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The antiferromagnetic spin-1=2 Heisenberg model on a kagome lattice is one of the most paradigmatic
models in the context of spin liquids, yet the precise nature of its ground state is not understood. We use
large-scale density matrix renormalization group simulations (DMRG) on infinitely long cylinders and find
indications for the formation of a gapless Dirac spin liquid. First, we use adiabatic flux insertion to
demonstrate that the spin gap is much smaller than estimated from previous DMRG simulation. Second, we
find that the momentum-dependent excitation spectrum, as extracted from the DMRG transfer matrix,
exhibits Dirac cones that match those of a π-flux free-fermion model [the parton mean-field ansatz of a
Uð1Þ Dirac spin liquid].
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I. INTRODUCTION

Understanding the ground state of the antiferromag-
netic spin-1=2 Heisenberg model on a kagome lattice
(KAH) has proved to be one of the most vexed issues in
quantum magnetism [1–24]. The KAH is one of the
simplest models with strong frustration and is a reasonable
starting point for understanding various layered magnets
such as Herbertsmithite [25,26]. The possibility of a
quantum spin liquid (QSL) [27] on the KAH was proposed
more than two decades ago [1] and was more recently
confirmed numerically through density matrix renormali-
zation group (DMRG) simulations [8]. However, there is a
multitude of possible QSLs [28,29], and despite tremen-
dous efforts, the precise nature of the QSL in the KAH
remains unknown. Thus, we refer to it simply as the kagome
spin liquid.
Currently, the most promising candidates are the gapped

Z2 spin liquid [1,30–32] (Z2 SL) and the gapless Uð1Þ
Dirac spin liquid (DSL) [3]. Recent DMRG studies appear
to support a gapped Z2 SL scenario [8,11,12]. However,
characteristic properties of the gapped Z2 SL, e.g., fourfold
topological degeneracy on a torus and fractional statistics
of spinons (e.g., through modular matrix [33–36]), have

not been observed. On the other hand, there are several
indications favoring a DSL over a Z2 SL. First, extensive
variational Monte Carlo studies suggest a DSL [5,14–17].
Second, the kagome spin liquid was found to be proximate
to a chiral spin liquid stabilized by the addition of longer-
ranged spin exchange interactions [37,38], with indications
that the transition between them is continuous [19]. While
there is no known theory that could describe a continuous
transition between a Z2 SL and the chiral spin liquid
[39,40], such a transition occurs naturally if the kagome
spin liquid is a DSL. Third, a recent theoretical work [41]
suggests that a DSL is a natural possibility by investigating
a lattice gauge theory formulation [42,43] of the easy-axis
(XXZ) kagome model [19,20].
Most of the early experimental studies on candidate

materials, such as Herbertsmithite, suggested a gapless
spin-liquid scenario based on spin susceptibility and specific
heat measurements [25]. However, the effective model for
those materials is thought to be more complicated than the
KAH, and it was difficult to determine if these gapless
signatureswere intrinsic properties of the kagome spin liquid
or were due to magnetic impurities. A recent NMR study
of Herbertsmithite found evidence for a finite spin gap
(0.03J–0.07J) by using theKnight shift to filter out impurity
contributions [44].
In this paper, we revisit the kagome spin-liquid problem

using the DMRG [45–47] method, which remains one of
the most unbiased and powerful numerical methods to deal
with this problem. We systematically investigate the energy
gap and excitation spectrum of the kagome spin-liquid
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phase by using extensions to the previously implemented
algorithms: (i) We provide new insight into the heavily
debated spin gap issue of the KAH by computing its
dependence on boundary conditions and show that the
spin gap from our DMRG simulations is consistent with a
gapless QSL (e.g., DSL). (ii) We obtain the momentum-
resolved spectrum of correlation lengths of the KAH,
which is closely related to the excitation spectrum [48].
In particular, this spectrum shows signatures of Dirac
cones at the locations expected for a gapless DSL [3].
We emphasize that these signatures are seen in the same
spin-liquid phase that was reported in previous DMRG
simulations [8,11], not a different, competing phase. The
method we use here can also be directly applied to explore
QSL phases in other lattice models.
The paper is organized as follows. We begin by reviewing

some promising spin-liquid candidates and previous DMRG
studies in Sec. II. We then discuss the expected behavior of
various QSLs when placed on the cylinder geometry in
Sec. III. We present our numerical DMRG data in Sec. IV.
First, we show that the spin gap drops significantly compared
to previously reported values as we twist the boundary
conditions. Then, we extract the momentum-dependent
excitation spectrum from the DMRG transfer matrix. The
triplet excitations reveal a Dirac cone structure, with the
Dirac point located at the M point of the Brillouin zone, as
expected for a π-flux DSL. We finally conclude with a
summary and discussion in Sec. V.

II. BRIEF REVIEW: KAGOME SPIN LIQUIDS

A. Previous DMRG studies

Yan et al. [8] performed an extensive DMRG study of the
kagome Heisenberg model on cylinders with circumference
sizes from Ly ¼ 2 (e.g., YC4) to Ly ¼ 6 (e.g., YC12) unit
cells. Most importantly, it was found that the ground state
is a symmetric spin-liquid state that has a much lower
energy than competing valence bond crystal states [4,7]. By
performing a careful finite-size scaling analysis on different
geometries, an energy per site of E0 ¼ −0.4379ð3Þ was
estimated. Several observations were made regarding the
nature of the spin-liquid state: (i) The ground state is a spin
singlet protected by a small spin gap to the lowest-lying
spin-1 state. A spin gap ΔS¼1 ¼ 0.125ð9ÞJ, with J being
the strength of the exchange interaction, was found for the
Ly ¼ 6 (unit cells) cylinder (XC12-2). This gap is smaller
than the gap of ΔS¼1 ¼ 0.164J extracted from earlier exact
diagonalization studies of a 36-site cluster [49]. (ii) The
singlet gap, separating the ground state from the lowest
spin-0 excited state, is estimated to be much smaller,
ΔS¼0 ¼ 0.054ð9Þ for the Ly ¼ 6 (unit cells) cylinder
(XC12-2). This differs strongly from the exact diagonal-
ization results that estimate the singlet gap to be less than
0.01J [49]. The difference is attributed to strong finite-
size effects for the small clusters used for the exact

diagonalization studies. (iii) The ground state is found to
have a very short correlation length. The findings of Yan
et al. were further corroborated by the SUð2Þ-invariant
DMRG study of Depenbrock et al. [11]. It was further
argued based on the entanglement properties that the spin
liquid is likely a Z2 spin liquid [11,12].

B. Parton constructions for kagome spin liquids

For the discussion that follows, it will prove very useful
to have a picture of the competing phases within the
language of the fermionic parton construction. Here, we
briefly review the parton construction for a 2D plane
[28,29,50]; in Sec. III, we discuss the novel phenomena
that arise when a QSL is wrapped onto a cylinder.
In the parton construction, the physical spin operator is

expressed as a bilinear of a fictitious S ¼ 1=2 fermion,
Ŝi ¼

P
σ;σ0f

†
i;σSσ;σ0fi;σ0 . In order to reproduce the correct

properties for Ŝi, one enforces the constraint 1 ¼ P
σf

†
i;σfi;σ.

This introduces an extensive redundancy: For example, the
spin operator is left invariant under Uð1Þ “gauge trans-
formations” fi;σ → eiϕifi;σ [in fact, there is actually a larger
SUð2Þ redundancy]. In the resulting effective field theory, the
fermionic partons are coupled to an emergent gauge field that
both enforces the constraint and implements the microscopic
redundancy as a gauge invariance.
Rather than elaborating on the field theory, we use the

parton construction as a variational ansatz for the ground
state and its low-lying excitations. Letting jMFi be an ansatz
free-fermion wave function for the f, we can obtain a spin-
1=2 wave function by projecting onto a single occupancy,

jΨi ¼
Y
i

nið2 − niÞjMFi ¼ PGjMFi: ð1Þ

Various nontrivial spin-liquid phases result by choosing
jMFi to be the ground state of certain free-fermion Hf , as
will be discussed below.
The parton picture simultaneously suggests an ansatz for

the excitations. If γσ is a low-lying excitation of Hf ,
with σ ¼ ↑=↓, we can obtain a corresponding ansatz for
a low-lying excitation of the spin system,

jγσi ¼ PGγ
†
σjMFi: ð2Þ

This excitation is called a fermionic “spinon” excitation
since it carries an S ¼ 1=2 moment. Consequently, the
spinon is a topological excitation; e.g., it cannot be made by
acting with the local Si operators in some patch. Triplet
excitations are obtained from the two-spinon states. If the
mean-field description is well behaved, the energy of the
ansatz excitation jγσi should have some qualitative relation
to the energy of γ in Hf : for example, the location of band
minima or gapless points.
We now turn to the free-fermion ansatz Hf thought to be

relevant for the kagome spin liquid.
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1. Gapped Z2 spin liquid

We obtain a gapped Z2 spin liquid [1,30,31] by
supposing that the partons form a Bardeen–Cooper–
Schrieffer (BCS) superconductor:Hf¼−

P
hi;ji;σti;jf

†
iσfjσþ

Δijfi↑fi↓þH:c:−μN. Various choices of sign structures
for the t, Δ (corresponding, for example, to patterns of π
flux through plaquettes) in fact lead to eight known gapped
Z2-SLs, which differ in how the crystal symmetries act on
the spinon excitations [1,51–54]. In all eight cases, the
Bogoliubov de Gennes (BdG) particles γσ are gapped,
leading to a spin gap. There is also a second type of
excitation in a Z2 spin liquid: a π flux of the emergent
gauge field, which is coupled to the partons (the other
gauge excitations are at very high energies because of the
Higgs mechanism). An ansatz for this π flux (a.k.a.
“vison”) excitation is given by appropriately modifying
the pairing tij → −tij, Δij → −Δij along a semi-infinite
line to mimic a π flux piercing the plane at the endpoint,
finding the resulting free-fermion ground state, and
Gutzwiller projecting. The π flux is also a topological
excitation, but it does not carry spin. The existence of the π
flux leads to important phenomena on the cylinder, which
we discuss later.

2. Uð1Þ-Dirac spin liquid

In the Uð1Þ-Dirac spin liquid, we choose a hopping-only
ansatz [3,5,14–17]:

Hf ¼ −
X
hi;ji;σ

ti;jf
†
iσfjσ þ H:c: − μN: ð3Þ

The uniform nearest-neighbor ansatz tij ¼ 1 is a poor choice
for the kagome model since it leads to a flat valence band:
With an odd number of sites in the unit cell at a density of
n ¼ 1 per site, this band would be half full. Instead, one
considers the hopping pattern shown in Fig. 1(b), which has a
π flux piercing the hexagons. This π-flux ansatz results in a
halved magnetic Brillouin zone with two Dirac cones at
momenta Q ¼ ðπ=2; π=2Þ, Q0 ¼ ð−π=2;−π=2Þ. Combined
with spin, there areNf ¼ 4 gapless Dirac cones and hence a
vanishing spin gap. Since the emergent gauge field is not
“Higgsed,” there are also low-energy gauge fluctuations, and
the resulting effective theory is essentially Nf ¼ 4 QED3.

3. Chiral spin liquid

The chiral spin liquid is also a hopping-only ansatz
[3,55,56], but we choose the tij to have phases such that the
occupied bands have a total Chern number of C ¼ 1 per
spin species. From the point of view of the DSL, it is
obtained by turning on the same-sign mass term, ψ̄Q;σψQ;σ,
on all Nf ¼ 4 Dirac cones. By choosing C ¼ 1, the ansatz
breaks both time-reversal T and reflection P, though their
combination PT is preserved. Generically, this leads to a
nonvanishing expectation value for the chiral order

parameter S⃗iðS⃗j × S⃗kÞ, where i, j, k are three nearby sites.
Since the Chern band is gapped, there is a finite energy cost
for spinon excitations, and the emergent gauge field is
gapped by the effective Chern-Simons term. The Chern-

Simons term leads to a spin-Hall coefficient of σðsÞH ¼ 1
2
.

Note that the Dirac-SL can be considered the “parent
state” for many of these spin liquids: The Z2 gapped states
are obtained by turning on some superconducting terms,
while the CSL arises if a staggered B field spontaneously
forms in addition to the π flux. This picture gives a natural
scenario for continuous phase transitions into these neigh-
boring phases.

III. SPIN LIQUIDS ON A CYLINDER

Before providing numerical DMRG results for the
kagome spin liquid, it is worthwhile to pause and consider
what one should expect for a spin liquid in the DMRG
simulation, which compactifies the kagome lattice into a
cylinder. Since spin liquids are topological phases, they
display a number of subtle features on a cylinder.

(c) (d)

(a) (b)

FIG. 1. (a) Illustration of the kagome lattice with a width of
Ly ¼ 4 unit cells. The different geometries, YC8-0, YC8-2, YC8-
4, and YC8-6, correspond to identifying the site x with the site a,
b, c, or d, respectively. (b) The π-flux state, where each hexagon
has π flux. We chose a specific gauge, in which the red bond has
sij ¼ −1, and the black bond has sij ¼ 1. The different geom-
etries [here (c) YC8-0 and (d) YC8-2] correspond to different
ways of cutting the Brillouin zone (shown as blue and red lines).
TheM points are [labeled by ðk1; k2Þ],M1 ¼ ðπ; 0Þ,M2 ¼ ð0; πÞ,
and M3 ¼ ðπ; πÞ. The DSL has a halved magnetic Brillouin zone
(dashed line) because it is a π-flux ansatz. The two Dirac points
of the DSL are at �Q, and we refer to this as Q, Q0 in the text.
Note the blue and red lines represent cuts in the original Brillouin
zone; the allowed momenta of the fractionalized spinons form
similar cuts through the magnetic Brillouin zone, but the cuts are
displaced according to the spin flux θ and the emergent gauge
flux ϕ, as we explain in Sec. III C.
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A. Kagome cylinder geometries

A cylinder is defined by identifying sites that differ by
some r⃗, which defines the different compactifications.
We work with the YC2n-2m cylinders, where x⃗ is identified
with x⃗þ na⃗1 −ma⃗2 and a⃗1, a⃗2 are the kagome Bravais
vectors defined in Fig. 1(a). We have n > m, so we call
Ly ¼ n the “circumference” of the cylinder, while m
amounts to a shift of the most naive identification
m ¼ 0. We note that YC2n-0 and YC2n-n are actually
the YC2n and XC2n geometries introduced in Ref. [8].
Since one direction of the system is compactified, the

momentum along that direction is discretized, specifically

nk1 þmk2 ¼ 0; mod 2π: ð4Þ
Note that the other direction is infinite, so k1 and k2 can
take continuous values so long as they satisfy the above
relation. The different geometries (different n and m) thus
provide different cuts through the Brillouin zone, as shown
in Figs. 1(c) and 1(d).
A second parameter that one can tune is the boundary

condition θ of the spins around the circumference, the
same way one would measure spin stiffness. We obtain a
twist boundary condition by modifying Heisenberg cou-
pling according to Sþx;yS−x0;yþ1

→ eiθ=LySþx;yS−x0;yþ1
. By anal-

ogy to flux threading, we call θ the spin flux in the cylinder,
as shown in Fig. 2(a).

B. Gapped spin liquid on a cylinder

Gapped spin liquids have fractionalized quasiparticles
that have nontrivial statistics (e.g., the fermionic spinon).
A direct consequence of such fractionalization is the
topological degeneracy on a torus; There is one ground
state per quasiparticle type [30,57]. Precisely the same

degeneracy arises for a long (infinite) cylinder—one can
picture the ends of the cylinder as identified into a torus at
infinity. The energy splitting between these “topological
sectors” is exponentially small in the circumference.
In the Z2-SL, the topological degeneracy can be under-

stood in terms of the boundary conditions of the fermionic
partons. While the boundary conditions of the spins are set
by θ, the fermionic spinons are coupled to an emergent
gauge field, and the flux “ϕ” of this gauge field through the
cylinder effectively changes their boundary conditions. In a
superconductor, the π flux is invisible to the condensate,
so periodic (PBC) and antiperiodic (APBC) will give nearly
degenerate energies—the splitting should decay exponen-
tially in the cylinder circumference vs coherence length.
There is an interesting interplay between the topological

degeneracy and spin flux θ. Spin rotations S�i → e�iΩS�i are
implemented on the partons as fi;σ → eiΩσ=2fi;σ , where σ ¼
�1 corresponds to spin-up and spin-down components (the
eigenvalue of 2Sz). As a consequence, the spin flux θ will
change the boundary conditions of the up or down partons
by �θ=2. A superconductor has no spin stiffness, so the
change in the energy will again be exponentially small in the
circumference of the cylinder. However, at θ ¼ 2π, Hf [in
Eq. (3)] does not return to itself: Because they carry half-
integer spin, the boundary conditions for the fσ have been
changed by �2π=2≡ π. Equivalently, threading 2π-spin
flux adiabatically exchanges between the PBC and APBC
topological sectors, as shown in Fig. 2(b). Note that the
location of the crossing is pinned to θ ¼ π by time reversal,
where it acts by exchanging the two topological sectors.
In summary, there is a striking signature of a gapped Z2

spin liquid: As spin flux is inserted, there should be an
exponentially small change (LxO½e−Lcyl=ξ�) in the ground-
state energy, and at θ ¼ 2π, the ground state should not
return to itself but instead should thread the emergent π flux
that corresponds to the other topological degenerate ground
state [58,59]. Furthermore, with those topological degen-
erate ground states, one can also calculate the modular
matrix that fully characterizes the topological order of a
gapped SL [35,36].

C. Dirac spin liquid on a cylinder

Like the Z2-SL, the DSL has an emergent gauge field
that can dynamically change the boundary conditions of
spinons (including either PBC or APBC). Those PBC and
APBC indeed correspond to two different topological
sectors of a Dirac spin liquid, whose energy splitting
vanishes algebraically with the system size. However,
because of the semimetallic parton band structure, the
response is quite different: Any twist of the parton
boundary conditions will shift the energy by vFLx=L2

y,
where vF is the spinon velocity, because of the energy of
the filled parton bands below the Dirac point. In particular,
a boundary condition in which the allowed k modes avoid
the Dirac point will be the lowest in energy since this

(c) (d)

(b)(a)

FIG. 2. Diagram for a spin liquid under the twist. (a) The spinon
feels half-twist boundary or flux due to the fractionalization.
(b) The response of the energy under the twist. (c) Two
topological sectors of a DSL, with one gapped sector and one
gapless sector. (d) The collapse of the twist simulation will have a
quasiparticle emerging as the domain wall.
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effectively opens up a gap of order vF=Ly. Thus, when a
Dirac spin liquid is placed on a narrow cylinder, the gauge
field will generically adjust to open up a gap. Therefore, a
numerical observation of a nonvanishing gap on a single
long cylinder generally does not rule out the possibility of a
gapless DSL.
Here, flux threading can be used to find fingerprints of a

DSL on a cylinder. As before, adiabatically threading spin
flux θ through the cylinder twists the up or down parton
boundary conditions by �θ=2, as shown in Fig. 2(a).
This twist is in addition to the (shared) emergent flux ϕ.
For symmetry reasons, the internal gauge flux will either be
ϕ ¼ 0 or π. As we thread spin flux, the energy spectrum
will again generically look like Fig. 2(b), but in contrast to a
gapped SL, the splitting is only algebraically small. Beyond
the crossing, it will become difficult to adiabatically track
the state becauseof the large splitting and small gap (since the
allowed k modes become close to the Dirac point); at some
point, the π-emergent flux will enter to partially cancel the
spin flux, at which point there will be a discontinuous jump
in the ground-state energy of the DMRG simulation [60].
The expected behavior of the gap depends on the geom-

etry, which we consider in more detail at the mean-field
level in order to interpret our numerical results.At spin flux θ,
the momenta of the partons f↑=↓ on a YC2n-2m cylinder are
restricted to

nk1 þmk2 ¼ ϕ� θ=2 mod 2π; ð5Þ
where ϕ ¼ 0, π is the emergent gauge flux. The � corre-
spond to spinons f↑, f↓, respectively. There are two classes
of cylinders that behave very differently with θ:

(i) Type I cylinder: YC2n-4k. For YC2n-4k cylinders,
when θ ¼ 0 the flux ϕ ¼ π avoids both Dirac points,
while both are present for ϕ ¼ 0. In this case, we
would (naively) expect the gap to decrease like
ð2π − θÞ=Lx until adiabaticity is lost after θ > π and
the emergent π flux tunnels in. Hence, we cannot
force the system to go gapless.

(ii) Type II cylinder: YC2n-(4kþ 2). In contrast, the
YC2n-(4kþ 2) cylinder becomes gapless at θ ¼ π.
Here, for ϕ ¼ 0, the ↑Q and ↓Q0 components are
gapless, while for ϕ ¼ π, the ↓Q and ↑Q0 are
gapless. All other values of spin flux have a gap
that should decrease as jπ − θj=Lx. Thus, at θ ¼ π,
two of the four Dirac fermions are present regard-
less of the emergent flux, and hence, we can force
the system to go gapless.

IV. NUMERICAL RESULTS

In the following, we discuss the numerical results for
the KAH obtained using DMRG simulations on infinite
cylinders (iDMRG) [47]. Besides the nearest-neighbor
Heisenberg interactions, we also include a small second-
neighbor interaction for some simulations,

H ¼ J1
X
hiji

S⃗i·S⃗j þ J2
X
hhijii

S⃗i · S⃗j: ð6Þ

We study the behavior of the spin gap and transfer matrix
spectrum (an analog of the excitation spectrum) as we
adiabatically twist the boundary conditions (spin-flux θ).
We implement the adiabatic twist by using the previous
DMRG wave function as the initial step for the next θ value
[60]. The ground-state energy during the insertion is
provided in Appendix B 2a. Note that while DMRG
generally finds the absolute ground state, when passing
adiabatically through a level crossing, there may be a small
regime in which the DMRG follows the higher, metastable
level until “tunneling” into the lower state, a phenomenon
we encounter below. We find that the behavior of all the
geometries can be grouped into the two types discussed in
Sec. III C. For the type I cylinders (YC8-0 and YC8-4), the
adiabaticity fails at θ ≈ 4π=3, and the simulation collapses
to the other topological sector with lower energy [60]; note
for π < θ ≲ 4π=3, we are tracking the higher, metastable
state, not the absolute ground state. For type II (YC6-2,
YC8-2, YC10-2, YC12-2, and YC8-6), the adiabaticity
fails around θ ≈ π, at which point we find an instability of
the kagome spin liquid towards an ordered state. For a DSL,
this instability corresponds to a spontaneous generation
of mass iΨ̄σ3μ3Ψ (see Appendix C for more details). This
instability can itself serve as an indication for a Dirac spin
liquid, as a gapped spin liquid would not be prone to it.

A. Spin gap

The spin (triplet) gap ΔS¼1 is obtained by creating an
Sz ¼ 1 excitation in the bulk of the cylinder and then
calculating the energy difference to the Sz ¼ 0 sector
[36,37] (see Appendix A for details). We stress here that
the spin gap is different from the (extensive) energy
splitting between the different topological sectors.
Figure 3(a) provides raw data for the spin gap as a function

of the twist angle θ for DMRG bond dimension m ¼ 4000.
Generally, the spin gap decreases with increasing bond
dimension, as seen in Fig. 3(b), and thus the data shown
provide only an upper bound for the spin gap. When θ ¼ 0,
the spin gap is rather large: For example, YC8-0 and YC8-4
have a spin gap ofΔS¼1 ≈ 0.15J, completely consistent with
previous DMRG simulations [8,11]. Strikingly, the spin gap
shows a significant decrease when θ is increased, and right
before the failure of adiabaticity, the spin gap drops to a very
small value ΔS¼1 ≈ 0.02J − 0.04J. The approximately lin-
ear decrease of the gap for larger twist angles θ is suggestive
of a DSL gapless spin liquid. As discussed in the previous
section, the spin gap for a gapped spin liquid should have an
exponentially small [Oðe−Ly=ξÞ] dependence on the twist
angle θ, though of course ξ can be large.
We emphasize that, based on our data alone, we cannot

conclude whether the gap will vanish in the thermodynamic
limit. For large enough Ly, the spin gap of a DSL at
θ ¼ 0 should decrease with the circumference size Ly as
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ΔS¼1 ∼ vF=Ly. This behavior has not been observed in
previous studies [8,11] nor in our current simulations.
On the one hand, this could be an artifact of the finite bond
dimension m of DMRG simulations; finite m tends to
overestimate the spin gap [Fig. 3(b)], necessitating a careful
extrapolation in 1=mα, where α is an unknown power.
Since m must increase exponentially with circumference to
achieve the same accuracy, it becomes very challenging to
accurately extract the spin gap for large circumferences.
It is also the reason why the larger system size appears to
have a larger gap in Fig. 3. Indeed, at comparable numerical
accuracy, the larger system size has a smaller spin gap
(see Appendix B 2e, Fig. 16). Alternatively, for small
circumferences, it is unclear whether the gap will follow

the naive mean-field expectation ΔS¼1 ∼ vF=Ly; a possible
reason is discussed in Sec. IV B 1.

B. Transfer matrix spectrum

We examine the transfer matrix spectrum on the infinite
cylinder (i.e., the correlation-length spectrum) and compare
the KAH with a free-fermion π-flux model. In the ansatz
wave function of the DMRG (matrix product states), the
correlation functions of charge-q operators [e.g., the spin-
spin correlations CS¼1ðrÞ ¼ hSþ0 S−r icon] can be expanded as
a sum of exponentials,

CqðrÞ ¼
Xmq

j¼1

αq;jλ
r
q;j: ð7Þ

Here, r is the distance along the long direction of the cylinder,
q is a quantum number,mq is a bond dimension, and λq;j are
eigenvalues of the DMRG transfer matrix [61]. Using the
quantum numbers q, we can distinguish, for example, a
triplet excitation from a singlet excitation (or, more precisely,
an Sz ¼ 1 excitation from a Sz ¼ 0 excitation). The eigen-
values λq;j ¼ eikq;j−ξ

−1
q;j have a real part, corresponding to a

correlation length ξq;j, and an imaginary part, corresponding
to amomentum kq;j. The largest, ξq ¼ maxðξq;jÞ, bounds the
correlation length of all charge-q operators.
A recent work by Zauner et al. [48] pointed out a relation

between the energy spectrum of the physical excitations
and the spectrum of the transfer matrix. A more familiar
statement is that the largest correlation lengths ξq set an
upper bound for the lowest excitation gaps Δq (up to a
factor), and for a Lorentz-invariant system, it holds that
Δq ∝ 1=ξq. The corresponding kq gives the momentum of
the excitation along the length of the cylinder. These
relations actually hold nicely for the KAH at different
twist angles, as demonstrated in Fig. 3(b).
Figures 4(a) and 4(b) show the Sz ¼ 1 transfer matrix

spectrum of the KAH and the π-flux free-fermion model
Eq. (3) as functions of the twist angle θ. We consider the
type II YC8-2 geometry and include a small J2 to stabilize
the adiabatic twist up to θ ¼ π (Appendix B 2e, B 2d shows
results for other geometries). The three different colors
label three “sectors” distinguished by their momenta; we
observe that the momenta kS¼1;j cluster into three distinct
groups, and we plot the largest several ξS¼1;j from each
momenta group. The momentum can be resolved into its
lattice components k1, k2, providing an alternative way to
plot the data. In Figs. 4(c)–4(f), for each twist angle θ, we
choose only the largest correlation length ξ in each of the
three different sectors (colors) and plot them in momentum
space. The Dirac point in momentum space corresponds to
the data at the twist angle θ ¼ π.

1. Interpretation as DSL

The KAH and free-fermion spectra are remarkably
similar. The excitation spectrum can be understood based

(a)

(b)

FIG. 3. (a) Upper bound on the spin gap ΔS¼1 under the twist
boundary condition θ for J2 ¼ 0; the estimate is obtained using
DMRG bond dimension m ¼ 4000 and using the lowest-energy
topological sector. Data end at the failure of adiabaticity. The
qualitative behavior depends on the type of cylinder (I or II),
which in a DSL would be gapless at θ ¼ 2π, π, respectively.
(b) Dependence of the spin gap ΔS¼1 (solid line) and Sz ¼ 1
correlation length ξ (dashed line) on the spin flux θ and DMRG
bond dimension m. Data are taken with J2 ¼ 0.05 on the type II
YC8-2 cylinder. Generally, the estimated gap decreases with the
bond dimension m; the larger the system size is, the more likely
we are to overestimate the spin gap.
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on the free-fermion π-flux model. Note that Sz ¼ 1
excitations arise from particle-hole excitations near the
Dirac points; a momentum p − q spin flip takes the form
Sþðp − qÞ ¼ f†↑ðpÞf↓ðqÞ. The π-flux state has two Dirac
points at Q ¼ ðπ=2; π=2Þ and Q0 ¼ ð−π=2;−π=2Þ. We
group the particle-hole excitations into intravalley forward
(blue), intravalley backward (yellow), and intervalley for-
ward (red), as illustrated in Fig. 4(g) (intervalley backward

scattering is higher in energy). The Dirac points are avoided
on the θ ¼ 0YC8-2 cylinder, as shown in Fig. 1(d), but as θ
increases, the allowed momenta shift and eventually pass
through the Dirac point; the f↑ and f↓ feel opposite flux
and hence move oppositely. As can be seen in figure,
this shift affects the three modes in a qualitatively dif-
ferent fashion. The dispersion of the red mode follows a
Dirac behavior and becomes gapless at the twist angle
θ ¼ �π. In terms of momenta, the gapless point occurs at
ð2k1; k2Þ ¼ ð0; πÞ as expected from the displacement
between Q and Q0. The yellow mode has a constant energy
under the twist angle θ. The blue mode has a similar
response as the red mode, but it remains gapped when the
system hits the Dirac points (θ ¼ π).
The spectrum of the KAH and the π-flux free-fermion

model show surprisingly good agreement: (i) The red mode
has a linear sharp Dirac cone structure, (ii) the yellow mode
is almost flat, and (iii) the modes occur with the predicted
momenta. The qualitative difference between the two
models is that the yellow and blue modes in the KAH
are lower compared with the free-fermion model. Even
though the DSL theory should have an emergent SUð4Þ
symmetry in 2D, in the quasi-1D geometry, the intravalley
interactions may be stronger.
The existence of the renormalized flat yellow band also

explains the kink in the θ dependence of the triplet gap
ΔS¼1: For small θ, it drops below the linear red band; the
two bands then cross. This implies that gaps obtained in
previous DMRG studies, which all worked at θ ¼ 0, were
probing the yellow intravalley excitation. Since the yellow
band is subject to strong interaction effects, this may relate
to the nonobservation of vF=Ly gap scaling on accessible
cylinders.
We want to remark that within our DMRG simulations,

the correlation spectrum of the KAH still has a finite “gap”
even at the Dirac point. This is a necessary consequence of
DMRG since the finite bond dimension m induces a finite
correlation length. We find the ξ increase with m (see
Appendix B 2e, Fig. 15), as expected for a DMRG
simulation of a critical system. In fact, a similar behavior
is also found in the free-fermion model. The correlation
length estimated from DMRG (with m ¼ 250 in Fig. 4) is
finite even for the gapless free-fermion model with an
infinite correlation length. For a very large bond dimension
(m ¼ 3000; see Appendix B 1, Fig. 8), the correlation
length becomes very large (ξ ∼ 1000 sites), supporting the
fact that the finite correlation length at the Dirac point
(in Fig. 4) is purely an artifact of small bond dimension.
The spectrum we find here is qualitatively different from

the transfer matrix of the gapped Z2 spin liquid reported in
Ref. [62]. For additional comparison, we also include the
transfer matrix for the mean-field ansatz of the chiral spin
liquid, i.e., a gapped Chern band that descends from the
π-flux ansatz (Appendix B 1, Fig. 8), as well as a magnetic
ordered state (Appendix B 2f, Fig. 17).

(c)

(e)

(a) (b)

(d)

(f)

(g)

FIG. 4. The transfer matrix spectrum in the Sz ¼ 1 sector
(roughly the triplet channel) for the kagome Heisenberg model
(a,c,e) and free-fermion model (b,d,f). The vertical axis is the
inverse of correlation length 1=ξ, which can be considered as
the gap Δ of the excitations, up to a prefactor Δ ¼ vs=ξ. The
horizontal axis denotes (a,b) the twist angle θ; (c,d) momentum
2k1; and (e,f) momentum k2. In panels (c)–(f), we plot only the
lowest level of each excitation type, cf. panel (g). The cylinder we
show here is the YC8-2 cylinder for both cases, and the truncation
error of DMRG is around 2 × 10−6, which corresponds to bond
dimension m ¼ 6000 for the kagome Heisenberg model and
m ¼ 250 for the free-fermion model. For the kagome Heisenberg
model, we also include a small J2 ¼ 0.05. The finite “gap” at the
Dirac point appears to be due to the truncation error of DMRG
simulations (see Fig. 15 in Appendix B 2e). (g) Three different
types of particle-hole excitations. The arrows represent the
direction of the movement of the discretized momentum under
the twist boundary conditions.
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C. Sz = 0 spectrum and scalar chirality

We now turn to the Sz ¼ 0 transfer matrix spectrum
shown in Fig. 5(a), which includes singlet excitations for
which the interactions have a more drastic effect. Note that
because our numerics do not explicitly preserve SOð3Þ
symmetry, the Sz ¼ 0 spectrum contains both SOð3Þ
singlets and elements of SOð3Þ multiplets. The correlation
length in the Sz ¼ 0 sector shows a critical feature: At the
twist angle θ ¼ π, the Sz ¼ 0 correlation length is ξ ∼ 100
unit cells, which (holding fixed the bond dimension
m ¼ 6000) is much larger than the correlation length
ξ ∼ 5 in the Sz ¼ 1 sector. This effect is beyond a mean-
field analysis since, for a free fermion, there will be no
difference between Sz ¼ 0 and Sz ¼ 1 sectors.
The large correlation length in the Sz ¼ 0 sector arises

from long-range correlations of the scalar chirality
χ ¼ S⃗iðS⃗j × S⃗kÞ. To confirm this, in Fig. 5(b), we show a
fit for the correlation function of the scalar chirality,
hχð0ÞχðrÞi ∼ e−r=ξ. Indeed, the correlation length ξ is almost
identical to the largest correlation length obtained from the
transfer matrix in the Sz ¼ 0 sector. The large correlation
length of the scalar chirality is somewhat surprising given
our knowledge of Nf ¼ 4 QED3 [Uð1Þ DSL]. The scalar
chirality corresponds to the SUð4Þ singlet ψ̄ψ , which was
suggested to have higher scaling dimension than the SUð4Þ
adjoint fermion bilinears [63]. Naively, an operator with a
lower scaling dimension in a critical theory would give a
larger correlation length in DMRG calculations with a finite
bond dimension, in an apparent contradictionwith our result.
However, our result does not necessarily indicate that the
scalar chirality has the lowest scalingdimension in the critical
theory since the magnitude of the correlation length is not
directly equivalent to the scaling dimension of an operator.
Another possible explanation is that the cylinder geometry
drastically changes the scaling analysis since (if it was stable)

QED3 dimensionally reduces toNf − 1 coupled Tomonaga-
Luttinger liquids [64], for which the scaling analysis may
differ substantially from the 2D limit. In addition, we note
that the SUð4Þ-invariantmass ψ̄ψ generates theCSL (it gives
the bands a net Chern number), andwe know that the KAH is
proximate to the CSL [19,37,38,65]. It was also suggested
that the scalar chirality contains a monopole operator, which
might have a lower scaling dimension than the fermion
bilinears [6].

V. CONCLUSION AND DISCUSSION

We used large-scale DMRG simulations to study the
quantum spin-liquid phase in the S ¼ 1=2 kagome antifer-
romagnetic Heisenberg model. DMRG studies of the KAH
are most natural on a cylinder. We point out that, even if a
gapless QSL such as the Dirac spin liquid is realized in the
two-dimensional bulk limit, the system generally acquires a
nonvanishing gap on the cylinder. The predicted size of
this gap depends sensitively on the geometry and boundary
conditions of the cylinder, complicating the finite-size
scaling analysis. Thus, the observation of a gap in the
previous DMRG studies of the KAH, which is also repro-
duced in our study, might not rule out a gapless QSL
until the gap can be accurately measured for a sequence
of “equivalent” geometries (e.g., YC8;YC12;YC16;…),
which is extremely challenging because of the exponential
blowup in DMRG bond dimension.
To better identify the nature of the QSL in the KAH

using DMRG, we insert spin flux through the cylinder,
changing the boundary condition around the circumfer-
ence. Using adiabatic flux insertion, we find that the spin
gap on the cylinder geometry is much smaller than
estimated from previous DMRG simulations. Second, we
found that the momentum-dependent excitation spectrum,
as estimated from the DMRG transfer matrix, exhibits
Dirac cones that agree well with the ones found for a π-flux
free-fermion model [the parton mean-field ansatz of a Uð1Þ
Dirac spin liquid]. These findings suggest that the ground
state of the KAH is a gapless DSL, instead of a gapped QSL
such as the Z2 topological phase. This is more in line with
several recent numerical [5,10,14–17,22,23] and analytical
[41] results obtained by methods other than DMRG.
Besides the direct numerical evidence summarized above,

there is other circumstantial evidence that the KAH is a
Uð1Þ Dirac spin liquid. First, we observe an instability of
the kagome spin liquid to an ordered state at the twist angle
θ ¼ π in the YC4k-2 cylinder. This instability can be
explained as the spontaneous mass generation (iΨ̄σ3μ3Ψ)
of Dirac fermions on a small cylinder. Second, we find that
the excitations in the singlet sector are very different from the
triplet sector, which may be because of theUð1Þ gauge field
(either the photon or the monopole). Third, early studies
found a chiral spin liquid [19,37,38,65] proximate to the
kagome spin liquid, and the transition between them
is consistent with being continuous [19]. This can be

(a) (b)

FIG. 5. (a) The transfer matrix spectrum of the kagome
Heisenberg model in the Sz ¼ 0 sector versus the twist angle
θ. Here, we have the YC8-2 cylinder, J2 ¼ 0.05, and bond
dimension m ¼ 6000. (b) Correlation function of the scalar
chirality hχð0ÞχðrÞi at θ ¼ π and 17π=18. The correlation lengths
from fitting hχð0ÞχðrÞi are ξ ¼ 119 (θ ¼ π) and ξ ¼ 38.5
(θ ¼ 17π=18), which are virtually identical to the correlation
lengths obtained from the transfer matrix ξ ¼ 121 and ξ ¼ 39.
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understood as a spontaneous mass generation (iΨ̄Ψ) for the
Dirac fermions in aUð1ÞDSL. In contrast, there is no known
theory for such a transition from a gapped Z2 spin liquid
(with toric-code topological order) or a Z2 Dirac spin liquid.
However, we also have to give a word of caution. While

we found indications of gapless features in the system sizes
that we can access, we cannot draw a definite conclusion
for the thermodynamic limit. Diverging correlation lengths
require extremely large bond dimensions for proper con-
vergence of the gap, making it impossible to rule out the
existence of a small but finite gap with a large correlation
length. In addition, fixing θ ¼ 0, the spin gap should
eventually decrease as vF=Ly, which has not yet been
observed. Within a DSL scenario, this could be a finite-size
effect due to observed strong renormalization of the intra-
valley backward scattering, or it could be a numerical
artifact of finite-bond dimension. Finally, the present data
do not directly reveal the nature of the gauge field, which
could be either Uð1Þ or Z2. It would be very interesting if
the details of the entanglement spectrum, as well as an
analysis of the other low-energy states, could be used to
infer such information. Therefore, our result is certainly not
the final answer to the long-standing question on the KAH.
Nevertheless, our results strongly suggest that the ground
state of the KAH is a DSL, which has many theoretical and
experimental implications.
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APPENDIX A: NUMERICAL ALGORITHM

1. Transfer matrix and its spectrum

Numerically, we wrap a 2D lattice on a cylinder with one
direction compactified with a small number of sites, and the
other direction is infinite. We use the MPS to cover the
cylinder in the fashion of a snake chain, as graphically

shown in Fig. 6(a). Along the compactified direction (a1),
the snake covering does not maintain the translational
symmetry explicitly; thus, one needs distinct MPS for
each site. On the other hand, the MPS is translation invariant
and repeating along the direction a2. Then, one can use the
MPS (of the smallest repeating unit cell) to define the transfer
matrix (TM), as shown in Fig. 6(b). With the TM, one can

further calculate its eigenvalues λq;j ¼ eikq;j−ξ
−1
q;j , which have

a real part, corresponding to a correlation length ξq;j, and an
imaginary part, corresponding to a momentum kq;j. Here, q
are the quantum numbers, from which we can distinguish,
for example, triplet excitation from singlet excitation.
Because of the snake covering, the MPS does not have

translational invariance along the compactified direction
(a1). However, the Hamiltonian still has translational
invariance along a1; hence, the momentum k1 along that
direction can still be extracted. The way to calculate k1 is
similar to calculating a global quantum number q, for
which one needs to obtain the momentum k1 of each
Schmidt basis. Technically, we implement the translational
operation T1 along the direction a1 and then obtain a mixed
TM–TT1 , as shown in Fig. 6(c). The dominant eigenvector

(b)

(a)

(e)(d)

(c)

FIG. 6. The graphical representation of (a) the MPS and (b) the
transfer matrix. The quantum number of the eigenvalue is
determined by q ¼ Qr −Qr0. (c) The mixed transfer matrix to
calculate the momentum k1 of each Schmidt basis. (d) The −1
geometry for the square lattice (it is analogous to the −2 geometry
for the kagome lattice). The periodic condition is found by
identifying the sites labeled by the same number. (e) The mixed
transfer matrix for the fermionic excitation.
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of TT1 will be Vα;β ¼ δα;βeikα , and kα gives the momentum
k1 of each Schmidt basis.
We remark that for certain special geometries, for

instance, the YC2n-2, the momentum along the compacti-
fied direction cannot be extracted using the method dis-
cussed above because, for those geometries, the momenta
k1 and k2 are intertwined together. A consequence of this
is that one cannot define the mixed TM for the translation
T1. For example, we can consider the −1 geometry for the
square lattice, Fig. 6(d) (it is the analogy of the −2
geometry for the kagome lattice). One can see that under
the T1 translation, the sites on one column do not go back to
the same column; instead, some of the sites will go to the
neighboring column. This is different from the normal
geometry [see the left panel of Fig. 6(a)], for which T1

translation maps the sites on one column back to itself;
hence, the mixed TM − TT1 can be well defined. A benefit
of the−2 geometry, however, is that the snake-fashion MPS
is actually translational invariant under two sites, no matter
how large the circumference of the cylinder is. Then, one
can actually use a MPS with two-site structure (for the
kagome lattice, it is six sites) to do the iDMRG simulation.
With the momentum k from the TM’s eigenvalue, one can
then obtain the momentum

2k1 ¼ kþ 2θ=Ly; k2 ¼ kLy=2: ðA1Þ

Here, Ly is the width of the cylinder, and θ is the twist
boundary condition. Therefore, for the −2 geometry, one
can still get k1 and k2, but k1 has a π ambiguity.
Before closing this section, it is worth making a few

remarks on fermionic systems. Usually, to simulate a
fermionic system, we would first do a Jordan-Wigner trans-
formation to obtain the corresponding bosonic model; we
would then simulate thebosonicmodel directly. Therefore, to
calculate the spectrum of the fermionic (e.g., single-particle)
excitations, one should consider the mixed TM− Tf, with a
Jordan-Wigner string inserted [see Fig. 6(e)].

2. Algorithm of calculating the spin gap

We use an algorithm that combines iDMRG and finite
DMRG to calculate the spin gap. First, we use iDMRG to
obtain a convergedwave function of an infinite cylinder; then,
we cut the infinite cylinder into two halves and insert 3 ×
Ly × Ly sites into the system (as shown in the Fig. 7). The left
(L) and right (R) semi-infinite cylinder can be considered the
environment (boundary conditions), and we calculate the
energy of the ground state E0ðSz ¼ 0Þ and the spin-1 sector
E0ðSz ¼ 1Þwithin the inserted 3 × Ly × Ly cylinder. Finally,
we obtain the spin gap ΔS¼1 ¼ E0ðSz ¼ 1Þ − E0ðSz ¼ 0Þ.
This algorithm is similar to the one used in finite DMRG,

where one obtains the spin (triplet) and singlet gap by
sweeping in the middle of a finite cylinder to minimize the
boundary effect. The only difference is that the boundary
environment we use comes from the iDMRG simulation,

while finite DMRG uses the environment from finite
cylinder simulation.

APPENDIX B: ADDITIONAL NUMERICAL DATA

1. Benchmark for free fermions

We begin with the transfer matrix spectrum of the free-
fermion model, the π-flux state on the kagome lattice
[Eq. (3)]. Here, we show the data with a larger bond
dimension m ¼ 3000 (Fig. 8); meanwhile, we also compare
the casewhere the ground state is a Chern insulator. It is clear
that, comparedwith the small bond dimension data [m ¼ 250
in Figs. 4(b), 4(d), and 4(f)], the spectrum of free Dirac
fermions [Figs. 8(a), 8(c), and 8(e)] is almost critical at the
Dirac point. This supports the fact that the finite correlation
length of the kagome Heisenberg model at the Dirac point is
simply an artifact of finite bond dimension in the DMRG

(a)

(b)

FIG. 7. (a) iDMRG–finite DMRG combined algorithm.
(b) Finite DMRG algorithm.

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Transfer matrix spectrum for free fermions [Eq. (3)] on
the YC8-2 cylinder with bond dimension m ¼ 3000. Here, we
compare the free Dirac fermion model and a Chern insulator: the
inverse of correlation lengths 1=ξ versus (a,b) twist angle, (c,d)
momentum 2k1, and (e,f) momentum k2. The Chern insulator we
show here is obtained by assigning π=25 flux in the up and down
triangles (of the kagome), and 23π=25 flux in the hexagon.
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simulations. On the other hand,we also calculate the case of a
Chern insulator, which clearly shows a parabola shape in the
spectrum [Figs. 8(b), 8(d), and 8(f)].

2. Kagome Heisenberg model

a. Spin stiffness

Figure 9 shows the response of the ground-state energy
and entanglement entropy under the twist boundary con-
ditions before the failure of adiabaticity. Practically, the
adiabaticity can be checked by looking at the wave-
function overlap (≈ 0.99) between two adjacent twist
angles. During the (adiabatic) twist process, the system
remains in a spin-liquid phase that preserves all the lattice
symmetries. Both the energy and entanglement entropy
increase under the twist; the increase in entanglement
entropy is very significant and may be underestimated
by finite m. This behavior is consistent with the DSL. It is
worth noting that, for YC8-0, the twist trajectory is not
symmetric about θ ¼ π, which is a clear signature of
fractionalization; the state at θ ¼ π is not time-reversal
invariant either (also true for YC8-2).

b. Transfer matrix

We provide more data for the transfer matrix spectrum of
the KSL. We show that by changing the system sizes and
parameter point (J2 interaction), the feature of a Dirac cone
structure always exists. For example, the Sz ¼ 1 excitation
shows a clear Dirac cone structure. As before, the Sz ¼ 0
excitation is always much lower than the Sz ¼ 1 excitation.
As we described in the main text, the behavior of the

system can be grouped into two types, YC2n-ð4kþ2Þ
cylinder and YC2n-4k cylinder. In the following, we look
at the two different classes separately.

c. YC2n-ð4k+ 2Þ cylinder
Let us first focus on the YC2n-ð4kþ 2Þ cylinder. As we

showed in the main text, this class shows a clear Dirac cone
structure in the Sz ¼ 1 sector.
We plot the Sz ¼ 1 transfer matrix spectrum of J2 ¼

0.05 (Fig. 10), J2 ¼ 0.1 (Fig. 11), and J2 ¼ 0 (Fig. 12) for

the YC6-2, YC8-2, YC10-2, YC12-2, and YC8-6 cylin-
ders. Clearly, the Dirac cone is independent of the J2
interaction or system sizes. For J2 ¼ 0 in Fig. 12, we find
that it is more difficult to maintain the adiabaticity of the
twist around θ ¼ π. Specifically, for the YC6-2 and YC8-2
cylinders, we can only adiabatically twist the system to
θ ¼ 5π=6; for θ ¼ π, we always end up with an ordered
state with a sudden jump. This is the reason why there are
points missing at the Dirac cones in Fig. 12. As we argue in
the following section, once a Dirac spin liquid is put on a
small cylinder, it may have an instability towards sponta-
neously generating a mass gap. Such a finite-size effect is
absent in the pure 2þ 1D limit. This is consistent with
our observation that, for a larger system size (i.e., YC10-2
and YC12-2), the adiabatic twist can be maintained even
for J2 ¼ 0.
We note that in the spectrum, there is a set of four

low-lying yellow bands. In the left two panels, where we
convert the twist into momentum dependence, for clarity we
have only drawn the lowest level in each sector. Therefore,
the “peak” in some plot (e.g., YC8-2, J2 ¼ 0) is actually a
crossing between the four low-lying bands. The dispersion
of the yellow mode comes from nonuniversal UV physics
such as the quartic interaction of Dirac fermions.

FIG. 9. The energy and entanglement entropy of the KSL under
flux insertion. Here, the bond dimension is m ¼ 6000.

FIG. 10. The Sz ¼ 1 transfer matrix spectrum of J2 ¼ 0.05 for
the YC6-2, YC8-6, YC10-2, and YC12-2 cylinders. Here, the
bond dimension is m ¼ 6000.
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Besides the Sz ¼ 1 transfer matrix spectrum, it is also
interesting to look at the Sz ¼ 0 transfer matrix spectrum,
Fig. 13. As we discussed in the main text, those Sz ¼ 0
excitations are more critical than the Sz ¼ 1 excitations. For
a large system size, the singlet excitation is not gapless at
the Dirac point θ ¼ π. We think this is again the artifact of
finite bond dimension, as one can see that the singlet
excitation keeps decreasing as the bond dimension m
increases, as shown in Fig. 13(b).

d. YC2n-4k cylinder

Finally, let us look at the YC2n-4k cylinder. As we
discussed in the main text, this class of cylinder behaves
very differently for YC2n-ð4kþ 2Þ, which is discussed
above. For the π-flux Dirac spin liquid, the YC2n-ð4kþ 2Þ
cylinder will hit the gapless Dirac point at θ ¼ π, while
the YC2n-4k cylinder will hit the gapless Dirac point at

θ ¼ 2π. Our simulation on the YC2n-4k cylinder is
also consistent with this scenario; namely, the adiabaticity
of the twist can be maintained after θ ¼ π until
θ ≈ 4π=3, after which the system collapses to the other
topological sector.
When the π-flux DSL hits the Dirac points at θ ¼ 2π on

the YC2n-4k cylinder, the four Dirac fermions will be
simultaneously gapless. Those four gapless Dirac fermions
could then form different gapless fermion bilinears giving
rise to gapless triplet (singlet) excitations. This is again
sharply distinct from the YC2n-ð4kþ 2Þ cylinder, where
only two Dirac fermions are gapless when the system hits
the Dirac points (at θ ¼ π). Therefore, for the π-flux DSL,
we expect that the gapless triplet excitation at all three
M points will be gapless on the YC2n-4k cylinder.
However, we are working in a small cylinder, such that
some lattice symmetry (e.g., C3) is explicitly broken.

FIG. 11. The Sz ¼ 1 transfer matrix spectrum of J2 ¼ 0.1 for
the YC6-2, YC8-2, YC8-6, YC10-2, and YC12-2 cylinders.
Here, the bond dimension is m ¼ 6000.

FIG. 12. The Sz ¼ 1 transfer matrix spectrum of J2 ¼ 0 for the
YC6-2, YC8-2, YC8-6, YC10-2, and YC12-2 cylinders. Here,
the bond dimension is m ¼ 6000.
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Therefore, it is possible that the gapless triplet excitation at
certain M points will be pushed to a higher energy level.
Figure 14 shows the Sz ¼ 1 transfer matrix spectrum of

the cylinder YC8-0 with J2 ¼ 0. We find that the lowest
modes behave like the Dirac modes. Similar to the
YC2n-ð4kþ 2Þ cylinder, the lowest modes show a linear
dependence with the twist angle θ. These “Dirac modes”
are actually twofold degenerate, and they have the same k1
but distinct k2. Since our simulation cannot adiabatically
twist to the Dirac points, we cannot unambiguously
determine the momentum of the Dirac points. But there
are several indications that the two Dirac modes correspond
to the M1 ¼ ðπ; 0Þ and M3 ¼ ðπ; πÞ points [labeled by
ðk1; k2Þ]. First, the YC8-0 cylinder has a reflection sym-
metry (with the reflection axis perpendicular to a⃗1), under
which M1 transforms to M3. Second, by doing a simple
linear extrapolation for momenta k1 [Fig. 14(b)] and k2
[Fig. 14(c)], the momentum is consistent with M1 and M3.
We note that the extrapolation for k2 gives k2 ≈�0.1π
and k2 ≈ π � 0.1π, which has considerable discrepancy
from k2 ¼ 0 and k2 ¼ π. This discrepancy might come
from the finite-size effect; for example, there is scattering
(momentum transfer) between the two modes.

e. Dependence of numerical data on the bond dimension

Even in a critical system, the DMRG simulation will
always produce a finite correlation length (or excitation
gap) so long as the bond dimension m is finite. This is the

reason why the transfer matrix spectrum still shows a finite
“gap” even at the Dirac point. One way to see that this is
an artifact of the DMRG simulation is to look at the inverse
of the correlation length (1=ξ) at the Dirac point versus
the bond dimensionm, as shown in Fig. 15. We see that the
gap of the Dirac point decreases as the bond dimension
increases.
The numerical error induced by the finite bond dimension

of the DMRG also makes it difficult to compare different
system sizes. For example, comparing the spin gap in Fig. 3 or
the excitation spectrum of different system sizes, it appears
that the gap increases with the system size. However, as far as
we can tell, this is an artifact of the finite bond dimension. As
we have seen before, the gap of the Dirac point becomes
smaller as the numerical error (quantified via “truncation
error”) is decreased. On the other hand, for a larger system
size, the numerical error at fixed bond dimension becomes
much larger. Specifically, to achieve the same truncation error,
the required bond dimension increases exponentially with the
circumference of the cylinder. Figure 16 shows the spin gap

FIG. 13. (a) The singlet excitation spectrum for the (a)-i YC10-
2 and (a)-ii YC12-2 cylinders; here, J2 ¼ 0.05, and bond
dimension m ¼ 6000. (b) The dependence on the bond dimen-
sion m of the lowest singlet excitation spectrum for the (b)-i
YC10-2 and (b)-ii YC12-2 cylinders. The singlet excitation keeps
decreasing as the bond dimension m increases.

(a) (b) (c)

FIG. 14. The Sz ¼ 1 transfer matrix spectrum of YC8-0; here,
J2 ¼ 0, and the bond dimension is m ¼ 6000.

FIG. 15. The dependence of the inverse of correlation (1=ξ) at
the Dirac point versus the bond dimension m. We show both the
kagome Heisenberg model (YC8-2, J2 ¼ 0.05) and the free-
fermion model.
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Truncation error

FIG. 16. Spin gap versus the truncation error. The larger the
bond dimension is, the smaller the truncation error. For the
comparable truncation error, the larger system size has a smaller
spin gap. Here, we show J2 ¼ 0, and the twist angle θ ¼ 5π=6.
The bond dimensions shown are m ¼ 1000, 2000, 3000, 4000.
(For YC6-2, they are m ¼ 2000, 3000, 4000.)
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versus the truncation error, from which we see that for a
comparable truncation error, the larger system size in fact has
a smaller gap.

f. Transfer matrix spectrum of magnetic order

From the spectrum of the free fermions, the kagome
Heisenberg model with J2 ¼ 0, 0.05, 0.1, one can see the
trend that the yellow mode decreases by increasing J2.
We speculate that asJ2 increases, theyellowmode eventually
condenses, giving rise to a magnetic order. Figure 17 shows
the transfer matrix spectrum of a magnetic order at J2 ¼ 0.3,
which supports the above scenario. One can see that all the
lowest-lying excitation spectra are the yellow modes (no red
or blue), and they have a much smaller gap than the kagome
spin-liquid phase. The data shown are for a small bond
dimension m ¼ 2000; the gap will eventually vanish as we
go to the infinite bond dimension.

APPENDIX C: INSTABILITY OF A DIRAC
SPIN LIQUID IN THE QUASI-ONE-

DIMENSIONAL LIMIT

1. Instability on the YC2n-ð4k+ 2Þ cylinder
For the YC8-2 cylinder, once we tune the flux to θ ¼ π in

order to exactly hit the Dirac points, the kagome spin liquid
is unstable to an ordered state. Such an ordered state breaks
spin-flip symmetry Px ¼

Qð2SxÞ and the lattice symmetry
(e.g., Ta1 and C6); its order pattern is shown in Fig. 18.
Interestingly, such an ordered state actually preserves
certain symmetries, which are (i) the reflection symmetry
Ry, (ii) translational symmetry Ta2, (iii) the combination of
spin-flip and translational symmetry PxTa1, and (iv) XY
spin rotation symmetry.
One can work out the transformations for the Dirac

fermions Ψ [6],

Ta1∶ Ψ → ðiμ2ÞΨ; ðC1Þ

Ta2∶ Ψ → ðiμ3ÞΨ; ðC2Þ

Px∶ Ψ → ðσ1ÞΨ; ðC3Þ

Ry∶ Ψ → ðτ12Þðiμ12ÞΨ; ðC4Þ

where τ12 ¼ ðcosðπ=6Þτ1 − sinðπ=6Þτ2Þ and μ12 ¼
ðcosðπ=4Þμ1 − sinðπ=4Þμ2Þ, and Ψ̄ ¼ iΨ†τ3. Note that τ
represents the spinor index of Dirac fermions, σ represents
the spin index, and μ represents the valley index. With the
above symmetry transformation rules, one can straightfor-
wardly find the mass term (of the Dirac fermions) that gives
the order pattern (Fig. 18) as iΨ̄σ3μ3Ψ.

2. Spontaneous mass generation of Dirac
fermions in 1 + 1 dimension

As we discussed in Sec. IV, when the kagome spin liquid
is tuned to exactly hit the Dirac points on a small cylinder
[YC2n-ð4kþ 2Þ geometry], we numerically find an insta-
bility toward an ordered state by spontaneously generating
a mass term iΨ̄σ3μ3Ψ. This immediately raises the question
of whether these results imply that the Uð1Þ DSL (Nf ¼ 4

QED3) is unstable to the spontaneously chiral symmetry
breaking (CSB). The CSB of QED3 is still an open issue,
and it is unclear whether Nf ¼ 4 QED3 will eventually
flow to an interacting conformal fixed point or not [66].
Our numerical simulation, on the other hand, was carried
out on a quasi-1D cylindrical geometry, for which the issue
of spontaneous mass generation is different from the 2+1D
limit. The differences are twofold: (i) The Uð1Þ gauge
field is more gentle in quasi-1D; it simply reduces the Nf

flavors of 1D Dirac fermions toNf − 1 coupled Tomonaga-
Luttinger liquids (TLL) [64]. (ii) The effects of four-
fermion interactions on Dirac fermions are more drastic
in 1D than in in 2D; namely, in 2D, all four-fermion
interactions are irrelevant for (free) Dirac fermions, while in
1D, four-fermion interactions might be relevant or margin-
ally relevant.
For the Uð1Þ DSL on the YC2n-ð4kþ 2Þ cylinder with

θ ¼ π-flux, two Dirac fermions are gapless. Then, the
dynamical Uð1Þ gauge field reduces the system to a TLL
with central charge c ¼ 1, described by
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FIG. 17. The transfer matrix spectrum of a magnetic order.
Here, we show a YC8-2 cylinder, with J2 ¼ 0.3, and the bond
dimension m ¼ 2000.

FIG. 18. The kagome spin liquid on the YC8-2 cylinder is
unstable to an ordered state when θ ¼ π. The ordered state
spontaneously breaks the spin-flip symmetry Px ¼

Qð2SxÞ
(hence, the time-reversal symmetry) by forming a staggered
Ising magnetization (hSzi i ≈�0.03) as represented by arrows. It

breaks lattice symmetry, with bond correlations hS⃗i · S⃗ji, to be
−0.26 (green solid bonds), −0.22 (red hollow bonds), and −0.17
(black thin bonds).
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H ¼ v
2

�
1

K
ð∂tϕÞ2 þ Kð∂xϕÞ2

�
: ðC5Þ

Here, K is the Luttinger parameter. Generically, there are
perturbations that can potentially gap out the system.
Assuming that the Uð1Þ symmetry is preserved, the
most relevant perturbation is λ cos 2ϕ, which is irrelevant
when K > 1=2 [67]. For K < 1=2, the perturbation is
relevant and will gap out the Luttinger liquid, which
corresponds to the mass generation of the Dirac fermions.
For K ¼ 1=2, the perturbation is marginally relevant or
marginally irrelevant, depending on the sign of λ.
Microscopically, it is difficult to extract the Luttinger
parameter K. However, for the c ¼ 1 Luttinger liquid
with SUð2Þ symmetry, the K is fixed to K ¼ 1=2. Our
system is very close to this limit [the twist boundary
condition slightly breaks SUð2Þ symmetry]; hence, we
expect K ≈ 1=2. Consequently, it is reasonable that in
our numerical simulation on a small YC2n-ð4kþ 2Þ (e.g.,
YC8-2) cylinder, the DSL is unstable to an ordered state
with a mass term spontaneously generated.
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