagating in the “vertical” and “horizontal”
directions, respectively. The action of mirrors and beam
splitters is then described by unitary 2 × 2 matrices

UM ¼
�
0 1

1 0

�
; UB ¼ 1ffiffiffi

2
p

�
1 i

i 1

�
; ð37Þ

respectively. We assume that each lattice site i consists of
two internal fermionic levels (“ground” and “excited”),
corresponding to annihilation operators âi and b̂i, respec-
tively. As illustrated in Fig. 4(b), fermions are coupled to a
photonic mode with carrier frequency ω0 ¼ k0z (where z is

the position along the propagation path of interest),
described by the annihilation operator ĉðzÞ, satisfying the
commutation relation ½ĉðzÞ; ĉ†ðz0Þ� ¼ δðz − z0Þ. We assume
that this mode couples the internal ground and excited states
with coupling constant g and a large detuningΔ. WhenΔ is
larger than all other relevant energy scales, internal excited
states can be adiabatically eliminated, leading to the effec-
tive Hamiltonian

Heff ¼
X
j

g2

Δ
jfjj2â†j âjĉ†ðzjÞĉðzjÞ; ð38Þ

where fj is the complexmode function of the photonicmode
ĉðzÞ at site j. This Hamiltonian describes forward Brillouin
scattering.
Next, we assume that the amplitude of the mode fj

exhibits a spatial gradient along the axis of the probed
system (realized, e.g., by a TEM01 Gauss-Hermite mode),
such that jfjj2 ∝ xj (recall that xj is the position of the
fermionic site j). Denoting jfjj2 ≡ ηxj/L, Eq. (38) then
describes the coupling between photons and the center-of-
mass position operator X̂ ¼ P

jxjâ
†
j âj of the probed

system, as desired. The propagation of the photonic mode
along the lower arm of the interferometer is described by
the equation

ð∂z − iω0ÞĉðzÞ ¼ −i½ĉðzÞ; Heff �

¼ −i
X
j

g2η
LΔ

xjâ
†
j âjδðz − zjÞĉðzÞ; ð39Þ

(setting the speed of light c ¼ 1), with solution

ĉðzÞ ¼ eik0z exp

�
−i

g2η
LΔ

X̂

�
ĉð0Þ; ð40Þ

where z lies beyond the region where photons interact with
the probed system. By adjusting the detuning Δ such that
g2η/ðLΔÞ ¼ 2π/L≡ δk, photons in the lower arm of the
interferometer pick up a phase proportional to the center of
mass of fermions in the probed system—described by the
unitary transformation T̂ ¼ expð−iδkX̂Þ, as desired.
We remark that photons additionally experience a

momentum “kick” in the direction of the lattice of the
probed system because of the spatial gradient in their mode
function. The kick imparted to each photon, however, is
less than their initial momentum k0. This effect, thus, only
leads to a small diffraction that we neglect here, for
simplicity (though it should be taken into account when
designing an actual experiment). We note that the prefactor
g2η/ðΔLÞ can be increased, at fixed detuningΔ, by adding a
buildup cavity to the lower arm of the interferometer to
make photons bounce back and forth through the probed

FIG. 4. (a) Schematic setup for the interferometric measure-
ment of the EGP. Photons are injected into one input, and the
intensity difference between the two outputs is detected. In the
lower arm of the interferometer, each photon interacts with the 1D
chain of fermions corresponding to the probed system. (b) Internal
fermionic level scheme. On each site i, the photonic mode ĉ
couples ground and excited levels (with annihilation operators âi
and b̂i, respectively) in an off-resonant way (large detuning Δ).
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system before propagating further—thereby enhancing the
effective interaction between photons and fermions.
The total unitary matrix describing the propagation of a

photon through the interferometer reads

U ¼ UBUMUintUMUB; ð41Þ

where UB ¼ UB ⊗ 1 and UM ¼ UM ⊗ 1 (1 being the unit
operator in the Hilbert space of the fermions), and

Uint ¼
�
0 0

0 1

�
⊗ T̂ þ

�
eiχ 0

0 0

�
⊗ 1; ð42Þ

where χ is a tunable phase in the upper arm of the
interferometer [Fig. 4(a)]. Overall, the interferometer trans-
forms the input state ϱin ¼ ρph ⊗ ρ, where ρph is the input
state of photons and ρ is the mixed state of the probed
system, into UϱinU†. The resulting intensity at the two
output ports (“þ” and “−”) is then given by

n̂�out ¼
1

2
ð1� jhT̂ij cos½χ − arghT̂i�Þn̂in; ð43Þ

where n̂ denotes photon number operators and the expect-
ation value hT̂i is only over the fermionic state of the
probed system. Therefore, in the above setup, photons
injected into the lower arm of the interferometer pick up a
phase that crucially corresponds to the EGP φE ¼ arghT̂i.
Most importantly, this phase can be measured by monitor-
ing directly the intensity difference Δn̂≡ n̂þout − n̂−out ¼
jhT̂ij cos½χ − arghT̂i�n̂in between outputs (balanced detec-
tion) as a function of the reference phase χ set in the upper
arm. To extract the accumulated phase difference
ΔφE ¼ H

dϕ∂ϕφE, one can then (i) repeat the experiment
for multiple parameter values ϕ along a cyclic path and
(ii) follow the procedure discussed in Sec. III E to extract
the exact integer value of ΔφE in a way that is gauge
invariant and, most importantly, robust against (small)
measurement errors on φE.
The visibility of the EGP signal resulting from the above

balanced detection scheme is unity. Since jhT̂ij is typically
small, however, the characteristic number of output photons
per input photon is small and one may have to accumulate
photons for a longer time to reach the desired sensitivity in
the measurement of φE. The minimum detectable phase is
set by shot noise φEjmin ¼ Δφshot ∼ 1/

ffiffiffiffiffiffiffiffiffiffi
Poutτ

p
, where Pout is

the maximum output flux of photons per unit time and τ
is the overall measurement time.
In the illustrative two-band model with purity spectrum

�βk examined above, one finds jhT̂ij¼ exp½−½N/ð2πÞ�×R
dk lnð1þe−βkÞþOð1/N2Þ�≈expð−½N/ð2πÞ�e−Δβ/2Þ (with

an additional factor sin θ), where Δβ ¼ 2minkβk is the
purity gap [42]. Note that jhTij ≈ 1 can also be achieved,

e.g., in a mesoscopic thermal system of N ≈ 50 sites with
a purity gapΔβ ¼ Δϵ/T ≈ 5 (where Δϵ is the energy gap of
the underlying Hamiltonian).
We finally comment on the effects of boundary con-

ditions: Although we have always considered a 1D lattice
system of fermions with periodic boundary conditions, for
pedagogical purposes, we emphasize that the EGP is a bulk
quantity (reducing to the polarization, in the zero-temper-
ature limit), which is, hence, essentially unaffected by
boundary conditions. In particular, open boundary con-
ditions can also be used, as implicitly assumed in the above
measurement setup. In that case, correlations hâ†i âji ¼
½fðGÞ�ij between sites i and j located at the opposite ends
of the system, corresponding to the corner elements of the
matrix fðGÞ, are essentially removed [43], and the matrix
fðGÞðT − 1Þ appearing in Eq. (18) for the EGP [namely,
φE ¼ Im ln det½1þ fðGÞðT − 1Þ�] is similarly quasidiago-
nal in position space, with no corner elements. Since
det½1þ fðGÞðT − 1Þ� ¼ exp Tr ln½1þ fðGÞðT − 1Þ�, ele-
ments of fðGÞðT − 1Þ contribute to φE to order m (in a
series expansion of the logarithm) whenever they contribute
to diagonal elements in ½fðGÞðT − 1Þ�m. Here, quasidiag-
onal elements in fðGÞðT − 1Þ contribute at order approx-
imately 1, while corner elements contribute at order
approximately N (where N is the total number of sites
in the system). As a result, corner elements determining
boundary conditions lead to corrections to the EGP that are
exponentially small with system size, as we have verified
numerically. In particular, the plots presented in Sec. IVare
visually unchanged when considering open instead of
periodic boundary conditions.

VI. CONCLUSIONS AND OUTLOOK

We have shown that density matrices describing mixed
fermionic Gaussian states in one dimension encode topo-
logical information in a way that enables a direct inter-
pretation in terms of a physical observable. The connection
to observables is provided by the ensemble geometric
phase, which is defined for arbitrary density matrices—
equilibrium and nonequilibrium states alike. The EGP is
constructed from the expectation value of a many-particle
operator: the operator of translations in momentum space
by the smallest possible step δk ¼ 2π/L, which crucially
equips us with a geometric notion of parallel transport for
state vectors in that space. The mechanism underlying the
robustness of the EGP as a geometric phase for mixed states
is based on the statistical selection of the most strongly
occupied Bloch band, i.e., typically the lowest one. This
selection is a many-body effect related to the presence of N
modes in each Bloch band, leading to an effective physical
purification of the selected Bloch band in the thermody-
namic limit N → ∞.
Although the price to pay to see fingerprints of topology

in mixed states is the many-body character of the EGP, we

PROBING THE TOPOLOGY OF DENSITY MATRICES PHYS. REV. X 8, 011035 (2018)

011035-15



have shown that the latter can be detected in interferometric
measurements, e.g., in current setups based on cold atomic
gases. These results have two important physical implica-
tions: Conceptually, they demonstrate that topological
phase transitions persist to finite temperatures, or, more
generally, in mixed quantum states. More precisely, the
degeneracy in the spectrum of the density matrix, measured
by the purity-gap closing, is associated with a singularity in
the EGP, i.e., with a jump in the accumulated EGP
differences upon enclosing such a point in parameter space.
Practically, the EGP provides a viable in situ alternative to
detecting topological order in fermionic systems of ultra-
cold atoms in low-temperature states and at finite density.
So far, the Zak phase has been determined in the single-
particle limit only, where particle statistics is irrelevant, by
propagating a test particle through an otherwise empty
band structure [36] (see Ref. [45] for a related strategy in a
two-dimensional system). Cooling fermions to extremely
low temperatures to access topological ground-state proper-
ties remains an outstanding challenge at finite fermion
density. Because of its robustness toward finite temper-
atures, however, the EGP examined here could be used as a
direct detection tool in such systems.
Our construction based on a unitary translation operator

may lend itself to generalizations to interacting systems
[46,47] in mixed states. Here we have focused on non-
interacting, translation-invariant systems, and the crystal
momentum may have seemed to play a very fundamental
role. We emphasize, however, that the truly relevant object
is the many-body translation operator T̂ ¼ eiδkX̂ used to
define the EGP. This operator describes a shift δk ¼ 2π/L
of the physical momentum of all particles, irrespective of
interactions or disorder. It acts as a canonical transforma-
tion p̂j → T̂†p̂jT̂ ¼ p̂j þ δk (where p̂j is the momentum
operator of particle j), which can conveniently be seen as
the insertion of a magnetic flux Φ ¼ 2π through the
periodic system [27]. Therefore, in the general case where
the crystal momentum k is not a good quantum number, Φ
simply replaces k as the relevant parameter for state vectors
(as in many-body generalizations of the Zak phase and of
the Chern number [27]). In that case, the operator T̂ defines,
for vectors jψΦi, a similar notion of parallel transport in Φ
space, as it does in k space for vectors jψki in non-
interacting systems with translation invariance. As a result,
we expect the gauge-reduction mechanism identified in this
work to hold in interacting or disordered systems, as long as
the density matrix ρ of the system (or, more precisely, the
corresponding fictitious Hamiltonian − ln ρ) has a gapped
ground state. In particular, we expect the EGP to remain
nontrivial when weak interactions and/or disorder preserv-
ing the purity gap are added to the examples examined
in Sec. IV.
Beyond interacting and disordered systems, several

directions will be exciting to explore: First, the gauge-
reduction mechanism identified here seems very generic. In

particular, we anticipate that one would obtain other
well-defined geometric phases for mixed states by replac-
ing the operator T̂ of translations in momentum space by
other unitary operators, generating translations in a differ-
ent space (at the expense, however, of possibly losing the
direct connection to physical observables, which is a key
feature of the EGP). Second, and more broadly, an
intriguing direction for future research will be to examine
whether other types of gauge structures can be extracted
from many-body correlators [46,47], to construct topologi-
cal classifications of mixed states. Extensions to systems
with more than one spatial dimension will also be interest-
ing to explore. Third, it will be exciting to ask whether the
gauge-reduction mechanism identified in fermionic sys-
tems here can also play a role in bosonic ones. While
bosons at equilibrium and low temperature tend to con-
dense with a strong occupation of low-momentum modes,
experiments based, e.g., on ultracold atoms in modulated
potentials [48] could lead to topological signatures in the
EGP. Exciton polaritons are also potential candidates,
as they routinely produce driven open quantum states
with occupation properties reminiscent of fermionic
systems [49].
Finally, our work may pave the way toward other probes

of mixed-state topology. One promising candidate are
Loschmidt amplitudes—another many-body observable
related to the expectation value of a unitary matrix, namely,
the time-evolution operator of Hamiltonian quantum
dynamics. Cases that could perhaps be related to our
mechanism were recently pointed out in Refs. [50,51].
Fingerprints of bulk topological properties at the edges of
insulators and superconductors have been shown to persist
at finite temperatures [52,53], and establishing a connection
to the results presented here provides another challenge for
future research.

ACKNOWLEDGMENTS

We would like to thank D. Linzner for invaluable input
and support and J. C. Budich and M. Heyl for useful
discussions. C.-E. B. gratefully acknowledges support
from the DQMP at the University of Geneva and from
the Swiss National Science Foundation under Division II.
S. D. acknowledges support by the German Research
Foundation (DFG) through the Institutional Strategy
of the University of Cologne within the German
Excellence Initiative (ZUK 81), as well as support by
the European Research Council via ERC Grant No. 647434
(DOQS). L.W. and M. F. acknowledge support by
the German Research Foundation (DFG) through the
SFB TRR 185, and A. A. and S. D. (DFG) through the
CRC 183 (project B02). C.-E. B., M. F., and S. D. would
like to extend specials thanks to the KITP at UCSB for
hospitality. This research was supported in part by
the National Science Foundation under Grant No. NSF
PHY-1125915.

CHARLES-EDOUARD BARDYN et al. PHYS. REV. X 8, 011035 (2018)

011035-16



APPENDIX A: EGP VS. ADIABATIC
PUMP CURRENTS

In this appendix, we discuss the connection between the
EGP and the current flow induced in an adiabatic pump
protocol. The main conclusion will be that while
½1/ð2πÞ�ΔφE is quantized and physically observable, it
does not correspond, for mixed states, to a quantized charge
transfer. This is surprising inasmuch as the EGP does
coincide with the adiabatic current in the zero-temperature
(ground-state) limit. In the following, we start by reviewing
the connection between Resta’s formula for the ground-state
polarization of periodic quantum systems and the current
flow.

1. Resta polarization and current flow

The Resta formula for the ground-state polarization P of
a periodic quantum system [Eq. (4)] is constructed in such a
way that differential changes ∂tP≡ _P induced, e.g., by an
external parameter are equal to the physical current I (as
they should be). Here, we review how the connection
between Eq. (4) and the current explicitly arises, in line
with Resta’s arguments in Ref. [18].
The starting point of the construction is the observation

that T̂jψ0i ¼ eiδkX̂jψ0i corresponds, to first order in
δk ¼ 2π/L, to the ground state of the momentum-shifted
Hamiltonian Ĥðq¼−δkÞ≡T̂ĤT̂†≃Ĥþiδk½X̂;Ĥ�¼Ĥ−δkÎ,
where Î ≡ ∂qĤðqÞ is the usual current operator. The action
of T̂ can be understood as a momentum shift of all particle
momenta p̂j → T̂p̂jT̂

† ¼ p̂j − δk. Equivalently, one can
see T̂ Ĥ T̂† as the Hamiltonian describing the periodic 1D
system of interest after the adiabatic insertion of a single
quantum of magnetic flux through the latter. To first order
in δk, we obtain

T̂jψ0i ¼ eiφZ

�
jψ0i − δk

X
n≠0

jψni
hψnjÎjψ0i
E0 − En

�
; ðA1Þ

where φZ is the Zak phase accumulated during the
insertion of the flux quantum. In accordance with
Resta’s formula [Eq. (4)], the geometric phase φZ deter-
mines the instantaneous value of the polarization, namely,
P¼ ½1/ð2πÞ�Imlnhψ0jT̂jψ0i ¼ ½1/ð2πÞ�Imlnhψ0jeiφZ jψ0i ¼
φZ/ð2πÞ. The Zak phase, however, crucially does not enter
the expression of the current flow, which involves excita-
tions out of the ground state. Indeed, starting from Resta’s
formula and using Eq. (A1), the derivative _P takes the form

_P ¼ 1

2π
Im

h _ψ0jT̂jψ0i þ hψ0jT̂j _ψ0i
hψ0jT̂jψ0i

¼ −
δk
π
Im

X
n≠0

h _ψ0jψnihψnjÎjψ0i
E0 − En

: ðA2Þ

This expression was identified in Ref. [27] as the pump
current flowing in response to the adiabatic variation of
external parameters. For the sake of completeness, we
review this connection in the next subsection in a manner
somewhat different from the original derivation, tailored
to the present discussion. Readers wishing to proceed
directly to the generalization to mixed states may skip this
discussion.

2. For ground states, the time derivative of the EGP
[Eq. (A2)] coincides with the pump current

Let jψ0ðtÞi≡ jψ0ðϕÞi be the instantaneous ground state
at a value ϕ≡ ϕðtÞ of a varied external parameter [such that
ĤðϕÞjψ0ðϕÞi ¼ E0ðϕÞjψ0ðϕÞi]. We assume that jψ0ðϕÞi is
current free, i.e., hψ0ðtÞjÎjψ0ðtÞi ¼ 0. When the parameter
ϕ is adiabatically varied, the time evolution of the system
initially prepared in its ground state is described by
the time-dependent Schrödinger equation i∂tjψi ¼ Ĥjψi
(omitting explicit time dependencies, for simplicity).
A convenient ansatz consists in writing jψi≡
e−iðE0t−φÞjψ0iþ jδψi≡ jψ 0

0iþ jδψi, with dynamical phase
E0t, geometric phase φ≡ φðtÞ, and out-of-ground-state
excitations described by jδψi. Since the parameter ϕ is
varied with frequency ω smaller than the excitation gap
Δ≡minnðEn − E0Þ (adiabacity condition), jδψi will be
small, but nevertheless important, as it is the wave function
component responsible for the current flow, hÎiðtÞ≃
hψ 0

0ðtÞjÎjδψðtÞi þ ðc:c:Þ. Substitution of the ansatz into
the Schrödinger equation yields

e−iðE0t−φÞð _φjψ0i þ ij _ψ0iÞ þ ði∂t −HÞjδψi ¼ 0: ðA3Þ

To make progress, we expand jδψi≡P
n≠0cne

−iEntjψni in
terms of the instantaneous excited eigenstates of the
Hamiltonian, where cn are the time-dependent coefficients
to be solved for, with initial condition cnð0Þ ¼ 0. In view of
the expected smallness cn ∼ ω, the temporal variation
j _ψni ∼ ω can be neglected as higher order, such that
ði∂t −HÞjδψi ≃P

ni_cne
−iEntjψni. Substitution of this

expression into Eq. (A3), followed by a projection onto
jψ0i, then identifies _φ ¼ ihψ0j _ψ0i as the Berry connection
of the ground state (as expected). Projection onto excited
states jψni, on the other hand, leads to the equation
_cn ¼ eiðEn−E0Þthψnj _ψ0i, where we have neglected a
Berry-phase factor as higher order. Likewise, neglecting
the slow variation of the matrix elements hψnjψ0i in
comparison to the dynamical factor eiðEn−E0Þt, we obtain
cn ≃ iðEn − E0Þ−1hψnj _ψ0i½1 − eiðEn−E0Þt�. Inserting this
solution (neglecting rapidly oscillatory factors) into the
spectral decomposition of the current expectation value
hÎiðtÞ ≃ hψ 0

0ðtÞjÎjδψðtÞi þ ðc:c:Þ finally leads to Eq. (A2).
For completeness, we note that the current accumulated

during a periodic pump cycle, ΔP ¼ H
dt∂tP ¼ H

dϕ∂ϕP,
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is integer quantized. In Ref. [27], this quantization was
established in a three-step argument: First, the above
derivation was generalized to include the presence of a
general magnetic flux Φ ∈ ½0; 2π/L� ¼ ½0; δk� threading
the system. Second, it was shown that the current expect-
ation value is the same at any value of the flux, i.e.,
hÎiðΦÞ ≃ hÎið0Þ (up to corrections that vanish in the
thermodynamic limit), such that the relevant current can
be expressed as the average hÎi≡ δk−1

H
dΦhÎiðΦÞ. Third,

it was argued that the presence of the flux leads to a
modification of the Hamiltonian Ĥ → Ĥ þΦÎ, such that a
perturbation theory similar to the one outlined above yields
ðE0 − EnÞ−1hψ0jÎjψni ¼ hψ0j∂Φψni to first order in δk
(where wave functions now depend on ϕ and Φ). Using the
additional identity j _ψ0i ¼ _ϕj∂ϕψi, the charge transported
per adiabatic cycle becomes

ΔP¼ i
2π

ZZ
dΦdϕðh∂ϕψ0j∂Φψ0i−h∂Φψ0j∂ϕψ0iÞ: ðA4Þ

We recognize here the standard expression for the first
Chern number of the Berry connection Aj ¼ ihψ0j∂jψ0i
(with j ¼ ϕ, Φ), which shows that ΔP is indeed a
topologically quantized integer.

3. For generic states, the time derivative
of the EGP differs from the pump current

We have shown in the main text that the EGP is a physical
observable and that its integrated change over a complete
cycle in parameter space is integer quantized. We have also
argued that the EGP reduces to the Zak phase (2π times the
polarization) in cases where the density matrix reduces to a
ground-state projector. Nonetheless, its topological quan-
tization cannot be interpreted in terms of current flow, as we
demonstrate now.
For the sake of concreteness, consider a thermal

density matrix with general spectral decomposition
ρ ¼ P

npnjψnihψnj, where pn ¼ e−βEn /Z and Z ¼P
ne

−βEn . When introducing a time-dependent parameter
ϕ≡ ϕðtÞ, both EnðϕÞ and the states jψnðϕÞi become time
dependent. The time derivative of the EGP defined by
Eq. (7) then becomes

∂tφE¼
1

2π
Im

1P
npnhψnjT̂jψni

×
X
n

ð _pnhψnjT̂jψniþpnh _ψnjT̂jψniþpnhψnjT̂j _ψniÞ:

This expression is nonlinear in the occupation numbers pn
and, hence, does not lend itself to analytical simplifications.
Assuming that parameter changes are slow enough for an
adiabacity principle to hold for individual states with
weight pn, the matrix elements appearing in this expression
will carry geometric phases [see Eq. (A1)] which generally

do not cancel out [except in the specific case of ground
states ρ ¼ jψ0ihψ0j where the above expression reduces to
Eq. (A2)]. Even for time-independent states ð _pn ¼ 0Þ, the
presence of a nontrivial sum of operator expectation values
in the denominator makes the above expression formally
different from linear-response expectation values describ-
ing current flows.

APPENDIX B: PERTURBATIVE CORRECTIONS
TO THE EGP

In this appendix, we provide additional details regarding
the second-order perturbative expansion of the EGP
[Eq. (26)] and the scaling of second-order corrections
[Eq. (28)] in the same context as in Sec. III B, i.e., in an
illustrative two-band model with purity spectrum �βk. For
convenience, we focus on the limit of large system sizes N,
where sums over momenta can be approximated as con-
tinuous integrals. Second-order corrections then read

ΔðNÞ ¼ ImTrGVð2Þ þ 1

2
ImTrðGVð1ÞÞ2;

Vð1Þ ¼
Z

2π

0

dkðW−
2π;kV

−þ
k Wþ

k;0 þWþ
2π;kV

þ−
k W−

k;0Þ;

Vð2Þ ¼
Z

2π

0

dk
Z

k

0

dk0ðW−
2π;kV

−þ
k Wþ

k;k0V
þ−
k0 W−

k0;0

þWþ
2π;kV

þ−
k W−

k;k0V
−þ
k0 Wþ

k0;0Þ;
G ¼ Pþ − ðW−

2π;0Þ−1P−: ðB1Þ

Here, upper and lower bands are identified by “þ” and “−”
indices, respectively, with Bloch states ju�k i. The operators
W�

k1;k2
¼ exp½R k2

k1
dkðiA�

k � δk−1βkÞ�1 describe the “evolu-
tion” in individual bands under the influence of the Berry
connection A�

k ¼ A0
k �A3

k ¼ ihu�k j∂ku�k i and the weight
factors �βk. The operators V−þ

k ¼ ðA1
k − iA2

kÞσþ and
Vþ−
k ¼ ðA1

k þ iA2
kÞσ−, on the other hand, are “jump

operators” causing transitions between bands [with
σ� ≡ ðσ1 � iσ2Þ/2]. The operator G is the Green’s function
defined in Eq. (26), which acts trivially in the upper band,
and via the inverse evolution operator in the lower band
[where P� ¼ ðσ0 ∓ σ3Þ/2 projects onto individual bands].
Using the above expressions, the second-order corrections
can be cast in the form

ΔðNÞ ¼ ImTr
Z

2π

0

dk
Z

k

0

dk0½−ðW−
k;k0 Þ−1V−þ

k Wþ
k;k0V

þ−
k0

þWþ
2π;0ðWþ

k;k0 Þ−1Vþ−
k W−

k;k0V
−þ
k0

− ðW−
2π;k0 Þ−1V−þ

k Wþ
2π;0W

þ
k;k0V

þ−
k0

−Wþ
2π;0ðWþ

k;k0 Þ−1Vþ−
k W−

k;k0V
−þ
k0 �; ðB2Þ

where the first and second lines are the contributions of Vð2Þ

and ðVð1ÞÞ2, respectively, and where we have used the
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properties ðW�
k1;k2

Þ−1 ¼ W�
k2;k1

and W�
k1;k2

W�
k2;k3

¼ W�
k1;k3

.
In Eq. (B2), the second and fourth terms cancel out, and the
third term is massively suppressed because of the presence
ofWþ

2π;0∼expð−β̄NÞ with β̄≡ð2πÞ−1R 2π
0 dkβk. We are thus

left with the first term, and noting that ðW−
k;k0 Þ−1Wþ

k;k0 ¼
exp½2 R k

k0 dqðiA3
q − δk−1βkÞ�, we obtain

ΔðNÞ ¼ −Im
Z

2π

0

dk
Z

k

0

dk0ðA1
k − iA2

kÞðA2
k0 þ iA2

k0 Þ

× e2
R

k

k0 dqðiA
3
q−δk−1βqÞ: ðB3Þ

This expression makes the essence of the EGP gauge-
reduction mechanism manifest: Because of the global
presence of weight factors approximately expð−δk−1βkÞ∼
expð−NβkÞ, excursions from the ground state to the higher
band are exponentially costly and effectively confined to
short intervals approximately ðNΔβÞ−1 in the Brillouin zone,
where Δβ ¼ 2minkβk is the purity gap. A quantitative
estimate of the suppression factor may be obtained by
noting that, for k ¼ k0, the integrand is real. A straightfor-
ward Taylor expansion to first order in k − k0 then yields the
leading-order contribution

ΔðNÞ ≃
Z

2π

0

dk
Z

k

0

dk0ðk − k0Þe−2δk−1
R

k

k0 dqβqGðkÞ

≲ 1

ðNΔβÞ2
Z

2π

0

dkGðkÞ;

GðkÞ ¼ ½ðA1
kÞ2 þ ðA2

kÞ2�A3
k þ ð∂kA1

kÞA2
k −A1

kð∂kA2
kÞ;
ðB4Þ

where the integral over gauge-potential components yields a
nonextensive and β-independent factor. This is the result
quoted in Eq. (28).

APPENDIX C: DYNAMICAL ADIABATICITY

If one chooses to measure the topological invariant
½1/ð2πÞ�ΔφE ¼ 1/ð2πÞ H dϕ∂ϕφE by observing the EGP
φEðϕÞ continuously in time, while varying some system
parameter ϕ along a closed loop, one must do so slowly
enough to ensure that the state of the system follows the
expected stationary state.
If one considers a nonequilibrium driven-dissipative

system with dissipative evolution governed by a
Liouvillian, the rate at which the latter reaches its stationary
state after an arbitrary change of parameters is controlled by
the damping gap Δd (see Sec. IV). In that case, the rate at
which the EGP changes as ϕ is varied should be less than
Δd, i.e., j∂tφEj ≪ Δd. This translates as the “dynamical
adiabaticity” condition

j _ϕj ≪ j∂ϕφEj−1Δd; ðC1Þ

which should hold all along the path ϕ ∈ ½0; 2π�. Note that
the “rate” of change j∂ϕφEj generically increases when
moving closer to purity-gap-closing points (recall that ϕ
typically encircles such points). Therefore, the require-
ments for dynamical adiabaticity are determined by both
the damping and the purity gaps.
If one considers, instead, a system at thermal equilibrium

with unitary evolution governed by a Hamiltonian, the
above discussion cannot be applied directly. Unless one
explicitly takes into account the coupling between the
system and the reservoir(s) that makes the latter thermalize,
the damping gap is not defined and, because of the finite
temperature, there is no many-body energy gap either—
even if the chemical potential lies in the gap between two
bands. As we have shown in the main text, however, the
temperature-induced population of single-particle energy
states above the chemical potential does not affect the EGP
winding ½1/ð2πÞ�ΔφE, at any finite temperature. Therefore,
in the thermal case, we expect dynamical adiabaticity to be
controlled by the energy gap Δϵ between single-particle
energy bands below and above the chemical potential,
rather than by the damping gap, as in Eq. (C1). The fact that
this is indeed correct is exemplified in Fig. 5 for the Rice-
Mele model (see Sec. IV) at half filling with eight sites
and thermal initial state (temperature T ¼ 10). The hopping
amplitudes t1, t2 and the staggered potential Δ [see
Eq. (33)] are varied continuously in time so as to encircle
the purity-gap-closing point t2 ¼ t1, Δ ¼ 0. Namely,
we parametrize t1;2 ¼ 2� sinð2πϕ/TϕÞ/4 and Δ ¼
− cosð2πϕ/TϕÞ/2, and we vary ϕ linearly in time from
0 to 2π over the time period Tϕ, i.e., ϕ ¼ 2πt/Tϕ. Figure 5
shows the EGP as function of ϕðtÞ/ð2πÞ for different values

FIG. 5. Dynamical measurement of the EGP φE as a function of
the parameter ϕðtÞ/ð2πÞ ¼ t/Tϕ, completing a closed cycle in
parameter space over the time period Tϕ. The system examined
here is the Rice-Mele model in thermal equilibrium discussed in
Sec. IV. Inset: Total EGP difference ½1/ð2πÞ�ΔφE accumulated
over one cycle, as a function of Tϕ.
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of Tϕ. As expected, the EGP difference ½1/ð2πÞ�ΔφE

accumulated over one cycle is approximately quantized,
provided that Tϕ is large as compared to the inverse energy
gap Δϵ ¼ Oð1Þ (inset of Fig. 5).
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