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Entanglement is one of the most studied properties of quantum mechanics for its application in quantum
information protocols. Nevertheless, detecting the presence of entanglement in large multipartite states
continues to be a great challenge both from the theoretical and the experimental point of view. Most of the
known methods either have computational costs that scale inefficiently with the number of particles or
require more information on the state than what is attainable in everyday experiments. We introduce a new
technique for entanglement detection that provides several important advantages in these respects. First, it
scales efficiently with the number of particles, thus allowing for application to systems composed by up to
few tens of particles. Second, it needs only the knowledge of a subset of all possible measurements on the
state, therefore being apt for experimental implementation. Moreover, since it is based on the detection of
nonlocality, our method is device independent. We report several examples of its implementation for well-
known multipartite states, showing that the introduced technique has a promising range of applications.
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I. INTRODUCTION

Entanglement is the key ingredient for several protocols
in quantum information theory, such as quantum telepor-
tation [1], quantum key distribution [2], measurement-
based quantum computation [3], and quantum metrology
schemes [4]. Therefore, developing techniques to detect the
presence of entanglement in quantum states is crucial, and
in the past years several methods have been introduced.
The most general way to detect entanglement in a given

system consists of reconstructing its quantum state using
tomography and then applying any entanglement criterion
to the resulting state [5]. This, however, is costly both from
an experimental and a theoretical perspective. First, deter-
mining the state of large quantum systems is impractical in
experiments, given that quantum tomography implies
measuring a number of observables that increases expo-
nentially with the number of systems, e.g., 3N observables
even in the simplest case of N qubits [6]. Second,
determining whether an arbitrary state is entangled is
known to be a hard problem—to the best of our knowledge,
the computational resources of the most efficient known
algorithm scale exponentially with N [7]. Because of these
problems, it is very desirable to develop entanglement

detection techniques with more accessible experimental
and computational requirements.
One possible approach is to make use of entanglement

witnesses. These are criteria for detecting entanglement that
require measuring only some expectation values of local
observables [8]. In particular, attempts have been made to
derive witnesses that adapt to the limited amount of
information that is usually available in a typical experi-
ment. For instance, one can consider witnesses involving
only two-body correlators [9] or a few global measure-
ments [10,11]. Nonetheless, entanglement witnesses con-
stitute a method that lacks generality, given that the known
methods are generally tailored to detect very specific states.
There are techniques capable of deriving a witness for any
generic entangled state, which can also be constrained to
the available set of data [12], or adapted to require the
minimal amount of measurements on the system [13].
However, they always involve an optimization procedure
that runs on an exponentially increasing number of param-
eters. A method to detect metrologically useful (hence,
entangled) states based on a couple of measurements has
recently been proposed [14]. However, these states re-
present only a subset of all entangled states.
A qualitatively different approach to entanglement

detection is based on Bell nonlocality [15]. Indeed, the
presence of nonlocality provides a certificate of the
entanglement in the state. Moreover, it has the advantage
that it can be assessed in a device-independent manner, i.e.,
without making any assumption on the actual experimental
implementation [16]. The easiest way to detect nonlocality
is by means of the violation of a Bell inequality. However,
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in analogy with the entanglement case, each inequality is
usually violated by a very specific class of states. In the
general case, verifying whether a set of observed correla-
tions is nonlocal can be done via linear programing [17].
Nonetheless, the number of variables involved again grows
exponentially with the number of particles, e.g., as 4N

already for the simplest scenarios where only two dicho-
tomic measurements per party are applied [16].
To summarize, the methods to detect entanglement

known so far are either not general or too costly, from a
computational and/or experimental viewpoint, to be applied
to large systems.
Here,wepresent a novel technique for device-independent

entanglement detection that is efficient both experimentally
and computationally. On the one hand, it requires the
knowledge of a subset of all possible measurements, most
of them consisting of few-body correlation functions, which
makes it suitable for practical implementations. On the other
hand, it can be applied to any set of observed correlations and
can be implemented by semidefinite programing involving a
number of variables that grows polynomially with N.
Of course, all these nice properties become possible only

because our method for entanglement detection is a
relaxation of the initial hard problem. However, and despite
being a relaxation, we demonstrate the power of our
approach by showing how it can be successfully applied
to several physically relevant examples for systems of up to
29 qubits. These examples demonstrate that our approach
opens a promising avenue for entanglement detection of
large many-body quantum systems.
This article is organized as follows. InSec. II,we introduce

the basic notation and definitions, while in Sec. III, we
present the idea of themethod togetherwith the application to
a simple scenario. Section IV is devoted to the presentation
of its geometrical interpretation together with a comparison
to the other techniques. In Secs. V and VI, we list some
examples of application of the method to relevant classes of
states. Lastly, Sec. VII contains conclusions and some future
perspectives.

II. NOTATION AND DEFINITIONS

We consider an entanglement detection scenario in
which N observers, denoted by A1;…; AN, share an
N-partite quantum state ρN . Each Ai performs m possible
measurements, each having d outcomes. We represent the
measurement of party i by Mai

xi, where xi ∈ f0;…; m − 1g
denotes the measurement choice and ai ∈ f0;…; d − 1g
are the corresponding outcomes.
By repeating the experiment sufficiently many times, the

observers can estimate the conditional probabilities,

pða1;…; aN jx1;…; xNÞ ¼ trðMa1
x1 ⊗ � � � ⊗ MaN

xN ρNÞ; ð1Þ

of getting the different outcomes depending on the
measurements they have performed. The conditional

probability distribution pða1;…; aN jx1;…; xNÞ describes
the correlations observed among the observers when
applying the local measurements Mai

xi on the state ρN .
One can also define the marginal distributions

pðai1 ;…; aik jxi1 ;…; xikÞ ¼ trðMai1
xi1

⊗ � � � ⊗ M
aik
xik
ρi1;…;ikÞ;

ð2Þ

where 0 ≤ i1 < � � � < ik < N, 1 ≤ k ≤ N, and ρi1;…;ik is the
reduced state of ρN corresponding to the considered subset
of parties. Marginals can equivalently be obtained from the
full distribution Eq. (1) by summing over the remaining
outcomes.
Since in what follows we mostly consider scenarios

involving two-output measurements (resulting from pro-
jective measurements performed on qubits), it is convenient
to introduce the concept of correlators:

hMði1Þ
xi1

…MðikÞ
xik

i
¼

X

ai1 ;…;aik

ð−1Þ
P

k
l¼1

ail pðai1 ;…; aik jxi1 ;…; xikÞ; ð3Þ

where 0 ≤ i1 < � � � < ik < N, xij ∈ f0; m − 1g, and
1 ≤ k ≤ N. The value of k represents the order of the

correlators: for instance, expectation values hMði1Þ
xi1

Mði2Þ
xi2

i are
of order 2. Correlators of order N are often referred to
as full-body correlators. In scenarios involving only
dicothomic measurements, correlators encode all the
information in the observed distribution Eq. (1). When
working with correlators, it is also useful to introduce
the measurement operators in the expectation value form,

namely, by using the notation MðiÞ
xi ¼ M1

xi −M0
xi . With

this definition, it is easy to see that hMði1Þ
xi1

…MðikÞ
xik

i ¼
trðMði1Þ

xi1
⊗ � � � ⊗ MðikÞ

xik
ρi1;…;ikÞ.

Now that the main concepts have been introduced, we
proceed with outlining the proposed entanglement detec-
tion method.

III. METHOD

Our method is based on the following reasoning
(discussed in detail below).
(1) If a quantum state ρN is separable, local measure-

ments performed on it produce local correlations (i.e.,
correlations admitting a local model).
(2) Any local correlations can be realized by performing

commuting local measurements on a quantum state.
(3) Correlations produced by commuting local measure-

ments define a positive moment matrix with constraints
associated to the commutation of all the measurements.
(4) Our method consists in checking if the observed

correlations are consistent with such a positive moment

BACCARI, CAVALCANTI, WITTEK, and ACÍN PHYS. REV. X 7, 021042 (2017)

021042-2



matrix. In the negative case, the state ρN producing the
correlations is proven to be entangled.
Let us now explain all these points in detail.
First, given a separable quantum state, i.e., ρN ¼P
λpλ⊗

i
ρAi
λ , any set of conditional probability distributions

obtained after performing local measurements on it admits
a decomposition of the following form:

pða1;…; aN jx1;…; xNÞ ¼
X

λ

pλtrð⊗
i
Mai

xi⊗
i
ρAi
λ Þ

¼
X

λ

pλ

YN

i¼1

pðaijxi; λÞ; ð4Þ

where pðaijxi; λÞ ¼ trðMai
xiρ

Ai
λ Þ. In the context of Bell

nonlocality, distributions that can be written in this form
are called local [16]. Local correlations do not violate
any Bell inequality. Conversely, if a given distribution
cannot be described by a local model like Eq. (4), it is said
to be nonlocal. We notice that, by the reasoning presented
above, whenever the set of observed distributions Eq. (1)
is nonlocal, we can conclude that the shared state is
entangled. Moreover, since nonlocality is a property that
can be assessed at the level of the probability distribution, it
can be seen as a device-independent way of detecting
entanglement. For the sake of brevity, throughout the rest of
the paper we therefore refer to our method as a nonlocality
detection one.
The second ingredient is that any local set of probability

distributions has a quantum realization in terms of local
commuting measurements applied to a quantum state [18].
In order to see it more explicitly, we first realize that any
decomposition of the form Eq. (4) can be rewritten as

pða1;…; aN jx1;…; xNÞ ¼
X

λ

qλ
YN

i¼1

Dðaijxi; λÞ; ð5Þ

where Dðaijxi; λÞ are deterministic functions that give a
fixed outcome a for each measurement; i.e., Dðaijxi; λÞ ¼
δai;λðxiÞ, such that ai ¼ λðxiÞ, with λð·Þ a function from
f0;…; m − 1g to f0;…; d − 1g [16]. It is easy to see that
any such decomposition can be reproduced by choosing the
multipartite state ρN ¼ P

λqλjλihλj⊗N and measurement
operators of the form Mai

xi ¼
P

λ0Dðaijxi; λ0Þjλ0ihλ0j. In

particular, ½MðiÞ
xi ;M

ðiÞ
x0i
� ¼ 0∀ i; xi, and x0i.

The last step consists in using a modified version of the
Navascues-Pironio-Acin (NPA) hierarchy [19,20] that
takes into account the commutativity of the local measure-
ments to test if the observed probability distribution is local
(a similar idea was introduced in the context of quantum
steering [21]; see also Ref. [22]). The NPA hierarchy
consists of a sequence of tests aimed at certifying if a
given set of probability distributions has a quantum

realization Eq. (1). In NPA one imposes the commutativity
of the measurements between the distant parties. Now, we
impose the extra constraints that the local measurements
on each party also commute. The resulting semidefinite
program (SDP) hierarchy is nothing but an application in
this context of the more general method for polynomial
optimization over noncommuting variables introduced in
Ref. [23]; see also Ref. [24]. As noticed there, by imposing
commutativity of all the variables, this general hierarchy
reduces to the well-known Lassere hierarchy, namely, the
relaxation for polynomial optimization of commuting
variables [25]. An application of this relaxation technique
to describe local correlations was also proposed in
Ref. [26]. However, to the best of our knowledge, no
systematic analysis of its application to multipartite sce-
narios has been considered thus far.

A. Details and convergence of the hierarchy

It is convenient for what follows to recall the main
ingredients of the NPA hierarchy [19,20], which, as said,
was designed to characterize probability distributions with
a quantum realization Eq. (1). Consider a set O, composed
by some products of the measurements operators fMai

xig or
linear combinations of them. By indexing the elements in
the set as Oi, with i ¼ 1;…; k, we introduce the so-called
moment matrix Γ as the k × k matrix whose entries are
defined by Γij ¼ trðρNO†

iOjÞ. For any choice of measure-
ments and state, it can be shown that Γ satisfies the
following properties: (i) it is positive semidefinite, (ii) its
entries satisfy a series of linear constraints associated to the
commutation relations among measurement operators by
different parties and the fact that they correspond to
projectors, (iii) some of its entries can be computed from
the observed probability distribution Eq. (1), and (iv) some
of its entries correspond to unobservable numbers (e.g.,
when Oi and Oj involve noncommuting observables).
Based on these facts, one can define a hierarchy of tests

to check whether a given set of correlations has a quantum
realization. One first defines the sets Oν composed of
products of at most ν of the measurement operators, and
creates the corresponding Γ matrix using the set of
correlations and leaving the unassigned entries as variables.
Then one seeks for values for these variables that could
make the Γ positive. This problem constitutes a SDP, for
which some efficient solving algorithms are known [27].
If no such values are found, this means that the set of
correlations used does not have a quantum realization. By
increasing the value of ν, one gets a sequence of stricter and
stricter ways of testing the belonging of a distribution to the
quantum set.
We can now use the same idea to define a hierarchy of

conditions to test whether a given set of correlations has a
quantum realization with commuting measurements. To do
so, we simply impose additional linear constraints on the
entries of the moment matrix resulting from assuming that
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the local measurements also commute (for a more detailed
discussion, see Appendix A). Thus, given a set of observed
probability distributions, one can use them to build a NPA-
type matrix with the additional linear constraints associated
to the local commutation relations and run a SDP to check
its positivity to certify if the considered set of correlations
cannot be obtained by measuring a separable state.
Interestingly, the convergence of this hierarchy follows

from the results in Refs. [20,23]. Roughly speaking, one
can say that since the NPA hierarchy is proven to converge
to the set of quantum correlations, our method provides a
hierarchy that converges to the set of quantum correlations
with commuting measurements, which we have shown to
be equivalent to the set of local correlations [28]. Therefore,
any nonlocal correlation would fail the SDP test at a finite
step of the sequence given by the Oν.
Moreover, the commutativity of all the measurements

implies that the total number of variables that can be
involved in the SDP test is finite. The reason is that the
longest nontrivial product of the operators that can appear
in the moment matrix consists of the products of all the
different Mai

xi . Hence, the number of variables in the
moment matrix stops growing after the first step at which
this product appears. This also implies that the convergence
of the hierarchy is met at a finite step as well, namely,
coinciding to the level ν0 at which the longest nontrivial
products appear in the list of operators Oν0. Indeed, it is
easy to see that for μ > ν0 there cannot appear new
operators in the generating set; i.e., Oμ ¼ Oν0. Of course,
the aforementioned levels depend on the numbers ðN;m; dÞ
defining the scenario and it is, in general, high. Indeed,

according to the Collins-Gisin representation [29], one
has Nmðd − 1Þ independent measurement operators Mai

xi .
Therefore, the product of all of them would first appear in
the moment matrix at level ⌈Nmðd − 1Þ=2⌉. Consequently,
convergence is assured at level ν0 ¼ Nmðd − 1Þ.
To conclude, we stress that, depending on the level of the

hierarchy, one might not need knowledge of the full
probability distribution. Indeed, by looking at Eq. (2), it
is evident that to define a marginal distribution involving k
parties, one requires the product of k measurements Mai

xi .
Now, given that the operators of the setOν contain products
of at most ν measurement operators, the terms in the
moment matrix at level ν can only coincide with the
marginals of the observed distribution of up to k ¼ 2ν
parties. Therefore, in the multipartite setting, fixing the
level of the hierarchy is also a way to limit the order of the
marginals that can be assigned in the moment matrix.

B. Simple example

After presenting the general idea of the method, it is
convenient to conclude the section by illustrating it with a
concrete example. In what follows, we present the explicit
form of the moment matrix for the bipartite case, two
dicothomic measurements per party, and level ν ¼ 2 of the
hierarchy. For the sake of simplicity, we rename the
expectation value operators for the two parties as Ax
and By, with x, y ¼ 0, 1. In this scenario, the set of
operators reads as O2¼f1;A0;A1;B0;B1;A0A1;A0B0;
A0B1;A1B0;A1B1;B0B1g. The corresponding moment
matrix is

ð6Þ

where we define the following unassigned variables:

v1 ¼ hA0A1i; v2 ¼ hB0B1i; v3 ¼ hA0A1B0i; v4 ¼ hA0A1B1i;
v5 ¼ hA0B0B1i; v6 ¼ hA1A0A1i; v7 ¼ hA1B0B1i; v8 ¼ hB1B0B1i;
v9 ¼ hA1A0A1B0i; v10 ¼ hA1A0A1B1i; v11 ¼ hA1A0B0B1i; v12 ¼ hA0A1B0B1i;
v13 ¼ hA0A1B1B0i; v14 ¼ hA0B1B0B1i; v15 ¼ hA1B1B0B1i: ð7Þ

Now, if we further impose commutativity of all the measurements, namely, ½A0;A1� ¼ 0, ½B0;B1� ¼ 0, the corresponding
linear constraints reduce the number of variables. Explicitly, one gets v�i ¼ vi for any i ¼ 1;…; 15, and also
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v6¼hA0i; v8¼hB0i; v9¼ v14¼hA0B0i;
v10¼hA0B1i; v15¼hA1B0i; v11¼ v12¼ v13: ð8Þ

For a visual representation, the variables that become
identical because of the commutativity constraints are rep-
resented by the same color in Eq. (6). For any set of observed
correlations fhAxi; hByi; hAxByig, testing whether it is local
can be done in the following steps: assigning the values to the
entries ofΓ that can be derived from the observed correlations
and leaving the remaining terms as variables, then checking
whether there is an assignment for such variables such that the
matrix is positive semidefinite.
For instance, it is possible to check that any set of

correlations that violates the well-known Clauser-Horne-
Shimony-Holt (CHSH) inequality [30],

ICHSH ¼ hA0B0i þ hA0B1i þ hA1B0i − hA1B1i ≤ 2; ð9Þ

is incompatible with a positive semidefinite matrix Eq. (6).
We stress that a necessary condition to produce correlations
that violate Eq. (9) is that the measurements performed by
each party does not commute with each other. This shows
how the commutativity constraints imposed in the SDP test
are crucial for the detection of the nonlocality of the
observed correlations.
To conclude, we notice that, in this particular scenario,

any set of nonlocal correlations has to violate the CHSH
inequality (or a symmetrical equivalent of it) [16].
Therefore, it turns out that in this case the second level
of the hierarchy is already capable of detecting any nonlocal
correlation. That is, even if in this scenario the hierarchy is
expected to converge at level ν0 ¼ 4, the second level
happens to already be tight to the local set.

IV. GEOMETRICAL CHARACTERIZATION
OF CORRELATIONS

Before presenting the applications of our method,
we review a geometrical perspective, schematically repre-
sented in Fig. 1 [16], that is useful when studying
correlations among many different parties. It is known
that the set of local correlations Eq. (4) defines a polytope,
i.e., a convex set with a finite number of extremal points.
Such points coincide with the deterministic strategies
Dðaijxi; λÞ introduced in Eq. (5) and can be easily defined
for any multipartite scenario. As represented in Fig. 1, the
set of quantum correlations Eq. (1) is strictly bigger than
the local set. All the points lying outside the set L represent
nonlocal correlations.
Determining whether some observed correlations are

nonlocal corresponds to checking whether they are asso-
ciated to a point outside the local set. A very simple way to
detect nonlocality is by means of Bell inequalities. They are
inequalities that are satisfied by any local distribution and
geometrically they constitute hyperplanes separating the L

set from the rest of the correlations. Violating a Bell
inequality directly implies that the corresponding distribu-
tion is nonlocal. However, there can be nonlocal correla-
tions that are not detected by a given inequality, meaning
that they fall on the same side of the hyperplane as local
correlations.
On the other hand, a very general technique to check if a

point belongs to the local set consists in determining if it
can be decomposed as a convex combination of its vertices
[17]. Such a question is a typical instance of a linear
programing problem, for which there exist algorithms that
run in a time that is polynomial in the number of variables
[31]. Nevertheless, finding a convex decomposition in the
multipartite scenario is generally an intractable problem
because the number of deterministic strategies grows as
dmN . Already in the simplest cases in which each party
measures onlym ¼ 2, 3 dicothomic measurements, the best
approach currently known stops at N ¼ 11 and N ¼ 7,
respectively [32].
Coming back to the SDPmethod presented in the previous

section, we can now show how the technique can help in
overcoming the limitations imposed on the linear program.
Let us define the family of sets Lν as the ones composed by
the correlations that are compatible with the moment matrix
Γ defined by the observables Oν and the additional con-
straints of commuting measurements. Given that any local
distribution has a quantum representation with commuting
measurements, the series L1 ⊇ L2 ⊇ � � � ⊇ L defines a
hierarchy of sets approximating better and better the local

FIG. 1. Pictorial representation of the sets of correlations,
together with our approach to detection of multipartite non-
locality. The L and Q sets delimit the local and quantum
correlations, respectively. As shown here, the first forms a
polytope, namely, a convex set delimited by a finite amount of
extremal points, while the second, despite still being convex, is
not a polytope. The light orange sets are the first representatives
of the hierarchy L1 ⊇ L2 ⊇ � � � ⊇ L approximating the local
set from outside. It can be seen that some of the quantum
correlations lie outside the L2, meaning that they are detected as
nonlocal from the SDP relaxation at the second level. The dotted
line shows a Bell-like inequality that can be obtained by the
corresponding dual problem.
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set from outside. In Fig. 1, we show a schematic represen-
tation of the first levels of approximations.
Interestingly, it can be seen that the first level of the

hierarchy is not capable of detecting any nonlocal corre-
lations. A simple way to understand it is that, in the
moment matrix generated by O1, imposing commutativity
of the local measurement does not result in any additional
constraint in the entries. A clear example is given by the
N ¼ 2 case presented in the previous section. The moment
matrix corresponding to the first level can be identified
with the 5 × 5 top-left corner of Eq. (6). There, the only
modification imposed by local commutativity is the con-
dition for the matrix to be real, which can always be
assumed when working with quantum correlations.
Therefore, we can say that L1 ¼ Q1, meaning that the
first level of our relaxation coincides with the first level of
the original NPA, thus resulting in an approximation of the
quantum set from outside.
Since we are interested in focusing on the first nontrivial

level that allows for nonlocality detection, we then consider
L2. We notice that, at this level of the hierarchy, specifying
the entries Γij ¼ trðO†

iOjρÞ requires knowledge of up to
four-body correlators. Moreover, the amount of terms in the
set O2 scales as the number of possible pairs of measure-
ments Mai

xi , that is, as N
2m2d2. This implies that the size of

the moment matrix scales only quadratically with the
number of parties and measurements, which is much more
efficient compared to the exponential dependence dmN of
the linear program. Moreover, since the elements in the
moment matrix involve at most four operators, this implies
that the number of measurements to be estimated exper-
imentally scales as N4m4d4.
As mentioned before, checking whether a set of observed

correlations belongs to L2 constitutes a SDP feasibility
problem. Since we are addressing approximations of the
local set, there will be nonlocal correlations that will fall
inside L2 and that will not be distinguishable from the local
correlations. Therefore, our technique can provide only
necessary conditions for nonlocality. Nonetheless, we are
able to find several examples in which this method is able to
successfully detect nonlocal correlations arising from
various relevant states, proving that it is not only scalable,
but also a powerful method despite being a relaxation.

V. APPLICATIONS

The goal of this section is to show that the SDP
relaxation can be successfully employed for detection of
nonlocality arising from a broad range of quantum states.
We focus particularly on exploring the efficient scaling of
the method in terms of number of particles. To generate the
SDP relaxations, we use the software Ncpol2sdpa [33], and
we solve the SDPs with MOSEK [34].
We collect evidence that, from a computational point of

view, the main limiting factor of the technique is not time

but the amount of memory required to store the moment
matrix. Indeed, the longest time that is taken to run one of
the codes amounts to approximately 9 h [35]. Despite the
memory limitation, the SDP technique allows us to consider
multipartite scenarios that cannot be dealt with in the
standard linear program approach to check locality.
Indeed, for the scenarios with m ¼ 2, 3, we are able to
detect nonlocality for systems of up toN ¼ 29 andN ¼ 15,
respectively, thus overcoming the current limits of Ref. [32].
In the following sections, we list examples of states we

consider. Given that we study cases with dichotomic
measurements only, we present them in the expectation
value form fMðiÞ

xi g.

A. W state

As a first case, we analyze the Dicke state with a single
excitation, also known as the W state, namely,

jWNi ¼
1ffiffiffiffi
N

p ðj0…01i þ j0…10i…þ j10…0iÞ: ð10Þ

Let us consider the simplest scenario of m ¼ 2 dicho-
tomic measurements per party, where each observer per-

forms the same two measurements; that is, MðiÞ
0 ¼ σx and

MðiÞ
1 ¼ σz for all i ¼ 1;…; N. We are able to show that the

obtained probability distribution is detected as nonlocal at
level L2 for N ≤ 29. We recall that in this scenario the
complexity of this test scales as OðN4Þ, in terms of both
elements to assign in the moment matrix and measurements
to implement experimentally.
We also study the robustness of our technique to

white noise,

ρNðpÞ ¼ ð1 − pÞjWNihWN j þ p
1N
2N

; ð11Þ

where 0 ≤ p ≤ 1, and 1N represents the identity operator
acting on the space of N qubits. We estimate numerically
the maximal value of p, referred to as pmax, for which the
given correlations are still nonlocal according to the SDP
criterion. Table I reports the resulting values as a function
of the number of parties. While the robustness to noise
decreases with the number of parties, the method tolerates
realistic amounts of noise, always larger than 6%, for all the
tested configurations.
Finally, in order to study the robustness of the proposed

test with respect to the choice of measurements, we
also consider a situation where the parties are not able
to fully align their measurements and choose randomly
two orthogonal measurements [36]. More precisely, we

assume that MðiÞ
0 ¼ x⃗ðiÞ0 · σ⃗ and MðiÞ

1 ¼ x⃗ðiÞ1 · σ⃗, where σ⃗ ¼
ðσx; σy; σzÞ and x⃗ðiÞ0 , x⃗ðiÞ1 are vectors chosen uniformly at
random, with the only constraint of being orthogonal;

namely, x⃗ðiÞ0 · x⃗ðiÞ1 ¼ 0 for all i ¼ 1;…; N. We calculate
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numerically the probability pNL for the corresponding
correlations to be detected as nonlocal at the second level
of the relaxation. To estimate pNL, we compute the fraction
NNL=Nr of NNL nonlocal distributions obtained over a total
of Nr ¼ 1000 rounds. The corresponding results are
reported in the following table as a function of N.

N pNL N pNL

3 50.2% 7 21.0%
4 44.4% 8 12.8%
5 38.4% 9 6.3%
6 28.8% 10 2.7%

The results for randommeasurements also exemplify one
of the advantages of our approach with respect to previous
entanglement detection schemes. Given some observed
correlations, our test can be run and sometimes detects
whether the correlations are nonlocal and therefore come
from an entangled state. To our understanding, reaching
similar conclusions using entanglement witnesses or other
entanglement criteria is much harder, as they require solving
optimization problems involving N-qubit mixed states.

B. GHZ state

Another well-studied multipartite state is the
Greenberger-Horne-Zeilinger (GHZ) state, given by

jGHZNi ¼
1ffiffiffi
2

p ðj0i⊗N þ j1i⊗NÞ: ð12Þ

Contrarily to the W state, such a state is not suited for
detection of nonlocality with few-body correlations because
all the k-body distributions arising from measurements on
Eq. (12) are the same as those obtained by measuring the
separablemixed state, 1

2
ðj0ih0j⊗k þ j1ih1j⊗kÞ. Therefore, in

order to apply our nonlocality detection method to the GHZ
state, we need to involve at least one full-body term.
The solutions we present are inspired by the self-testing

scheme for graph states introduced in Ref. [37]: the first
scenario involves m ¼ 3 dichotomic measurements per

party; namely, MðiÞ
0 ¼ σx, M

ðiÞ
1 ¼ σd ¼ ð1= ffiffiffi

2
p Þðσx þ σzÞ,

and MðiÞ
2 ¼ σz for all i ¼ 1;…; N. To introduce full-

body correlators in the SDP. we define the set

Omix ¼ fO2; hMð1Þ
0 Mð2Þ

0 …MðNÞ
0 i; hMð1Þ

1 Mð2Þ
0 …MðNÞ

0 ig. The
moment matrix corresponding to such a set represents a
mixed level of the relaxation, containing also two full-body
correlators in the entries. However, since the number of
added columns and rows is fixed to 2 for any N, this level is
basically equivalent to level L2. Therefore, we preserve the
efficient OðN4Þ scaling with the number of parties of
elements in the moment of the matrix and measurements to
implement.
By numerically solving the SDP associated to this mixed

level of the hierarchy, we are able to confirm nonlocality
of the correlations arising from the GHZ state and the
given measurement for up to N ≤ 15 parties. Moreover,
we check that the number of full-body values that is
necessary to assign is constant for any of the considered

N, coinciding with the two correlators hMð1Þ
0 Mð2Þ

0 …MðNÞ
0 i

and hMð1Þ
1 Mð2Þ

0 …MðNÞ
0 i. Lastly, we estimate that the robust-

ness to noise in this case does not depend on N, and it
amounts to pmax ≈ 0.17.
As a second scenario, we also notice that one can

produce nonlocal correlations from the GHZ state at the
level Omix by considering m ¼ 2 measurement choices

only. Indeed, if ones considers MðiÞ
0 ¼ σx, M

ðiÞ
1 ¼ σd, the

resulting correlations are detected as nonlocal for any
N ≤ 28 (the fact that we are not able to reach N ¼ 29 is
due to the mixed level of the relaxations, which results in a
bigger matrix compared the scenario for the W state).
Table II shows the corresponding robustness to noise,
computed in the same way as for the W state. For both
configurations, the noise robustness of our scheme in
detecting GHZ states seems to saturate for large N even
if the computational (and experimental) effort scales
polynomially.

C. Graph states

Graph states [38] constitute another important family of
multipartite entangled states. Such states are defined as

TABLE I. Robustness of nonlocality to white noise in the case
of the W state, reported as a function of N.

N pmax N pmax N pmax

5 0.295 14 0.141 23 0.083
6 0.296 15 0.131 24 0.079
7 0.277 16 0.122 25 0.076
8 0.251 17 0.114 26 0.073
9 0.225 18 0.107 27 0.070
10 0.202 19 0.101 28 0.068
11 0.183 20 0.096 29 0.065
12 0.167 21 0.091
13 0.153 22 0.087

TABLE II. Robustness of nonlocality to white noise in the case
of the GHZ state and 2 dicothomic measurements per party,
reported as a function of N.

N pmax N pmax N pmax

5 0.107 14 0.135 23 0.145
6 0.112 15 0.137 24 0.146
7 0.116 16 0.138 25 0.147
8 0.120 17 0.140 26 0.147
9 0.123 18 0.141 27 0.148
10 0.127 19 0.142 28 0.148
11 0.129 20 0.143
12 0.132 21 0.144
13 0.134 22 0.145
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follows: consider a graph G, i.e., a set of N vertices labeled
by i connected by some edges Eij connecting the vertices i
and j. We associate a qubit system in the state jþii for each
edge i and apply a control-Z grate CZij ¼ diagð1; 1; 1;−1Þ
to every pair of qubits i and j that are linked according to
the graph G.
We notice that the GHZ state is also a graph state,

associated to the so-called star graph. However, due to its
particular relevance in quantum information, we prefer to
treat its case in the previous section. Here, we consider
some other exemplary graph states such as the 1D and 2D
cluster states and the loop graph state illustrated in Fig. 2.
Inspired by the self-testing scheme in Ref. [37], we
consider that each party applies three measurements given
by σx, σz, and σd. We are able to detect nonlocality in the
obtained correlations at level L2 for states involving up to
N ¼ 15 qubits. Again, the method at this level scales as N4.
Interestingly, our approach for the detection of nonlocal

correlations generated by graph states shows to be quali-
tatively different from McKague’s scheme in Ref. [37].
While the latter requires correlators of an order that
depends on the connectivity of the graph (namely, equal
to 1 plus the maximal number of neighbors that each vertex
has), our method seems—at least in some cases—to be
independent of it. Indeed, we are able to detect nonlocality
with four-body correlators in 2D cluster states, whose
connectivity would imply five-body correlators for the
self-testing scheme.

VI. EXPLICIT BELL INEQUALITIES

Another nice property of our nonlocality criterion comes
from the fact that, as it can be put in a SDP form, it
immediately provides a method to find experimentally
friendly Bell inequalities involving a subset of all possible
measurements. In fact, it turns out that the SDP proposed in
Sec. III has a dual formulation that can be interpreted as the
optimization of a linear function of the correlations that can
be seen as a Bell-like functional, i.e., a functional that has a

nontrivial bound for all correlations in Lk [20] (see
Appendix A for details). Thus, if a set of correlations is
found to be nonlocal, then the solution of the SDP provides a
Bell inequality that is satisfied by correlations in Lν and that
is violated by the tested correlations. Importantly, this Bell
inequality can further beused to test other sets of correlations.
By using the two sets of correlations obtained by

measuring 3 dicothomic observables per party in the
GHZ state, we are able to find the following Bell inequality:

I3
mix ¼

XN

i¼2

hMð1Þ
1 MðiÞ

2 i −
XN

i¼2

hMð1Þ
0 MðiÞ

2 i

þ ðN − 1ÞhMð1Þ
0 Mð2Þ

0 …MðNÞ
0 i

þ ðN − 1ÞhMð1Þ
1 Mð2Þ

0 …MðNÞ
0 i ≤ 2ðN − 1Þ: ð13Þ

Numerically, we could certify the validity of this inequality
for up to N ≤ 15. Moreover, in principle, the bound of
βC ¼ 2ðN − 1Þ is only guaranteed to be satisfied by
correlations in Lmix. However, motivated by the obtained
numerical insight, we could prove that this bound actually
coincides with the true local bound, and therefore, Eq. (13)
is a valid Bell inequality for all N (for all the analytical
proofs regarding this section, see Appendix B). This shows
that, at least in this instance, the Lmix defined by the SDP
relaxation associated to Omix is tight to the local set.
It is also easy to show that Eq. (13) is violated by

the GHZ state and the previously introduced choice of
measurements. In particular, the value reached is I3

GHZ ¼
ð1þ ffiffiffi

2
p ÞðN − 1Þ for any N. Given that both the local

bound and the violation scale linearly with N, the robust-
ness of nonlocality to white noise is constant and amounts
to pmax ¼ ½ð ffiffiffi

2
p

− 1Þ=ð ffiffiffi
2

p þ 1Þ� ≈ 0.174. We note that this
result is in agreement with what is achieved numerically
with the SDP for up to N ¼ 15.
Similarly, we also find the following Bell inequality by

using the set of correlations involving only two measure-
ments per party described for the GHZ state:

I2
mix ¼

XN

i¼2

hMð1Þ
1 MðiÞ

1 i −
XN

i¼2

hMð1Þ
0 MðiÞ

1 i

þ ðN − 1ÞhMð1Þ
0 Mð2Þ

0 …MðNÞ
0 i

þ ðN − 1ÞhMð1Þ
1 Mð2Þ

0 …MðNÞ
0 i ≤ 2ðN − 1Þ: ð14Þ

Once more, although this inequality is found numerically
for up to N ≤ 28, we prove that it is valid for any N.
Moreover, the bound βC ¼ 2ðN − 1Þ is not only valid for
correlation in Lmix but for any local set of correlations. The
GHZ state and the given measurements result in a violation
of I2

GHZ ¼ ½ð3þ ffiffiffi
2

p Þ=2�. Given that in this case the relative
violation is lower, we also have a lower robustness to noise,
coinciding with pmax ¼ ½ð ffiffiffi

2
p

− 1Þ=ð ffiffiffi
2

p þ 3Þ� ≈ 0.09 for
any N. We notice that this value is different from the ones

(a)

(b) (c)

FIG. 2. Representatives of the graphs associated to the classes
of states that have been studied with the SDP method: (a) linear
graph states, (b) loop graph states, (c) 2D cluster states.
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reported in Table II. The reason is that, to derive inequality
Eq. (14) from the dual, we restrict to assign only the values
of the two-body correlations and the two full-body ones.
On the other hand, the results in Table II also take into
account the assignment of the three- and four-body corre-
lators, showing that this additional knowledge helps in
improving the robustness to noise.
As a final remark, we stress that the measurement

settings considered to derive an inequality from the dual
might not be the optimal ones. For instance, we are able to
identify different measurement choices for the case of
Eq. (14) that lead to a higher violation of such an inequality,
hence, resulting also in a better robustness to noise (see
Appendix B for details).

VII. DISCUSSION

We introduce a technique for efficient device-independent
entanglement detection for multipartite quantum systems. It
relies on a hierarchy of necessary conditions for nonlocality
in the observed correlations. By focusing on the second level
of the hierarchy, we consider a test that requires knowledge
of up to four-body correlators only. We show that it can be
successfully applied to detect entanglement of many physi-
cally relevant states, such as theW, the GHZ, and the graph
states. Besides being suitable for experimental implemen-
tation, our technique also has an efficient scaling in terms of
computational requirements, given that the number of
variables involved grows polynomially with N. This allows
us to overcome the limitation of the currently known
methods and to detect entanglement for states of up to
few tens of particles. Moreover, the proposed technique has
a completely general approach and it can be applied to any
set of observed correlations. This makes it particularly
relevant for the detection of new classes of multipartite
entangled states.
We note that our techniques can also be used as semi-

definite constraints to impose locality. Consider, for in-
stance, a linear function f of the observed correlations. One
could find an upper bound on the value of this function over
local correlations by maximizing it under the constraint that
the moment matrix Γ is positive semidefinite. A particular
example could be to take f to be a Bell polynomial. Thus,
this approach would find a bound f ≤ βC satisfied by all
local correlations.
As a future question in this direction, it would be

interesting to study how accurate is the approximation of
the local set of correlations provided by the second level of
the hierarchy. In some of the scenarios that we consider, the
approximation is actually tight, but this is not generally the
case. A possible approach could be to compare the local
bound of some known Bell inequalities with that resulting
from the hierarchy.
Furthermore, we notice that the second level of the

hierarchy also has an efficient scaling with the number of
measurements performed by the parties. This would allow

us to inquire whether an increasing number of measurement
choices can provide an advantage for entanglement detec-
tion in multipartite systems.
Lastly, we believe that the present techniques can be

readily applied in current state-of-the-art experiments. For
instance, experiments composed by up to 7 ions have
demonstrated nonlocality using an exponentially increasing
number of full correlators [39]. Moreover, recent experi-
ments have produced GHZ-like states in systems composed
by 14 ions [40] and 10 photons [41,42] with visibilities
within the range required to observe a violation of the Bell
inequalities presented here. We notice, however, that the
measurements required to certify the presence of nonlocal
correlations using our approach are different from the ones
reported in these works.
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APPENDIX A: DETAILS OF THE METHOD

Here, we present in more detail the SDP relaxation
associated to quantum realizations with commuting mea-
surements. In order to be consistent with the examples
presented in the main text, we express it in terms of
correlators, but we stress that a formulation in terms of
projector and probabilities for higher numbers of outcomes
is straightforward.
Let us consider that the N observers Ai are allowed to

perform m dicothomic measurements each. We can there-

fore define the operators MðiÞ
xi ¼ M1

xi −M0
xi in terms of

measurements Mai
xi . It can be easily seen that expectation

values of MðiÞ
xi correspond to the correlators Eq. (3).

For any quantum realization of such operators, it is
possible to show that they satisfy the following properties:

(i) ðMðiÞ
xi Þ† ¼ MðiÞ

xi for any i ¼ 1;…; N and xi ¼ 1;…; m;

(ii) ðMðiÞ
xi Þ2 ¼ 1 for any i ¼ 1;…; N and xi ¼ 1;…; m;

(iii) ½MðiÞ
xi ;M

ðjÞ
xj � ¼ 0 for any i ≠ j and xi; xj ¼ 1;…; m.

Now, let us consider that the sets Oν we introduce in

Sec. III consist exactly of all the products of the fMðiÞ
xi g

up to order ν. Then, by indexing the operators in the sets as
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Oi for i ¼ 1;…; k, we define the k × k moment matrix as
follows:

Γij ¼ trðρNO†
iOjÞ;

where ρN is a genericN-partite quantum state.Aswas shown
in Refs. [19,20], for any set of quantum correlations P, the
properties (i)–(iii) and the fact that the associated ρN is a
proper quantum state reflect into the following properties of
the moment matrix: Γ†¼Γ, Γ ≽ 0, and the entries of the
matrix are constrained by some linear equations of the form

X

i;j

ðFmÞijΓij ¼ gmðPÞ m ¼ 1;…; l;

where ðFmÞij are some coefficients and the gmðPÞ can
depend on the values of the correlators composing the P
vector, as such,

gmðPÞ ¼ ðgmÞ0 þ
XN

k¼1

X

i1<…<ik
i1 ;…ij

ðgmÞi1;…;ik
j1;…;jk

hMði1Þ
j1

…MðikÞ
jk

i:

Up to this point, the method we describe coincides with
the NPA hierarchy [19,20], which is used to check whether
a set of observed correlations is compatible with a quantum
realization. In order to define a hierarchy to test for local
hidden variables realization, we introduce the additional
condition that all the measurements for the same party have

to also be commuting, namely, (iv) ½MðiÞ
xi ;M

ðiÞ
yi � ¼ 0 for any

i ¼ 1;…; N and xi ≠ yi ¼ 1;…; m.
It can be seen that property (iv) implies a second set of

linear constraints on the Γ matrix, which we identify as
X

i;j

ðF0
mÞijΓij ¼ g0mðPÞ m ¼ 1;…; l0:

To make it clearer, we show an example of linear constraint
that can come only if we impose condition (iv). Let us

consider the following four operators: Ok ¼ MðiÞ
xi M

ðiÞ
yi ,

Ol ¼ MðiÞ
xi M

ðjÞ
xj , On ¼ MðiÞ

yi , and Om ¼ MðjÞ
xj . It is easy to

see that, by exploiting (i)–(iii) plus (iv), Γkl ¼ Γnm for any
choice of xi; yi; xj ¼ 1;…; m and i; j ¼ 1;…; N.
Now, for any chosen Oν, we can test whether an

observed distribution P is compatible with a local model
via the following SDP:

maximize λ;

subject to Γ − λ1 ≽ 0;
X

i;j

ðFmÞijΓij ¼ gmðPÞ m ¼ 1;…; l;

X

i;j

ðF0
mÞijΓij ¼ g0mðPÞ m ¼ 1;…; l0; ðA1Þ

which is the primal form of the problem. A solution
λ�min < 0 implies that it is not possible to find a semidefinite

positive moment matrix satisfying the given linear con-
straints. Therefore, P has no quantum realization with
commuting measurements, and we conclude it is nonlocal.
We notice that by increasing the value of ν we get a
sequence of more and more stringent tests for nonlocality.
Indeed, the linear constraints for the level ν are always a
subset of the ones coming from νþ 1. Moreover, in
analogy with the NPA hierarchy, the series of tests is
convergent; hence, any nonlocal correlation will give a
negative solution λ�min at a finite step of the sequence.
Interestingly, we can also study the dual form of the SDP

problem, which reads as follows:

minimize GðPÞ ¼
X

k

ykgkðPÞ þ
X

k

y0kg0kðPÞ;

subject to
X

k

ykFT
k þ

X

k

y0kF0T
k ≽ 0;

X

k

yktrðFT
k Þ þ

X

k

y0ktrðF0T
k Þ ¼ 1: ðA2Þ

Thanks to the strong duality of the problem, a negative
solution for the primal implies alsoGðPÞ ¼ λ�min < 0. Since
any point in Lν satisfies the SDP condition at level ν with
GðPÞ ≥ 0, we can interpret GðPÞ as a Bell-like inequality
separating the Lν from the rest of the correlations. Indeed,
since gkðPÞ and g0kðPÞ are linear in terms of the probability
distribution, we derive that GðPÞ ≥ 0 defines also a linear
inequality for P. Violation of such an inequality directly
implies nonlocality.

APPENDIX B: PROOF OF LOCAL BOUND
AND QUANTUM VIOLATION FOR

THE INEQUALITIES

We start by proving the local bounds for the inequalities
introduced in the main text. To do so, we remind the reader
that to derive the maximal value attained by local corre-
lations, it is enough to maximize over the vertices of the
local set. In the correlator space, the deterministic local
strategies (DLS) take the form

hMði1Þ
j1

…MðikÞ
jk

i ¼ hMði1Þ
j1

i…hMðikÞ
jk

i; ðB1Þ

where each MðiÞ
xi term can take only 1 and −1 values. By

using this property, inequality Eq. (13) becomes

I3
mixðDLSÞ ¼ ðN − 1Þ½hMð1Þ

1 i þ hMð1Þ
0 i�T 0

þ ½hMð1Þ
1 i − hMð1Þ

0 i�T 2; ðB2Þ

where T 0 ¼ hMð2Þ
0 i…hMðNÞ

0 i and T 2 ¼
P

N
i¼2hMðiÞ

2 i.
For any number of parties N, we have that T 0 ≤ 1 and
T 2 ≤ N − 1; therefore,

I3
mixðDLSÞ ≤ 2ðN − 1ÞhMð1Þ

1 i ≤ 2ðN − 1Þ: ðB3Þ
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Similarly, for any deterministic strategy, inequality Eq. (14)
takes the from

I2
mixðDLSÞ ¼ ðN − 1Þ½hMð1Þ

1 i þ hMð1Þ
0 i�T 0

þ ½hMð1Þ
1 i − hMð1Þ

0 i�T 1; ðB4Þ

where T 1 ¼
P

N
i¼2hMðiÞ

1 i. As for before, we can use the
argument that T 0 ≤ 1 and T 1 ≤ N − 1 to conclude

I2
mixðDLSÞ ≤ 2ðN − 1ÞhMð1Þ

1 i ≤ 2ðN − 1Þ: ðB5Þ

Regarding the quantum violation, we recall that the
scenario we consider is jψi ¼ jGHZNi ¼ ð1= ffiffiffi

2
p Þðj0i⊗N þ

j1i⊗NÞ with measurement choices MðiÞ
0 ¼ σx, M

ðiÞ
1 ¼ σd ¼

ð1= ffiffiffi
2

p Þðσx þ σzÞ, and MðiÞ
2 ¼ σz, for all i ¼ 1;…; N. It is

easy to check that, for a GHZ state of any number of

parties, the following is true: (1) hσðiÞx σðjÞx i ¼ hσðiÞx σðjÞz i ¼ 0

for any i≠ j¼ 1;…;N; (2) hσðiÞz σðjÞz i ¼ 1 and, therefore,

hσðiÞd σðjÞz i ¼ ð1= ffiffiffi
2

p Þ and hσðiÞd σðjÞd i ¼ 1
2
, for any i ≠ j ¼ 1;

…; N; (3) hσð1Þx σð2Þx …σðNÞ
x i ¼ 1 and hσð1Þz σð2Þx …σðNÞ

x i ¼ 0;

therefore, hσð1Þd σð2Þx …σðNÞ
x i ¼ ð1= ffiffiffi

2
p Þ, for any N.

By using the properties listed above, one can check that

hI3
mixiGHZN

¼ ð1þ
ffiffiffi
2

p
ÞðN − 1Þ ≈ 2.41ðN − 1Þ; ðB6Þ

and, similarly, that

hI2
mixiGHZN

¼ 3þ ffiffiffi
2

p

2
ðN − 1Þ ≈ 2.21ðN − 1Þ: ðB7Þ

Moreover, we notice that by changing the measurement
setting, one can achieve a higher violation of I2

mix. Indeed,

it is easy to see that by choosingMð1Þ
0 ¼ ð1= ffiffiffi

2
p Þðσx þ σzÞ,

Mð1Þ
1 ¼ ð1= ffiffiffi

2
p Þðσx − σzÞ, and MðiÞ

0 ¼ σx,M
ðiÞ
1 ¼ σz, for

i ¼ 2;…; N, the resulting violation is

hI2
mixiGHZN

¼ 2
ffiffiffi
2

p
ðN − 1Þ ≈ 2.83ðN − 1Þ: ðB8Þ

To conclude, we proceed with the analysis of the
robustness to noise. We recall that this implies considering
the noisy version of the GHZ state; namely,

ρNðpÞ ¼ ð1 − pÞρGHZN
þ p

1N
2N

; ðB9Þ

where 0 ≤ p ≤ 1 represent the amount of white noise
added to the state. It can be easily seen that the noise
affects the values of the correlators for the GHZ state in the
following way:

hσði1Þj1
…σðikÞjk

iρN ¼ ð1 − pÞhσði1Þj1
…σðikÞjk

iGHZN
; ðB10Þ

for any jl ∈ fx; y; zg and 1 ≤ k ≤ N. Therefore, we can
consider the noise as a simple damping factor in theviolation
of the inequalities. By using this fact, we get that I3

mix is
violated as long as ð1 − pÞð1þ ffiffiffi

2
p ÞðN − 1Þ > 2ðN − 1Þ;

hence,

pmaxðI3
mixÞ ¼

ffiffiffi
2

p
− 1ffiffiffi

2
p þ 1

≈ 0.17: ðB11Þ

By the same argument, we analyze I2
mix for the two

measurement settings thatwe introduce. For the first one, the
inequality is violated as long as ð1−pÞ½ð3þ ffiffiffi

2
p Þ=2�ðN−1Þ>

2ðN−1Þ and, therefore,

pmaxðI2
mixÞ ¼

ffiffiffi
2

p
− 1ffiffiffi

2
p þ 3

≈ 0.09; ðB12Þ

while for the second one, the violation is preserved for
ð1 − pÞ2 ffiffiffi

2
p ðN − 1Þ > 2ðN − 1Þ; hence,

p0
maxðI2

mixÞ ¼ 1 −
ffiffiffi
2

p

2
≈ 0.29: ðB13Þ

Clearly, we see that for the second setting a higher violation
results also in a significantly higher robustness to noise.
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