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The quantum dynamics of interacting many-body systems has become a unique venue for the realization
of novel states of matter. Here, we unveil a new class of nonequilibrium states that are eigenstates of an
emergent local Hamiltonian. The latter is explicitly time dependent and, even though it does not commute
with the physical Hamiltonian, it behaves as a conserved quantity of the time-evolving system. We discuss
two examples of integrable systems in which the emergent eigenstate solution can be applied for an
extensive (in system size) time: transport in one-dimensional lattices with initial particle (or spin)
imbalance and sudden expansion of quantum gases in optical lattices. We focus on noninteracting spinless
fermions, hard-core bosons, and the Heisenberg model. We show that current-carrying states can be ground
states of emergent local Hamiltonians, and that they can exhibit a quasimomentum distribution function
that is peaked at nonzero (and tunable) quasimomentum. We also show that time-evolving states can be
highly excited eigenstates of emergent local Hamiltonians, with an entanglement entropy that does not
exhibit volume-law scaling.
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I. INTRODUCTION

Experiments with ultracold gases [1–7], photonic [8,9]
and solid-state systems [10–12], and foundational theoreti-
cal developments [13–16] are driving the study of the
dynamics of quantum many-body systems at a rapid pace.
When taken far from equilibrium, generic isolated quantum
systems typically thermalize [17], whereas integrable
systems (characterized by an extensive number of local
conserved quantities) do not. They are instead described by
generalized Gibbs ensembles [18,19]. For nonintegrable
systems close to integrable points, one expects relaxation to
long-lived states (prethermal states [20]), which can also be
described using generalized Gibbs ensembles [21–23].
Drawing from notions of the equilibrium renormalization
group, prethermal states can be understood as being non-
thermal fixed points [24]. More recently, the discovery
of dynamical phase transitions [25–27], which are the result
of nonanalytic behavior in time, has added another dimen-
sion to the connection between quantum dynamics and
traditional statistical mechanics.
Here, we add yet another paradigm to this already rich

phenomenology. It is motivated by recent theoretical
studies that have revealed an intriguing emergence of
power-law correlations (like those in ground states) in
transport far from equilibrium. Such a phenomenon has

been observed in various one-dimensional lattice systems
of hard-core [28,29] and soft-core [30] bosons, spinful
fermions [31], and spins [32–34]. Some of the observed
behavior can be reproduced using ground states of effective
Hamiltonians (different from the ones considered here)
[31,32,34–36]. Another motivation for our work is recent
experiments exploring the sudden expansion of ultracold
fermionic and bosonic gases in optical lattices [37–40]. One
of those experiments, which is of particular relevance to this
work, studied the sudden expansion of a Mott insulator of
strongly interacting bosons [40]. It was observed that peaks
develop in the momentum distribution at nonzero momenta,
signaling unconventional quasicondensation [28]. Since the
expansion in the experiments occurs at energies far above the
ground-state energy, it has remained a mystery why quasi-
condensation (revealing the emergence of power-law corre-
lations) occurs in such systems.
In this work, we provide an explanation for this

phenomenon. We unveil the existence of a class of non-
equilibrium states that are eigenstates of an emergent local
Hamiltonian. We use the term emergent to highlight that it
is not trivially related to the physical Hamiltonian dictating
the dynamics. The emergent Hamiltonian is explicitly time
dependent and behaves as a local conserved quantity, even
though it does not commute with the physical Hamiltonian.
The novelty of this class of states is that they exhibit
nontrivial time evolution despite being eigenstates of a
local conserved operator.
The concept of the emergent eigenstate solution provides

new insights into several physical phenomena. It explains
why power-law correlations with ground-state character
emerge in current-carrying states of integrable (or nearly
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integrable) one-dimensional models. It also elucidates the
dynamics of quasimomentum occupations in current-
carrying states, and suggests a way to dynamically tune
the position of the peak of the quasimomentum distribution
function. In the context of entanglement entropy, the
emergent eigenstate solution shifts the focus from the
entanglement entropy of time-evolving states to the entan-
glement entropy of eigenstates of local Hamiltonians. It
also highlights the physical relevance of highly excited
eigenstates of integrable systems in which the entanglement
entropy does not exhibit a volume-law scaling.
This paper is organized as follows. In Sec. II, we

introduce the framework of the emergent eigenstate
description and discuss properties of the emergent local
Hamiltonian. We also consider conditions for the emergent
eigenstate description to be valid. We then discuss two
physical applications in Secs. III and IV. In Sec. III, we
study transport and current-carrying states of noninteract-
ing fermions, hard-core bosons, and in the Heisenberg
model. We devote special attention to cases in which the
time-evolving state is the ground state of the emergent local
Hamiltonian. In Sec. IV, we study the sudden expansion
of quantum gases in a setup close to the one realized in
recent experiments in optical lattices. Finally, in Sec. V, we
focus on the entanglement entropy of the current-carrying
states studied in Sec. III. We show that highly excited
eigenstates that do not exhibit volume-law scaling of the
entanglement entropy are the ones of relevance to the
problems we study here. We summarize our results, and
discuss other possible applications of the emergent eigen-
state description, in Sec. VI.

II. EMERGENT EIGENSTATE DESCRIPTION

A. Construction of the emergent Hamiltonian

We consider systems initially described by a
Hamiltonian

Ĥ0 ¼ Ĥ þ γP̂; ð1Þ

where Ĥ and P̂ are extensive sums of local operators,
namely, of operators with support on O(1) lattice sites.
The parameter γ may take any value, including γ → ∞
(for which Ĥ0=γ → P̂). We, therefore, do not require any of
the two operators Ĥ or P̂ to act as a perturbation. We
consider initial states jψ0i that are eigenstates of Ĥ0,

ðĤ0 − λÞjψ0i ¼ 0; ð2Þ

where λ is the corresponding energy eigenvalue.
In the quantum quenches of interest here, at time t ¼ 0,

the time-independent Hamiltonian Ĥ0 is changed instanta-
neously into the time-independent Hamiltonian Ĥ (γ ¼ 0
after the quench), and the initial state evolves as

jψðtÞi ¼ e−iĤtjψ0i (we set ℏ ¼ 1). We relate the operators
involved in such quenches by means of the equation

½Ĥ; P̂� ¼ ia0Q̂; ð3Þ

where Q̂ is a local operator and a0 is some constant.
We now manipulate Eq. (2), by inserting an identity

Î¼eiĤte−iĤt and multiplying by e−iĤt on the left, leading to

ðe−iĤtĤ0eiĤt − λÞjψðtÞi≡ M̂ðtÞjψðtÞi ¼ 0; ð4Þ

where M̂ðtÞ is a time-dependent operator in the
Schrödinger picture [it is time independent in the
Heisenberg picture, M̂HðtÞ ¼ Ĥ0 − λ]. In general, M̂ðtÞ
is highly nonlocal and, hence, of no particular interest. Its
nonlocal character is apparent in the series expansion of
e−iĤtĤ0eiĤt, which is an infinite sum of nested commu-
tators of Ĥ and Ĥ0. Each nonvanishing higher-order
commutator usually extends the spatial support of the
products of operators involved in M̂ðtÞ. Using Eq. (3),
we can write

M̂ðtÞ ¼ Ĥ0 − λþ γa0tQ̂þ γa0
X∞
n¼1

ð−iÞn tnþ1

ðnþ 1Þ! Ĥn;

ð5Þ

where Ĥn represents the nth-order commutator of Ĥ
with Q̂:

Ĥn ¼ ½Ĥ; ½Ĥ;…½Ĥ; Q̂�…��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n commutators

: ð6Þ

Even though the expansion in Eq. (5) has, in general,
zero radius of convergence, there are physically relevant
problems forwhichM̂ðtÞ becomes a local operator. This can
occur either if Ĥn vanishes at some finite n0 or if the nested
commutators close the sum in Eq. (5). If M̂ðtÞ is a local
operator, we define ĤðtÞ≡ M̂ðtÞ. Physically, we interpret
ĤðtÞ as being an emergent local Hamiltonian. ĤðtÞ is a
local conserved operator of the time-evolving system [it
is time independent in the Heisenberg picture, ĤHðtÞ ¼
Ĥ0 − λ]. Its novelty comes from the fact that, despite being
conserved, it does not commutewith the Hamiltonian Ĥ that
governs the dynamics. This is possible only because ĤðtÞ is
time dependent in the Schrödinger picture.
Whenever the emergent Hamiltonian description can

be invoked, instead of explicitly time evolving the wave
function, one only needs to find a single eigenstate jΨti of
ĤðtÞ satisfying

ĤðtÞjΨti ¼ 0: ð7Þ
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Equations (1)–(4) imply that, in the absence of degener-
acies, this eigenstate is jψðtÞi. We call this scenario the
emergent eigenstate solution to quantum dynamics. It gives
rise to a new class of nonequilibrium states: states that
simultaneously exhibit nontrivial time evolution and are
eigenstates of a time-dependent local operator that is
conserved during the time evolution of the system. By
conserved we mean that the expectation value of ĤðtÞ is
time independent under dynamics generated by Ĥ.
The simplest family of quantum quenches in which the

emergent eigenstate solution to quantum dynamics can be
used is the one in which

Ĥ1 ¼ ½Ĥ; Q̂� ¼ 0: ð8Þ

It results in an emergent local Hamiltonian of the form

ĤðtÞ ¼ Ĥ0 − λþ γa0tQ̂: ð9Þ

There are families of quantum quenches for which Q̂ is
not exactly conserved (Ĥn is nonzero for all n), but for
which the time-dependent state is exponentially close to
an eigenstate of the emergent local Hamiltonian for times
that are proportional to the system size. In the context of
physical applications, we are interested in families of
quantum quenches that fall into this category. In such
quenches Q̂ is conserved up to boundary terms. Next, we
discuss a criterion for the applicability of the emergent
eigenstate description for those quenches and clarify the
role of the initial state.

B. Emergent eigenstate description for
approximately conserved operators

If Q̂ is not exactly conserved, i.e., Ĥn ≠ 0 for all n, but it
is approximately conserved (e.g., ½Ĥ; Q̂� results in terms
with support only at the boundaries of the system), one may
still invoke the emergent eigenstate description by truncat-
ing the series in Eq. (5) at some n0. For the discussion in
this section, we assume that one can truncate the series at
n0 ¼ 1. As a result, the emergent local Hamiltonian ĤðtÞ
has the form in Eq. (9). In principle, such ĤðtÞ is not
conserved since in the Heisenberg picture

ĤHðtÞ ¼ Ĥ0 − λþ γa0
X∞
n¼1

in
ntnþ1

ðnþ 1Þ! Ĥn: ð10Þ

Nevertheless, there are families of initial states for which
ĤðtÞ behaves as being approximately conserved for an
extensive (in system size) time. In these cases, one can
show that

hψðtÞjĤðtÞjψðtÞi ¼ εðtÞ; ð11Þ

where

lim
L→∞

εðtÞ ¼ 0 ∀ t < ∞; ð12Þ

and L denotes the (linear) system size.
To see how Eqs. (11) and (12) imply that eigenstate jΨti

of the emergent local Hamiltonian ĤðtÞ becomes indis-
tinguishable from the time-evolving state jψðtÞi with
increasing system size, let us write jψðtÞi in the basis
defined by the eigenstates of ĤðtÞ:

jψðtÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηt

p
jΨti þ

XD
m¼2

cðmÞ
t jΨðmÞ

t i; ð13Þ

where, from the normalization of jψðtÞi, we have that

ηt ¼
P

D
m¼2 jcðmÞ

t j2, ηt ∈ ½0; 1�, and D is the corresponding
Hilbert-space dimension.
Using Eqs. (7) and (13), Eq. (11) can be rewritten as

hψðtÞjĤðtÞjψðtÞi ¼
XD
m¼2

jcðmÞ
t j2EðmÞ

t ¼ εðtÞ; ð14Þ

where EðmÞ
t is the eigenenergy corresponding to eigenstate

jΨðmÞ
t i, ĤðtÞjΨðmÞ

t i ¼ EðmÞ
t jΨðmÞ

t i. We then see that for
Eq. (12) to be satisfied one generally needs

lim
L→∞

XD
m¼2

jcðmÞ
t j2 ¼ 0; ð15Þ

yielding limL→∞ηt ¼ 0.
Equation (11) can also be written as the expectation

value of ĤHðtÞ in the initial state as

hψ0jĤHðtÞjψ0i ¼ γa0
X∞
n¼1

in
ntnþ1

ðnþ 1Þ! hψ0jĤnjψ0i ¼ εðtÞ:

ð16Þ

Hence, even though ĤHðtÞ is explicitly time dependent,
the emergent local Hamiltonian can behave as a conserved
quantity in some nonequilibrium states for extensively (in
the system size) long times.
For most practical applications, the emergent eigenstate

description provides a useful framework if the lowest-order
terms in Eq. (16) are exactly zero. Moreover, an extensive
time of validity will be obtained if an extensive number of
expectation values hψ0jĤnjψ0i vanish independently. This
can be realized for systems in which Q̂ is conserved up to
boundary terms (see the next two sections).
The concept of the emergent eigenstate description

formulated in this section opens a new window for studies
of dynamics far from equilibrium. For example, if jψðtÞi
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were the ground state of an emergent local Hamiltonian,
then all the tools developed to study ground states of
quantum systems could immediately be applied to under-
stand a system far from equilibrium. As we discuss next,
there are experimentally relevant time-evolving states that
are ground states of such emergent local Hamiltonians.
In the following, we report two applications of the

emergent eigenstate solution: we study transport and
current-carrying states in Sec. III, and the sudden expansion
of quantum gases in optical lattices in Sec. IV. In both
applications, we make use of the property that even though
Q̂ is not exactly conserved (because of boundary terms), the
emergent Hamiltonian satisfies Eq. (11) with an exponen-
tially small εðtÞ over extensively (in the system size) long
times. In Sec. V, we study entanglement properties of the
emergent local Hamiltonian.

III. TRANSPORT IN INTEGRABLE
LATTICE SYSTEMS

Transport of particles (or spin, energy, etc.) far from
equilibrium is a topic that has been attracting increasing
attention in the context of isolated quantum systems. A
convenient way to simulate current-carrying states in such
systems is to prepare initial states with particle (spin,
energy) imbalance that mimics large reservoirs, and let
them evolve under homogeneous Hamiltonians. One of the
most studied setups is the “melting” dynamics of a sharp
domain wall [28,31,41–49]. This setup is a particular case
of the more general one we consider below.

A. Noninteracting spinless fermions
and hard-core bosons

We first construct an emergent eigenstate solution for
systems of noninteracting spinless fermions and hard-
core bosons. We focus on one-dimensional chains with
L ¼ 2N þ 1 sites (N is the particle number) and open
boundary conditions. We prepare the initial state with
particle imbalance by applying a linear gradient along
the chain [33,36,50].
The initial state for noninteracting spinless fermions (SF)

is the ground state of

Ĥ0;SF ¼ ĤSF þ γP̂SF; ð17Þ

where the kinetic energy and the potential energy terms,
respectively, are

ĤSF ¼ −J
XN−1

l¼−N
ðf̂†lþ1f̂l þ H:c:Þ; ð18Þ

P̂SF ¼
1

L

XN
l¼−N

ln̂l: ð19Þ

Here, f̂†l creates a spinless fermion at site l, and the site
occupation operator is n̂l ¼ f̂†l f̂l. The prefactor 1=L in
Eq. (19) ensures that the expectation value of P̂SF is
extensive in system size. The strength of the linear gradient
γ is measured in units of the hopping amplitude J, and we
set J ¼ 1. In the limit γ → ∞, we simplify Eq. (17) and
consider Ĥ0;SF ¼ P̂SF; see Appendix A for details.
We require γ to be large enough such that, in the ground

state of Ĥ0;SF, there exist regions with site occupations one
and zero at the chain boundaries. This is achieved for
γ > γ� ¼ 4, where γ� is the critical value needed for theNth
single-particle Wannier-Stark state to be a Bessel function
with support on L ¼ 2N þ 1 sites. The time evolution of
such an initial state under ĤSF produces a current-carrying
state jψðtÞi. We are interested in this current-carrying state
before the propagating front of particles reaches the chain
boundary.
We also study the same setup for hard-core bosons,

which can be mapped onto spin-1=2 systems, and non-
interacting spinless fermions [51]. The interest in this
model, which is the infinite on-site repulsion limit of
the Bose-Hubbard model, is twofold: (i) it has been
studied in experiments with ultracold atoms [38,40] and
(ii) in and out of equilibrium, the correlation functions
can be very different from those of noninteracting
fermions [16,51].
For hard-core bosons, we replace ĤSF in Eq. (18) by

ĤHCB ¼ −
XN−1

l¼−N
ðb̂†lþ1b̂l þ H:c:Þ; ð20Þ

while, as a consequence of the mapping, the potential term
is identical to P̂SF [Eq. (19)]. Infinite repulsion is enforced
by the constraints ðb̂lÞ2 ¼ ðb̂†l Þ2 ¼ 0, where b̂†l is the boson
creation operator at site l. We calculate expectation values
of observables by expressing operators in terms of spinless
fermions and following Refs. [28,29].
Within the setup in this section, Eq. (3) results in

a0 ¼ −1=L and

Q̂SF ¼
XN−1

l¼−N
ðif̂†lþ1f̂l þ H:c:Þ; ð21Þ

which is the particle current operator in an open lattice.
In finite systems with open boundaries, Q̂SF is not exactly
conserved since

Ĥ1;SF ¼ ½ĤSF; Q̂SF� ¼ −2iðn̂−N − n̂NÞ: ð22Þ

As a result, all higher-order commutators Ĥn;SF [Eq. (6)]
are nonzero. However, we show in the following that an
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extensive (in system size) number of expectation values of
Ĥn>1;SF vanish in the initial state. Equation (5) can then be
truncated at n ¼ 2 to get the emergent local Hamiltonian:

ĤSFðtÞ ¼−
XN−1

l¼−N
ðf̂†lþ1f̂lþH:c:Þ− λþ γ

L

�XN
l¼−N

ln̂l

− t
XN−1

l¼−N
ðif̂†lþ1f̂lþH:c:Þþ t2ðn̂−N − n̂NÞ

�
: ð23Þ

Note that ĤSFðtÞ includes the difference between site-
occupation operators at the lattice boundaries (times t2).
As we argue below, the emergent eigenstate solution is
accurate as long as the propagating front of particles (holes)
does not reach the chain boundary, i.e., as long as
hn̂−NðtÞi ¼ 1 and hn̂NðtÞi ¼ 0. Therefore, in what follows,
we replace n̂−N → 1 and n̂−N → 0 in Eq. (23), which
ensures that the target eigenstate jΨti of the ensuing
emergent local Hamiltonian Ĥ0

SFðtÞ,

Ĥ0
SFðtÞ ¼ −AðtÞ

XN−1

l¼−N
ðeiφðtÞf̂†lþ1f̂l þ H:c:Þ

þ γ

L

XN
l¼−N

ln̂l −
�
λ −

γt2

L

�
; ð24Þ

is the ground state. jΨti is the ground state of Ĥ0
SFðtÞ

because the latter state is nondegenerate at all times. Hence,
since jΨti is the ground state at t ¼ 0, it must be the ground
state at all times.
In Eq. (24), we merge the kinetic and the current

operators from Eq. (23) into a single operator, characterized
by the hopping amplitude

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγt=LÞ2

q
ð25Þ

and the phase

φðtÞ ¼ arctan

�
γt
L

�
: ð26Þ

In the ground state of Ĥ0
SFðtÞ, the phase φðtÞ determines the

position of the maximum of the quasimomentum distribu-
tion function.
To prove that ĤSFðtÞ and Ĥ0

SFðtÞ are indeed relevant to
the dynamics of interest here, we compute the expectation
values of higher-order commutators Ĥn;SF in the initial
state, Eq. (16). The results are reported in Appendix B for
the case in which γ−1 ¼ 0, i.e., for the initial sharp domain
wall. The analysis reveals that the emergent eigenstate
description is exponentially accurate for t≲ Nð2=eÞ. Since
the maximal group velocity in the lattice is vmax ¼ 2 (in

units of Ja=ℏ, where a is the lattice spacing), the physical
picture consistent with this time restriction is that the
emergent Hamiltonian description [Eq. (23)] is valid so
long as the expanding particles (holes) do not reach the edge
of the lattice, t≲ N=vmax ¼ N=2. In that case, the dynamics
is expected to be identical to that of a semi-infinite domain
wall, for which the boundaries are irrelevant.
We complement the analytical results in Appendix B,

and the physical picture that has emerged from them,
by numerically calculating the subtracted overlap
1 −OðtÞ ¼ 1 − jhΨtjψðtÞij and the expectation value
hψðtÞjĤ0

SFðtÞjψðtÞi. In Fig. 1, we plot the numerical
results for those quantities versus the rescaled time t=τ
for various system sizes, where τ is given by the
expression [33,36]

FIG. 1. Times of validity of the emergent eigenstate description.
(a) Subtracted overlap j1 −OðtÞj, where OðtÞ ¼ jhΨtjψðtÞij, of
the time-evolving state jψðtÞi with the ground state jΨti of the
emergent local Hamiltonian Ĥ0

SFðtÞ [Eq. (24)]. (b) Expectation
value of the emergent local Hamiltonian Ĥ0

SFðtÞ in the time-
evolving state jψðtÞi. Results in both panels are shown for
different values of γ−1 ¼ 0, 0.1, and 0.2, and three different
system sizes L ¼ 2N þ 1, as indicated in the legend. For γ−1 ¼ 0,
Ĥ0

SFðtÞ is taken as explained in Appendix A. We rescale time
dividing by τ [Eq. (27)], which is proportional to the system size,
to demonstrate the validity of the emergent eigenstate solution for
t=τ ≲ 0.5 when L → ∞.
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τ ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
γ�

γ

�
2

s
: ð27Þ

Note that τ ¼ N for γ−1 ¼ 0.
In Fig. 1, 1 −OðtÞ and hψðtÞjĤ0

SFðtÞjψðtÞi are zero
within machine precision at short times and start departing
from zero when t=τ approaches 1=2, as advanced by our
physical picture for γ−1 ¼ 0. The same argument applies
for nonzero γ−1. However, that case is more involved since
(i) the initial state exhibits a metallic interface between the
left (right) regions with maximal (vanishing) site occupa-
tions and (ii) the velocity of the propagating front is not
constant [see Fig. 7(a) in Appendix D]. In Appendix D, we
show that the time t� at which the site occupations at the
boundaries of the lattice depart from their initial values
is t�=τ ¼ 1=2.
The results in Fig. 1 demonstrate that, as long as the

emergent local Hamiltonian Ĥ0
SFðtÞ behaves as a conserved

operator, which is the case whenever particles (or holes)
have not reached the chain boundary, the ground state of
Ĥ0

SFðtÞ is indistinguishable from the time-evolving state
jψðtÞi, as advanced in Sec. II B.
We now turn our focus to physical properties of current-

carrying states that can be described using the emergent
eigenstate solution. We study one-particle properties such
as site occupations, particle currents, decay of one-body
correlations, and the quasimomentum distribution function.
The mapping of hard-core bosons onto noninteracting

spinless fermions [51] implies identical site occupations
for bosons and fermions. Their dynamics, nlðtÞ ¼
hψðtÞjn̂ljψðtÞi, from initial states with particle imbalance
has been studied in the past [28,33,36,41–44]. In many
instances, plotting site occupations versus site positions
divided by a function of the evolution time results in data
collapse. In the setup under consideration here, this is
achieved (for any γ > γ�) by plotting site occupations
versus ~l ¼ lγðtÞ=ð2LÞ, where γðtÞ ¼ γ=AðtÞ. This results
in a time- and γ-independent site occupation profile n~lðtÞ ¼
arccosð~lÞ=π for −1 < ~l < 1, as shown in Fig. 2(a). One can
use n~lðtÞ to derive the velocity of the propagating front
of particles (holes) as a function of time [see Appendix D
and Fig. 7(a)].
Another observable that yields identical expectation

values for noninteracting fermions and hard-core bosons
is the particle current Q̂SF [Eq. (21)]. Since Q̂SF does not
commute with ĤSF on a lattice with open boundaries, its
expectation value hψðtÞjQ̂SFjψðtÞi is time dependent [41].
By invoking the Heisenberg representation and properties
of higher-order commutators of ĤSF with Q̂SF, as we
discuss in Appendix B, one gets that

hψðtÞjQ̂SFjψðtÞi ¼ 2thψ0jðn̂−N − n̂NÞjψ0i; ð28Þ

i.e., the particle current increases linearly in time and is
proportional to the difference in site occupations at the
boundary. This result was generalized in Ref. [48] to
different families of current-carrying states, including inter-
acting spinless-fermion systems. The relation in Eq. (28) can
already be inferred from Eq. (23) by requiring the expect-
ation value of the emergent local Hamiltonian on the time-
evolved state to be time independent. This suggests that
Eq. (28) is accurate for the same times for which the
emergent eigenstate description is, and it breaks down when
the front of propagating particles (holes) reaches the lattice
boundary. Hence, the particle current in this setup belongs to
the class of observables whose expectation values out of
equilibrium are controlled, for an extensive (in system size)
time, by expectation values of observables in the initial state.
Next, we study one-body correlations in the current-

carrying states. This is of particular interest since an
intimate relation between current-carrying states and
power-law correlations has been observed for over the
past 30 years [28,30–34,52–54]. For noninteracting

FIG. 2. Site occupations and nonlocal correlations in current-
carrying states. (a) Site occupations nlðtÞ ¼ hψðtÞjn̂ljψðtÞi versus
~l ¼ lγðtÞ=ð2LÞ. Results are shown for N ¼ 200 particles, differ-
ent values of γ, and different times. The black solid line is the
scaling solution n~lðtÞ ¼ arccosð~lÞ=π for −1 < ~l < 1. The main
panels in (b) and (c) display CðxÞ≡ C0;x, where Cj;l ¼ jhf̂†j f̂lij for
noninteracting spinless fermions (b) and Cj;l ¼ jhb̂†j b̂lij for hard-
core bosons (c), as a function of x for N ¼ 2000 particles,
γ−1 ¼ 0, at time t=τ ¼ 0.35. The solid lines overlapping with the
numerical results are CðxÞ ¼ 1=ðπxÞ in (b) and CðxÞ ¼ 0.29=

ffiffiffi
x

p
in (c) [33]. The insets in (b) and (c) display the absolute values
of all elements of the one-body density matrix for the same
model parameters and time as the main panels, but calculated for
N ¼ 200 particles.
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fermions [41] and hard-core bosons [28], previous studies
revealed that the emergent (when starting from the sharp
domain wall) power-law correlations in the current-
carrying states exhibit ground-state exponents (ground
state with respect to the physical Hamiltonian). This is
an intriguing result because (i) in thermal equilibrium in
one dimension, power-law correlations can only be found
in the ground state, and (ii) the current-carrying states we
consider here have energy densities well above that of the
ground state of the physical Hamiltonian. The emergent
eigenstate solution we introduce in this work explains
why ground-state-like correlations emerge during the far-
from-equilibrium dynamics: the time-evolving states are
ground states of emergent local Hamiltonians.
Figures 2(b) and 2(c) show the spatial decay CðxÞ of

one-body correlations at time t=τ ¼ 0.35 for a sharp
domain wall γ−1 ¼ 0 (a product state with no correlations
at all) as initial state. We define CðxÞ≡ C0;x, where C0;x ¼
jhf̂†0f̂xij for noninteracting fermions and C0;x ¼ jhb̂†0b̂xij for
hard-core bosons. For the former [Fig. 2(b)], one-body
correlations decay as CðxÞ ¼ j sinðπx=2Þj=ðπxÞ [41], while
for the latter [Fig. 2(c)], they decay as CðxÞ ¼ 0.29=

ffiffiffi
x

p
[33]. The spatial decay of CðxÞ (for 0 < nl < 1) is identical
for all γ > γ� and t=τ < 0.5. The insets in Figs. 2(b)
and 2(c) display density plots of the absolute values of
all elements of the one-body density matrix.
When computing the quasimomentum distribution

function,

mqðtÞ ¼
1

L

X
j;l

eiqðj−lÞhψðtÞjĜj;ljψðtÞi; ð29Þ

in which Ĝj;l ¼ f̂†j f̂l for noninteracting fermions and

Ĝj;l ¼ b̂†j b̂l for hard-core bosons, not only do the absolute

values of Ĝj;l [see Fig. 2] matter, but also their phases.
Results for mqðtÞ are shown in Fig. 3 at different times and
for different values of γ. The maximum of mqðtÞ exhibits
two generic features during the dynamics: (i) it increases
with time (coherence is dynamically enhanced) and (ii) its
position shifts towards higher quasimomenta.
In the ground state of the emergent local Hamiltonian,

Eq. (24), the peak position is determined by the phase φðtÞ,
which is identical for noninteracting fermions and hard-
core bosons. We discuss its properties in Appendix D and
Figs. 7(c) and 7(d). Our analysis reveals that the peak
emerges and stays at q ¼ π=2 if the initial state is a sharp
domain wall (a perfect product state, i.e., γ−1 ¼ 0). For all
nonzero values of γ−1, the position of the peak changes with
time and is limited to quasimomenta below π=2.
For noninteracting fermions, increasing γ−1 increases the

spatial extent of the metallic interface in the initial state,
which results in an increase of mq¼0ðt ¼ 0Þ; see Figs. 3(a)
and 3(b). In Appendix C, we analytically show that

mqðt ¼ 0Þ ¼ N
L
þ 2γ−1 cosðqÞ: ð30Þ

FIG. 3. Dynamics of the quasimomentum distribution function mqðtÞ. (a),(b) mqðtÞ for N ¼ 1000 noninteracting spinless fermions.
(c),(d) mqðtÞ for N ¼ 1000 hard-core bosons. Results are shown for γ−1 ¼ 0.10 in (a) and (c) and for γ−1 ¼ 0.20 in (b) and (d). Solid
lines depict the numerical results, while the dashed lines in (a) and (b) are obtained using Eq. (31). Dotted vertical lines in all panels
represent the shift of the peak in mqðtÞ at time t=τ ¼ 0.5, and is given by Eq. (D4).
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The dynamics of the quasimomentum distribution mqðtÞ is
obtained by a straightforward generalization of Eq. (30):
(i) we change q → qðtÞ ¼ q − φðtÞ due to the time-
dependent phase, Eq. (26), and (ii) replace γ → γðtÞ ¼
γ=AðtÞ to account for the time-dependent hopping ampli-
tude, Eq. (25). This results in

mqðtÞ ¼ mqðt ¼ 0Þ þ 2t
N
sinðqÞ: ð31Þ

The predictions of Eq. (31), plotted as dashed lines in
Figs. 3(a) and 3(b), are indistinguishable from the numeri-
cal results (solid lines) obtained by time evolving the
initial state.
The quasimomentum distribution mqðtÞ of hard-core

bosons is markedly different from the fermionic one. This
is a consequence of quasicondensation in the ground state
jΨti of the emergent local Hamiltonian, Eq. (24). Such a
dynamical quasicondensation was studied theoretically in
Ref. [28], inwhich themaximumvalue (in time) of the largest
eigenvalue of the one-body densitymatrixwas shown to scale
as

ffiffiffiffi
N

p
, and observed experimentally in Ref. [40]. The

specific setup of Refs. [28,40] is discussed in Sec. IV.
Summarizing our presentation so far, we introduce a

physically relevant example in which the emergent eigen-
state solution is applicable and for which the target eigenstate
is the ground state of the emergent local Hamiltonian. This
allows us to understand why power-law correlations (and
quasicondensation) can occur in transport problems far from
equilibrium. It also helps us gain an analytic understanding
of the behavior of quasimomentum distribution functions,
for which phase factors in one-body correlations lead to
peaks at nonzero quasimomenta.

B. Heisenberg model

The generality of the framework in Sec. II suggests that
the emergent local Hamiltonian description is not restricted
to noninteracting models or models mappable onto them.
Here, we demonstrate that this is indeed the case. We focus
on one of the most widely studied models of quantum
magnetism, the spin-1=2 XXZ chain. In contrast to the
setup we study in Sec. III A, the (approximately) conserved
operator Q̂ in this case is not the particle current, but the
energy current.
To make an explicit connection with the results obtained

for noninteracting fermions, we map the spin-1=2 XXZ
model onto interacting spinless fermions [51], and follow
the notation from Sec. III A,

ĤV ¼
XN−1

l¼−Nþ1

ĥlðVÞ;

ĥlðVÞ ¼ −ðf̂†lþ1f̂l þ H:c:Þ þ V

�
n̂l −

1

2

��
n̂lþ1 −

1

2

�
;

ð32Þ

where V denotes the amplitude of nearest-neighbor inter-
action. We consider systems with open boundaries and
L ¼ 2N lattice sites.
The operator B̂ðVÞ, which is the boost operator [55]

for the energy current Q̂ðVÞ, plays the role of P̂ for
noninteracting fermions. B̂ðVÞ is defined as

B̂ðVÞ ¼
XN−1

l¼−Nþ1

lĥlðVÞ; ð33Þ

and satisfies the relation ½ĤV; B̂ðVÞ� ¼ iQ̂ðVÞ. The energy
current operator,

Q̂ðVÞ ¼
XN−2

l¼−Nþ1

�
ðif̂†lþ2f̂l þ H:c:Þ

− Vðif̂†lþ1f̂l þ H:c:Þ
�
n̂lþ2 −

1

2

�

− Vðif̂†lþ2f̂lþ1 þ H:c:Þ
�
n̂l −

1

2

�	
; ð34Þ

is exactly conserved [½ĤV; Q̂ðVÞ� ¼ 0] for periodic boun-
dary conditions, and it is sometimes denoted as Q̂3 because
each of its terms has support on three lattice sites [55,56].
B̂ðVÞ disconnects the left from the right part of the chain

at the bond denoted by l ¼ 0. As a consequence, the sharp
domain wall of spinless fermions, jψ0i ¼

Q
0
l¼−Nþ1 f̂

†
l j∅i,

is an eigenstate of B̂ðVÞ with eigenvalue λ ¼ 0. We set the
initial Hamiltonian Ĥ0ðVÞ ¼ B̂ðVÞ and focus on the sharp
domain wall as the initial state so that Eq. (2) is satisfied
with λ ¼ 0.
We construct the emergent local Hamiltonian ĤVðtÞ by

following the derivation in Sec. II, starting from Ĥ0ðVÞ. In
analogy to Eq. (9), we define

ĤVðtÞ ¼ B̂ðVÞ þ tQ̂ðVÞ: ð35Þ

We refer to the eigenstate of ĤVðtÞ that describes the
dynamics as jΨV

t i.
The first question to be answered is the accuracy of the

eigenstate jΨV
t i to describe the time-evolving state jψVðtÞi.

We follow the analysis presented in Sec. II B. In the setup
we consider here (i.e., a finite system with open bounda-
ries), the operator Q̂ðVÞ is not exactly conserved since

½ĤV; Q̂ðVÞ� ¼ −i
��

1þ V2

4

�
ðĥð1Þ−Nþ1 − ĥð1ÞN−1Þ

þ Vðn̂−Nþ1 − n̂−Nþ2Þ2 − Vðn̂N−1 − n̂NÞ2
�
;

ð36Þ
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with −N þ 1 being the leftmost site. The expectation value
of this commutator in the initial state, Eq. (16), vanishes. To
demonstrate the validity of the emergent eigenstate descrip-
tion for an extensive (in system size) time [Eq. (12)], one
needs to show that an extensive number of expectation
values of higher-order commutators vanishes. This pro-
cedure is analogous to the one carried out for noninteract-
ing fermions in Appendix B. Even though obtaining a
general expression for high-order commutators of the
Heisenberg model is a daunting task, two consecutive
commutators beyond Eq. (36) confirm that the largest
support of the operators in Eq. (16) grows linearly with
the power of t in Eq. (16), and that site occupation operators
emerge in pairs (see Appendix E). We therefore conjecture
that the time regime in which the emergent Hamiltonian
description is exponentially accurate increases with the size
of the initial domain wall, and, hence, with the total particle
number N, as for noninteracting fermions.
We complement the analysis above with numerical

calculations. We use full exact diagonalization to calculate
the time-evolved wave function jψVðtÞi and the eigenstate
jΨV

t i of the emergent local Hamiltonian ĤVðtÞ. We add a
small on-site potential to ĤVðtÞ in the leftmost site
ð−10−3n̂−Nþ1Þ to break the degeneracy of jΨV

t i with other
eigenstates with zero eigenenergy. This does not change
jΨV

t i. It only changes its eigenenergy as hn̂−Nþ1i ¼ 1
(maximal site occupancy) for the times for which the
emergent Hamiltonian description is valid.
In Fig. 4(a), we plot the overlap between jΨV

t i and
jψVðtÞi for V ¼ 0, 1.2 and different system sizes. All the
overlaps are nearly one for t=N ≲ 0.5 (see also the inset),
independently of whether the system is interacting
(V ¼ 1.2) or not (V ¼ 0). The results in the inset of

Fig. 4(a) reveal that, as N increases, the ratio t=N for
which jΨV

t i and jψVðtÞi are identical within computer
precision increases. These results are qualitatively similar
to those in Fig. 1(a) and support the expectation that the
emergent eigenstate description is also valid for interacting
systems.
The emergent local Hamiltonian ĤVðtÞ [Eq. (35)]

includes the noninteracting point V ¼ 0. The sharp
domain-wall melting of noninteracting fermions can, there-
fore, be described either by an eigenstate jΨti of Ĥ0

SFðtÞ
[Eq. (24)] with γ−1 ¼ 0 or by an eigenstate jΨV¼0

t i of
ĤV¼0ðtÞ. The two Hamiltonians describe different physics;
nevertheless, they share at least one identical eigenstate,
jΨti ¼ jΨV¼0

t i. Note, however, that jΨti used in Sec. III A
is the ground state of Ĥ0

SFðtÞ, while jΨV
t i used here is a

highly excited eigenstate of ĤVðtÞ.
We now turn to physical properties of the current-

carrying state. The shape of the propagating front has been
already studied in the literature [34,57,58]. In Fig. 4(b), we
plot the time evolution of the site occupations for V ¼ 1.2.
The results collapse onto the same curve when the
lattice positions are divided by time. For V < 2 [57], as
in Fig. 4(b), the site occupations do not differ significantly
from the noninteracting case displayed in Fig. 2(a). In
contrast, the quasimomentum distribution [see Fig. 4(c)]
exhibits a pronounced difference with respect to the non-
interacting case. This is because mqðtÞ develops a peak at
q > π=2. For noninteracting fermions the peak emerges
and remains at q ¼ π=2 at all times. Further studies are
needed to understand in a systematic way the effects of
interactions and the role of initial states in long-lived
current-carrying states of interacting spinless fermions.

FIG. 4. Emergent Hamiltonian description of the domain-wall melting for interacting spinless fermions. (a) Overlap OðtÞ ¼
jhΨV

t jψVðtÞij as a function of rescaled time t=N for V ¼ 1.2 (from full exact diagonalization) and V ¼ 0 (noninteracting system), and
different system sizes. The inset depicts j1 −OðtÞj. For N ¼ 6, 7, and 8 (see inset), the results for interacting and noninteracting
fermions are virtually indistinguishable at short times. Results for larger system sizes are only available for the noninteracting case.
(b),(c) Site and quasimomentum occupations for V ¼ 1.2 obtained from jψVðtÞi (symbols) and from jΨV

t i (lines) (data shown for N ¼ 8
at time t=N ¼ 0.35). (b) Site occupations nlðtÞ for N ¼ 8 and different times as a function of the rescaled coordinate ðl − 1=2Þ=t. The
data collapse onto a line [57] as for noninteracting particles [40]. (c) Quasimomentum distribution function mqðtÞ for different system
sizes and the same rescaled time t=N ¼ 0.35.
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IV. SUDDEN EXPANSION OF QUANTUM
GASES IN OPTICAL LATTICES

In this section, we discuss the application of the
emergent eigenstate description to the symmetric expansion
of trapped ultracold spinless fermions, or hard-core bosons,
after the harmonic confining potential is suddenly turned
off but the optical lattice remains on. This is different
from traditional time-of-flight measurements in which all
potentials, including the optical lattice, are turned off and
the particles expand in free space.
In recent experiments studying such setups, strongly

interacting bosons were initially prepared in one-
dimensional Mott insulating states with one boson per site
in the center of the trap [38,40]. For very strong on-site
repulsive interactions, one can think of such bosons as
hard-core bosons and their expansion dynamics is that of a
domain wall “melting” symmetrically. So long as there
remain sites with occupation one, the melting on each side
can be described independently using the emergent eigen-
state solution from Sec. III A. The question that remains is
whether an emergent eigenstate solution exists after the
occupation of the sites in the center of the system drops
below one (but before the expanding fronts reach the edges
of the lattice).
To answer that question, we study the dynamics of

2N þ 1 noninteracting spinless fermions (or, equivalently,
hard-core bosons) on an open lattice with L ¼ 6N þ 1
sites, running from −3N to 3N. We consider the initial
state jψ0i ¼

Q
l∈L0

f̂†l j∅i, with the central sites L0 ≡
f−N;−N þ 1;…; Ng occupied, see Fig. 5(a), and the
remaining ones empty. In analogy to Sec. III A, the
calculations can be straightforwardly extended to initial
eigenstates that contain metallic (superfluid) domains
surrounding the region with one fermion per site.
Similar setups have been studied for hard-core bosons
[28,29,59], as well as interacting soft-core bosons
[30,59,60] and spinful fermions [31,61,62].
The initial product state jψ0i is an eigenstate of any

Hamiltonian that is a sum of site occupation operators with
arbitrary coefficients, which includes the linear and har-
monic potentials. The emergent eigenstate solution can be
constructed for both cases [63]. Here, we consider the
linear potential, for which the analysis is simpler,
Ĥ0;SE ¼ P̂SE, where the operator

P̂SE ¼ 1

L

X3N
l¼−3N

ln̂l ð37Þ

is essentially the one defined in Eq. (19). An important
difference with respect to Sec. III A is that, here, the initial
state is not the ground state of Ĥ0;SE, but a highly excited
state with eigenenergy λ ¼ 0. The dynamics is studied
under

ĤSE ¼ −
X3N−1

l¼−3N
ðf̂†lþ1f̂l þ H:c:Þ: ð38Þ

Figure 5(a) shows the site occupations of the fermions, or,
equivalently, hard-core bosons, at different times.
The emergent local Hamiltonian for this setup is

ĤSEðtÞ ¼
1

L

X3N
l¼−3N

ln̂l −
t
L

X3N−1

l¼−3N
ðif̂†lþ1f̂l þ H:c:Þ: ð39Þ

Even though this Hamiltonian is essentially the one in
Eq. (24) in the limit γ−1 → 0, the target eigenstate jΨti lies
in the center of the spectrum, and it is highly degenerate.
Nevertheless, since the single-particle spectrum is non-
degenerate, jΨti can be uniquely obtained as the Slater
determinant comprising 2N þ 1 consecutive single-particle
states and giving λ ¼ 0. This is the way jψ0i is constructed.
As for the domain-wall melting, the emergent local

Hamiltonian in Eq. (39) is, in general, not a conserved
operator. The particle current operator does not commute
with ĤSE due to the open boundary conditions, Eq. (22),
which makes each higher-order commutator Ĥn;SE in
Eq. (10) nonzero. However, the support of operators in
Ĥn;SE grows linearly from the lattice boundaries, as shown

FIG. 5. Sudden expansion of noninteracting spinless fermions,
or hard-core bosons, in optical lattices. (a) Site occupations
nlðtÞ ¼ hψðtÞjn̂ljψðtÞi at different times. (b) Overlap OðtÞ ¼
jhΨtjψðtÞij between the time-evolving state jψðtÞi and the
eigenstate jΨti of the emergent local Hamiltonian in Eq. (39),
and j1 −OðtÞj in the inset. The results are plotted versus the
rescaled time t=N for four system sizes. When increasing the
number of particles N, OðtÞ ¼ 1 within machine precision (see
inset) until t=N ≈ 1.
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by the analysis in Appendix B. As a result, the number of
expectation values of Ĥn;SE that vanish in our initial state
can be made arbitrarily large by just increasing the number
of empty sites in the initial state. This results in the
emergent eigenstate description being correct for arbitrarily
long times independently of whether the site occupations in
the center of the trap are one or below one during the
expansion dynamics.
We verify the conclusions above by numerically calcu-

lating the overlap OðtÞ ¼ jhΨtjψðtÞij [see Fig. 5(b)]. The
results in Sec. III A for γ−1 ¼ 0 may lead one to conclude
that the emergent eigenstate description will break down
at t=N ≈ 0.5 [see Fig. 1(a)]. In contrast, in Fig. 5(b), no
change is observed in the dynamics of OðtÞ at time
t=N ¼ 0.5, i.e., when the region with one atom per site
in the center of the lattice has melted. Instead, OðtÞ starts
deviating from 1 around t=N ≈ 1. This is a consequence of
particles reaching the lattice boundaries (the initial state has
2N empty sites on each side).
The emergent eigenstate description of the sudden

symmetric expansion is, therefore, a nontrivial extension
of the transport problems we study in Sec. III A. The fact
that the dynamics for t=N < 0.5 within each half of the
lattice in the symmetric expansion is identical to the
domain-wall melting we study in Sec. III A allows us to
make an interesting observation. Namely, expectation
values of observables in the ground state of Eq. (24) at
γ−1 → 0 are identical to the ones in a highly excited
eigenstate of Eq. (39) for a system that is 2 times larger.
As for the XXZ chain, this implies that power-law
correlations, which in thermal equilibrium can be observed
only in the ground state, also occur in highly excited
eigenstates of integrable Hamiltonians.

V. ENTANGLEMENT ENTROPY OF THE
TARGET EIGENSTATE

The evolution of the entanglement entropy in transport
problems has been studied both for noninteracting
[36,57,58] and interacting fermions [34,58]. In the follow-
ing, we focus on the domain-wall melting in the Heisenberg
model and the underlying emergent local Hamiltonian
ĤVðtÞ [Eq. (35)]. The entanglement entropy is defined as

S ¼ −Trfρ̂L log ρ̂Lg ¼ −Trfρ̂R log ρ̂Rg; ð40Þ

where the reduced density matrix of the left (right)
subsystem is ρ̂LðRÞ ¼ TrRðLÞfρ̂g, i.e., a trace over the
complement subsystem of the total density matrix ρ̂. The
length of both subsystems is set to L=2. We focus on
the entanglement entropy of excited eigenstates of the
emergent local Hamiltonian ĤVðtÞ, where the density

matrix of eigenstate n is ρ̂ðnÞ ¼ jΨðnÞ
t ihΨðnÞ

t j. We are
interested in the scaling of the entanglement entropy with
the system size. In particular, we distinguish between states

that exhibit a volume-law scaling (S=L ¼ const, when
L → ∞) and states with vanishing entropy density
(S=L → 0, when L → ∞), which include area-law states
and critical states S ∼ logðLÞ.
We first focus on the entanglement entropy S0 of the

eigenstate of ĤVðtÞ that describes the domain-wall melting.
Previous studies of the domain-wall melting in quantum
spin chains suggested a logarithmic growth with time
[34,58]. Here, we are interested in the entanglement entropy
at a fixed rescaled time t=N to extract the dependence on the
system size. Following Ref. [58], we take the following
ansatz,

S0 ¼
1

4
log

�
L
2

�
þ 1

12
log

�
t
N

�
þ 1

6
log

�
sin

�
πt
N

��
þ k0;

ð41Þ

where k0 is a constant. This heuristic ansatz is motivated by,
but not equal to, the result for the local quench [64,65].
It was shown to provide accurate results, up to small
temporal oscillations, for noninteracting fermions and the
Heisenberg chain [58].
Equation (41) predicts that, for a fixed t=N, the quantity

S0 − ð1=4Þ log ðL=2Þ should be independent of the
lattice size. The numerical results in Fig. 6(a) are, up to
small temporal fluctuations, consistent with this expect-
ation. This confirms that the entanglement entropy per site
S0=ðL=2Þ vanishes in the thermodynamic limit [see circles
in Fig. 6(b)]. The novel aspect about this result is that it
demonstrates that there are highly excited energy eigen-
states of the interacting Hamiltonian ĤVðtÞ that exhibit a
non-volume-law scaling of the entanglement entropy. They
are of relevance to transport problems like the ones we
study here. Their contribution is expected to be negligible
in the context of statistical mechanics.
On the other hand, the majority of eigenstates are

expected to exhibit a volume-law scaling with system size.
In Fig. 6(b), we calculate the average entanglement entropy
Sav of D=5 eigenstates of the many-body spectrum. Here,
D ¼ ðLNÞ is the Hilbert space dimension, and we choose

the eigenstates fjΨðmÞ
t i;m ∈ ½m0 −D=10; m0 þD=10�g,

where m0 is the eigenstate that describes the domain-wall
melting. The dashed line in Fig. 6(b) is a linear extrapo-
lation of the entanglement entropy density versus 1=L to
L → ∞. It makes apparent that the entanglement entropy
of the majority of the eigenstates of the emergent local
Hamiltonian exhibits a volume-law scaling with the sys-
tem size.
Our results thereby highlight the importance of gaining

a better understanding of the entanglement entropy of
highly excited eigenstates of interacting integrable models
[66–73]. Eigenstates with non-volume-law scaling of
the entanglement entropy exist throughout the spectrum,
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and they may play a special role in nonequilibrium states
such as the ones we study here.

VI. DISCUSSION AND OUTLOOK

The emergent eigenstate solution to quantum dynamics
we introduce in this work uncovers a new class of non-
equilibrium states. The key property of this class of states is
that they are eigenstates of a local operator we call the
emergent Hamiltonian, which behaves as a conserved
quantity. We introduce a general framework that can be
used to construct emergent local Hamiltonians. They are
explicitly time dependent and do not commute with the
physical Hamiltonian.
We construct emergent local Hamiltonians for simple

experimentally relevant setups in which the Hamiltonian
before the quench is either the boost operator or the boost
operator plus the final Hamiltonian. Those setups are
relevant to transport in systems with initial particle (or
spin) imbalance, and to the sudden expansion of quantum
gases in optical lattices. We should stress, however, that
emergent local Hamiltonians can also be constructed to
describe the dynamics of initial states that are stationary
states of Hamiltonians that do not contain the boost
operator [63].
We use the emergent eigenstate solution in the context of

noninteracting spinless fermions, hard-core bosons, and the
Heisenberg model. We show the following. (i) Time-
evolving current-carrying states can be ground states of
emergent local Hamiltonians. The description of this
family of states does not require one to invoke the concept
of local equilibrium, which is often applied to describe
nonequilibrium steady states. The quasimomentum distri-
bution of those states exhibits a maximum at nonzero

quasimomentum, which can be tuned by modifying the
initial state. Our results explain the main features observed
in a recent experiment with ultracold bosons in optical
lattices [40]. (ii) Time-evolving states can also be highly
excited eigenstates of emergent local Hamiltonians, with
entanglement entropies that do not exhibit volume-law
scaling. This highlights the physical relevance of some non-
volume-law states in the bulk of the spectrum of integrable
Hamiltonians to quantum dynamics.
There are problems of current interest in various fields to

which the emergent eigenstate description we introduce in
this work can be applied. (i) One problem is the quench
dynamics of thermal equilibrium states (relevant to theory
and experiments dealing with ultracold quantum gases).
Two recent studies of that problem were undertaken in
Refs. [63,74], in which (mixed) time-evolving states were
shown to be Gibbs states of the emergent local Hamiltonian
Ĥ0

SFðtÞ in Eq. (24), and an effective cooling observed
numerically was explained analytically using Ĥ0

SFðtÞ [74].
(ii) In the context of periodically driven systems, related
ideas have been recently used to engineer integrable
Floquet dynamics, namely, to engineer driven systems that
do not exhibit chaotic behavior under a periodic drive [75].
(iii) The construction we introduce in this work can also be
used to design fast-forward Hamiltonians, which aim at
bringing a system from the ground state of one Hamiltonian
to the ground state of another Hamiltonian. This has
potential applications in atomic, molecular, and optical
physics to design protocols that are much faster than the
ones relying on adiabatic processes [76]. (iv) Even though
the systems we consider here are integrable, the emergent
eigenstate construction only requires finding one conserved
(or almost conserved) operator for a given initial state. This

FIG. 6. Entanglement entropy of eigenstates of the emergent local Hamiltonian ĤVðtÞ [Eq. (35)] for V ¼ 1.2. (a) Entanglement
entropy S0 of the eigenstate jΨti that describes the domain-wall melting, after subtracting ð1=4Þ logðL=2Þ, for different system sizes L
and N ¼ L=2. The thick solid line displays the ansatz in Eq. (41) with k0 ¼ 0.529 as an average of k0ðLÞ for L ¼ 14, 16, 18. [For a given
L, we obtain k0ðLÞ by fitting the numerical result to Eq. (41).] (b) Entanglement entropy per site at time t=N ¼ 0.35 as a function of the
inverse system size. Diamonds depict the average entanglement entropy Sav per site ofD=5 eigenstates of the many-body spectrum (see
text for details) (for L ¼ 18, we average over 103 eigenstates). The solid line is obtained from Eq. (41) for the same value of k0 as in (a).
The dashed line is a linear fit to Sav=ðL=2Þ ¼ a1=Lþ a2 for L ≥ 14, with a1 ¼ 0.076 and a2 ¼ 0.308.
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hints at possible applications to (weakly) nonintegrable
systems. The emergence of power-law correlations in the
(nonintegrable) one-dimensional Bose-Hubbard model
[30] lends support to this expectation.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval
Research. We acknowledge insightful discussions with
M. Mierzejewski, C. D. Batista, F. Heidrich-Meisner, A.
Polkovnikov, T. Prosen, and U. Schneider.

APPENDIX A: INITIAL SHARP DOMAIN WALL

A possible initial state to study current-carrying states is
a sharp domain wall (a product state), in which the first N
sites (L0 ≡ f−N;−N þ 1;…;−1g) of the lattice with open
boundaries are occupied, and there are N þ 1 empty sites
(l ∈ f0; 1;…; Ng). This state is an eigenstate of Ĥ0;SF

[Eq. (17)] in the limit γ → ∞ in Eq. (17) and results in
λ ¼ −ðN þ 1Þ=2. To avoid confusion with the limit
N → ∞, we consider in this case the initial Hamiltonian
Ĥ00

0;SF ¼ P̂SF and the emergent local Hamiltonian

Ĥ00
SFðtÞ ¼

1

L

XN
l¼−N

ln̂l −
t
L

XN−1

l¼−N
ðif̂†lþ1f̂l þ H:c:Þ −

�
λ −

t2

L

�
:

ðA1Þ

To obtain the results for γ−1 ¼ 0, we therefore use the
ground state jΨti of Ĥ00

SFðtÞ [relevant to Fig. 1(a)] and
calculate hψðtÞjĤ00

SFðtÞjψðtÞi [relevant to Fig. 1(b)].

APPENDIX B: COMMUTATION RELATIONS
FOR NONINTERACTING SPINLESS FERMIONS

The criterion in Eq. (16) shows that the time regime in
which the emergent Hamiltonian description, Eq. (24), can
be applied is related to the expectation values of higher-
order commutators Ĥn;SF in the initial state. We consider
initial states that are ground states of Ĥ0;SF [Eq. (17)] at
γ > γ�; i.e., they exhibit extensive (in system size) regions
of site occupancy one or zero at the lattice boundaries. To
understand the structure of Ĥn;SF, it is useful to evaluate a
few terms beyond Ĥ1;SF [Eq. (22)]. The operator Ĥ2;SF is
proportional to

Ĥ2;SF ∝ ½ĤSF; ðn̂−N − n̂NÞ� ¼ i


ĵð1Þ−N þ ĵð1ÞN−1

�
; ðB1Þ

where we define a generalized current operator

with support on mþ 1 sites as ĵðmÞ
l ¼ ðif̂†lþmf̂l þ H:c:Þ.

Analogously, one can define a generalized kinetic energy

operator: ĥðmÞ
l ¼ ðf̂†lþmf̂l þ H:c:Þ. In Eq. (B1), the current

operators have support on two sites at the chain boundaries.
Hence, the expectation values in the initial state yield zero.
New terms in higher-order commutators are generated

symmetrically at both ends of the chain, so let us focus on
the left end. The operator Ĥ3;SF contains

h
ĤSF; ĵ

ð1Þ
−N

i
¼ −i

h
ĥð2Þ−N þ 2ðn̂−N − n̂−Nþ1Þ

i
: ðB2Þ

Again, this term vanishes in the initial state.
Moving forward, the following commutation relations

are useful:

h
ĤSF; ĵ

ðmÞ
l

i
¼ −i ×

h

ĥðmþ1Þ
l − ĥðmþ1Þ

l−1

�
þ


ĥðm−1Þ
l − ĥðm−1Þ

lþ1

�i
; ðB3Þ

for the generalized current operator,

h
ĤSF; ĥ

ðmÞ
l

i
¼ i ×

h

ĵðmþ1Þ
l − ĵðmþ1Þ

l−1

�
þ


ĵðm−1Þ
l − ĵðm−1Þ

lþ1

�i
; ðB4Þ

for the generalized kinetic energy operator (m > 0), and

½ĤSF; n̂l� ¼ i


ĵð1Þl − ĵð1Þl−1

�
; ðB5Þ

for the site occupation operator. In Eqs. (B3)–(B5), the
operator at site l − 1 vanishes if l ¼ −N.
One can see from Eqs. (B3)–(B5) that the maximal

support of the operators in Ĥn;SF, which are all one-body
operators, grows linearly with n. Moreover, from Eq. (B3)
form ¼ 1, one can see that site occupation operators n̂l and
n̂lþ1 emerge in pairs. Since the initial states under consid-
eration are product states at the boundaries, this advances
that an extensive (in system size) number of terms in
Eq. (16) vanishes.
For concreteness, let us focus on initial states that are

sharp domain walls (as we define in Appendix A). The site
occupation operators n̂l and n̂lþ1, which emerge in pairs,
cancel each other in sharp domain walls unless l ¼ −1.
This occurs for the first time in operator Ĥ2Nþ1;SF. Hence,
the first nonvanishing expectation value in Eq. (16) (after
t2) is hψ0jĤ2Nþ1;SFjψ0i. The coefficient in front of this term
is t2Nþ2=ð2N þ 2Þ!, and for the validity of the emergent
eigenstate description, it is sufficient that it be exponen-
tially small. Using Stirling’s formula (N ≫ 1), we get the
condition t≲ Nð2=eÞ. By comparison to exact numerical
results in Fig. 1(a), we show that this analysis correctly
predicts the time of validity of the emergent eigenstate
description to be proportional to the particle number N (or
the system size L).
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APPENDIX C: QUASIMOMENTUM
DISTRIBUTION OF NONINTERACTING
FERMIONS IN A LINEAR POTENTIAL

Here, we derive Eq. (30). We study the Wannier-Stark
Hamiltonian in the infinite volume limit,

Ĥ ¼ −
X∞
l¼−∞

ðf̂†l f̂lþ1 þ H:c:Þ þ γ

L0
X∞
−∞

ln̂l; ðC1Þ

where γ is finite and L0=γ determines the width of the
localized states. These localized single-particle Wannier-
Stark eigenstates can be written as

η̂†nj∅i ¼
X∞
l¼−∞

Jl−nðαÞf̂†l j∅i; ðC2Þ

where n is a site index, Jl−nðαÞ is the Bessel function of the
first kind, j∅i is the vacuum state, and we define α≡ 2L0=γ.
The eigenstate above represents a wave function localized
at site n with a width given by α. In order to produce the
domain-wall initial state, we consider a many-body state
jψ 0

0i ¼
Q−1

n¼−∞ η̂†nj∅i with 2α < L0, i.e., γ > 4.
One-body correlations Cl;m ¼ hψ 0

0jf̂†l f̂mjψ 0
0i for l ≠ m

can be expressed as

Cl;m ¼
X−1
n¼−∞

Jl−nðαÞJm−nðαÞ

¼ α

2ðl −mÞ ½Jmþ1ðαÞJlðαÞ − JmðαÞJlþ1ðαÞ�; ðC3Þ

for any l; m ∈ Z with l ≠ m. Note that Cl;m ≈ 0 for
jlj; jmj ≫ α. We use Cl;m to calculate the contribution of
the off-diagonal matrix elements of the one-body density
matrix to mq, which we define as

mq ¼ lim
N0→∞

1

L0
XN0

l;m¼−N0
eiqðl−mÞCl;m: ðC4Þ

This formula calculates the quasimomentum distribution on
a line of length L0 ¼ 2N0 þ 1. In the limit N0 → ∞, L0,
which also defines the width of the localized Wannier-Stark
states, goes to infinity. This is required in order to correctly
define the thermodynamic limit of this system. If the width
of the Wannier-Stark states α did not grow as L0, the state
would go to a steplike domain wall in theN0 → ∞ limit and
render the quasimomentum distribution trivial.
The diagonal contribution to mq is given by the average

site occupation, which for the half filled case considered
here is always 1=2. We define the off-diagonal contribution
as m̄q ≡mq − 1=2, so that

m̄q ¼ lim
N0→∞

1

L0
XN0

l≠m¼−N0
eiqðl−mÞCl;m

¼ lim
N0→∞

1

L0
XN0

l≠m¼−N0

αeiqðl−mÞ

2ðl −mÞ
× ½Jmþ1ðαÞJlðαÞ − JmðαÞJlþ1ðαÞ�: ðC5Þ

We express 1=ðl −mÞ (for l ≠ m) as an integral,
1=ðl −mÞ ¼ R

1
0 dxx

l−m−1, giving

m̄q ¼ lim
N0→∞

α

2L0

Z
1

0

dx
XN0

l;m¼−N0
eiqðl−mÞxl−m−1½Jmþ1ðαÞJlðαÞ − JmðαÞJlþ1ðαÞ�

¼ lim
N0→∞

α

2L0

Z
1

0

dx
XN0

l;m¼−N0
½eiqðxeiqÞlðxeiqÞ−ðmþ1ÞJmþ1ðαÞJlðαÞ − x−2e−iqðxeiqÞlþ1ðxeiqÞ−mJmðαÞJlþ1ðαÞ�: ðC6Þ

Using the generating function for Bessel functions of the first kind,
P∞

n¼−∞ JnðαÞxn ¼ exp½αðx − x−1Þ=2�, reinstating
α ¼ 2L0=γ, and taking the limit, we get

m̄q ¼ γ−1
Z

1

0

dxðeiq − x−2e−iqÞ

¼ 2γ−1 cosðqÞ: ðC7Þ

As a result, the quasimomentum distribution function reads

mq ¼
1

2
þ 2γ−1 cosðqÞ: ðC8Þ
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APPENDIX D: SITE AND QUASIMOMENTUM
OCCUPATIONS FOR NONINTERACTING

FERMIONS

Here, we provide further details, which complement the
analysis in Sec. III A, about the time evolution of the site and
quasimomentum occupations in the current-carrying states.
We first derive the time t� at which the site occupations at

the boundaries of the chain depart from their initial values.
In the ground state of Ĥ0

SFðtÞ, t� can be obtained from the
Wannier-Stark solution using γ=Aðt�Þ ¼ γ� (γ� ¼ 4 for
L=N ¼ 2). Substituting Aðt�Þ from Eq. (25), this expres-
sion can be simplified to t�=L ¼ ðγ�Þ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðγ�=γÞ2

p
. In

the case of γ−1 ¼ 0, it yields t�=L ¼ 1=γ�. By comparing
that to t�=N ¼ 1=vmax ¼ 1=2, one can see that
γ�=vmax ¼ L=N. We choose the unit of time τ such that
t� satisfies t�=τ ≔ 1=vmax. This results in τ ¼ Nðt�=LÞγ�,
or Eq. (27) for the particular case in which L=N ¼ 2.
The site occupations shown in Fig. 2(a) exhibit data

collapse upon replacing the site positions l → ~l ¼
lγðtÞ=ð2LÞ, where γðtÞ ¼ γ=AðtÞ. This scaling enables
one to obtain a closed expression for the position l�ðtÞ
of the propagating front by setting l�ðtÞγðtÞ=ð2LÞ ¼ 1. It
also allows one to determine the velocity of the propagating
front, v�ðtÞ ¼ dl�ðtÞ=dt, which can be expressed in units of
t=τ as

v�ðtÞ ¼ 2
t
τ
N
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðγ�γ−1Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2 þ ðtτÞ2ðNLÞ2½1 − ðγ�γ−1Þ2�

q : ðD1Þ

This expression makes clear that v�ðtÞ ¼ 2 only when
γ−1 ¼ 0, i.e., for the initial product state. On the other hand,
for nonzero γ−1, one gets that v�ðtÞ < 2. The time evolution
of v� is plotted in Fig. 7(a) for three values of γ.
Next, we study the quasimomentum distribution mqðtÞ

[Eq. (29)]. We focus on two quantities: (i) the time
evolution of φðtÞ [Eq. (26)], which gives the position of
the peak in mqðtÞ, and (ii) the amplitude

ΔmðtÞ ¼ max½mqðtÞ� −min½mqðtÞ� ðD2Þ
of mqðtÞ for noninteracting spinless fermions.
The time-dependent renormalization of the amplitude

of mqðtÞ, invoked in the derivation of Eq. (31), suggests

that ΔmðtÞ ¼ 4AðtÞ=γ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2 þ ðt=LÞ2

p
. Hence, ΔmðtÞ

increases linearly with t only when γ−1 ¼ 0 (the initial
amplitude is zero), yielding ΔmðtÞ ¼ 4t=L. In all other
cases, the amplitude increase is slower than linear.
By expressing Δm in units of t=τ, one gets

ΔmðtÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2 þ

�
t
τ

�
2
�
N
L

�
2

½1 − ðγ�γ−1Þ2�
s

; ðD3Þ

which is plotted in Fig. 7(b). Note that ΔmðtÞ ¼ 1 for
t�=τ ¼ 0.5, implying that, at the time at which the expand-
ing front reaches the chain boundary, there exist one
quasimomentum that is fully occupied and one that
is empty.
The position of the peak of the quasimomentum dis-

tribution in the ground state of Ĥ0
SFðtÞ [Eq. (24)] is

FIG. 7. Site and quasimomentum occupations of noninteracting spinless fermions for N=L ¼ 1=2. (a) Velocity of the propagating
front v�ðtÞ [Eq. (D1)]. (b) Amplitude of the quasimomentum distribution function for noninteracting fermions ΔmðtÞ [Eq. (D2)]. (c),(d)
Position of the peak of the quasimomentum distribution function φðtÞ [Eq. (D4)]. Results are shown versus t=τ
in (a)–(c), and versus γ−1 in (d).
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determined by the phase φðtÞ ¼ arctanðγt=LÞ. This result
reveals that the position of the peak during the expansion of
a domain wall evolves from q ¼ 0 towards q ¼ π=2, with
the only exception being the initial product state, γ−1 ¼ 0.
In that case, the peak is located at q ¼ π=2 at all times
t > 0. In terms of t=τ, one can write the phase φ as

φðtÞ ¼ arctan

�
t
τ

N
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − ðγ�Þ2

q �
: ðD4Þ

We plot φ versus t=τ in Fig. 7(c), and versus γ−1 in
Fig. 7(d). The plots show that, for any nonzero value of γ−1,
the position of the peak in mqðtÞ remains below q ¼ π=2 at
all times.

APPENDIX E: COMMUTATION RELATIONS
IN THE HEISENBERG MODEL

Here, we provide explicit expressions for two consecu-
tive nested commutators of the operator Q̂ðVÞ [Eq. (34)]

with ĤV [Eq. (32)]. The result for the second-order
commutator on the left boundary of the chain is given by

½ĤV; ½ĤV; Q̂ðVÞ��jleft boundary
¼ ĵð2Þ−Nþ1 − V

�
ĵð1Þ−Nþ1

�
n̂−Nþ3 −

1

2

�

þ 2ĵð1Þ−Nþ2

�
n̂−Nþ1 −

1

2

��

þ V2

4
ĵð2Þ−Nþ1 −

V3

4
ĵð1Þ−Nþ1

�
n̂−Nþ3 −

1

2

�
: ðE1Þ

In the latter expression, the maximal support of the
operators extends on the three leftmost lattice sites, and
gives zero when acting on the initial state. In the same
manner, the third-order commutator acts at most on the four
leftmost lattice sites,

½ĤV; ½ĤV; ½ĤV; Q̂ðVÞ���jleft boundary
¼ i

�
−½ĥð3Þ−Nþ1 þ ðĥð1Þ−Nþ1 − ĥð1Þ−Nþ2Þ� þ V

�
ĥð2Þ−Nþ1

�
n̂−Nþ4 −

1

2

�
þ 2ĥð2Þ−Nþ2

�
n̂−Nþ1 −

1

2

�
− ĥð2Þ−Nþ1

�
n̂−Nþ2 −

1

2

�

− ĵð1Þ−Nþ1ĵ
ð1Þ
−Nþ3 þ 2ðn̂−Nþ1 − n̂−Nþ2Þ

�
n̂−Nþ3 −

1

2

�
þ 2ðn̂−Nþ2 − n̂−Nþ3Þ

�

−
V2

4

�
ĥð3Þ−Nþ1 þ ðĥð2Þ−Nþ1 − ĥð1Þ−Nþ2Þ þ 4ĥð1Þ−Nþ1

�
n̂−Nþ3 −

1

2

�
þ 8ĥð1Þ−Nþ2

�
n̂−Nþ1 −

1

2

��
n̂−Nþ4 −

1

2

�
− 2ĥð1Þ−Nþ2

�

þ V3

4

�
ĥð2Þ−Nþ1

�
n̂−Nþ4 −

1

2

�
þ ĥð2Þ−Nþ1

�
n̂−Nþ2 −

1

2

�
− ĵð1Þ−Nþ1ĵ

ð1Þ
−Nþ3 þ 2ðn̂−Nþ1 − n̂−Nþ2Þ

�
n̂−Nþ3 −

1

2

��

−
V4

4
ĥð1Þ−Nþ1

�
n̂−Nþ3 −

1

2

�	
; ðE2Þ

giving again zero when acting on the initial state. The
locality of the Hamiltonian ĤV [Eq. (32)] guaranties that in
every new generation the support of the operators will
increase at most for one site, similarly to noninteracting
fermions in Appendix B. As for the noninteracting case,
we then conjecture the times for which the emergent
Hamiltonian description of the Heisenberg model is ex-
ponentially accurate to increase nearly linearly with N. The
numerical results in Fig. 4(a) confirm this hypothesis.
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