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Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their
degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range
orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and
localization in the quasiperiodic quantum Ising chain produces a quasiperiodic Ising glass stable at all
energy densities. The glass order parameter vanishes with an essential singularity at the melting transition
with no signatures in the equilibrium properties. The zero-temperature phase diagram is also surprisingly
rich, consisting of paramagnetic, ferromagnetic, and quasiperiodically alternating ground-state phases with
extended, localized, and critically delocalized low-energy excitations. The system exhibits an unusual
quantum Ising transition whose properties are intermediate between those of the clean and infinite
randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-
André duality that we develop. The quasiperiodic Ising glass may be realized in near-term quantum optical
experiments.
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I. INTRODUCTION

Nearly 60 years ago, Anderson discovered that quenched
disorder could localize quantum particles and thus prevent
the transport necessary for equilibration in isolated systems
[1]. The recent interest in the role of interactions [2–29] and
rapid experimental developments in synthetic quantum
systems [30–37] have led to a deeper understanding of
the full range of consequences of Anderson’s original
observation. The phenomenology of the localized phase
is now better understood as a form of integrability with
local conserved quantities [14,38–43]; the dynamics of
entanglement has emerged as a unifying framework for
understanding thermalization [10–12]; and the long-lived
coherence of localized systems may serve as a resource for
quantum information processing [44–46].
A particularly intriguing proposal is that localization can

dynamically protect long-range order in highly excited
states even when such orders are forbidden in equilibrium
[47]. The central idea may be illustrated in the 1D
ferromagnetic Ising chain. Ferromagnetic order in the
ground state is usually destroyed in excited states because
of the proliferation of domain walls (an argument that goes
back to Peierls). However, if quenched disorder can

localize the domain walls, then the system never reaches
equilibrium, and any symmetry-breaking pattern imprinted
in the spin state at t ¼ 0 can persist for all time. This Ising
glass order clearly exists in the transverse-field Ising chain
in strong disorder treatments [8,47] and has been observed
numerically in small interacting chains [19]. Localization
protection has also been argued to extend to a host of more
exotic orders [46–49] and to periodically driven (Floquet)
systems [50–54].
Localization, however, does not require disorder, as was

first recognized by Azbel [55], and Aubry and André (AA)
[56] in the single-particle context. These authors discovered
that sufficiently strong quasiperiodic potentials can localize
a quantum particle. References [18,24,57] extended these
results to the interacting many-body case and argued that
many-body localization can persist even at high-energy
density. Quasiperiodic potentials arise naturally in optical
experiments using lasers with incommensurate wave vec-
tors. Accordingly, many experiments in such systems have
now observed single-particle localization [58–63] and,
more recently, have also pushed into the interacting regime
and high-excitation energy densities to provide evidence
for the many-body localized phase [30,32,37].
As quasiperiodic systems can show both localized and

delocalized behavior already in the 1D noninteracting
context, they offer a well-controlled platform to study
the interplay of localization and symmetry breaking. In
this article, we study the effects of quasiperiodic modula-
tion on the canonical quantum Ising chain. The most salient
dynamical feature is a stable quasiperiodic Ising glass in
which all excited states exhibit Ising symmetry-breaking
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order (red in Fig. 1). This excited-state order melts if either
the ground state becomes paramagnetic or the domain-wall
excitations delocalize; we find both types of transition.
Remarkably, the excited-state Ising glass order parameter
exhibits an essential singularity at the transition, with no
signatures in the ground-state ordering.
In quench experiments, the quasiperiodic Ising glass

phase appears in the persistence of arbitrary initial longi-
tudinal magnetization (i.e., in the direction flipped by the
Ising symmetry) after a short transient. This glass is
accessible in current experiments in quantum optical
Ising spin simulators, such as those that have been
implemented in ion traps [34,64] and Rydberg systems
[65,66]. Experimentally, it is better to modulate the
effective spin-spin interaction (as opposed to modulating
the field) by quasiperiodically modulating the positions of
the trapped spins, as this is the regime most favorable to
finding the Ising glass. We have accordingly focused the
detailed study in this manuscript on the coupling, rather
than field, modulated regime. Our rigorous analytic control
extends only to nearest-neighbor spin-spin interactions,
where the system can be fermionized, but we expect the
Ising glass to persist in the presence of weak additional
interactions, just as the quasiperiodically modulated many-
body localized phase of particles persists in Ref. [18]. We
further discuss both potential experimental realizations and
the stability to interactions in Sec. VII.
From an equilibrium condensed-matter perspective, the

zero-temperature phase diagram is interesting in its own
right. There are paramagnetic (PM), ferromagnetic (FM),
and quasiperiodically alternating ferromagnetic (QPFM)
orders in the ground state. Moreover, the low-energy
excitations exhibit extended, localized, and critically delo-
calized behavior depending on the strength of the quasi-
periodic modulation. This leads to an array of possible
combinations, which we have summarized in Fig. 1. In the
literature on single-particle localization, “critical” wave
functions exhibit multifractal scaling behavior; throughout
the manuscript, we refer to these as “critically delocalized”
in order to distinguish them from the “critical” properties
associated with quantum phase transitions [67].
The zero-temperature quantum phase transitions in Fig. 1

lie in two distinct universality classes. We find that weak
quasiperiodic modulation is irrelevant at the clean Ising
transition, so the parabolic phase boundary in Fig. 1
exhibits quantum critical scaling with dynamic exponent
z ¼ 1 and extended low-energy excitations. At strong
modulation, we find a new quantum Ising transition
separating the QPFM from the paramagnet. This transition
exhibits dynamical critical behavior that is intermediate
between that of the clean Ising transition and the infinite
randomness transition that arises in the disordered model.
In particular, while the correlation length diverges with
ν ¼ 1, as in the clean transition, the low-energy excitations
undergo a transition from critically delocalized to localized,

coincident with the symmetry breaking, with an apparent
exponent z ¼ 2.
Our results make use of a variety of analytic and

numerical techniques. We would like to especially flag a
new relative of the celebrated Aubry-André duality which
we have discovered. We dub this transformation “AAA
triality” as it maps cyclically among three related models. It
turns out that the “self-trial” point in the quasiperiodic Ising
model sits on the phase boundary between the paramagnet
and QPFM, giving us analytic access to the unusual
quantum critical properties. Our triality arguments explain
the energy-independent wave-function criticality on the
“pure modulation,” the J=h ¼ 0 axis in Fig. 1, which has
been observed numerically before in Refs. [68,69].
The noninteracting quasiperiodic models of Azbel,

Aubry-André, and their generalizations have been exten-
sively studied bymathematicians and physicists over the last
30 years for a variety of reasons [70–82]. These 1D models
exhibit a single-particle localization-delocalization transition
at finite modulation which mimics the metal-insulator
transition in 3D disordered systems. This is in striking
contrast to the disordered Anderson model in 1D, which
is localized for any disorder strength [83]. Mathematically,
the models have a surprisingly rich analytic structure,
exhibiting dualities, critically delocalized phases with fractal
spectra and connections to higher-dimensional Hofstadter-
type models [56,84]. More generally, they offer a window
into quantum localization without the epiphenomena asso-
ciated with rare region effects in disordered systems.
There has been significant previous work on aperiodic

and/or quasicrystalline quantum Ising chains [85–87].
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FIG. 1. Combined symmetry breaking and localization phase
diagram of the quasiperiodic Ising model at Ah ¼ 0. The system
has quasiperiodic Ising glass excited-state order at all energy
densities in the red region, where all single-particle excitations
are localized. The ground state is paramagnetic (PM) in the
striped region; it breaks Ising symmetry ferromagnetically (FM)
above the diagonal (dashed line) and with quasiperiodically
alternating modulation (QPFM) below. The blue and purple
shading indicates whether the low-energy spectrum is fully
extended (blue) or critically delocalized (purple).

A. CHANDRAN and C. R. LAUMANN PHYS. REV. X 7, 031061 (2017)

031061-2



These models have Ising couplings chosen from a finite set
according to a recursive substitution rule, or by quasicrys-
talline projection. There have also been several previous
studies of the zero-temperature properties in certain regions
of the phase diagram of the incommensurately modulated
Ising chain [68] or, equivalently, in the modulated p-wave
superconductor [69,88,89]. These works were largely
numerical, and many of the features of the zero-temperature
phase diagram were missed. Our analysis in various limits,
and particularly the AAA triality, unify and extend their
results. Moreover, the quasiperiodic Ising glass order in the
excited states was completely overlooked.
The organization of the paper is as follows. We begin in

Sec. II with a precise definition of the Ising model, a review
of its fermionization, and various salient facts about
quasiperiodic modulation in chains. While much of
Sec. II is review, the geometric interpretation of the AA
duality in two dimensions may provide an alternative
perspective for many readers. In Sec. III, we derive the
ground-state symmetry-breaking phase diagram. We turn to
the localization properties of the low-energy excitations in
Sec. IV. With these basic properties in hand, we discuss the
zero-temperature quantum critical behavior in Sec. V. We
investigate theproperties of the excited-state Isingglass order
in Sec. VI and its melting transition in Sec. VI A. We
conclude with a discussion of the role of interactions,
possible experimental realizations, and other open questions.

II. GENERAL PROPERTIES OF THE MODEL

The Hamiltonian of the one-dimensional quasiperiodic
transverse-field Ising model (TFIM) is

H ¼ −
1

2

X
j

Jjþ1=2σ
x
jσ

x
jþ1 þ hjσ

z
j; ð1Þ

hj ¼ hþ Ah cosðQjþ ϕþ ΔÞ; ð2Þ

Jjþ1=2 ¼ J þ AJ cosðQðjþ 1=2Þ þ ϕÞ: ð3Þ

The model is illustrated in Fig. 2(a). Here, σαj are the Pauli
matrices, with j ∈ Z running over the sites in the chain and
α ¼ x, y, z; Q is the wave vector of the modulation in units
where the lattice spacing is a ¼ 1; and the phases ϕ and
ϕþ Δ shift the positions of the maxima of the couplings
relative to the underlying lattice. The wave vector Q is
commensurate with the underlying lattice ifQ=2π ¼ p=q is
rational, and it is incommensurate otherwise. We choose
the wave vector of the modulation of the Ising coupling
and the transverse field to be the same for simplicity and
since this is natural if the modulation arises from the same
physical source (e.g., an incommensurate laser potential).
Global symmetries.—The quasiperiodic TFIM has sev-

eral global symmetries. The eponymous Ising symmetry is
given by G ¼Qiσ

z
i—this is the symmetry that breaks

spontaneously in the T ¼ 0 ferromagnetic and localized
Ising glass phases. The Hamiltonian H is also symmetric
under complex conjugationK, which is antiunitary. Finally,
for special values of the modulation phases ϕ and Δ, the
model is symmetric under reflections across site k, j →
k − j or bond kþ 1=2, j → kþ 1=2 − j. For example, at
ϕ ¼ 0 and Δ ¼ 0, H is symmetric under j → −j.
Ising duality.—Under the duality transformation,

σxi σ
x
iþ1 ¼ τziþ1=2; ð4Þ

σzi ¼ τxi−1=2τ
x
iþ1=2: ð5Þ

Here,Hmaps onto another incommensurate TFIMH0 with
the role of the field and bond couplings interchanged (and
different boundary conditions). Formally, the duality maps

h0 ¼ J; A0
h ¼ AJ;

J0 ¼ h; A0
J ¼ Ah;

ϕ0 ¼ ϕþ Δ; Δ0 ¼ −Δ:

The duality swaps paramagnetic and ferromagnetic phases
but leaves the dynamical nature of the bulk single-particle
excitations (spectrum and wave-function localization)

(a)

(b)

(c)

FIG. 2. (a) The transverse-field Ising chain with spatially
varying fields hi (blue) and bonds Jiþ1

2
(orange). (b) The

Jordan-Wigner transformation maps the spins σi to Majorana
fermions γ2i, γ2iþ1 arranged in a “hopping” chain. (c) The two-
dimensional hopping model Eq. (15) obtained by treating the
phase ϕh as quasimomentum ky and inverting the Fourier
transformation. Each unit cell (of two sites) is pierced by uniform
flux Q. The solid and dashed blue bonds have hopping strength h
and Ah respectively, while the solid and dashed orange bonds
correspond to J and AJ respectively.
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invariant. This can be seen most easily from the fermio-
nization (see below) of H and its dual H0, whose non-
interacting Hamiltonians agree precisely up to a translation
by half a unit cell so that their single-fermion modes are
identical up to this half-translation.
Fermionization.—The TFIM has a well-known fer-

mionic representation, which we review and extend to
the quasiperiodic case here. The Jordan-Wigner trans-
formation introduces a pair of Majorana fermion operators
for each spin-1=2:

γ2i ¼
�Y

j<i

σzj

�
σxi ; γ2iþ1 ¼

�Y
j<i

σzj

�
σyi : ð6Þ

The γ operators are Hermitian and satisfy the canonical
anticommutation relation fγi; γjg ¼ 2δij. The transforma-
tion maps the TFIM to a quadratic Majorana chain with
Hamiltonian

H ¼ i
2

X
j

½Jjþ1=2γ2jþ1γ2jþ2 þ hjγ2jγ2jþ1� ð7Þ

[see Fig. 2(b)].
The dynamical and symmetry-breaking properties of the

TFIM Hamiltonian H follow from the properties of the
single-particle Hamiltonian H defined by

H ¼ 1

4

X
ij

γiHijγj: ð8Þ

Hermiticity of H requires that Hij is an imaginary anti-
symmetric 2L × 2Lmatrix, where L is the number of spins.
Thus, the eigenvalues ofH come in�e pairs corresponding
to complex conjugate eigenmodes, ψ and ψ̄ . Labeling the L
positive-energy eigenmodes by the index α, we can
diagonalize H into the familiar form

H ¼
X
α

eαðc†αcα − 1=2Þ; ð9Þ

where

c†α ¼ 1ffiffiffi
2

p
X
j

ψα
j γj; cα ¼

1ffiffiffi
2

p
X
j

ψα
j γj: ð10Þ

The complex fermion operators c, c† satisfy the usual
anticommutation relations

fc†α; c†βg ¼ fcα; cβg ¼ 0; fc†α; cβg ¼ δαβ:

In the ground state, the paramagnetic phase corresponds
to the topologically trivial phase of the Majorana chain,
while the ferromagnetic phase maps to the topologically
nontrivial phase. The simplest way to detect the topological

phase of the Majorana chain is with open boundary
conditions, in which case the topologically nontrivial phase
possesses a pair of zero-energy Majorana modes localized
at the boundaries of the chain [90]. The many-body ground-
state space is accordingly doubly degenerate, as the
fermionic mode defined by the two zero-energy
Majorana operators can be occupied or unoccupied at zero
cost. We use this approach to extract the ground-state phase
diagram of the quasiperiodic model in Sec. III.
The symmetries of Eq. (1) appear in the fermionic

language as follows. The global Ising symmetry operator
G ¼Qjσ

z
j maps to the fermionic parity operator

G ¼Qjð−iγ2jγ2jþ1Þ, while the symmetry under complex
conjugation forcesH to be bipartite. The action of the Ising
duality on the Majorana chain shifts all the site labels by a
half: j → j − 1=2 as mentioned above.
As all eigenstates of H correspond to Slater determinant

states of the fermions γ, they all satisfy Wick’s theorem.
This allows evaluation of the spin-spin correlation function,

hψ jσxi σxj jψi ¼ −ihψ jγ2iþ1

Yj−1
k¼iþ1

ð−iγ2kγ2kþ1Þγ2jjψi ð11Þ

as a Pfaffian of the fermionic Green function

Gψ
ij ¼ hψ jγiγjjψi − δij ð12Þ

restricted to the diagonal block from 2iþ 1 to 2j. While
this representation is not easy to use analytically, it allows
straightforward numerical computations of the exact cor-
relation functions in large systems (e.g., up to L ¼ 1000 in
this work). Evaluating these correlators at large separation
ji − jj allows us to numerically extract the magnetization as

hψ jσxi σxj jψi →
ji−jj→∞

Mψ
i M

ψ
j ð13Þ

where Mψ
i is the magnetization of spin i in state jψi.

The 2D model.—The incommensurate TFIM has a
second useful representation in terms of a 2D model of
noninteracting complex fermions. To derive this, consider
first a complex fermionic model with the same single-
particle Hamiltonian as Eq. (8) [91]:

~H1DðϕÞ ¼
X
ij

d†i Hijdj

¼ i
X
j

½Jjþ1=2d
†
2jþ1d2jþ2 þ hjd

†
2jd2jþ1� þ H:c:

ð14Þ
Above, di destroys a fermion at site i, and di, d

†
j satisfy the

usual complex anticommutation relations. On varying the
phase ϕ between ½0; 2πÞ, we generate a family of distinct
1D Hamiltonians. Treating ϕ as the momentum along an
extra dimension y and inverting the Fourier transformation,
we obtain a 2D tight-binding model:
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~H2D ¼ i
X
j;k

ðJd†2jþ1;kd2jþ2;k þ hd†2j;kd2jþ1;k

þ AJ

2
eiQðjþ1=2Þd†2jþ1;kd2jþ2;kþ1

þ AJ

2
e−iQðjþ1=2Þd†2jþ1;kd2jþ2;k−1

þ Ah

2
eiðQjþΔÞd†2j;kd2jþ1;kþ1

þAh

2
e−iðQjþΔÞd†2j;kd2jþ1;k−1Þ þ H:c: ð15Þ

whose spectrum at fixed y momentum ϕ reproduces the
spectrum of the 1D model ~H1DðϕÞ; see Fig. 2(c). The
Hamiltonian ~H2D describes a translation-invariant hopping
model with uniform flux Q piercing each two-site unit cell
in Landau gauge. The flux associated with hopping cycles
within a unit cell depends on Δ. There are no vertical hops
in the 2D model [i.e., from ðj; kÞ to ðj; k� 1Þ] in Fig. 2(c)
because the 1D Hamiltonian in Eq. (14) is off-diagonal.
The localization properties of the excitations of the 1D

TFIM map onto those of the ~H2D in the Landau gauge at
fixed y momentum ϕ. By construction, if the eigenstates of
the 2D model are delocalized in the x direction, then the
eigenstates of the corresponding 1D model are extended,
while if the states of the 2D model are localized in the x
direction, then the 1D model is localized. As we will see,
the 2D picture is a surprisingly useful geometric aid for
identifying localized, extended, and critical phases of the
excitations.
Aubry-André model.—We need several properties of the

original Aubry-André hopping chain in the analysis of the
quasiperiodic TFIM. The AA model has the following
Hamiltonian [56],

HAA ¼
X
j

− tðd†jdjþ1 þ H:c:Þ − 2V cosðQjþ ϕVÞd†jdj:

ð16Þ

For V > t, the single-particle states are localized at all
energies, while for V < t, they are extended at all energies.
At the critical point, V ¼ t, the states exhibit multifractal
properties. Furthermore, the localization length diverges at
the critical point with exponent ν ¼ 1. More precisely,

ξ ¼ 1= log jV=tj ∼ jV=t − 1j−1: ð17Þ

Many features of the phase diagram follow Aubry-André
duality. This duality corresponds to a π=2 rotational
symmetry of the associated 2D model. The 2D model is
that of a particle hopping on an anisotropic square lattice
with flux Q per plaquette and hopping strength t and V in
the x and y directions, respectively; at t ¼ V, this is the
Hofstadter model, whose fractal character is well known
[84]. The π=2 rotation swaps t and V and accordingly

swaps the localized and extended phases of the original 1D
model; clearly, t ¼ V is self-dual. Moreover, the rotation
ensures that the localization properties are energy inde-
pendent for any t and V, as we will see in more detail in
Sec. IV from an analysis of the characteristic polynomial.
Lack of Aubry-André duality.—The incommensurate

TFIM clearly lacks the Aubry-André rotational symmetry,
as Fig. 2(c) does not map onto itself (up to swapping
couplings) under rotation by π=2. While one can embed the
2D model into a larger class of 2D models that have the
requisite vertical bonds, these would, in general, need to be
staggered in the y direction; thus, they do not correspond to
1D incommensurate chains. The π=2 rotation in the larger
model space therefore does not define a duality map on the
incommensurate TFIM.
This is both a blessing and a curse: The incommensurate

TFIM exhibits rich phenomena not allowed by AA duality,
such as energy and Q-dependent mobility edges, but it is
correspondingly harder to rigorously analyze. In Sec. IV,
we see that various limits of the quasiperiodic model have
higher rotational symmetry when viewed in 2D. These will
give us analytic control of the phase diagram in those limits.
Parameter regime we study.—Except for special lines in

coupling space, the ground-state phase diagram has not
been studied. The full dynamical phase diagram lives in an
eight-dimensional space, parametrized by h, J, Ah, AJ, Q,
ϕh, Δ, and the excitation energy e; after normalizing the
units of energy, there are still seven dimensionless param-
eters. Where simple enough, we will provide general
expressions that apply to the entire phase diagram.
However, as seven-dimensional phase diagrams are
unwieldy, we mostly focus on the manifold defined by
Ah ¼ 0, which is already rather interesting. In units where
h ¼ 1, the relevant parameters controlling the phase dia-
gram are then J, AJ,Q, ϕ, and the excitation energy e (note
that Δ has no effect when Ah ¼ 0). Most of the analytic
features we derive hold for any incommensurate Q and ϕ,
but we focus our numerical results (notably for spectra) on
Q=2π ¼ ð ffiffiffi

5
p þ 1Þ=2, the golden mean. By Ising duality,

our analysis also produces the phase diagram at AJ ¼ 0.

III. GROUND-STATE SYMMETRY BREAKING

The quasiperiodic Ising model has three ground-state
phases: a paramagnetic phase, a ferromagnetic phase, and a
quasiperiodically alternating ferromagnetic phase. The two
latter phases spontaneously break the Ising symmetry so
that the spin-spin correlation function hσxi σxji has long-
range order. In the simple FM, all of the spins magnetize in
the same direction (although the magnetization need not
be spatially uniform). In the QPFM, on the other hand,
neighboring spins align or antialign quasiperiodically
because of the presence of antiferromagnetic links where
Jj < 0. This magnetization pattern is analogous to that of a
ground-state Ising spin glass as it has domain walls built in.
However, the ground-state order is unfrustrated because the
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Hamiltonian is gauge equivalent to a purely ferromagnetic
model with Jj > 0 [92]. We therefore refer to both Ising
ordered phases as “ferromagnetic”.
The cleanmodel (AJ ¼ Ah ¼ 0) spontaneously breaks the

Ising symmetry for jJj > jhj. On general grounds, the
corresponding gapped ferromagnetic and paramagnetic
phases should persist in the presence of small incommensu-
rate modulation Ah, AJ. To find the phase boundaries in
general, we recall that the Ising symmetry-breaking phase
corresponds to the topological phase of the fermionic
representation, Eq. (7), which famously hosts zero-energy
Majorana modes, ΓL and ΓR, bound to the left and right ends
of an open chain [90]. To detect ground-state symmetry
breaking, we look for normalizable boundary modes.
For simplicity, we focus on the left edge of a semi-

infinite chain. As the Hamiltonian Eq. (7) is bipartite, only
connecting the even and odd sublattices, the zero mode
localized at the left edge must have the following form:

ΓL ¼
X∞
j¼0

αjγ2j: ð18Þ

(The right mode would be localized on the odd sublattice.)
Substituting in the eigenvalue equation ½H;ΓL� ¼ 0, we
obtain

αjþ1 ¼
hj

Jjþ1=2
αj: ð19Þ

Taking a logarithm, we obtain

S≡ logðαj=α0Þ

¼
Xj−1
i¼0

log jhij −
Xj−1
i¼0

log jJiþ1=2j: ð20Þ

In order for the zero mode to be normalizable, Sj must
decrease sufficiently rapidly with j at large distances.
In the absence of modulation, S ¼ j log jhj=jJj clearly

grows linearly with j; the sign of log jhj=jJj thus deter-
mines the normalizability of ΓL. Modulation at irrational
wave vector Q causes Sj to fluctuate with j. However, on
distances long compared toQ−1, we expect Sj to still have a
linear trend as the sum averages over the modulation. This
trend can be extracted formally by averaging over the
phase,

S ∼ jI; ð21Þ

I ¼
Z

2π

0

dθ
2π

log

���� hþ Ah cosðθÞ
J þ AJ cosðθÞ

����: ð22Þ

The sign of I determines if the zero modes are normalizable
(I < 0) or not (I > 0). The Ising phase boundary is at

I ¼ 0, which is shown by the black curve on the phase
diagram at Ah ¼ 0 in Fig. 1. We evaluate I in Appendix A.
The contour lies at

J=h ¼ 1þ ðAJ=2hÞ2 for J > AJ;

AJ=h ¼ 2 for J < AJ: ð23Þ

In Appendix G, we present an alternative derivation of
the phase boundaries by approaching the incommensurate
Q limit through a series of longer and longer commensurate
wave numbers 2πp=q → Q. This provides a more rigorous
treatment of the role of incommensuration. The two
derivations are in perfect agreement.
Numerical evaluation of long-range order in the ground

state agrees with the phase boundary determined from the
above analysis, Eq. (23). In Fig. 3, the three panels present
the average magnitude of the magnetization squared on
representative cuts through the phase diagram, calculated at
Q=2π ¼ ð1þ ffiffiffi

5
p Þ=2 for open chains of length L ¼ 1000.

More precisely, we detect the ground-state order through
the correlator,

Ogs ¼ ½jh0jσxL=4þjσ
x
3L=4þjj0ij�j; ð24Þ

which is nonzero in both the FM (AJ < J) and QPFM
(AJ > J) phases. Here, Ogs is an analog of the more
familiar Edwards-Anderson order parameter defined using
the square of the spin-spin correlation function rather than
the absolute value. The square brackets ½·�j indicate
averaging over a small spatial window (j ¼ −w;…; w)
to smooth out the quasiperiodic modulation of the magni-
tude. In the thermodynamic limit L → ∞, we expect

Ogs → ½jMj�2 þO

�
1

Qw

�
; ð25Þ

where ½jMj� is the average of the absolute value of the site
magnetization and w is the width of the spatial averaging
window.
We end with a few comments. First, the general

derivation reproduces the critical point of the clean AJ ¼
Ah ¼ 0 model. Second, Ising duality immediately implies
that the phase diagram in the Ah=J, h=J plane at AJ ¼ 0
looks identical to that in Fig. 1 after swapping the
ferromagnetic and paramagnetic phases. Third, whether
the ground state breaks Ising symmetry or not is indepen-
dent of Q, so long as Q is incommensurate, as only the
average log jhj=jJj over a period matters to the long-
distance behavior. Fourth, the fluctuations of S relative
to its linear trend areOð1Þ at distance j. This is significantly
less than the Oð ffiffi

j
p Þ fluctuations that develop in the case of

usual disorder with independent random couplings. Finally,
the cusp at AJ ¼ J ¼ 2 is real and indicates that the
transition on the parabolic boundary between the FM
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and PM and on the vertical boundary between the QPFM
and PM have different character. We return to this in greater
detail in Sec. V.

IV. LOCALIZATION OF EXCITATIONS

The dynamical phase diagram of the quasiperiodic TFIM
follows from the properties of the fermionic excitations
described by Eq. (7). The main feature of interest for the
stability of excited-state order is the spatial extent of the
single-particle wave functions—in other words, whether
they are extended, critically delocalized, or localized. In
general, at any given point in the phase diagram, these
properties are energy dependent and the systemmay exhibit
mobility edges. They can be studied numerically quite
effectively. However, there are many special lines in the
coupling space with enhanced symmetry, which provides
analytic control and energy independence. On the Ah ¼ 0
plane represented in Fig. 1, both the axes, AJ ¼ 0 and
J ¼ 0, and the large coupling limit, J → ∞, have such
enhanced symmetry. These limits will be sufficient to
asymptotically characterize all of the features in Fig. 1.
We study these limits in the subsections below before
turning to numerics to support the bulk of the phase
diagram.
The simplest diagnostic of localization is the inverse

participation ratio defined for a given eigenstate α as

IPR ¼
X
j

jψα
j j4: ð26Þ

In finite-size studies, the scaling of the IPR in a given
energy window, IPR ∼ 1=Lγ, detects the dynamical phase.
In the extended phase, γ ¼ 1; in the localized phase, γ ¼ 0;
and, in the critically delocalized phase, 0 < γ < 1.
Formally, these phases correspond to spectra that are
absolutely continuous, pure point and singular continuous

(fractal), respectively. We use both diagnostics in the
following analysis.

A. Clean limit AJ → 0

In the absence of the incommensurate modulation, the
model reduces to the usual nearest-neighbor Ising model. It
has extended excitations for all parameter values (J=h) and
at all energies.
The usual Ising critical point at J=h ¼ 1 has gapless

extended excitations at all energies. As we argue in more
detail in Sec. V, the parabolic ground-state phase boundary
extending from the clean critical point [J > AJ, Eq. (23)]
lies in the same universality class; thus, we expect the low-
energy excitations to remain extended all along this
boundary. However, mobility edges are allowed at higher
energy. These features are visible in the numerical data
shown in Figs. 5(a) and 5(b).

B. Large J ≫ AJ, h

In this regime, the ground state is very close to the ideal
ferromagnet with all the spins pointing in the þx or −x
direction. The excitations are domain walls,

jji ¼ j � � � ←j−1←j j→jþ1→jþ2 � � �i: ð27Þ

The Hamiltonian for a domain wall is

H1DW ¼−
1

2

X
j

½hjjihjþ1jþH:c:−2Jjþ1=2jjihjj�: ð28Þ

This is simply the AA model, Eq. (16), with t ¼ h and
V ¼ AJ up to an overall unimportant constant proportional
to J. Thus, the domain walls are extended at all energies for
AJ=h < 1 and localized at all energies for AJ=h > 1
formally at J → ∞. This explains the vertical asymptote

FIG. 3. The Ising glass order parameterO along three representative cuts in the phase diagram (inset). The definitions ofOgs andOexc
are given by Eqs. (24) and (35), respectively. The spatial averaging window is of size w ¼ 5, and we sample 50 eigenstates in the
excited-state average. In the first panel, both the ground- and infinite-temperature order turn on at the same coupling as the excitations
localize across the transition. In the second panel, the ground-state order is unchanged even as the excited-state order turns on because of
the localization of the domain walls. In the third panel, the ground-state order turns on, but the excitations are extended so that the
excited-state order remains zero.
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of the extended to localized phase boundary at large J
in Fig. 1.
One can also see the emergence of the AA model in this

limit by considering the associated 2D model. In the large
J ≫ AJ, h limit, one pairs the fermionic sites across the
horizontal J links and obtains an effective square lattice
with horizontal links of strength h and vertical links of
strength AJ.

C. Corner J, AJ ≪ h

This regime is in the bottom left corner in Fig. 1. The
ground state is paramagnetic and is very close to the
product state j↑↑↑ � � �↑i. The excitations are spin flips.
Analogously to Sec. IV B, the effective Hamiltonian for the
spin flips is given by

H1F ¼ −
1

2

X
j

(J þ AJ cosðQðjþ 1=2Þ þ ϕÞ)jjihjþ 1j

þ H:c: ð29Þ

up to a constant. This off-diagonal Aubry-André model
admits the AA duality and accordingly has energy-
independent localization properties. The model has been
previously studied by Thouless and co-workers [71,93],
who found two dynamical phases: extended for AJ < J and
critically delocalized for AJ > J. The same authors also
computed the multifractal properties at the transition
AJ ¼ J. Asymptotically, this coincides with the diagonal
dashed line near the origin of Fig. 1.
As an aside, the critically delocalized phase for AJ > J is

a special feature of the Ah ¼ 0 plane. At small Ah and
Δ ≠ 0, the critically delocalized phase is destroyed and the
states for AJ > J are fully localized [94].

D. Large AJ ≫ J, h

The 2D model in the AJ → ∞ limit reduces to a
collection of decoupled vertical zigzag wires (dashed
orange in Fig. 2), two per original spin. Without h, it is
clearly localized for the 1D model, as it decouples at
every bond.
To determine the stability of the localization to small J

and h, note that the pair of wires at position j have
dispersion

ejðϕÞ ¼ �jJ þ AJ cos (ϕþQðjþ 1=2Þ)j; ð30Þ

where ϕ is the y momentum [95]. The energy dispersions
are shifted by y momentum Q between adjacent wire pairs.
Thus, for incommensurate Q ∼Oð1Þ, neighboring wire
states at fixed momentum ϕ are typically nondegenerate,
with an energy splitting of order AJ. To leading order, this
implies that h is typically an off-resonant perturbation, and
localization in the x direction persists. This argument can
be generalized to higher order using Diophantine properties

of Q, and it closely mirrors arguments that can be made in
the anisotropic Hofstadter problem.
Thus, we expect that all states are localized at large

AJ ≫ J, h to the far right of Fig. 1. We note that the 2D
model does not have enhanced symmetry in this limit; thus,
the analysis does not provide as complete control as it does
in the Hofstadter model.

E. Pure modulation J = 0 and AAA triality

The analysis on the J ¼ 0 axis of Fig. 1 is significantly
more involved than the previous limits, as it turns out that
the model exhibits a hidden symmetry that allows us to
define a “AAA triality” operation in analogy with AA
duality. The existence of this triality implies that the
localization properties of the wave functions are indepen-
dent of energy, as in the AA model. It also enables an exact
evaluation of certain properties of the secular equation,
from which we find that the spectrum is critically delo-
calized for AJ=h < 2 and localized for AJ=h > 2. The self-
trial point lies at AJ=h ¼ 2. We note that this explains
various numerical observations made on this axis in
previous studies of the p-wave superconducting chain
[68,69,88,89].
The AAA triality is best understood as a geometric

transformation of the associated 2D model. At J ¼ 0, this
model decouples into two interpenetrating honeycomb
lattice “layers,” each pierced by flux 2Q per hexagonal
plaquette (see Fig. 4). At AJ=h ¼ 2, since the layers are
decoupled, the system is symmetric under rotation by 2π=3
independently in each layer, about any site. These are
physical rotations in the 2D model, which need to include
gauge transformations for ~H2D to return to Landau gauge.
In the usual AA model, π=2 rotation in the associated 2D

model leads to another model with couplings V and t
swapped. Rotating both layers by 2π=3 in the honeycomb
model rotates the couplings associated with the three bond
angles into one another. This suggests the utility of
generalizing the 2D model to have three independent
couplings, A1, A2, and A3, corresponding to the three
different bonds. In Landau gauge, this corresponds to a 1D
incommensurate model with Hamiltonian

~HAAAðϕÞ ¼
X

ðiA3d
†
2jd2jþ1

þ iA1ei(Qðjþ1=2Þþϕ)d†2jþ1d2jþ2

þ iA2e−i(Qðjþ1=2Þþϕ)d†2jþ1d2jþ2Þ þ H:c: ð31Þ

The original 1D TFIM at J ¼ 0 corresponds to A3 ¼ h,
A1 ¼ A2 ¼ AJ=2. In the extended AAA family of models,
the 2π=3 rotation maps ~HAAA to ~H0

AAA with cyclically
permuted couplings. This is the AAA triality.
With this triality in hand, it is possible to analyze the

wave-function properties of the AAAmodel in considerable
detail. We relegate this analysis to the appendixes, as it
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entails a considerable calculational detour. The upshot is that
the 1D incommensurate TFIM has a critically delocalized-
to-localized transition, at all excitation energies, at the self-
trial point, AJ ¼ 2h. The multifractal properties of this
transition are a subject of ongoing work [96].

F. Near the clean Ising transition

As discussed in more detail in Sec. V, the ground-state
transition between the PM and the FM is described by the
clean Ising critical theory for AJ=h < 2. Thus, we expect
that low-energy excitations in the vicinity of this transition
are extended. This constrains the boundary of the fully
localized region (red in Fig. 1) to stay strictly above the
parabolic ground-state transition curve. As this transition
terminates at the cusp ðAJ=h; J=hÞ ¼ ð2; 2Þ, the low-energy
states need not be extended beyond this point.
The red-blue boundary in Fig. 1 is the simplest way to

satisfy these constraints and connect to the large J=h limit
of Sec. IV B. However, the precise location depends on Q
and can only be determined numerically.

G. Numerical support away from the limits

Away from the special lines discussed in the previous
subsections, the localization properties of the wave func-
tions are both Q and energy dependent. We rely on
numerics to confirm the features summarized in Fig. 1.
We have extensively investigatedQ=2π ¼ ð ffiffiffi

5
p þ 1Þ=2 and

checked the qualitative features for several other incom-
mensurate wave vectors. The general features are as
follows:
(1) The extended states on the clean (AJ ¼ 0) axis

persist in the presence of small modulation AJ. With

increasing AJ, the high-energy states localize before
the lower-energy states.

(2) Near the Ising transition along the phase boundary
above the diagonal AJ ¼ J, the gap closes and
reopens linearly, and all excitations are extended
up to a finite energy above the gap. See the first two
columns of Fig. 5 for representative spectra and IPR
behavior and Sec. V for more discussion.

(3) For AJ=h > 2, all states are localized, consistent
with the analytically proven behavior at J ¼ 0
(Sec. IV E) and the analysis at large AJ (Sec. IV
D) and large J (Sec. IV B). At large J=h, we observe
the expected energy-independent localization tran-
sition near AJ=h ¼ 1.

(4) Numerics confirm the qualitative trend of the full
localization boundary in the AJ=h < 2 regime:
that the boundary approaches a vertical asymptote
at AJ=h ¼ 1 for large J=h and that it remains above
the Ising ground-state transition, ending at the point
ðAJ=h; J=hÞ ¼ ð2; 2Þ.

(5) On the J ¼ 0 line at AJ=h < 2, we confirm that all
states are critically delocalized by calculating the
scaling of the IPR. At high energy, the states localize
on the introduction of J > 0. However, we find that
the lowest energy states (above the gap) continue to
exhibit critical IPR scaling throughout the triangle
below the diagonal AJ ¼ J (see representative data
in Fig. 5). This behavior defines the purple region
in Fig. 1.

V. GROUND-STATE QUANTUM
PHASE TRANSITIONS

In this section, we focus on the properties of the zero-
temperature quantum phase transition between the ground-
state paramagnetic and ferromagnetic phases. The phase
transitions above and below the diagonal AJ ¼ J in Fig. 1
are qualitatively distinct. Above the diagonal (AJ < J), the
quasiperiodic modulation is irrelevant, and the transition
lies in the standard 1D quantum Ising universality class.
Below the diagonal (AJ > J), the transition lies in a new
“quasiperiodic Ising” universality class, with behavior
intermediate between the clean Ising critical point and
the infinite randomness critical point (IRCP), which gov-
erns the disordered Ising transition [97].
At both transitions, the correlation length ξ diverges with

exponent ν ¼ 1. From the relation ξ ∼ −1=I, where I is the
integral governing the convergence of the Majorana boun-
dary mode, Eq. (22), it is straightforward to show that

ξ ∼ δ−1; ð32Þ

where δ is the deviation from the phase boundary at I ¼ 0.
This is consistent with the Harris-Luck criterion [87,98],
which imposes that ν ≥ 1=d ¼ 1 for phase transitions in the
presence of incommensurate modulation.

FIG. 4. The 2D model associated with the incommensurate
TFIM at Ah ¼ 0, J ¼ 0 decouples into two interpenetrating
layers (blue and orange) of a honeycomb lattice. Each hexagonal
plaquette is pierced by flux 2Q. We have adjusted the geometric
embedding of the lattice points relative to Fig. 2 in order to
emphasize the symmetry associated with rotation by 2π=3. All
parallel bonds carry the same coupling magnitude (though the
hopping phase depends on the choice of gauge). The incom-
mensurate TFIM at J ¼ 0 is embedded into a larger AAA family
of models with couplings A1 ¼ AJ=2, A2 ¼ AJ=2, A3 ¼ h on
bonds as shown.

LOCALIZATION AND SYMMETRY BREAKING IN THE … PHYS. REV. X 7, 031061 (2017)

031061-9



A. Clean Ising transition

While ν ¼ 1 at both transitions, the dynamical properties
are quite distinct. Above the diagonal, the phase boundary
connects to the standard clean Ising transition at J=h ¼ 1,
AJ=h ¼ 0. At small AJ, as the Harris-Luck criterion is
marginal, it is natural to conjecture that weak quasiperiodic
modulation is (marginally) irrelevant. This would imply
that, in the vicinity of the phase boundary,
(1) the dynamical critical exponent z ¼ 1, so the gap Δ

closes linearly with δ,

Δ ∼ δνz ∼ δ; ð33Þ

(2) the low-energy excitations are extended, as these are
the excitations that mediate the phase transition.

Both of these expectations are borne out numerically quite
beautifully.
The top left panel of Fig. 5 shows the excitation

spectrum versus J=h for a vertical cut at AJ=h ¼ 0.5.
The vertical cut intersects three regimes: the
critically delocalized PM (0 ≤ J=h ≤ 0.5), the extended
PM (0.5 ≤ J=h ≤ Jc=h ¼ 1.0625), and the extended FM

(Jc=h ≤ J=h). The boundary zero mode associated with the
FM is clearly visible to the right of the transition. As
promised, the gap closes linearly, and the low-energy
excitations above the gap remain extended. The extension
of the wave functions are indicated qualitatively by the
coloring of the states; quantitatively, the lower panel shows
the scaling exponent γ of the low-energy IPR with system
size,

IPR ∼ 1=Lγ: ð34Þ
The lower-left panel shows that γ is near 1 for the low-
energy excitations for J=h > 0.5 and, in particular, near the
transition.
The center column of Fig. 5 presents similar data at

stronger incommensurate modulation, AJ=h ¼ 1.5. Note
that the axes are zoomed in on the phase boundary and on
low energies relative to the previous plot. The high-energy
excitations (e=h > ≈0.2) are localized across the transition.
Nevertheless, the gap closes linearly (center top), and the
low-energy excitations remain extended nearby (γ ≈ 1, in the
bottom panel). Thus, the ground-state symmetry-breaking
transition is still in the clean quantum Ising universality class.

FIG. 5. Fermionic excitation spectra (upper row) and scaling exponent of low-energy IPR (lower row) on representative cuts in the
phase diagram, indicated by black lines on the inset phase diagram. On each panel, vertical lines indicate the ground-state symmetry-
breaking phase boundary and the diagonal (AJ ¼ J) critically delocalized to extended boundary. (Upper row) Excitation spectra at size
L ¼ 1000. The color value of each level indicates the extension of the corresponding state. The color value is given by − log IPR= logL,
which varies between 0 (localized, black) and 1 (extended, copper). (Lower row) The IPR exponent α is defined by the scaling
½log IPR� ∼ −α logL, where the mean ½·� is taken over the lowest twentieth of the excitations. Here, α varies between 0 (localized) and 1
(extended). To indicate the finite-size trends approaching the thermodynamic limit, we fit data from both L ¼ 100, 200, 350, 500, 750,
1000 (blue) and L ¼ 350, 500, 750, 1000 (green).
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B. Quasiperiodic Ising transition

Below the diagonal, the dynamics near the transition
between the QPFM and PM change character rather
dramatically. Along the J ¼ 0 line, the symmetry-breaking
transition at AJ=h ¼ 2 coincides with the transition from
critically delocalized to localized excitations at all energies,
as shown in Sec. IV E. There are no fully extended
excitations. In analogy with the irrelevance of AJ at the
clean transition, we conjecture that J is irrelevant at low
energies to the strong quasiperiodically modulated tran-
sition along the vertical phase boundary.
Numerically, this conjecture is borne out by the follow-

ing observations (see third column of Fig. 5 for represen-
tative data along a particular cut at J=h ¼ 0.5):

(i) The single-particle gap closes on approaching the
transition from the paramagnetic side with an ex-
ponent z ≈ 2. However, the gap does not reopen on
the symmetry-breaking side of the transition.

(ii) All excitations are localized in the symmetry-
breaking phase at AJ=h > 2.

(iii) The low-energy excitations (bottom tenth of states
above the gap) in the paramagnetic phase exhibit
critical IPR scaling and extreme finite-size sensi-
tivity. See the lower row of Fig. 5. The IPR exponent
γ lies properly between 0 and 1 and exhibits strong
finite-size fluctuations.

(iv) At higher energy (and J=h > 0), the excitations can
be localized even in the paramagnetic phase. We do
not know whether the critically delocalized low-
energy states are separated from these localized
states by a mobility edge or whether there is a long
crossover.

While we leave a full analytic study of this transition to
forthcoming work [96], it is clear that the quasiperiodic
Ising transition is intermediate between the well-known
clean and infinite randomness critical points. In the former,
the critical excitations are extended on both sides of the
transition with dynamical exponent z ¼ 1; in the latter, the

excitations are localized on both sides of the transition, and
the dynamics are activated (roughly, z → ∞). Across the
quasiperiodic transition, the excitations pass from critically
delocalized and gapped (with exponent z ¼ 2) to localized
and gapless across the transition. Also, unlike the infinite
randomness transition, the correlation functions in the
quasiperiodic case do not acquire broad distributions at
long distances. For example, the mean and typical decays
of the boundary mode are governed by the same correlation
length ξ with exponent ν ¼ 1, while in the infinite random-
ness transition, they are governed by two distinct diverging
length scales (with ν ¼ 2 and 1, respectively).

VI. EXCITED-STATE ISING GLASS ORDER

We expect localized Ising glass order at all energy
densities in the regions where (1) the ground state breaks
Ising symmetry, and (2) all the excitations are localized.
This region is indicated in red in Fig. 1. Note that the
boundary of the region above the diagonal (J > AJ)
depends on Q. Although we do not have an explicit
functional form for this Q dependence, the analysis in
Sec. IV constrains the boundary to be at AJ=h ¼ 1 as
J=h → ∞ independent of Q and to lie strictly above the
parabolic ground-state boundary.
Representative correlation functions.—Figure 6 shows

the spin-spin correlation function hσxL=2σxL=2þdi in the
ground state (blue) and a random excited state drawn from
the infinite-temperature ensemble (green) at three different
representative points in the phase diagram. In the left panel,
the spin-spin correlation function decays rapidly in both
states, confirming that the point AJ=h ¼ J=h ¼ 0.5 is in the
PM phase. The center panel shows the correlation functions
at a point in the phase diagram where the ground state is
ordered and the excitations above it are extended. The long-
range order in the ground state is clearly detected by the
blue curve, which approaches a nonzero value at long
distance d. The green curve, on the other hand, decays
quickly to zero and shows that infinite-temperature

FIG. 6. Spin-spin correlation function hσxL=2σxL=2þdi as a function of the distance d from the center of the chain in an L ¼ 100 site chain
with open boundary conditions. The blue line is the ground state, while the green line shows a random excited state from the infinite-
temperature ensemble. From left to right, the parameters are chosen so that the system is critically delocalized paramagnetic, extended
ferromagnetic, and localized ferromagnetic, as indicated in the inset.
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eigenstates are not ordered. This result agrees with the
Mermin-Wagner-Peierls theorem that states there can be no
long-range order at any finite temperature in 1D.
The right panel provides evidence for Ising glass order in

a randomly chosen infinite-temperature state at a point in
the phase diagram where the ground state is ordered and the
single-particle excitations are localized. The green curve
does not decay as d → ∞; instead, it fluctuates on an
order-one scale depending on whether spin L=2 and spin
L=2þ d are aligned or antialigned in the chosen infinite-
temperature state.
Frozen order parameter.—The quasiperiodic Ising glass

order is detected by an order parameter that generalizes the
ground-state order parameter, Eq. (24), to finite energy
density states:

Oexc ¼ ½jhEjσxL=4þjσ
x
3L=4þjjEij�E;j: ð35Þ

Here, ½·�E;j indicates averaging over both eigenstates jEi in
some energy window and over a small spatial window j ∈
½−w;w� to suppress the quasiperiodic fluctuations. Note
that Oexc is nonzero, as L → ∞ only in states with long-
range Ising symmetry breaking, such as the Ising glass. We
plot the order parameter along several representative cuts in
the phase diagram in Fig. 3 at L ¼ 500 for the ground state
(blue) and for states drawn from the infinite-temperature
ensemble (green).
The three panels are consistent with the Ising glass order

being present only in the red shaded region. In the right-
most panel, the weak quasiperiodic modulation leaves the
excitations extended at all J=h; accordingly, the excited
states are always paramagnetic, irrespective of ground-state
ordering. In the center panel at large J=h, the excited-state
order develops as the excitations localize across the AA-
like transition described in Sec. IV B. The ground-state
order parameter is completely insensitive to the excited-
state ordering. Finally, in the leftmost panel, the ground-
and excited-state order develop at the same coupling
AJ=h ¼ 2 because the ground-state symmetry-breaking
phase transition and the localization transition of the
excitations coincide, as discussed in Sec. V B.
Similar Ising glass order has previously been studied in

disordered Ising chains [8,19,47]. The disordered glass and
the quasiperiodic glass are diagnosed by the same eigen-
state order parameters, and they show similar persistence of
arbitrary initial longitudinal magnetization in quench
experiments. However, the quasiperiodic realization is, in
many respects, simpler to study and provides additional
control knobs. First, unlike the disordered realization, there
is a delocalization transition already in the noninteracting
limit (discussed below). Second, sample-to-sample fluctu-
ations are much larger in disordered systems than quasi-
periodic. This is because of the outside influence in one
dimension of rare spatial regions with atypically high or

low effective disorder. These regions lead to broadened
distributions of local magnetization, localization length of
domain walls, and infinite randomness physics at the
associated phase transitions. Since localization and
the localized glass can take place without these features,
the quasiperiodic glass is a simpler realization of localiza-
tion protected order.

A. Excited-state transition

The Ising glass order is destroyed if either the ground
state becomes paramagnetic or the domain-wall excitations
delocalize. The central panel of Fig. 3 illustrates the latter
transition at large J=h. In the leftmost panel of the same
figure, on the other hand, the ground-state transition
coincides with the delocalization of excitations (see
Sec. V B). Below, we develop a picture of the transition
of the central panel, which is entirely governed by the
localization properties of the excitations. We leave more
careful study of the other excited-state transition to future
work [96].
At large J=h, the ground-state magnetization M0

i is very
close to 1 on each site i. In the excited states, themagnitude of
the magnetization is reduced by the fluctuations of domain
walls across site i. When the domain walls have typical
localization length ξ, there are ∼ξ such relevant domain
walls. Any domain wall localized further away merely flips
the sign of Mi without reducing its magnitude. Thus, the
fluctuations of the parity of the domain walls to the left of i
ultimately control the excited-state magnetization.
Mathematically,

jMij ¼ jhσxi ij ≈ jM0
i jjhð−1ÞN<iij; ð36Þ

where N<i is the number of domain walls to the left of site
i. As the domain walls are noninteracting, we have

N<i ¼
X
α

nαI½DW α at position < i�; ð37Þ

where nα is the occupation of domain-wall eigenstate α and
the indicator function is 1 if that domain wall is to the left of
i. Within an excited eigenstate, N<i is thus a sum of
independent random variables with mean

hN<ii ¼
X
α

nαPα
<i ð38Þ

and variance

hðδN<iÞ2i ¼
X
α

nαPα
<ið1 − Pα

<iÞ: ð39Þ

Here, Pα
<i is the probability that the domain wall in state α

lies to the left of i. As the mean value of N<i only adjusts
the overall sign ofMi, we focus on the fluctuations δN<i to
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estimate the reduction of jMij. In the localized regime, only
those eigenmodes α with localization centers within a
distance ξ of i contribute to these fluctuations as Pα

<i
approaches 0 or 1 further away.
At large ξ, δN<i becomes a Gaussian-distributed random

variable with variance ∝ ξ. The magnitude of the magneti-
zation is thus reduced by

jhð−1ÞN<iij ≈ jheiπδN<iij ∼ e−aξ; ð40Þ

where a is related to the proportionality constant in the
variance. Since in the large J=h limit, the localization
transition is of AA type, we have ξ ∼ δ−1 (see Sec. IV B).
Finally, this leads to an essential singularity in the excited-
state order at the transition,

jMj ∼ e−a
0=δ; ð41Þ

with a0 a δ-independent constant.
The quasiperiodic Ising order parameter Oexc of Eq. (35)

should approach jMj2 at large L (and large spatial averaging
windoww) and accordingly inherits the essential singularity.
Our numerics are consistent with this form but are incon-
clusive as it is difficult to distinguish an essential singularity
from a shift in the apparent critical point.

VII. CONCLUSIONS

We have presented the first analytical study of localiza-
tion-protected excited-state order without disorder.
Incommensurate modulation of the exchange couplings
leads to a large Ising glass phase in the canonical quantum
Ising chain. By arguments similar to those presented in the
context of disordered Ising chains [47], we expect that the
glass survives the introduction of weak interactions so long
as the localization length ξ of the domain walls is
sufficiently short compared to the typical domain-wall
density. Quasiperiodic modulation arises naturally in opti-
cal experiments; it also provides an analytic platform for
further study of localization. In some ways, it is simpler
than disordered localization, which is plagued by rare-
region effects and Griffiths’ phases [7,25,29,99,100].
Understanding the nature of the quasiperiodic localization
transition, with and without interactions, may thereby cut to
the heart of the phenomenon.
We also presented a theory of the melting transition for

the excited-state order in the noninteracting case. Reducing
the amplitude of modulation leads to delocalization of the
domain walls, which may be accompanied by a ground-
state symmetry-breaking transition. The divergence of the
localization length ξ of domain walls leads to an essential
singularity in the excited-state order. However, as inter-
actions are likely to delocalize the system before ξ diverges,
we expect the essential singularity to be cut off and the
transition to qualitatively change. This is an especially
interesting direction for future work.

Our analysis is aided by our generalization of Aubry-
André duality, AAA triality, which applies along the pure
modulation axis (J ¼ 0) of the phase diagram in Fig. 1.
The Ising-symmetry-breaking ground-state transition at
AJ=h ¼ 2 coincides with the self-trial point of this trans-
formation. The triality requires that the wave functions are
critically delocalized at all single-particle energies on one
side of the transition (PM) and localized on the other
(QPFM). The associated quantum critical point thus lies
neither in the clean Ising universality class where the
excitations are extended nor in the infinite randomness class
of disordered systems where the excitations are fully local-
ized. Intriguingly, numerics show that these critical proper-
ties persist away from the pure modulation line at low
energies. This suggests that the entire phase boundary lies
in this intermediate universality class, the quasiperiodic Ising
class [96].
From a zero-temperature perspective, we expect the three

ground-state phases to be stable to the inclusion of interac-
tions as they are either gapped or localized. Whether
interactions are irrelevant at the peculiar critical point
discussed in the previous paragraph is an interesting open
question. The transition is neither clean enough for a field
theoretic renormalization treatment [101] nor disordered
enough to obviously flow to infinite randomness under
real-space renormalization [97]. Perhaps a coarse-graining
treatment could be developed in the semiclassical limit of
Q → 0, as has been done for the AA model [72].
Finally, we comment on the potential for studying the

quasiperiodic Ising glass experimentally. Essentially, any
quantum optical system that realizes a tunable Ising chain
would be able to probe the excited-state Ising glass order by
quench experiments. These include, for example, linear
chains of trapped ions using hyperfine states as Ising
degrees of freedom [34,64], Rydbergs trapped in optical
tweezers [65,66], chains of trapped ions undergoing a
zigzag transition [102,103], or ultracold atoms undergoing
a staggering transition in a tilted lattice potential [104]. The
simplest way to apply an incommensurate modulation in
these systems is to modulate the position of the atoms or
ions using an extra effective spatial potential, whether that
be with a standing wave or with optical tweezers.
However, there are two classes of Ising model simulators:

those where the Ising degree of freedom is spatial (such as at
the zigzag transition) and thosewhere it is internal (such as in
the ion-trap Ising simulator). In the former, as the order
parameter directly couples to spatial position, incommensu-
rate modulation potentials locally break the Ising symmetry.
This raises interesting questions regarding the Imry-Ma
stability of excited-state symmetry-breaking order [105],
which we leave for futurework. In the latter Ising simulators,
modulating the position can directly modulate couplings
without introducing Ising odd terms (i.e., effective longi-
tudinal fields).We expect these platforms to be able to realize
the quasiperiodic Ising glass directly.
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APPENDIX A: GROUND-STATE
PHASE BOUNDARY

We include the elementary derivation of the contours of
I at Ah ¼ 0. Consider the differential (setting h ¼ 1 and
assuming AJ; J > 0 in order to avoid writing absolute
values throughout)

dI ¼ −
Z

2π

0

dθ
2π

dJ þ dAJ cosðθÞ
J þ AJ cosðθÞ

: ðA1Þ

Using contour integration on the unit circle z ¼ eiθ,

dI ¼ −
2

AJ

I
dz
2πi

dJ þ dAJðzþ z−1Þ=2
ðz − zþÞðz − z−Þ

; ðA2Þ

where z� ¼ −ðJ=AJÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ=AJÞ2 − 1

p
. For J > AJ, the

pole at zþ lies inside the unit circle, while for J < AJ, both
zþ and z− lie outside. Explicitly,

 ∂I
∂J
∂I
∂AJ

!
¼

8>>>>>>>><
>>>>>>>>:

0
B@

1ffiffiffiffiffiffiffiffiffiffi
J2−A2

J

p

1=AJ −
2J=AJffiffiffiffiffiffiffiffiffiffi
J2−A2

J

p

1
CA J > AJ

�
0

1=AJ

�
J < AJ:

ðA3Þ

Thus, the contours of I behave differently in the regions
above and below the diagonal J ¼ AJ. Solving dI ¼ 0
above the diagonal leads to parabolic contours of the form

J ¼ J0 þ
A2
J

4J0
: ðA4Þ

Below, the contours are vertical. The functional form of I
then follows immediately from explicit integration of
Eq. (22) on the axes:

I ¼
8<
:− log jJ0j ¼ − log

���� Jþ
ffiffiffiffiffiffiffiffiffiffi
J2−A2

J

p
2

���� J > AJ

− log jAJj=2 J < AJ:

ðA5Þ

APPENDIX B: GENERAL
COMMENSURATE ANALYSIS

We provide a detailed analysis of the spectral properties
of the excitations in the TFIM with commensurate modu-
lation Q ¼ 2πp=q, for p and q coprime integers. The
incommensurate TFIM then arises by taking the limit
p, q → ∞ such that Q=2π approaches an irrational value.
For example, to study the incommensurate TFIM modu-
lated with a wave vector corresponding to the golden
mean, Q=2π ¼ ð1þ ffiffiffi

5
p Þ=2, one could take the sequence

pn=qn ¼ Fn=Fn−1, where Fn is the nth Fibonacci number.
Thouless [71,93] emphasized this approach to studying the
original Aubry-André model, pointing out that q plays a
role analogous to finite size in a scaling theory of
the transition, as it determines the length over which
the incommensurate model can be approximated by the
commensurate one. Here, we review and generalize the
commensurate analysis of Ref. [93] to the TFIM.
For commensurate modulation Q=2π ¼ p=q, Bloch’s

theorem implies that the single-particle energy spectrum of
Eq. (8) is a function of the quasimomentum kx ∈
½−π=q; π=qÞ with 2q bands. The 1D bands depend on
the phase ϕ through the explicit Hamiltonian dependence
on ϕ; we note that this dependence is periodic in
ϕ → ϕþ 2π=q, as the site labels can be shifted by an
integer j → j − l, where lp ¼ 1ðmod qÞ to absorb such a
shift. (As p and q are coprime, p has a multiplicative
inverse modulo q.) It is natural to view the bands as 2D
sheets over both kx and ϕ [this is the band structure of the
associated 2D model, Eq. (15)], but one must remember
that the bands of the actual 1D model correspond to a kx
slice of the 2D bands at fixed ϕ.
Explicitly, the eigenvalue problem of Eq. (14) satisfies

the difference equations:

−iJi−1=2ψ2i−1 þ ihiψ2iþ1 ¼ Eψ2i

−ihiψ2i þ iJiþ1=2ψ2iþ2 ¼ Eψ2iþ1; ðB1Þ

where hi; Jiþ1=2, defined in Eq. (2), are periodic with period
q. By Bloch’s theorem, the solutions satisfy the twisted
boundary conditions on a 2q-site chain:

ψ2ðnþqÞ ¼ eikxqψ2n;

ψ2ðnþqÞþ1 ¼ eikxqψ2nþ1: ðB2Þ

The eigenspectrum of the infinite set of equations in
Eq. (B1) follows from the eigenspectrum of the finite
matrix
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Mðkx;ϕÞ ¼

0
BBBBBBBBBB@

0 ih0 0 0 … −iJ−1
2
e−ikxq

−ih0 0 iJ1
2

0 … 0

0 −iJ1
2

0 ih1 … 0

..

. ..
. ..

.

iJ−1
2
eikxq 0 0 0 … 0

1
CCCCCCCCCCA

with Jq−1=2 ¼ J−1=2. The characteristic polynomial of M is

CðE; kx;ϕÞ ¼ det½M − EI�: ðB3Þ

In general, the characteristic polynomial depends on the
phase Δ as well; we suppress this dependence as we
specialize to the case Ah ¼ 0 below. The analysis can be
straightforwardly extended to nonzero Ah.
Note that CðE; kx;ϕhÞ is a polynomial of E of degree 2q.

Since M is Hermitian, the polynomial is real (for E real):

CðE; kx;ϕÞ ¼ C�ðE; kx;ϕÞ: ðB4Þ

The bipartite (chiral) symmetry C, which takes
ψ j→ð−1Þjψ j, anticommutes with M: CMC ¼ −M. Thus,
the characteristic polynomial is an even function of E,

Cð−E; kx;ϕÞ ¼ CðE; kx;ϕÞ; ðB5Þ

and, accordingly, the eigenvalues come in �E pairs within
each kx sector.
By explicit evaluation, C has the following structure:

CðE; kx;ϕÞ ¼
Xq
m¼0

KmðϕÞE2m − 2ð−1ÞqPðϕÞ cosðkxqÞ;

ðB6Þ

where all of thekx dependence lies in the energy-independent
term. This dependence follows from the two kx-dependent
terms in the explicit expansion of the determinant:

ð−1Þ2q−1eikxq
Yq−1
j¼0

ðihjÞ
Yq−1
m¼0

ðiJmþ1=2Þ þ c:c:; ðB7Þ

which simplifies to the last term in Eq. (B6) usinghj ¼ 1 and
the definition

PðϕÞ≡Yq−1
j¼0

(J þ AJ cosð2πpðjþ 1=2Þ=qþ ϕÞ): ðB8Þ

In Appendix F, we evaluate this to be

PðϕÞ ¼ 2

�
AJ

2

�
q
(TqðJ=AJÞ − ð−1Þqþp cosðqϕÞ); ðB9Þ

where Tq is the Chebyshev polynomial of order q.
Next, we evaluate the rest of the constant term, K0ðϕÞ.

This is most easily accomplished by working at
kx ¼ E ¼ 0, whereM is antisymmetric and the determinant
is the square of the Pfaffian. At hj ¼ 1, we have

K0ðϕÞ ¼ ð−1Þq½ðPðϕÞÞ2 þ 1�: ðB10Þ

To make further progress, we need control of the higher-
order coefficients KmðϕÞ. For general couplings, these are
not so easy to compute, although we set up some formalism
exploring this in Appendix D. In the important special case
of J ¼ 0, the triality discussed in Sec. IV E allows us to
show that the Km are actually independent of ϕ for all
m > 0; see Appendix C. With this simplification, we will
be able to determine the energy-independent localization
properties on the J ¼ 0 line; see Appendix E.

APPENDIX C: HIGHER-ORDER
COEFFICIENTS WITH TRIALITY

In the Aubry-André models [56,71,93], the AA duality
implies that CðE;kx;ϕ; t;VÞ¼CðE;ϕ;−kx;V;tÞ. Equating
this order by order in E,

Kmðϕ; t; VÞ ¼ Kmð−kx;V; tÞ ðC1Þ

for all m > 0. Differentiating with respect to ϕ, we see that
KmðϕÞ is independent of ϕ for m > 0. This leads to the
energy independence of the AA localization transition by
the logic described in Appendix E.
In the AAA models defined by Eq. (31), the triality

transformation implies that CðE; kx;ϕ;A1; A2; A3Þ ¼
CðE;Rðkx;ϕÞ;A2; A3; A1Þ, where R is the linear trans-
formation implementing the threefold rotation on the
momentum space defined by kx, ϕ. We note that R is a
geometric rotation by 2π=3, conjugated by an anisotropic
scale transformation as our embedding of the honeycomb
structure is into a rectangular lattice as in Fig. 2(c), rather
than the geometrically symmetric embedding in Fig. 4.
Nonetheless,

Kmðϕ;A1; A2; A3Þ ¼ Kmðαkx þ βϕ;A2; A3; A1Þ; ðC2Þ

where α, β are the appropriate matrix elements of R. Again,
differentiating with respect to kx, it follows that Km is
actually independent of its first argument ϕ in the AAA
models.
In particular, this holds along the J ¼ 0 line of the

incommensurate TFIM, which corresponds to A3 ¼ h,
A1 ¼ A2 ¼ AJ=2.
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APPENDIX D: GENERAL HIGHER-ORDER
COEFFICIENTS

In general, in the TFIM, the coefficients KmðϕÞ are both
ϕ dependent and nontrivial to evaluate form > 0. Although
we do not need any of the following formalism for the
results used in the manuscript, we summarize here a few
formulas for posterity.
To calculate the higher-order terms, it is helpful to

consider the explicit representation of the determinant
(with B ¼ M − E),

detB ¼
X
π∈S2q

ð−1ÞπB1;π1B2;π2 � � �B2q;π2q : ðD1Þ

The factors of E come from diagonal matrix elements, so
the coefficient Km comes from the permutations that hold
2m sites fixed but are otherwise off-diagonal,

Km ¼
X

i1<i2<���<i2m

X
π∈S2q
πil

¼il

ð−1Þπ
Y
i∉il

Mi;πi : ðD2Þ

Moreover, sinceM only connects adjacent sites, only those
permutations that permute within each diagonal block
(from ij þ 1 to ijþ1 − 1) are nonzero. At fixed
i1;…; i2m, the contribution to Km thus factors into a
product of the determinants of the diagonal sub-blocks
of M between rows il and ilþ1:

Km ¼
X

i1<���<i2m

Y2m
j¼1

detMjijþ1;ijþ1−1; ðD3Þ

where the l ¼ 2m block wraps around the corners of the
matrix. Since each sub-block of M is antisymmetric, the
determinant is nonzero only if ijþ1 − ij − 1 is even—that is,
if the ij alternate between even and odd. Explicitly,

detMjiþ1;j−1¼ ij−i−1

8<
:
Qj=2−1

l¼ðiþ1Þ=2h
2
l i=jodd=evenQðj=2−1

l¼ðiþ1Þ=2J
2
l i=jeven=odd:

ðD4Þ

Keep tracking of the number of i’s, we find that the
coefficients Km alternate in sign.
For Ah ¼ 0,

detMjiþ1;j−1 ¼ ij−i−1hj−i−1e−Vði;jÞ; ðD5Þ

where

Vði; jÞ ¼

8>><
>>:

−
Pj=2−1

l¼ðiþ1Þ=2 2 logðJl=hÞ i=jeven=odd

0 i=jodd=even

∞ else:

ðD6Þ

In this form, Km looks like

Km ¼ ð−1Þq−mh2q−2m
X

i1<���<i2m

e−
P

2m
j¼1

Vðij;ijþ1Þ: ðD7Þ

The magnitude of Km is given by the canonical partition
sum at temperature one for a system of length 2q with 2m
domains of energy Vði; jÞ.
The number of wavelengths of J that fit in the chain of

length 2q is p. If p is held fixed as q → ∞, then Jiþ1=2 is
smooth on the lattice scale a, as the wavelength of the
incommensurate field q=p ≫ a. In this limit, the con-
tinuum approximation in which a ¼ 0 should be a good
starting point for a semiclassical analysis that incorporates
the leading effects of a small a=q. If on the other hand, p=q
approaches a nonzero constant as q → ∞ (for example, the
golden mean), then q=p ∼OðaÞ. We leave further analysis
of KmðϕÞ in these limits to future work.

APPENDIX E: LOCALIZATION
PROPERTIES AT J = 0

From Appendix C, the characteristic polynomial may be
written along the J ¼ 0 axis,

CðE; kx;ϕÞ ¼
Xq
m¼1

KmE2m

þ ð−1ÞqðPðϕÞ2 − 2PðϕÞ cosðkxqÞ þ 1Þ;
ðE1Þ

where Km depends on couplings AJ and h but not on kx
or ϕ.
This form entails a remarkable geometric property of the

2q bands in the 2D band structure: They are all approx-
imately the same shape up to shift and scale. This implies
that the ratio r of the kx and ϕ dispersion of each band is
independent of band number n. Thus, if this ratio
approaches zero sufficiently rapidly with q as we approach
the incommensurate limit by Q ¼ 2πp=q, the total
dispersion in the kx must also go to zero, even when
summed over all q bands (because the total 2D spectrum is
bounded). This argument allows us to show that the
spectrum is fully localized for AJ > 2. For AJ < 2, the r
approaches a constant as q → ∞, which indicates the
presence of critically delocalized states, also independent
of energy. See Ref. [93] for a similar analysis in a
simpler model.
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Suppose we identify the nth zero of CðEÞ at fixed
ðkx;ϕÞ ¼ ð0; 0Þ:

CðE0
n; 0; 0Þ ¼ 0: ðE2Þ

The dispersion of the nth band is then determined by
following this zero while varying kx and ϕ. To linear order
in E − E0

n, we have

0 ¼ CðE0
n; kx;ϕÞ þ ðEnðkx;ϕÞ − E0

nÞC0
n; ðE3Þ

where C0
n ¼ ½ð∂CÞ=∂E�jE0

n
is a constant independent of the

2D momenta from Eq. (E1). Rearranging this equation, the
nth band has dispersion

Enðkx;ϕÞ ¼
−1
C0
n
ð−1Þq½PðϕÞ2 − 2PðϕÞ cosðkxqÞ� þ En;

ðE4Þ

where En is an n-dependent shift independent of momenta.
Thus, each band has the same shape up to shift En and scale
1=C0

n, up to higher-order corrections in the E dependence
of C.
Although the absolute position and scale of each band

depends, in a detailed way, on the parameters, the ratio of
the bandwidth in the kx and ϕ directions is independent of n
and therefore easy to compute. The bandwidth in the kx
direction is given by the total variation of Eq. (E4) at
fixed ϕ,

Δn;kxðϕÞ ¼ 4jPðϕÞj=C0
n: ðE5Þ

Maximizing over ϕ gives

Δn;kx ¼ 16ðAJ=2Þq=C0
n; ðE6Þ

where we have assumed q is even (the result differs by an
unimportant factor of 2 for odd q). Similar elementary
considerations yield the maximum variation in the ϕ
direction at fixed kx,

Δn;ϕ ¼ 16½ðAJ=2Þq þ 1=2�½ðAJ=2Þq�=C0
n; ðE7Þ

where again we have assumed q is even. Taking the ratio of
the bandwidths in the kx and ϕ directions,

r ¼ Δn;kx

Δn;ϕ
¼ 1

ðAJ=2Þq þ 1=2
; ðE8Þ

which holds for all bands n.
From Eq. (E8), it follows that the incommensurate TFIM

is localized at all energies in the incommensurate limit
(q → ∞) for AJ > 2. The total dispersion in the kx direction
at fixed ϕ (summed across bands) is exponentially smaller
than that in the ϕ direction at fixed kx. Since the total 2D

variation is upper bounded by a function that, at most,
increases linearly with q [as each band has, at most, Oð1Þ
bandwidth], the variation in the ϕ direction (which is
exponentially larger in q than that in the kx direction)
provides the entire contribution as q → ∞. Thus, the total
bandwidth in the kx direction goes to zero exponentially as
q → ∞, so the 1D incommensurate TFIM for AJ > 2 has a
pure-point spectrum.
For AJ < 2, the ratio approaches 1, and the variation of

the bands is the same in both the kx and ϕ directions. In
previously studied models, the 1D spectrum is critically
delocalized whenever the ratio remains of Oð1Þ in the
incommensurate limit [93]. We conjecture and have con-
firmed numerically that this holds for the TFIM as well at
J ¼ 0 (i.e., that all states are critical at all energies). The
coincidence of criticality and the order-one ratio of band-
widths has not been proven mathematically in any model as
far as we know.

APPENDIX F: EVALUATION OF PRODUCT
OF PERIODIC COUPLINGS

In this appendix, we evaluate the expression

PðϕÞ≡Yq−1
j¼0

(J þ AJ cosð2πpðjþ 1=2Þ=qþ ϕÞ): ðF1Þ

The derivation is identical to that in Appendix A of
Ref. [93]; we include it here for completeness. First,
PðϕÞ can be rewritten as

PðϕÞ¼
Yq−1
j¼0

�
JþAJ

2
ðei2πpðjþ1=2Þ=qþiϕþe−i2πpðjþ1=2Þ=q−iϕÞ

�
:

ðF2Þ

The expression is periodic in ϕ with period 2π=q as the
addition of 2π=q to ϕ yields a permutation of the terms in
the product. Thus, the only terms that survive the product in
Eq. (F2) contain q factors of eiϕ or q factors of e−iϕ or equal
numbers of factors of eiϕ and e−iϕ. The first two cases give

�
AJ

2

�
q
ð−1Þpqð2 cosðqϕÞÞ: ðF3Þ

The ϕ-independent term can be obtained by evaluating
PðϕÞ minus the term above at ϕ ¼ 0:

Q ¼
Yq−1
j¼0

�
J þ AJ cos

�
2πpðjþ 1=2Þ

q

��
− 2ð−1Þpq

�
AJ

2

�
q
:

Rearranging this equation, we obtain
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Q
ðAJ=2Þq

þ 2ð−1Þpq ¼
Yq−1
j¼0

�
2J
AJ

þ 2 cos

�
2πp
q

�
jþ 1

2

���
:

The rhs is a polynomial in J=AJ with zeros at

J
AJ

¼ − cos

�
2πp
q

�
jþ 1

2

��
ðF4Þ

for j ¼ 0;…; q − 1. Using the definition of the Chebyshev
polynomial Tq of order q,

TqðxÞ≡ cosðq arccosðxÞÞ; ðF5Þ

we see that TqðJ=AJÞ ¼ ð−1Þpqþ1 is a polynomial of J=AJ

with the same zeros as the rhs of Eq. (F4). Thus, the two
must be proportional. Comparing the coefficient of ðJ=AJÞq
in the two expressions, we obtain

Q
ðAJ=2Þq

þ 2ð−1Þpq ¼ 2½TqðJ=AJÞ − ð−1Þpqþ1� ðF6Þ

⇒ Q ¼ 2

�
AJ

2

�
q
TqðJ=AJÞ: ðF7Þ

Combining this expression with Eq. (F3) gives

PðϕÞ ¼ 2

�
AJ

2

�
q
ðTqðJ=AJÞ þ ð−1Þpq cosðqϕÞÞ: ðF8Þ

Using ð−1Þpq ¼ ð−1Þpþqþ1 when p and q are relatively
coprime, we obtain Eq. (B9).

APPENDIX G: GROUND-STATE SYMMETRY
BREAKING FROM THE COMMENSURATE

ANALYSIS

In Appendix F, we evaluated PðϕÞ ¼Qq−1
m¼0 Jmþ1=2

when the exchange coupling is commensurate with the
underlying lattice at wave number Q ¼ 2πp=q. In order to
approach the incommensurate limit, we take p; q → ∞ in
such a way that the wavelength 2π=Q approaches an
irrational number (in units of the underlying lattice constant
a ¼ 1). As PðϕÞ is independent of the ratio p=q, the
limiting expression is independent of the value of the
irrational wavelength 2π=Q. From the discussion in
Sec. III, the behavior of PðϕÞ controls the ground-state
phase diagram: If PðϕÞ increases (decreases) exponentially
with q, then the system is in the ferromagnetic (para-
magnetic) phase.
From the explicit expressions,

TqðxÞ ¼
(

cos (q arccosðxÞ) jxj < 1

ðx−
ffiffiffiffiffiffiffiffi
x2−1

p
Þqþðxþ

ffiffiffiffiffiffiffiffi
x2−1

p
Þq

2
jxj > 1;

ðG1Þ

the asymptotic forms of PðϕÞ at large q follow:

PðϕÞ ∼
8<
:

ðAJ
2
Þq J < AJ�

Jþ
ffiffiffiffiffiffiffiffiffiffi
J2−A2

J

p
2

	q
J > AJ:

ðG2Þ

Note that h ¼ 1 in the expression above. Reinstating the h
dependence, we obtain the boundary between FM and PM
ground states to be at AJ=h ¼ 2 for 0 ≤ J=h ≤ 2 and at
J=hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ=hÞ2 − ðAJ=hÞ2

p
¼ 2 for AJ=h < 2. Simplifying

the latter expression, the critical value of the exchange
coupling is ðJ=hÞc ¼ 1þ ðAJ=2hÞ2 for AJ=h ≤ 2. This is
in perfect agreement with Eq. (23).
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