
 

Towards Quantum Simulation with Circular Rydberg Atoms

T. L. Nguyen,1 J. M. Raimond,1 C. Sayrin,1 R. Cortiñas,1 T. Cantat-Moltrecht,1 F. Assemat,1

I. Dotsenko,1 S. Gleyzes,1 S. Haroche,1 G. Roux,2 Th. Jolicoeur,2 and M. Brune1,*
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The main objective of quantum simulation is an in-depth understanding of many-body physics, which is
important for fundamental issues (quantum phase transitions, transport, …) and for the development of
innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their
Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids
these limitations by transcribing the system of interest into another, with the same dynamics but with
interaction parameters under control and with experimental access to all relevant observables. Quantum
simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting
devices. We propose here a new paradigm for quantum simulation of spin-1=2 arrays, providing
unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms.
It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the
inhibition of their microwave spontaneous emission and their low sensitivity to collisions and
photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques.
Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method.
This method also leads to the detection of arbitrary spin observables with single-site resolution.
The proposed simulator realizes an XXZ spin-1=2 Hamiltonian with nearest-neighbor couplings ranging
from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large
range of simulations accessible. The system evolution can be followed over times in the range of seconds,
long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization,
disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum
simulation of regular spin chains. We discuss extensions towards more general quantum simulations of
interacting spin systems with full control on individual interactions.
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I. INTRODUCTION

Understanding strongly coupled, many-body quantum
systems is a problem of paramount importance. These
systems present fascinating properties, such as quantum
phase transitions [1], topological phases [2], quantum
magnetism [3], quantum transport [4], or many-body
localization [5]. Exploring this complex physics is essential
for fundamental issues, such as fractional quantum Hall
states [6] or high-temperature superconductivity [7]. It may

also lead to solutions to high-energy physics problems such
as relativistic quantum field theories [8]. Finally, it bears the
promise of applications based on materials with engineered
properties.
The quantum many-body problem is all the more chal-

lenging since explicit analytical solutions are only available
in a limited set of cases. Solid-state experiments have to face
the lack of access to some relevant quantities (entanglement
properties, for instance). Brute-force numerical exact diag-
onalization (ED) techniques face the exponential growth of
the Hilbert space. In the restricted set of problems without the
so-called sign problem [9], there are successful algorithms
from the quantum Monte Carlo family that allow for numeri-
cally exact solutions [10]. However, many interesting physi-
cal problems are outside of this class. In one-dimensional
physics problems, the density matrix renormalization group
(DMRG) algorithm [11–13] is very successful but requires
specific entanglement properties.
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The ideal tool to address many-body physics would be a
“quantum simulator” [14–16], transcribing the dynamics of
the system of interest into another one that is under
complete experimental control. Its parameters can be tuned
nearly at will, and all of its observables can be measured.
In principle, a general-purpose quantum computer could be
turned into a “digital” quantum simulator at the expense
of an embarrassingly high amount of resources [15,17]. A
more realistic approach is the “analog” quantum simulator
[18], with the same complexity (number of spins, for
instance) as the system of interest. An analog simulator
made up of a few tens of spins would already surpass any
classical machine [19]. Analog quantum simulation is one
of the most promising domains of quantum information
science.
This paper proposes a new paradigm for analog quantum

simulation of spin arrays, based on laser-trapped circular
Rydberg atoms, protected from spontaneous emission
decay [20] and reaching extremely long lifetimes in the
minute range. It combines a deterministic preparation and
read-out of defect-free chains containing a few tens of
atoms. The strong dipole-dipole interaction between the
giant atomic dipoles emulates a fully tunable spin-1=2 XXZ
chain Hamiltonian [21]. The chain dynamics can be
followed over one second for a chain containing a few
tens of atoms, corresponding to approximately 105 elemen-
tary exchange times. We show that available laser-trapping
techniques, using individual control of many laser traps
[22], could even extend the realm of interest of this
platform much further. This analog simulator could super-
sede other platforms, even though they have already
achieved impressive performance.

A. State of the art

Trapped ions [23] are excellent tools for digital simu-
lation [24] since they combine long coherence times, high-
fidelity gates, and individual unit-efficiency state-selective
detection. The digital simulation of a QED process is a
remarkable achievement [25]. Ions are also well suited for
analog quantum simulation of spin arrays. The spin-spin
interaction is simulated by a laser-induced coupling of the
ions’ internal states with their motional modes. This
interaction can be tuned between a long-range regime
(independent of the distance between the ions) and a
midrange one (decreasing as the cube of the distance)
[26,27]. Recent experiments demonstrated quantum ran-
dom walks of excitations in spin-1=2 or spin-1 chains
[28,29], spectroscopy of spin waves [30], many-body
localization [31], and thermalization [32]. First, 2D sim-
ulations of spin squeezing with long-range interactions [33]
have been reported. Engineered interactions in the nearest-
neighbor regime of great interest are not available yet.
Superconducting circuits are thriving, with qubits inter-

acting directly or via their common coupling to cavities
[34,35]. They are adapted to digital [36,37] or analog

[38,39] simulations. So far, the experiments involved either
only a few high-quality qubits [40,41], a moderate number
of damped systems [42], or even a large number of strongly
damped ones [43], for which quantum speed-up is an open
question [44].
Cold atoms in optical potentials are a remarkable plat-

form for quantum simulation [45–47]. They can emulate
the quantized conductance of a mesoscopic channel [48].
Their joint coupling to an optical Fabry-Perot cavity
implements the Dicke phase transition [49], with more
perspectives being offered by photonic band-gap cavities
[50–52]. Many experiments use optical lattices, with unit
filling in the Mott-insulator regime [53] and individual
site imaging [54–57]. Intersite tunneling and on-site
interactions implement a Bose-Hubbard [58] or Fermi-
Hubbard [59] Hamiltonian, on which complex entangle-
ment properties can be measured [57,60]. Controlled
disorder created by a speckle pattern [61] leads to explora-
tions of many-body localization [62]. Experiments can now
reach domains beyond the grasp of theoretical methods and
classical computations [63]. Lattice dynamical manipula-
tions [47,64] or multilevel atoms [65] open the way to the
simulation of gauge fields and topological phases [66–68].
However, following long-term dynamics, such as that of
spin glasses, is challenging since it requires very long
lattice lifetimes. Alternative solutions with smaller lattice
spacings and higher tunneling rates have been proposed
[69,70] but not realized yet. Polar molecules [71,72] or
magnetic atoms [58,73] can also be used to enhance the
interactions.
Rydberg atoms [74] experience giant dipole-dipole

interactions. The van der Waals potential [75] is in the
MHz range for interatomic distances of a few microns.
These interactions lead to the dipole blockade mechanism
[76]: A resonant laser can excite only one Rydberg atom
out of a micron-sized volume since the first excited atom
detunes all the others from laser resonance [77,78]. This
leads to nonclassical excitation statistics [79–84], quantum
gates [85–88], self-organization of Rydberg excitations
[89], and giant optical nonlinearities [90–95]. These fea-
tures are promising for quantum simulation [96–98].
Coherent excitation transport [99,100] and synthetic spin
arrays based on ground-state dressing with a Rydberg level
[101] have been demonstrated. However, the experiments
have to face the finite lifetime of the laser-accessible
Rydberg levels (few hundred of μs) and the blackbody-
induced state transfers [102]. Moreover, in all experiments
so far, the Rydberg atoms are not trapped. The strong van
der Waals forces between the atoms then cause a rapid
explosion or collapse of the atomic ensemble [84], further
limiting its useful lifetime. Replacing the actual excitation
to a Rydberg level by a ground-state laser dressing
only partly solves the problem [103]. Simulations of
slow processes over long times are, for the time being,
beyond the reach of low-angular-momentum Rydberg-
atom simulators.
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B. Principle of the proposed simulator

We propose here a circular-state quantum simulator,
schematized in Fig. 1, which combines the best features of
the other platforms and avoids some of their bottlenecks.
Rydberg atoms in circular states, i.e., states with maximum
angular momentum, are trapped in the ponderomotive
potential induced by laser fields [104,105]. These low-
field seekers are radially confined on the OX axis (axis
assignment in Fig. 1) by a Laguerre-Gauss “hollow beam”
at a 1-μmwavelength. They are longitudinally confined in a
one-dimensional adjustable lattice produced by two 1-μm-
wavelength beams, propagating in the XOY plane at small
angles with respect to the OY axis. In the following, we
consider, for the sake of definiteness, two lattices with
intersite spacings d ¼ 5 μm and d ¼ 7 μm, corresponding
to a strong or moderate dipole-dipole interaction, respec-
tively. The main decay channel of circular levels (sponta-
neous emission on the microwave transition towards the
next lower circular level) is efficiently inhibited [106] by
placing the atoms in a plane-parallel capacitor, which also
provides a static electric field defining the quantization
axisOZ (the plane of the circular orbit is thus parallel to the
capacitor plates). A method based on a van der Waals
variant of evaporative cooling [107] prepares determinis-
tically long chains of atoms. It also leads to an efficient
detection of individual atomic states with single-site
resolution.
The spin-up and spin-down states of the simulator are

encoded in the circular levels with principal quantum
numbers 50 and 48, respectively, connected by a two-
photon transition. The dipole-dipole interaction provides a
general spin-1=2 XXZ chain Hamiltonian [21] with near-
est-neighbor interactions. Its parameters can be adjusted at
will over a short time scale by tuning the static electric field
and a near-resonant microwave dressing. This complete
freedom in the choice of the model Hamiltonian is a unique
feature of the circular-state quantum simulator.
The dynamics of a chain with a few tens of spins can be

followed over up to about 105 spin-coupling times. The
final state of each spin can be individually measured.

Adiabatic evolutions through quantum phase transitions,
sudden quenches, and fast modulations of the interaction
parameters are within reach. This proposal thus opens
promising perspectives for the simulation of spin systems
in a thermodynamically relevant limit, beyond the grasp of
classical computing methods.
In Sec. II, we recall the main properties of circular

Rydberg atoms and discuss their dipole-dipole interaction.
Additional details are given in Appendix A. Section III is
devoted to the interaction Hamiltonian of an atom chain
and to the rich phase diagram of the corresponding spin
system, with details on the associated numerical simula-
tions in Appendix B. Section IV is devoted to the laser
trapping of circular atoms and to their protection from
loss mechanisms, with technical details in Appendixes C
and D. Section V is devoted to the deterministic preparation
of a Rydberg-atom lattice with unit filling (see also
Appendix E). Section VI presents the results of state-of-
the-art numerical simulations, showing that the simulator
reaches a thermodynamically relevant regime. We examine
the most interesting perspectives in Sec. VII.

II. CIRCULAR RYDBERG ATOMS AND VAN DER
WAALS INTERACTION

The circular states jnCi have a large principal quantum
number n and maximum orbital and magnetic quantum
numbers: l ¼ jmj ¼ n − 1 [74]. They are the states closest
to the circular orbit of the Bohr model, with a radius rn ¼
a0n2 (a0: Bohr radius). Their wave function is a torus, with
a small radius rn=

ffiffiffi
n

p
, centered on this orbit. This aniso-

tropic orbit is stable only in a directing electric field F,
normal to the orbit, defining the quantization axis OZ and
isolating the circular state from the hydrogenic manifold
[108] (Appendix A). The circular states cannot be excited
directly from the ground state. Their preparation relies on a
complex but efficient and fast process, combining laser and
radio-frequency photon absorption [109]. These states have
long radiative lifetimes, scaling as n5 (25 ms for j48Ci).
The microwave transitions between neighboring circular
states are strongly coupled to the electromagnetic field.
These remarkable properties make them ideal tools for
experiments on fundamental quantum processes in cavity
quantum electrodynamics experiments [110,111].
The large dipole matrix elements between circular levels

make them particularly sensitive to the dipole-dipole
interaction. Two atoms in the same circular state jnCi
experience a van der Waals, second-order interaction
proportional to 1=d6 (d: interatomic distance), repulsive
in the proposed geometry (the interatomic axis OX is
perpendicular to the quantization axis OZ, see Fig. 1). For
atoms in different circular states, jnCi and jpCi, this
interaction competes with the resonant Förster-like transfer
of energy (“spin exchange”) from one atom to the other:
jnC; pCi ↔ jpC; nCi. This exchange process is at first

X

Y

Z

FIG. 1. Pictorial scheme of the proposed circular-state quantum
simulator.

TOWARDS QUANTUM SIMULATION WITH CIRCULAR … PHYS. REV. X 8, 011032 (2018)

011032-3



order in the dipole-dipole interaction when p ¼ n� 1.
Scaling as 1=d3, it then overwhelms the repulsive inter-
action, realizing a spin model in which the spin exchange is
by far the dominant interaction. With p ¼ n� 3, the
exchange is negligible compared to the van der Waals
interaction. We choose here a more flexible simulator. With
p ¼ n� 2, the van der Waals and exchange interactions are
of the same order of magnitude, scaling both as 1=d6. As
we show below, their competition opens a wide range of
possibilities to engineer interatomic potentials.
The dipole-dipole interaction mixes the circular states

with neighboring elliptical states (Appendix A) since it
breaks the cylindrical symmetry of the Stark effect. These
elliptical states have decay channels that are not inhibited
by the capacitor (Appendix C). This deleterious mixing
effect can be reduced by using a large enough directing
electric field F and a magnetic field B parallel to it.
A careful optimization led us to choose the j50Ci and

j48Ci states to represent the “spin-up” and “spin-down”
states. With the field values B ¼ 13 Gauss and 6 <
F < 12 V=cm, the intrinsic lifetime of interacting atoms
exceeds 90 s for the smallest d ¼ 5 μm interatomic dis-
tance. Lower principal quantum numbers would lead to
an annoyingly small inhibition capacitor spacing. Higher
principal quantum numbers would lead to larger spacings
and dipole-dipole couplings. However, the transition
frequencies between adjacent Rydberg manifolds is
reduced, and the lifetime reduction due to increased

blackbody-induced transfer rates (Appendix C) is not
compensated by the increase in couplings.
The interaction Hamiltonian V for a pair of atoms reads,

in terms of the atomic pseudospin operators (Appendix A),

V
h
¼ δζ

2
ðσz1 þ σz2Þ þ Jzσ

z
1σ

z
2 þ Jðσx1σx2 þ σy1σ

y
2Þ: ð1Þ

The positive exchange term J is nearly independent of the
directing electric field F. It is proportional to 1=d6, which is
strong (17 kHz) for d ¼ 5 μm or moderate (2.3 kHz) for
d ¼ 7 μm. The frequency shift δζ, of the order of J, which
is also proportional to 1=d6, exhibits a slow field depend-
ency (Appendix A). A unique feature of the circular-state
interaction is that Jz varies significantly, from negative to
positive values, with the electric-field amplitude. The sign
of Jz can thus be controlled, and the ratio Jz=J (indepen-
dent of d) can be tuned over a large range by adjusting the
control fields, as illustrated in Fig. 2. Over this complete
range, the atomic lifetimes remain extremely long (>60 s).

III. EMULATED XXZ MODEL

A. Spin-chain Hamiltonian

We now turn to a chain of N interacting atoms at a
constant spacing d. The Hamiltonian reads

Hc

h
¼ ν0 þ δζ

2
ðσz1 þ σzNÞ þ

�
ν0
2
þ δζ

�XN−1

j¼2

σzj

þ
XN−1

j¼1

½Jzσzjσzjþ1 þ Jðσxjσxjþ1 þ σyjσ
y
jþ1Þ�; ð2Þ

wherehν0 is the atomic transition energy (ν0≈2×55.97GHz
for the j48Ci → j50Ci two-photon transition). We have
assumed here that the pairwise dipole-dipole interactions are
additive, and we have neglected the next-nearest-neighbor
interaction (64 times smaller than the nearest-neighbor one).
Note that the atoms at the ends of the chain (j ¼ 1 and j ¼ N)
have a single neighbor and thus an energy shift (hδζ), which
is half that of the atoms in the bulk (j ¼ 2;…; N − 1). The
generalization of this Hamiltonian to arrays with higher
dimensions is straightforward.
In this Hamiltonian, the atomic frequency is, by many

orders of magnitude, the largest, making the ground state
and the dynamics trivial. The situation is more interesting
when driving the atoms by a σþ-polarized classical field at
a frequency ν, close to resonance with the atomic two-
photon transition (ν≃ ν0=2). The interaction with this field
is, within an irrelevant phase choice for the classical driving
field, represented by the effective two-level Hamiltonian

Hd

h
¼ Ω cosð4πνtÞ

XN
j¼1

σxj ; ð3Þ

FIG. 2. Variation of Jz, in units of J, with the directing electric-
field amplitude F. Dots result from the numerical diagonalization
of the complete atomic Hamiltonian for B ¼ 9, 10, 11, 12, 13, 14,
and 15 Gauss (magenta, black, blue, green, red, cyan, and purple
dots, respectively). The colored lines are a guide to the eye. The
horizontal solid line and the dotted lines correspond to the pure
XY spin-1=2 exchange model and to the isotropic models,
respectively. The shaded background and the light gray lines
give a qualitative estimation of the lifetime of a pair of interacting
atoms at a d ¼ 5 μm distance. This estimation is based on explicit
lifetime calculations for the F and B values corresponding to the
plotted dots.
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where Ω (considered as positive without loss of generality)
is the effective Rabi frequency on the two-photon tran-
sition. Adding this term to the chain Hamiltonian, switch-
ing to an interaction representation defined by the unitary
operator U ¼ exp½i4πνtPN

j¼1ðσzj=2Þ�, and using the rotat-
ing wave approximation, we get the final dressed-chain
Hamiltonian

H
h
¼ Δ0

2
ðσz1 þ σzNÞ þ

Δ
2

XN−1

j¼2

σzj þ
Ω
2

XN
j¼1

σxj

þ
XN−1

j¼1

½Jzσzjσzjþ1 þ Jðσxjσxjþ1 þ σyjσ
y
jþ1Þ�; ð4Þ

where Δ ¼ ðν0 þ 2δζÞ − 2ν and Δ0 ¼ ðν0 þ δζÞ − 2ν. We
recognize here a spin-1=2 XXZ chain Hamiltonian
[21,112–115], in which Jz and J describe the Ising
coupling and spin-flip exchange, respectively. The detun-
ing Δ plays the role of an effective longitudinal magnetic
field, while Ω is an effective transverse field.
The field-independent J term defines the fundamental

exchange time scale for this Hamiltonian: τex ¼ 1=ð4JÞ ¼
14.7 μs at d ¼ 5 μm and 108 μs at d ¼ 7 μm. A unique
feature of the simulator is that all other parameters of the
Hamiltonian are under experimental control. The Δ and Ω
parameters are determined by the classical microwave
source dressing the atomic transition, and Jz is controlled
by the directing fields F and B (Fig. 2). All the Hamiltonian
parameters can thus be changed or modulated over a
nanosecond time scale, infinitely short as compared to
τex. This is a unique feature of this simulator.

B. Phase diagram

The Δ ¼ 0 case already provides a rich ground-state
phase diagram, spanning a variety of key many-body
problems. In this section, we review this diagram in the
thermodynamic limit for the bulk of the simulator, putting
aside the edge effects. Setting Δ ¼ Δ0 ¼ 0 in Eq. (4), the
generic Hamiltonian reads

H
h
¼

X
j

�
Jzσ

z
jσ

z
jþ1 þ Jðσxjσxjþ1 þ σyjσ

y
jþ1Þ þ

Ω
2
σxj

�
; ð5Þ

which boils down to the XXZ model in a transverse field
[116–122]. This model is relevant, in particular, in the
interesting physics of the Cs2CoCl4 [123,124] or
BaCo2V2O8 [125] quantum magnets. Its phase diagram
is sketched in Fig. 3 and exhibits interesting quantum phase
transitions.
The four main phases are associated with different

symmetry breakings of the generic Ising symmetries Zy
2 ⊗

Zz
2 (σyj → −σyj and σzj → −σzj). The competition between

these phases is driven by the sign and strength of the Jz=J
parameter and by the magnitude of the transverse field Ω.

At large Ω=4J, the field polarizes all spins close to the x
direction. This phase is gapped, does not break any
symmetry, and has a nondegenerate ground state. Using
the terminology of the Ising model in a transverse field
[126], we call it the “paramagnetic phase” (although it is
ferromagnetically ordered along the x direction) and denote
it by Px. This phase is separated from the others by Ising
transition lines (red lines in Fig. 3).
The three symmetry-breaking phases stem from the

Ω ¼ 0 line corresponding to the pure XXZ model. This
model has three phases: a gapped ferromagnetic phase F
for Jz < −J, a gapless (critical) Luttinger liquid phase
[127,128] for −J < Jz < J, and a gapped Néel phase Nz
along the z direction for Jz > J. The F and Nz phases have
doubly degenerate ground states and break the Zz

2 sym-
metry, with an additional breaking of translational sym-
metry for the Néel phase. When a transverse magnetic field
is applied (Ω ≠ 0), the two gapped F and Nz phases are
stable until the gap closes at the Ising transition line, at
which the system enters the Px phase. For the Luttinger
liquid phase, a nonzero transverse field immediately opens
a gap. The associated broken symmetry is Zy

2, correspond-
ing to a Néel ordering in the y direction (Ny phase). This
order is eventually destroyed by the transverse field through
an Ising transition towards the Px phase.
The boundaries between the three phases, F, Ny, and Nz

(green horizontal lines in Fig. 3) with broken symmetries
emerge from the Heisenberg points Jz ¼ �J, Ω ¼ 0.
Along these lines, the gapless system presents additional
symmetries. Indeed, the Heisenberg points correspond to
an SU(2) symmetry, which, under the application of the
transverse field (Ω ≠ 0), is reduced to U(1). The upper line
Jz ¼ J corresponds to the Heisenberg model under an
external field [113,114], for which a Luttinger liquid phase
survives up to the critical field Ωc=4J ¼ 2, at which a

XY point
Heisenberg points

Luttinger liquid
Ising transition lines

0

3

2

1

–1

–2

–3
0 32

FIG. 3. Sketch of the phase diagram of Hamiltonian (5) based
on the results of Fig. 4 and Ref. [116].
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commensurate-incommensurate transition occurs [129,130].
On the opposite Heisenberg point Jz ¼ −J, the transforma-
tion σzj → ð−1Þjσzj maps the model onto the ferromagnetic
Heisenberg chain. Like the other Heisenberg point, it has
an SU(2) symmetry, lowered to U(1) when the transverse
field is applied. Thus, another straight critical line emerges
from this Heisenberg point, separating Ny from F. Because
of the model mapping transformation, this coexistence line
ends with a lower critical field than the Jz ¼ þJ one [131].
This spin-1=2 model presents other remarkable features.

The integrability of the model is an essential concept to
discuss relaxation and thermalization. The model is inte-
grable by the Bethe ansatz when Ω ¼ 0 and on the critical
lines emerging from the Heisenberg points. In particular,
Ω ¼ Jz ¼ 0 corresponds to theXYmodel thatmaps onto free
fermions [132]. In the J ¼ 0 limit, the model maps onto the
(anti)ferromagnetic Ising model in a transverse field, which
also maps onto free fermions [133] and is thus integrable.
Away from these limits, the model is nonintegrable.
The qualitative plot of Fig. 3 is supported by numerical

results based on matrix-product state (MPS) simulations
[11–13,134,135] (Appendix B). We define the average
magnetization along the axis Oα (α ¼ x, y, z) as

Mα ¼
1

N

XN
j¼1

hσαj i: ð6Þ

For symmetry reasons, My;z must be zero on a non-
degenerate finite-size ground state. Therefore, the ordering
of the spins is better captured by order parameters defined
from correlations as

Oα ¼ signðCαÞ
ffiffiffiffiffiffiffiffi
jCαj

p
with Cα ¼ hσαjσαjþri; ð7Þ

where α ¼ y, z, j ¼ N=2, and where r is “large enough” to
be specified for a given N.
We plot in Fig. 4 the magnetization and order parameters

along the three spin axes as a function ofΩ=4J and Jz=J for
N ¼ 40 and N ¼ 90 open spin chains. The first column
shows that, as expected, the magnetization Mx increases
steadily with Ω=4J. The region with a large Mx value
corresponds to the Px phase. Along the Jz ¼ J line and for
N ¼ 40, we observe magnetization plateaus, corresponding
to a succession of ground states with fixed total magneti-
zation along x. These finite-size effects are gradually
smoothed out away from this line [116,118].
The order parameters Oy and Oz show the strength of

Néel and ferromagnetic ordering across the phase diagram.
While most phase transitions are rather steep, the Ny ↔ Nz

transition at Jz ¼ J is much smoother because of strong
finite-size effects. In this region, the gaps are indeed the
smallest (the Luttinger liquid to Nz transition is of the
Berezinskii-Kosterlitz-Thouless type [136–138]).
The features of the phase diagram and its finite-size

effects are also conspicuous when plotting the von

(b)

(a)
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1

–1
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–3
0 321

0
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1
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–30 321
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1

–1
0 321

0 321

0 321

0 321

0

3

2

1

–1

–2

–3
0 321

0 321

0

3

2

1

–1

–2

–3

0

1

0

1

FIG. 4. Numerical phase diagram of the XXZmodel in a transverse field. (a) MPS results for the order parametersMx,Oy,Oz and von
Neumann entropy SvN (from left to right) for the Hamiltonian (5) on an open chain with N ¼ 40 spins. (b) Same data for an N ¼ 90
open spin chain. The order parametersOy;z defined in Eq. (7) are computed with r ¼ 17 forN ¼ 40 and r ¼ 31 forN ¼ 90. Red regions
represent ferromagnetic ordering, while blue ones represent antiferromagnetic (Néel) ordering. The gray lines are guides to the eyes for
the quantum phase transition lines, inferred from symmetry arguments (horizontal lines) and from the von Neumann entropy plot for
N ¼ 90. They have been used to delineate the phases in Fig. 3.
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Neumann entropy SvN ¼ −Tr½ρ ln ρ�, where ρ is the
reduced density matrix of the first N=2 spins in the chain.
Along the critical lines, one expects [139,140] a logarith-
mic divergence of the entropy SvN ≃ ðc=6Þ lnN (for open
boundary conditions), with c ¼ 1 for Luttinger liquid
phases and c ¼ 1=2 for Ising transitions. In the gapped
phases, the entropy remains finite and decreases when the
gap increases. It displays plateaus along the Jz ¼ J line
reminiscent of the magnetization plateaus. The rapid
variation of the entropy when increasing Jz=J within the
Nz phase is due to the fact that the MPS variational state
breaks the Zz

2 symmetry (see Appendix B).
Figure 4 shows that the chain Hamiltonian exhibits a

wide variety of interesting behaviors. It also shows that, in
most regions, finite-size effects are not too large since a
good approximation of the thermodynamical limit can be
reached with 40 atoms only. The observation of this phase
diagram would be an excellent benchmark for the operation
of the simulator. It would make one confident that the
results of more challenging dynamical experiments could
be trusted, even in domains where direct calculations are
not available and where interesting questions are still open.

IV. PRESERVATION AND TRAPPING OF
CIRCULAR RYDBERG ATOMS

A. Circular atom lifetime

These remarkable features of the spin-chain Hamiltonian
are only relevant if the circular atoms can be preserved and
trapped for times much longer than τex, even much longer
than their natural lifetime (Γ−1

48 ¼ 25 ms for j48Ci). They
should thus be protected from spontaneous emission and
from other loss mechanisms. In this section, we show that
this ambitious goal can be achieved with state-of-the-art
techniques.
Kleppner pointed out [20] and experimentally demon-

strated [106] that spontaneous emission can be inhibited by
placing atoms in a structure with no field mode close to
resonance with the atomic transition. The unique sponta-
neous decay channel for the circular states in a zero-
temperature environment is a σþ-polarized transition
towards the next lower circular state. It is inhibited in
the plane-parallel capacitor providing F when its plates are
separated by a distance D smaller than half the radiated
wavelength, λ ¼ 4.9 mm for the j48Ci → j47Ci transition.
In an ideal, infinite capacitor, the inhibition is complete and
the circular level lifetime is infinite.
A more realistic calculation should take into account the

finite size and conductivity of the capacitor. We have
numerically computed the residual spontaneous emission
rate Γ for a capacitor with square plates (made up of gold
cooled below 1 K) of side a, using the CST-studio software
suite (Appendix C). Figure 5 shows the ratio Γ=Γ48 as a
function of a and D. The inhibition is large as soon as a is
larger than 10 mm. For the following discussion, we choose

an operating point with D ¼ 2 mm and a ¼ 13 mm,
corresponding to a 50-dB inhibition rate, i.e., to a
≃2500 s lifetime for j48Ci. Note that the spontaneous
emission inhibition for j50Ci is even stronger since the
emission wavelength is larger. The opening between the
capacitor plates is large enough to provide convenient
optical access to the trapping region.
The capacitor also inhibits the σþ-polarized dressing

microwave required, in particular, to engineer the chain
Hamiltonian H. However, because of the sensitivity of
Rydberg atoms to microwave fields, this drive requires only
a low power. It can thus be applied on the atoms in an
evanescent mode to which a powerful-enough source is
coupled, for instance, through tiny (<0.15 mm diameter)
irises pierced in the capacitor plates. According to simu-
lations, these irises do not significantly affect the sponta-
neous emission inhibition.
Spurious effects conspire to reduce the lifetime

(Appendix C). Blackbody photons induce a π-polarized
transition from the circular state towards elliptical states in
a higher manifold. The transition rate for this polarization
is enhanced by a factor ≃2 in the capacitor. Cryogenic
temperatures are thus required to limit this effect. We
assume T ¼ 0.4 K, a typical base temperature for 3He
refrigerators. The effect of the collisions with the back-
ground gas is small for a background pressure in the 10−14

torr range, accessible in a cryogenic environment
[141,142]. We must also include in the loss mechanisms
the contamination by elliptical states due to the dipole-
dipole interaction, photoionization (which turns out to be
quite negligible for circular states), or the elastic diffusion
of trapping-lasers photons.
We finally find (Appendix C) that the level lifetimes,

including all foreseeable loss mechanisms, exceed 53 s in
the useful range of F values (even longer lifetimes can be

FIG. 5. Spontaneous inhibition ratio Γ=Γ48 (log scale) as a
function of the capacitor spacing D and size a. The dashed
vertical line corresponds to D ¼ λ=2. The open red triangle
shows the chosen operation point D ¼ 2 mm and a ¼ 13 mm
with a 50-dB inhibition.

TOWARDS QUANTUM SIMULATION WITH CIRCULAR … PHYS. REV. X 8, 011032 (2018)

011032-7



reached by further increasing F and B (at the expense of a
reduced tunability of Jz in the latter case). A 40-atom chain
is thus expected to have a useful lifetime of at least 1.1 s,
corresponding to 8 × 104 spin-exchange periods τex at
d ¼ 5 μm. The fact that one can follow the dynamics of
a spin chain over such long times is a unique feature of the
circular-state quantum simulator.

B. Circular atom trapping

The circular atoms obviously must be trapped in order to
benefit from these long lifetimes. Trapping them through
the Stark or Zeeman effects has been proposed [143,144] or
realized [145]. These techniques, however, do not lead to
flexible trap architectures. We consider instead, following
Ref. [105], an optical laser trap.
The nearly free valence electron of the circular atom

experiences a positive ponderomotive energy [104] propor-
tional to the laser intensity I,

E ¼ e2

2meε0cω2
L
I; ð8Þ

where e and me are the electron’s charge and mass,
respectively, and where ωL is the laser angular frequency
(much larger than the electron’s orbital frequency). The
electron is thus attracted towards low-intensity regions.
The ponderomotive energy is 14.8 MHz (about 1 mK) in
the 10-μm waist of a 1-W, 1-μm-wavelength laser. It is
about 10 times larger than the potential experienced by a
ground-state rubidium atom under the same conditions.
The electronic attraction towards intensity minima is

transmitted to the Rydberg atom as a whole (note that the
ponderomotive energy of the ionic core is quite negligible
because of its large mass). We propose to radially trap the
rubidium atoms along the OX axis (Fig. 1) by a 0.5-W,
1-μm-wavelength hollow beam in a (0,1) Laguerre-Gauss
(LG) mode focused to a 7-μm waist [146]. The transverse
trapping frequencies are then ωY ¼ ωZ ¼ 2π × 12 kHz. At
the edges of the inhibition capacitor, the LG beam diameter
is 0.6 mm. The laser power hitting the plates (60 nW) and
dissipated in the cold environment is thus much less than
the cooling power of the 3He refrigerator.
The longitudinal lattice (along OX) should have an

intersite spacing that is adjustable at least between 5 and
7 μm and should provide a tight confinement to reduce the
variations of the dipole-dipole interactions due to the
residual atomic motion. Note that the residual motion
along the transverse axes is much less worrisome, acting
only at the second order on the interatomic distance. In
order to get a simple adjustable spacing, we suggest using
the interference at a small angle between two 1-μm-
wavelength laser Gaussian beams, offset in frequency by
a few tens of MHz with respect to the LG beam to avoid
interferences with the transverse trap beam. They propagate
in the XOY plane at an angle �θ with respect to the OY

axis. For d ¼ 5 μm, θ ¼ 5.7° (θ ¼ 4.1° for d ¼ 7 μm).
Their waist is 7 μm alongOZ and 200 μm alongOX, so as
to cover the whole length of the chain. With a power of
1.45 W in each beam for d ¼ 5 μm (2.8 W for d ¼ 7 μm),
we get ωX ¼ 2π × 24 kHz and a longitudinal trap depth of
nearly 4 MHz, i.e., 200 μK (Appendix D). The power
hitting the capacitor is also negligible for these beams.
Figure 6 presents the total ponderomotive potential for
d ¼ 5 μm. The deep traps are regularly spaced along the
OX axis. The extent of the atomic motion ground state in
these nearly harmonic traps is ΔX0 ¼ 50 nm.
Note that, for a position-dependent laser intensity, the

potential acting on the atom is the average of the ponder-
omotive energy over the atomic orbital [105]. We show
(Appendix D) that this effect plays no role when the atom
remains in the harmonic region close to the bottom of the
trap. We also estimate the decoherence due to the atomic
motion in the residual trap anharmonicity. The coherence
time (≈ 0.2 s) corresponds to 104τex at d ¼ 5 μm.
We have suggested here a set of operating parameters

adapted to the conservation of a strongly interacting long
chain over extended times. Other compromises can be
made, according to the experimental goals. Smaller cou-
plings can be obtained with a larger intersite spacing d,
limiting the impact of the residual atomic motion of the
chain dynamics (Sec. VI). Much tighter traps can be
obtained with higher laser powers, at the expense of a
reduced lifetime. Longer lifetimes can be reached in very
high electric and magnetic fields, at the expense of a
reduced tunability of the Hamiltonian parameters.

V. DETERMINISTIC PREPARATION AND
DETECTION OF CIRCULAR ATOM CHAINS

The N-atom chain must be prepared deterministically.
Techniques based on the Mott transition [53] achieve a unit

X (µm)

Z
 (

µm
)

FIG. 6. Cut in the XOZ plane of the ponderomotive potential
produced by a Laguerre-Gauss and two interfering Gaussian
beams at a 1-μm wavelength. The potential values are given in
frequency units by the color map on the right.
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filling of a ground-state atom lattice. They are not easily
applicable to the large lattice spacings envisioned here.
Real-time feedback allows one to prepare regular arrays of
independent dipole traps with unit filling [147,148].
However, the preparation of circular levels from the ground
state has a finite efficiency, leading to gaps in the final
Rydberg chain. The dipole blockade mechanism could lead
to nearly regular Rydberg-atom arrangements after the
excitation of a BEC or of a lattice [89,149], but, according
to our simulations [150], interatomic distance variations
are large and lead to an excessive atomic motion in the
final traps.
Thus, in this section, we discuss an innovative chain

preparation method based on a variant of evaporative
cooling [107]. The principle of the method is to start with
an irregular chain and a large random number of atoms
trapped in a laser tube and to progressively compress and
“evaporate” this chain until the required interatomic spac-
ing and atom number are reached. The evaporation pro-
vides cooling nearly down to the ground state of the trap,
leading to very small motional effects and dephasing. We
show that the chain evaporation technique also leads to an
efficient state-selective individual detection of each atom.
Figure 7 presents a conceptual scheme of the experiment.

The sequence (detailed in Appendix E) begins with the
preparation near a superconducting atom chip C of an
elongated [151] 87Rb atom thermal cloud cooled below
1 μK [152,153], near quantum degeneracy. This sample is
trapped in a red-detuned focused laser beam and brought
inside the “science” capacitor S. We suppress the ground-
state trap and laser-excite a low-angular-momentum
n ¼ 50 Rydberg state in the dipole blockade regime,
leading to a random Rydberg-atom chain (≃110 atoms)
with inter-atomic spacings of the order of 9 μm [84,154].
We get rid of the residual ground-state atoms with a
resonant pushing laser pulse and transfer the Rydberg
atoms into j50Ci using a σþ-polarized evanescent rf field.
During the few microseconds required for this sequence,
atomic motion is negligible.

The Laguerre-Gauss radial confinement beam is then
switched on. We also switch on two 1-μm-wavelength
“plug” Gaussian beams parallel to OY. They create two
energy barriers on the OX axis, centered at X ¼ �L=2.
The “right” plug (X ¼ L=2) is lower than the “left” one. We
then slowly compress the trap by reducing L. We increase
the van der Waals repulsive interaction accordingly up to a
point where the energy of the right-end atom compares to
that of the weak plug. Further compression ejects atoms,
one at a time, above the weak plug. The “evaporation” of an
atom removes part of the global energy, providing a cooling
mechanism reminiscent of the evaporative cooling [107].
The final atom number N is determined by the height of the
weak plug and by the final value of L.
Numerical simulations of the classical atomic dynamics

reveal the efficiency of this process. Figure 8 presents the
average and the variance over 100 realizations of the
evaporation sequence of the number of remaining atoms
as a function of the final L value. For atom numbers lower
than 45, we observe clear steps in the evolution of N. The
zoom around N ¼ 40 (inset) shows that the atom number
variance cancels for optimal L values. Stopping the
evaporation process at such trap lengths deterministically
prepares a string with a prescribed atom number. The
interatomic spacing is finely tuned through a final adjust-
ment of L. The lattice is then adiabatically turned on,
trapping the atoms in their respective sites (the plugs
remain on with an adjusted power to compensate the
repulsion of the end atoms by their single neighbor).
The complete preparation sequence simulated here lasts

1.3 s (Appendix E). In order to avoid atomic decay during this
relatively long time interval, theelectric fieldF canberaised to
a large value, leading to an individual atom lifetime greater
than 200 s. The final longitudinal position dispersion with
respect to the lattice sites isΔX ¼ 65 nm for N ¼ 14 atoms,

X
Y

Z

FIG. 7. Sketch of the proposed chain preparation and detection
sequence. C is for atom chip, S for science capacitor, and D for
field-ionization detection region. Note the axes orientation in the
lower left.
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FIG. 8. Number of atoms left as a function of the distance L
between the two plug beams. The thick curve gives the average
over 100 realizations of the evaporation process. The atom
number variance is indicated by the blue-shaded area.
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corresponding to only approximately 1 oscillation quantum
(110nmforN ¼ 40, i.e.,≈4 quanta).A full quantummodel of
the evaporationwould clearly be required. It is out of the scope
of this paper, and ΔX will be used in the next section for an
order-of-magnitude estimate of the influence of the atomic
motion. We have checked, with 3D simulations of the
dynamics, that the transverse position dispersions ΔY ¼
ΔZ are of the same order of magnitude as ΔX.
The evaporation procedure can also be used for an

efficient detection of the spin states. At the end of the
spin-chain evolution, the exchange interaction can be
halted by casting with a “hard” microwave π pulse
j48Ci onto j46Ci. The exchange interaction j46Ci ↔
j50Ci is in the millihertz range. The energy states of the
spins are thus frozen from then on. The repulsive van der
Waals interactions being nearly unchanged, the evaporation
process can be resumed. The lattice is switched off, the
right plug is lowered, and L is slowly decreased, expelling
atoms one at a time. The atoms escape along the OX axis,
guided by the LG beam at a velocity determined by the
height of the weak plug. They fly towards the field-
ionization region (D on Fig. 7). The levels j50Ci and
j46Ci are selectively detected there with near-unit detection
efficiency. This simple scheme reads out the spin states in
the up-down basis. Adding a hard microwave pulse before
freezing the interaction, we can rotate the equivalent spin at
will and thus detect any spin observable (the same for all
atoms) and its correlation functions along the chain.
Microwave pulses acting on individual atoms on their
way from S to D make it possible, in principle, to measure
arbitrary quantum observables of the spin chain.
The ability to measure, as a function of time, the states of

the individual spins opens a wealth of possibilities. It is
instrumental to access complex correlation functions and
entanglement properties in the spin chain.

VI. NUMERICAL SIMULATION OF ADIABATIC
EVOLUTION THROUGH A QUANTUM PHASE

TRANSITION

In this section, we discuss the observation of quantum
phase transitions using this setup. In particular, we inves-
tigate the influence of the residual atomic motion around
the lattice sites. We include the effect of the classical atomic
motion in the spin-chain Hamiltonian discussed in Sec. III
and in the numerical simulations of the system dynamics.
This effect is quite dependent upon the relative values of the
exchange frequency J and of the trap oscillation frequency
ωX. We thus explore numerically the two cases d ¼ 5 μm
and d ¼ 7 μm, corresponding, respectively, to J ≈ ωX and
to J ≪ ωX.

A. Hamiltonian with a classical atomic motion

We treat the atomic motion as classical and independent
from the spin dynamics. We use the results of the numerical

simulations of the evaporation process (Sec. V and
Appendix E) as an input for the atomic trajectories and
perform averages over the outcomes of many (100)
realizations of the evaporative chain preparation. The
Hamiltonian including the atomic motion can be written as

H
h
¼

XN
j¼1

�
ν0 − 2ν

2
σzj þ

Ω
2
σxj

�

þ
XN−1

j¼1

Ij;jþ1ðtÞ
�
Jzσ

z
jσ

z
jþ1 þ Jðσxjσxjþ1 þ σyjσ

y
jþ1Þ

þ δζ

2
ðσzj þ σzjþ1Þ

�
: ð9Þ

We have introduced

Ij;jþ1ðtÞ ¼
d6

½xjþ1ðtÞ − xjðtÞ�6
; ð10Þ

where xj is the position of atom j. A regular lattice (xj ¼ jd
within a constant offset) corresponds to Ij;jþ1 ¼ 1. An
important remark is that, even though the absolute strengths
of the coupling coefficients fluctuate with position and
time, the ratios of these couplings are constant, in time
and along the chain. The motion thus induces a highly
correlated noise on the couplings.
The δζ term adds a random longitudinal magnetic field

along the z direction. We chose the dressing frequency ν
so as to cancel the average value of this field: Δ̄ ¼
ν0 − 2νþ 2δζĪ ¼ 0, where Ī ≃ 1 and the overline denotes
the average over many realizations of the atomic trajecto-
ries. Still, a residual magnetic field, Δ̄0 ¼ ν0 − 2νþ
δζĪ ¼ −δζ0Ī, remains on the two edge sites j ¼ 1, N.
This field locally breaks the Zz

2 symmetry and polarizes the
edge spins in the z direction. It is an asset or a drawback
depending on the purpose of the quantum simulator. For
instance, the local symmetry breaking field is an asset while
entering a ferromagnetic phase. It creates a perturbation
that naturally triggers the buildup of the order parameter.
Note that, for large enough chains and in gapped phases,
these edge effects are relevant only over the correlation
length scale. The physics of the model can still be captured
in the bulk of the chain.

B. Adiabatic evolution through a quantum
phase transition

We now investigate the evolution of the system in an
adiabatic evolution through a quantum phase transition
line. We perform simulations of the full system dynamics
under the Hamiltonian (9) for up to N ¼ 14 atoms using
exact diagonalization. We infer, from Fig. 4, that a
favorable situation to probe a quantum phase transition
is the ferro-para transition F ↔ Px. It has little finite-size
effects and a strong ordering in the ferromagnetic phase.
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We thus take Jz=J ¼ −1.6, which corresponds to F ¼
6 V=cm and B ¼ 14 Gauss in Fig. 2 and leads to
δζ=J ≃ 1.68.
The edge fields are then negative and favor the spin-up

ferromagnetic state jFi ¼⊗N
j¼1 j↑i. This state is actually

the ground state of Eq. (9) for Jz=J ¼ −1.6 and Ω ¼ 0 and
can be straightforwardly prepared experimentally. We note
that, in the opposite limit, Ω ≫ 4J, the polarized state
jPxi ¼⊗N

j¼1 j ←i, where j ←i ¼ ðj↑i − j↓iÞ= ffiffiffi
2

p
becomes

the ground state. Starting from an exact ground state is an
ideal situation for an adiabatic preparation protocol. Thus,
we choose to start from jFi, to vary ΩðtÞ from 0 to
Ωmax=4J ¼ 6, and then to decrease Ω by reversing the
ΩðtÞ function. This protocol has two goals. First, we follow
the behavior of the observables along the path in order to
probe the transition, and second, this cycle allows us to
probe the deviations from adiabaticity through the com-
parison between the observables in both directions.

Adiabatic theory suggests [155,156] using nonlinear
ramps for Ω, with a velocity _Ω proportional to the square
of the gap to the first excited states. In the presence of
motion, we phenomenologically find good nonlinear
ramps with a velocity inversely proportional to the deriva-
tive dMz=dΩ calculated in the ground state (very low
velocity values are replaced by a constant lower bound).
In order to save computing time, we first optimize the
ramps using simulations for N ¼ 10 spins and reuse them
for the largest calculation (N ¼ 14).
In Fig. 9, we plot, for an N ¼ 14 spin chain, the average

values and the standard deviation (over 100 atomic motion
realizations) ofMz andMx. We also plot the fidelity of the
time-evolving state jψðtÞi with respect to the ideal ground
state jψ0ðΩÞi for a given Ω: F ðtÞ ¼ jhψðtÞjψ0ðΩðtÞÞij2.
Frames (a)–(c) correspond to J ¼ 17 kHz, and frames
(d)–(f) to J ¼ 2.3 kHz. The optimized ramps ΩðtÞ are
given in the insets of frames (a) and (d). The realistic
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FIG. 9. Simulation of an adiabatic preparation of the ground state for the ferro-para transition at Jz=J ¼ −1.6 and with N ¼ 14 spins.
(a)–(c) Total magnetizations Mz, Mx and fidelity F ðtÞ for J ¼ 17 kHz. (d)–(f) Same curves for J ¼ 2.3 kHz [note that the time scale
and vertical scale for the fidelity differ from those of frames (a)–(c)]. The insets in frames (a) and (d) depict the optimized rampΩðtÞ. For
each quantityO, the black curve gives its average over 100 realizations of the classical atomic trajectories. The shaded area represents the
corresponding standard deviation of the distribution over trajectories. The red curves correspond to a situation with atoms fixed at the
lattice sites. The blue curves correspond to the exact ground state of the Hamiltonian for motionless atoms. In each frame, the vertical,
horizontal dotted lines correspond to the expected quantum phase transition point.
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averaged curves (black lines) are compared to the ground
state (blue lines) and to the time evolutions obtained with
the same time-dependent protocol operating on atoms at
fixed positions (red lines).
In the thermodynamic limit, the transition (indicated by

the vertical dashed lines in Fig. 9) would be signaled by a
vanishing of Mz at the critical point and a discontinuity in
the slope of Mx, both with critical exponents belonging to
the Ising universality class. On a finite chain, the transitions
are smoothed out. The data of frames (a)–(c) in Fig. 9
clearly exhibit, for J ¼ 17 kHz, the expected behavior of
the magnetization observables around the phase transition
points. However, imperfections are conspicuously revealed
by the intermediate oscillations inMx and the reduced final
value ofMz (which, in principle, should return to its initial
value, 1). The protocol generates “heating,” mostly close to
the transition points, and accordingly, the fidelityF sharply
drops at the transition.
Part of these imperfections are due to the atomic motion,

as shown by the differences between the black and red
curves. These motion-induced imperfections increase rap-
idly when the sweep time is increased. We are thus driven
to use a rather fast ramp (the total duration T ¼ 1.2 ms of
the sequence corresponds to JT ¼ 20 only). Accordingly,
part of the imperfections are due to the breaking of the
adiabaticity criterion, as illustrated by the difference
between the red and blue curves.
A lower J value (2.3 kHz) leads to a considerably

improved situation, as shown in frames (d)–(f) of Fig. 9.
The atomic motion is effectively decoupled from the spin
dynamics. This decoupling allows us to use a much slower
ramp. The total duration T ¼ 79 ms now corresponds to
JT ¼ 180. The differences of the observables in the three
situations are then negligible. The final fidelity of the
14-spin state reaches an outstanding value of 0.99.
These preliminary results show that it is fairly easy to

achieve operating conditions such that the residual classical
atomic motion has a quite negligible influence on the spin
dynamics. The long lifetime of the spin chain is instru-
mental to realize slow evolutions fulfilling the adiabaticity
criterion. This would allow us to properly explore the
complete phase diagram and the quantum phase transition
phenomenon. Obviously, further studies could lead to
further optimizations of the ramps, making it possible to
operate at larger couplings over a reduced time scale, and
to the exploration of the other transitions in the phase
diagram.

VII. CONCLUSION

We have shown that state-of-the-art techniques make it
possible to build a spin-chain quantum simulator based on
laser-trapped circular Rydberg atoms. This simulator com-
bines the flexibility of atomic lattices and the individual
atomic observable read-out typical of ion trap, together
with the strong dipole-dipole interactions of Rydberg

atoms. Defect-free atomic chains can be prepared by an
evaporative cooling method, which finally leaves the atoms
near their vibrational ground state. Evaporation also pro-
vides us with a unit-efficiency individual-spin detection. A
proper microwave dressing leads to a fully tunable spin-1=2
XXZ chain Hamiltonian. Its parameters are under direct
experimental control, a unique feature of this simulator.
The long lifetime of the laser-trapped circular atoms,
protected from spontaneous emission, makes it possible
to follow the dynamics over unprecedented time intervals,
in the range of 105 times the spin flip-flop period.
Moreover, the individual detection of all spin observables
makes it possible to access a wealth of interesting proper-
ties, such as entanglement properties and local entropies.
Let us stress that the techniques proposed in this paper

could have a deep impact on the thriving Rydberg-atoms
physics, well beyond the realization of a full-fledged
quantum simulator. Many experiments are considerably
hindered by the lack of trapping of the Rydberg atoms
and by the spurious transfers induced by blackbody
radiation. We propose here simple solutions to overcome
these bottlenecks. For instance, Rydberg atoms have been
shown to be ultrasensitive probes of their electromagnetic
environment [157–161]. Adding to these experiments
the laser-trapping capability, compatible with all high-
angular-momentum states, would allow the realization
of extremely sensitive, well-localized probes of the local
fields. Cavity quantum electrodynamics could also con-
siderably benefit from the techniques outlined here.
Rydberg-atom cavity QED experiments have been
plagued by the lack of deterministic atom sources and
by the fast transit of the thermal atoms across the cavities
[162]. Laser trapping allows us to straightforwardly
remove these bottlenecks. One can even envision hybrid
cavity QED experiments combining superconducting
circuits and laser-trapped Rydberg atoms, which can
be used to create a coherent interface between microwave
and optical photons [163].
Returning to quantum simulation, a circular-state sim-

ulator with about 40 atoms could address important
problems of many-body quantum physics. We have shown
that slow variations of the Hamiltonian parameters make it
possible to explore precisely the quantum phases of the
XXZ model, generating the ground states with a high
fidelity. Of course, these ground states are well known, and
most of their properties can be assessed using standard
numerical techniques, such as the DMRG or matrix product
state (MPS) used in our extensive numerical computations.
Checking the agreement between the observed phases
with the expectations, we mostly assess the quality of
the simulator. In particular, it would show that the residual
atomic motion and other experimental imperfections have
a negligible influence, as we expect.
The real interest of this simulator lies in studies of the

spin-chain dynamics, which is much more demanding
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numerically when highly excited states or slow evolutions
are at stake [164]. For instance, fulfilling the adiabatic
limit in a transition towards a gapless phase is more and
more difficult when the systems size increases. A too-fast
crossing of the transition line results in the generation of
defects with respect to the theoretical final ground state.
Exploring the generation of these defects and the limits of
the adiabatic regime is particularly important in the context
of adiabatic quantum computation [165], quantum
annealing [43,44], and the Kibble-Zurek mechanism [166].
An essential perspective for such ground-state physics is to

explore the spin-one Haldane phase [167,168] using the
ladder geometry. Separately prepared parallel chains could
be brought into interaction with each other (by moving their
Laguerre-Gauss transverse trapping beams), leading to a
square ladder geometry. Using the anisotropy of the dipole-
dipole interaction, the signs of the coupling between legs
(along OX) and rungs (along OZ) of a properly oriented
ladder can be different. This leads to two antiferromagnetic
chains that are ferromagnetically coupled. This model, in
part of its phase diagram, realizes the Haldane phase
[169–171]. This phase possesses a nontrivial topological
order [172], which can be straightforwardly measured in this
context, and fractional spin-1=2 edge states with the open
boundary conditions typical of our simulator [173]. The
ground states and low-excitation physics of the system are
also well apprehended by numerical methods, but the
dynamical evolution is much more difficult to simulate.
Another interesting low-energy physics problem is that

of a disordered XXZ chain [174–178]. Adding a laser
speckle field to the optical lattice, it is fairly easy to produce
random shifts of the atoms with respect to their equilibrium
positions, randomly modulating the dipole-dipole inter-
actions. In the Jz < 0 regime, this model displays the
paradigmatic competition between localization and inter-
actions, a subject of intense activity in quantum simulation,
opening the way for Bose-glass physics [128,179,180].
Another striking feature of this model is the emergence of
random singlet phases [174–178], with their unusual long-
range correlations and entanglement properties [181,182]
in disordered systems. Remarkably, the random singlet
phase of the Heisenberg point would be accessible thanks
to the possibility to tune Jz ¼ J on all bonds.
The ability to rapidly modulate the Hamiltonian param-

eters also opens a vast realm of possibilities [183]. Periodic
modulations could be used to realize spectroscopic inves-
tigations of the elementary excitations of the system. They
bear a particular interest at the critical point of the Ising
transition (the one studied in Sec. VI), as shown by its
remarkable integrable features [184,185], recently inves-
tigated in condensed-matter experiments [186,187]. The
long lifetime of the circular simulator would be instru-
mental in studying low-frequency excitations, not easily
accessed in other contexts.
Floquet engineering corresponds to periodic variations

of the couplings that are much faster than J. It allows one

to design effective Hamiltonians that are not accessible
with the usual control parameters [64,188,189]. This is a
particularly interesting perspective to enlarge the field of
applications of the circular-state quantum simulator since
all parameters of H can be easily modulated at high
frequencies. In the same spirit, the proposed Rydberg setup
notably makes it possible to study Floquet time crystals
[190,191].
Instantaneous quenches can be realized by a sudden

variation of the Hamiltonian. There is a whole range of
questions on quenches that would benefit from long
observation times. Whether an isolated quantum system
displays equilibration and thermalization is a fundamen-
tal issue of statistical physics [39,192–195]. As the spin-
chain Hamiltonian has integrable points, one could
investigate the interplay between thermalization and
integrability [196]. The intermediate relaxation times
contain information on the propagation of correlations
at the origin of the relaxation process [197]. Another
remarkable scenario is the prethermalization [198]. Some
observables rapidly reach a metastable steady state, while
the system is not yet in its thermal equilibrium. Only a
few experiments have been carried out in this regime
[198]. Finally, the dephasing time of a subsystem could
be directly measured [199]. Combining quench protocols
with disordered Hamiltonians offers a way to address
the issues related to many-body localization [5,200–202].
In particular, the long simulation times would allow one
to follow the logarithmic increase of the entropy that
signals the many-body localization transition [203].
Beyond the spin-chain physics, the circular-state sim-

ulator could explore a new regime of spin-boson inter-
actions [204–206]. Shallow optical lattices lead to a
situation in which the spin exchange is strongly coupled
to the atomic motion [52]. The joint motion of the atoms
would then entangle with the spins, leading to a situation
in which numerical simulations are far out of reach even
for moderate spin numbers. In particular, the common
coupling of the spin ensemble to the same bath could
mimic correlated errors, which are one of the key
problems for quantum error correction in quantum infor-
mation protocols.
We have limited our discussions to chains with even

couplings since this is the first interesting problem that this
simulator could address. The use of recent atom trapping
techniques could considerably extend the simulation realm.
Transposing, to this context, the individually controlled
multiple atomic traps on a line demonstrated in Ref. [22]
would allow us to individually control the position of each
atom. We may thus envision preparing, from an appropriate
lattice, a linear chain of circular atoms with rather large
separations (10 μm or more), making interactions negli-
gible. We could then move (in a time of the order of the trap
oscillation frequency, using optimal control techniques) the
atoms to put them, by pairs, in interaction for a given set
of time, during which the dressing source and static field
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can be adjusted to provide individually controlled-pair-
interaction parameters. We could use this technique, for
instance, to get rid of the spurious next-nearest-neighbor
coupling if it has undesired effects on the simulation. We
can thus envision a simulator of a completely general spin-
spin interaction model, with complete single-site address-
ing, both at the interaction and at the detection stage.
Finally, extensions to full 2D or even 3D geometries can

also be envisioned by a mere extension to this context of
recent techniques for atomic lattices and programmable
optical tweezers [100]. One could, for instance, prepare a
few defect-free chains of Rydberg atoms by the van der
Waals evaporation method and then pick out each atom
with individual laser tweezers to finally bring them into an
arbitrary spatial arrangement. The extremely long atomic
lifetimes and the tight laser trapping of the circular atoms
make such a scheme feasible. The techniques involved are
demanding but already well established in other contexts.
This dramatic extension of the proposed quantum simulator
capability would allow it to address a domain where
understanding the mere ground state is already quite
challenging, not to mention the long-time-scale dynamics.
We thus think there is a bright long-term future for circular-
state quantum simulators.
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APPENDIX A: CIRCULAR STATES AND THEIR
VAN DER WAALS INTERACTION

For Rydberg levels with a high angular momentum, the
quantum defects are negligible and the hydrogenic model
is an excellent approximation. In vanishing electric and
magnetic fields, the circular state with principal quantum
number n, jnCi, is degenerate with the enormous hydro-
genic manifold. Any perturbation admixes it with other
high-l “elliptical” states [108]. In a static electric field, the
manifold degeneracy is partially lifted [74]. The eigen-
states of the Stark Hamiltonian in an electric field F along
OZ can be sorted out by their magnetic quantum number
m (l is no longer a good quantum number since the
spherical symmetry of the hydrogen atom is broken). The
energy spectrum of the manifold arranges as a triangle
whose tip is the circular level jnCi, as shown in Fig. 10,
isolated from the nearest elliptical states jnE�i. A mag-
netic field B, also along OZ, lifts the near degeneracy of
jnCi with jnEE0i. The circular state is now stable against
stray field perturbations. The circular level experiences
a negative second-order Stark shift, scaling as n6,
−1.582 MHz=ðV=cmÞ2 for n ¼ 48. The differential Stark

shift on a transition between two circular states is much
lower [−438 kHz=ðV=cmÞ2 on the two-photon j48Ci →
j50Ci transition].
Because of their high angular momentum, circular states

cannot be reached directly by laser excitation of the ground
state. Their preparation relies on the laser excitation of
a low-l Rydberg state, followed by a series of σþ-polarized
radio-frequency transitions between Stark levels, per-
formed in an adiabatic rapid passage sequence [207].
A good control of the radio-frequency field polarization
leads to an efficient (≃95% efficiency and purity) and rapid
(few μs) transfer into the circular state [109]. Field
ionization provides a state-selective detection with near
unit efficiency [208].
For a pair of interacting Rydberg atoms at a distance d

along OX, perpendicular to the quantization axis OZ, the
dipole-dipole interaction reads

Vdd ¼
e2r1r2
3ϵ0d3

�
Y0
1Y

0
1 þ

1

2
ðYþ1

1 Y−1
1 þ Y−1

1 Yþ1
1 Þ

−
3

2
ðYþ1

1 Yþ1
1 þ Y−1

1 Y−1
1 Þ

�
; ðA1Þ

where r1 and r2 are the distances of the two Rydberg
electrons to their respective cores and where the Yj

i are the
spherical harmonics for the two electron positions.
We encode the spin-up and spin-down states of the

simulator on the j50Ci and j48Ci circular states, connected
by a two-photon transition at frequency ν0 ¼ 111.95 GHz.
In the basis fj48C; 48Ci, j48C; 50Ci, j50C; 48Ci, j50C;
50Cig, the dipole-dipole interaction reads, in a second-
order perturbative approximation,

V ¼ h
d6

0
BBB@

C6;48–48 0 0 0

0 C6;48–50 A6;48–50 0

0 A6;48–50 C6;48–50 0

0 0 0 C6;50–50

1
CCCA: ðA2Þ

FIG. 10. Diagram of the Stark levels with the highest magnetic
quantum numbers. The circular state jnCi is at the tip of the
triangle of Stark levels sorted according to m.
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In terms of the Pauli operators for the two atoms,
σx;y;zi ði ¼ 1; 2Þ, this interaction can be rewritten as

V
h
¼ δE1þ δζ

2
ðσz1 þ σz2Þ þ Jzσ

z
1σ

z
2 þ Jðσx1σx2 þ σy1σ

y
2Þ;
ðA3Þ

where

δE ¼ C6;48−48 þ C6;50−50 þ 2A6;48−50

4d6
; ðA4Þ

δζ ¼ C6;48−48 − C6;50−50

2d6
; ðA5Þ

Jz ¼
C6;48−48 − 2C6;48−50 þ C6;50−50

4d6
; ðA6Þ

J ¼ jA6;48−50j
2d6

: ðA7Þ

Note that the sign of the exchange term J is irrelevant since
it can be changed by a mere redefinition of the absolute
phase of the basis levels. We thus choose it to be positive.
The δE term is a mere redefinition of the energy origin that
will no longer be explicitly included in our discussions. The
δζ term results from the differential van der Waals shift
between the two atomic levels and plays the role of a
longitudinal field in the spin model. The Jz and J terms
describe the longitudinal and transverse (exchange) spin-
spin interactions, respectively.
In order to precisely determine these coefficients, we

perform an explicit numerical diagonalization of the pair
Hamiltonian, including the Zeeman and Stark perturbations
(note that the dipole-dipole interaction breaks the cylin-
drical symmetry of the Stark levels in the proposed
geometry, preventing us from using approximate analytical
solutions). We have to restrict the total Hilbert space in
order to perform the computation. We limit its basis to
levels whose principal quantum numbers differ by jΔnj< 3
from 48 or 50 (the coupling matrix elements decrease
rapidly when Δn increases). We also select m values
differing by at most jΔmj < 3 from those of the levels
or interest. Most of the computations are performed with a
basis of 361 pair states. For a few values of the fields, we
have checked that the interaction changes by only ≃1%
when using a basis that is 3 times larger.
We have first computed the interaction between two

atoms in j50Ci as a function of the interatomic distance,
for B ¼ 13 Gauss and F ¼ 6 V=cm. The uncoupled
j50C; 50Ci pair state is found to be mainly contaminated
by the ðj50Eþ; 50E−i þ j50E−; 50EþiÞ= ffiffiffi

2
p

symmetric
pair state. The energy variation of the levels is in excellent
agreement with a 1=d6 dependence for d > 3 μm. For

smaller distances, the interaction is too large to agree with
the perturbative van der Waals dependence.
For d ¼ 5 μm, we find A6;48–50 ¼ −0.539 GHz μm6, a

value independent (within 10−5) of the electric and mag-
netic fields in the relevant range. The other C6 coefficients
have a marked dependency on F and B, varying by 10%
to 20% for 6 < F < 12 V=cm and 9 < B < 16 Gauss.
Their values for F ¼ 9 V=cm and B ¼ 13 Gauss are
C6;48–48 ¼ 2.2 GHz μm6, C6;48–50¼2.66GHzμm6, and
C6;50–50 ¼ 3.03 GHz μm6.
Accordingly, in terms of the spin model, J ¼ 17 kHz at

d ¼ 5 μm (2.3 kHz at 7 μm) is independent of the fields,
whereas Jz and δζ vary over large ranges. Figure 2 shows
the variations of Jz=J as a function of F and B. Figure 11
shows the corresponding variations of δζ=J. Note that Jz=J
and δζ=J do not depend upon d. We observe that the Jz
dependence flattens when B increases. On the other hand, a
larger B value reduces the mixing of the circular states and
the elliptical states and, accordingly, increases the level
lifetime (Appendix C). We thus choose the largest B value
for which the spin chain can be tuned over the complete
phase diagram, B ¼ 13 Gauss.

APPENDIX B: DETAILS ON NUMERICAL
SIMULATIONS

Numerical simulations of the spin Hamiltonian are
conducted using the ED and MPS techniques.
ED, in which wave functions and operators are repre-

sented exactly, is used mostly on small systems. It is used to
compute the excitation gaps to the first and second excited
states with periodic boundary conditions, shown in Fig. 12.
For Z2 symmetry-breaking phases, the gap to the first
excited state must vanish in the thermodynamical limit,
while the gap to the second eigenstate must vanish only on
critical lines. This expected behavior is qualitatively well
reproduced numerically in spite of finite-size effects around

FIG. 11. Variations of δζ=J as a function of the electric field F
for B ¼ 9, 10, 11, 12, 13, 14, and 15 Gauss (magenta, black, blue,
green, red, cyan, and purple dots, respectively). The colored lines
are a guide to the eye.
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the Jz ¼ J line, reminiscent of the magnetization plateaus.
In the time evolution calculation with ED, which includes
the atomic motion, we first discretize the continuous time
evolution of the Hamiltonian into a staircase function with
small steps. On each step, we evolve the wave function
using the expansion of the exponential (well suited for
sparse matrices) and use the criteria of unitary evolution at
machine precision to truncate the expansion.
The MPS calculations are performed using the ITensor

library [135]. We typically use up to 1200 states for N ¼
90 spins with open boundary conditions. In many regions
of the phase diagram, there are almost classical low-lying
excited states, in which the algorithm gets easily trapped,
even on small systems. To help circumvent this issue,
we include noise in the reduced density matrix [209] for
the first sweeps of the algorithm. Furthermore, deep in
the symmetry-broken phase, the ground state is almost
degenerate on large systems (all eigenstates are eigen-
vectors of the Z2 symmetries). The MPS algorithm thus
converges towards a superposition of these finite-size
ground states that effectively breaks the Z2 symmetries
and that have a lower entanglement entropy. This is
illustrated in Fig. 12, where the local ferromagnetic and
Néel order parameters are computed from local magneti-
zation. The algorithm randomly converges towards one of
the two symmetry-breaking states. The Néel order along y
never shows up on local observables simply because the
algorithm works with real states (the Hamiltonian is
purely real).

APPENDIX C: LOSS MECHANISMS

The spontaneous-emission inhibition results from the
reduction of the classical electromagnetic-field-mode den-
sity at the atomic emission frequency. It can thus be
computed with a classical approach [210,211]. For an
atom in the middle of an ideal, infinite-plane, parallel
capacitor (plate separation D along the OZ axis), the
spontaneous-emission-rate modification factors Cσ and
Cπ for σ- and π-polarized transitions (w.r.t. OZ) at wave-
length λ respectively read

Cσ ¼
X½2D=λ�

n¼1

3λ

4D

�
1þ

�
nλ
2D

�
2
�
sin2

�
nπ
2

�
;

Cπ ¼
3λ

4D
þ

X½2D=λ�

n¼1

3λ

2D

�
1 −

�
nλ
2D

�
2
�
cos2

�
nπ
2

�
; ðC1Þ

where the square brackets in the summation limits stand for
the integer part. For D < λ=2, Cσ ¼ 0. The inhibition is
perfect in a capacitor below cutoff and a polarization
parallel to the plates.
In order to get a more realistic value, we use a numerical

approach, taking into account the finite size and conduc-
tivity of the capacitor. We compare the total power radiated
in free space by a σ-polarized tiny antenna at the 61.41-
GHz frequency of the j48Ci → j47Ci transition to that
radiated by the same antenna placed in the capacitor. This
computation is performed using the CST Microwave
Studio software suite. We have first tested the method
with a very large capacitor made up of an ideal conductor.
The results are in excellent agreement with the predictions
of Eqs. (C2). We have then computed the spontaneous
emission in a finite capacitor with electrodes made of gold
cooled below 1 K (conductivity 4.55109 Ω−1 m−1 [212]).
Note that superconducting electrodes cannot be used in this
context since they are incompatible with the directing
magnetic field B. The results of this calculation are
presented in Fig. 5. We choose the operating point D ¼
2 mm and a ¼ 13 mm, providing a 50-dB inhibition.
The lifetime of isolated circular atoms is also limited by

the absorption of π-polarized residual blackbody photons.
The dominant processes are the transitions from jnCi to the
elliptical states jðnþ 1ÞE�i. Transitions to higher mani-
folds are negligible since the matrix elements and the
blackbody number of photons per mode drop rapidly with
the upper principal quantum number. The capacitor-
induced rate enhancement for these transitions (a factor
of approximately 1.8) is computed from Eqs. (C2). At
T ¼ 0.4 K, a typical base temperature for a 3He refriger-
ator, we find the excitation rates of j48Ci and j50Ci to be
1=630 s−1 and 1=360 s−1, respectively.
For interacting atoms, the circular states get mixed with

elliptical states, which can emit or absorb π-polarized or
high-frequency photons. These processes are not inhibited
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FIG. 12. (a) Gaps to first and second eigenstates for a chain
with periodic boundary conditions and N ¼ 18 spins. (b) Ferro
(Mz) and antiferro [N z ¼ ð1=NÞPjð−1Þjhσzji] order parameters
from N ¼ 90 MPS calculations.
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by the capacitor. The numerical diagonalization of the full
pair Hamiltonian provides the expansion of the coupled
states on the spherical basis. Using these results, we
compute the total decay rate of the coupled levels, includ-
ing spontaneous decay and blackbody-induced transfers
modified by the capacitor.
Figure 13 presents a color plot of the lifetimes, computed

in an ideal capacitor, of two j50Ci atoms at a d ¼ 5-μm
distance, as a function of the electric field F and of the
magnetic field B. Similar results are found for j48Ci. The
lifetime increases with F and B because of the decrease
of the circular-state contamination when the directing fields
increase (for an isolated atom, the lifetime depends on F
but is found to be nearly independent of B for
F > 2 V=cm). Ideally, we should thus aim for the largest
field values. However, the tunability of Jz decreases rapidly
when B increases (Fig. 2). To get a flexible simulator, we
are thus limited to ≃13 Gauss and hence to an individual
atom lifetime between 88 s for F ¼ 6 V=cm and 145 s for
F ¼ 12 V=cm. Note that F can be raised during the chain
preparation and detection phases, making radiative losses
negligible during these lengthy procedures.
We have also estimated the dipolar relaxation mecha-

nism [213], involving a transition from a pair of atoms in
j50Ci towards a pair of atoms in j50E−i. This process
releases an energy much larger than the trap depth. The two
elliptical atoms would thus escape at a high velocity.
The matrix element between the initial trapped state and
the final high-energy plane wave is very small, making the
process negligible.
Microwave superradiance [214] does not contribute to a

lifetime reduction. First, spontaneous emission and, hence,
superradiance on the two-photon transition from j50Ci to
j48Ci are totally negligible. Superradiance on the one-
photon transitions towards the j49Ci or j47Ci states could
be a concern. However, all atoms are in the upper state of

the transition. We thus consider only the emission of the
first photon in a superradiant cascade, which occurs at a rate
N times larger than for a single atom, a trivial statistical
factor. We have already taken into account this effect when
stating that the useful chain lifetime is 1=N times that of an
individual atom.
Collisions with the background gas also limit the life-

time. The state-changing cross sections for the j20Ci
circular state colliding with helium gas at room temperature
have been calculated for quite a few final states in
Ref. [215]. Comparable estimates are given in
Ref. [216]. Reference [217] shows that these cross sections
are nearly independent of the electric field, up to 0.2 times
the ionization threshold (i.e., up to 20 V=cm for n ¼ 50).
Extrapolating the cross sections given in [215] to all final

states, we estimate the total cross section σc to be of the
order of 2000 atomic units for j20Ci. Intuitively, it should
scale as the surface of the circular orbital, a torus with main
radius a0n2 and minor radius a0n2=

ffiffiffi
n

p
. We infer an order-

of-magnitude estimate σc ≃ 50000a20 for j50Ci, about 10
times the geometric cross section. The collision lifetime is
thus 400 s at a gas density 2 × 1011 m−3, corresponding to
2.6 × 10−14 mbar at 1 K. Such vacuum conditions can be
met easily in a cryogenic environment [141,142] because of
the intense cryopumping by all surfaces around the atoms.
Laser trapping competes with photoionization. For low-

angular-momentum Rydberg states, photoionization is fast,
with a lifetime in the μs range for realistic traps [218]. The
situation is radically different for the circular levels [105].
They are nearly impervious to photoionization. In simple
terms, the Rydberg electron absorbs an optical photon with
a high momentum only when coming close to the core, a
situation that never happens for circular states.
The hydrogenic photoionization cross section σωðn; lÞ at

frequency ω for the state jn;li is computed for isotropic
and unpolarized radiation in Ref. [219]. It can be used for
an order-of-magnitude estimate in a polarized laser beam:

σωðn;lÞ ¼
4l4

9cn3ω

�
K2

2=3

�
ωl3

3

�
þ K2

1=3

�
ωl3

3

��
; ðC2Þ

where all quantities are expressed in atomic units and where
KνðxÞ is the modified Bessel function of the second kind.
For large l values and a laser field at a 1-μm wavelength,
the argument of the Bessel functions is large (170 for
j50Ci). We can thus use the asymptotic expansion of KνðxÞ
to lowest order. We get, in SI units,

σωðn;lÞ ¼ a20
4π

3

αl
ω0n3

e−2ω
0l3=3; ðC3Þ

with ω0 ¼ ω=ð2Ry=ℏÞ, where Ry and α are, respectively,
the Rydberg and fine-structure constants. The cross section
decreases exponentially with l, down to about 10−175 m−2

for j50Ci. A simple estimate based on the wave functions
in the P representation confirms this order of magnitude.

FIG. 13. (a) Lifetime of an atom in j50Ci interacting with
another atom in the same state at a d ¼ 5-μm distance, as a
function of the electric field F and of the magnetic field B.
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Note also that the photoionization rates have been mea-
sured as a function of l up to l ¼ 7 [218]. The exponential
decrease with l is conspicuous on these data. The extrapo-
lation to the circular states confirms that photoionization is
indeed negligible.
Another loss channel is the elastic diffusion of the

trapping laser by the nearly free Rydberg electron. This
Compton-like process is different from photoionization.
The electron receives a momentum kick corresponding to a
rather large recoil energy (300 MHz), of the order of the
Stark-levels separation [≈100 MHz=ðV=cmÞ]. A diffusion
may thus cause a transition towards an elliptical state. The
diffusion cross section can be evaluated with the classical
Thompson diffusion model. Averaging the laser intensity
on the atomic motion in the actual trap (peak-to-peak
amplitude ≃70 nm) and on the electronic motion around
the core (r50 ¼ 125 nm), we find that the average time
between diffusions is 180 s. This is a worst-case estimate of
the contribution to the circular-state lifetime since not all
diffusion events are expected to change the atomic state.
Adding all relevant sources of losses, summarized in

Table I, we find an individual atomic lifetime of 47 s,
leading to a 1.2-s lifetime for a 40-atom chain.

APPENDIX D: PONDEROMOTIVE TRAP

The trap is formed by the combination of a standing
wave produced by the interference at a small angle between
two elongated Gaussian 1-μm-wavelength laser beams
(1.45 W each for d ¼ 5 μm and 2.8 W each for
d ¼ 7 μm), together with a 1-μm-wavelength Laguerre-
Gauss beam of order l ¼ 1; p ¼ 0 and waist w0 ¼ 7 μm
(0.5-W power). The intensity of the Laguerre-Gauss beam
at a distance r from theOX symmetry axis in its focal plane
reads

IðrÞ ∝
�
r

ffiffiffi
2

p

w0

�2

e−2r
2=w2

0 ; ðD1Þ

providing a quadratic trapping potential for small motion.
The total depth of the transverse trap is then 6 MHz

(300 μK), while that of the longitudinal lattice is 4 MHz
(200 μK). Near the trap center, the ponderomotive potential
is harmonic with trap frequencies ωY=2π ¼ ωZ=2π ¼
12 kHz and ωX=2π ¼ 24 kHz.
The ponderomotive potentials estimated above assume

that the electron has a fixed position in the trap. In fact, it
orbits around the core. As shown in Ref. [105], the
ponderomotive energy must be averaged over the electron
probability density in the circular state jnCi. This average
can, of course, be performed numerically.
An excellent analytical approximation is obtained by

assuming that the electron is on the Bohr orbit with radius
rn in the XOY plane. Using the harmonic approximation to
the ponderomotive potential, it is easy to show that the
averaging results in a simple offset on the trapping
potential, Mðω2

X þ ω2
YÞr2n=4, where ωX and ωX are the

trap frequencies for a motion in the plane of the circular
orbit. This offset amounts to h × 22 kHz for n ¼ 50. We
have checked that this simple model differs from the
numerical integration over the electron’s probability den-
sity by less than 4%.
Such an offset does not change the trap characteristics.

The offsets experienced by j50Ci and j48Ci differ by
1.7 kHz, resulting in a constant shift of the atomic transition
frequency. We thus expect that, to first order, the motion of
the atoms in the trap does not contribute to any dephasing
of the spin states.
In order to estimate the residual motional dephasing, we

must include the anharmonicity of the trapping potential.
The dominant effect corresponds to the motion along OX.
Using the numerical potential averaging, we find that the
atomic transition frequency varies quadratically with X,
being shifted by 12 Hz for X ¼ 70 nm (this shift can be
interpreted as a ≃10−3 relative difference in the trapping
frequencies for the two levels). For a motion in the trap with
a 65-nm amplitude (prediction of the numerical simulations
of the evaporation process for small chains), this corre-
sponds to an approximately 160-ms coherence lifetime,
much larger than the spin exchange time τex.
The flip-flops of the spins in the chain evolution slightly

change the interatomic van der Waals forces and thus the
equilibrium atomic positions. If this modification is large,
this would lead to an entanglement between the spin-chain
dynamics and its motional excitations (phonons). This
would be a rich and complex situation, the exploration
of which is an interesting perspective for the future of this
simulator [52]. Nevertheless, we first aim at minimizing
this effect and thus choose a tight-enough trap.
It is easy to estimate an order of magnitude of the atomic

displacement from the center of the trap, β, in units of the
ground-state extension ΔX0,

β ¼ 4πJη
ΩX

; ðD2Þ

TABLE I. Decay channels for a pair of 48C atoms at d ¼ 5 μm,
F ¼ 6 V=cm, and B ¼ 13 Gauss. The corresponding lifetimes
are given for a single atom in seconds.

Cause Lifetime (s)

Residual spontaneous emission 2500
Blackbody induced processes 630
Level mixing 88
Dipolar relaxation ∞
Photoionization ∞
Collisions with background gas at 10−14 torr 400
Compton elastic diffusion in trap >180
Predicted lifetime 47
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where η ¼ 6ΔX0=d plays the role of the Lamb-Dicke
parameter of ion traps. Here, for d ¼ 5 μm, η ¼ 6.4 ×
10−2 and β ¼ 0.1. The atomic displacement being much
smaller than the ground-state extension, the entanglement
with the motion is negligible. We indeed predict, from an
explicit analytical model in the simple case of two atoms,
that the exchange between the spins is not appreciably
modified. Note that the situation would be much worse
when using a dipole-allowed transition to encode the spins.
For instance, for the 49C–50C one-photon transition, the
exchange coupling is of the order of 12 MHz. The resulting
forces are strong enough to expel the atoms from the trap.

APPENDIX E: EVAPORATION PROCESS

We have performed a detailed simulation of the deter-
ministic preparation of an N ≲ 40 atom chain. We start
from a thermal cloud cooled near quantum degeneracy in
an elongated dipole trap formed by a 780-nm-wavelength
focused laser beam, displaced adiabatically from the atom
chip to the science capacitor. We assume a state-of-the-
art [151] cloud of about 2000 atoms with a length of
about 1 mm.
We turn off the dipole trap and apply a 1-μs-long laser

pulse to bring the atoms into the 50S Rydberg state in the
dipole blockade regime. We use 780-nm- and 480-nm-
wavelength lasers [154], tuned on resonance with the two-
photon transition from 5S to 50S, and away from resonance
with the intermediate 5P state. The final positions of the
excited Rydberg atoms are simulated using a Monte Carlo
rate equation model including the laser linewidth (250 kHz)
and the van der Waals interactions [150]. About 100
Rydberg atoms are excited, separated by 9� 3 μm. For
such separations, the van der Waals interaction between the
atoms is weak, comparable to the laser linewidth.
This excitation stage is immediately followed by the

transfer into the circular state in an adiabatic rapid passage
sequence, lasting a few microseconds [109]. The transfer is
induced by a σþ-polarized radio-frequency field produced
by the four electrodes on the side of S. We finally apply a
short pulse of a resonant 780-nm laser to push out the
remaining ground-state atoms. The motion of the atoms is
negligible during the preparation stage, lasting approxi-
mately 10 μs. The final atomic velocities are randomly
chosen, with a thermal distribution at a 1-μK temperature.
Figures 14(a)–14(c) present the timing (total duration

1.3 s) of the optimized chain preparation sequence for
N ¼ 40 starting from this initial configuration, as well as
the results of a numerical simulation of the 1D atomic
trajectories (we have also performed some 3D simulations
to estimate the transverse atomic motion). This sequence
should be performed with the largest possible F and B
values to limit the radiative losses (Appendix C). The
sequence is divided into four successive phases:

(I) Switch-on of the Laguerre-Gauss transverse trap,
in combination with two “plug” beams (100 ms).

The 1-μm-wavelength Gaussian plug beams have a
30-μm waist (this large value results in a smoother
evaporation in phase II). They are initially separated
by L ¼ 1 mm. The height of the associated barriers
is smoothly raised from zero to 4 MHz (left beam) or
3 MHz (right beam)—panel (b). We simultaneously
quickly compress the chain by reducing the distance
L from 1 mm down to 0.5 mm—panel (a). This fast
compression saves time without significantly modi-
fying the preparation efficiency.

(a)

(b)

(c)

(d)

(e)

FIG. 14. Deterministic chain preparation sequence as a function
of time (in milliseconds). (a) Distance L between the plug beams.
(b) Height of the plug-beam barriers (green and red lines for the
right and left plugs, respectively) and plug-beam waists (black
line). (c) Longitudinal trap depth (solid line) and oscillation
frequency (dashed line). (d) Atomic trajectories. The trajectories
of ejected atoms are interrupted after a short time for clarity. The
inset exhibits the small final residual longitudinal motion.
(e) Atomic kinetic energy (red line) and van der Waals potential
energy (blue line) averaged over 100 realizations of the evapo-
ration sequence.
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(II) Actual evaporation until the required atom number is
reached (1000 ms). The distance L between the two
plug beams is slowly reduced. The atomic chain is
compressed, building up the repulsive van der Waals
forces. The last atom on the weak-plug side is
expelled out of the trap as soon as its energy exceeds
the height of the barrier. This phase stops at
L ¼ 208 μm to reach the target value N ¼ 40.

(III) Final adjustment of the chain (100 ms). The weak-
plug barrier is raised to 4 MHz, preventing further
evaporation. In the meantime, the waists of the plug
beams are reduced—panel (b)—to provide a finer
control of the atomic positions (this stage, which is
experimentally complex, could be replaced by the
adiabatic switching-off of the 30-μm-waist plug
beams and the simultaneous adiabatic switching-
on of 10-μm-waist beams). The length L is slightly
adjusted [inset in Fig. 14(a)] to provide a final
d ¼ 5-μm interatomic distance.

(IV) Adiabatic installation of the longitudinal lattice
(100 ms)—panel (c). The amplitude of the residual
motion in the traps is accordingly reduced.

The 1D classical dynamics simulation is complex since
the motion of these coupled atoms is chaotic. The expo-
nential sensitivity to the initial conditions makes it neces-
sary to compute statistics over many realizations. Many
numerical methods do not conserve the total energy,
resulting in artificial excitation or damping of the system.
We thus use a symplectic integrator with a sixth-order
Runge-Kutta-Nyström method [220].
Figure 14(d) presents the atomic trajectories in one of

these simulations. The four phases are clearly apparent. In
the first one, during the installation of the plug beams and
the fast compression, rapid atomic escapes occur from both
sides while the plugs are still weak. This initial evaporation
stops after approximately 100 ms. The chain is then
compressed more slowly. Evaporation above the weak
plug resumes at the beginning of phase II, with atoms
escaping in the positive OX direction. The evaporation
events seem to reduce the residual motion of the remaining
atoms.
This qualitative insight is confirmed in Fig. 14(e), which

presents the kinetic and potential van der Waals energies
per atom averaged over 100 realizations of the evaporation
sequence. During the evaporation stage II, the kinetic
energy clearly decreases. The evaporation above the plug
barriers provides a cooling reminiscent of the evaporative
cooling [107]. The final motion of the 40-atom chain after
stage IV has a typical extension ΔX ¼ 110 nm [see inset in
Fig. 14(e)]. The 3D simulations indicate that the transverse
motion extensions ΔY and ΔZ are of the same order of
magnitude as ΔX. Note that the transverse motion does not
appreciably modify the interatomic distance.
Running 100 times the simulation, continued for 1.4 s to

the end of the evaporation stage II, when the final chain

only contains one atom, we obtain the average number of
atoms and its standard deviation as a function of the final
length L presented in Fig. 8.
During evaporation, the atoms, particularly those close

to the end of the final chain, transiently experience rather
large trap-laser intensities. We have estimated the associ-
ated loss rate due to Compton diffusion events in a full 3D
simulation: It is small, less than 3% for the atoms at the
extremities of the chain, and about 1% for the bulk atoms.
Selective microwave transitions from the circular states
towards a lower manifold and field ionization of the
remaining atoms could be used for a final purification of
the chain before switching on the longitudinal lattice.
The atomic detection stage simply resumes the evapo-

ration stage II after removing the longitudinal lattice and
lowering the right plug beam. This process is clearly less
critical, the only requirement being to keep the order of the
atoms. The velocity of the ejected atoms in the guiding LG
beam is determined by the height of the weak plug,
0.16 m=s for 3 MHz. The atoms thus reach the detection
region, about 2 cm away, after a 125-ms delay, which is
short compared to their lifetime.
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