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Quantum randomness is an essential key to understanding the dynamics of complex many-body systems
and also a powerful tool for quantum engineering. However, exact realizations of quantum randomness take
an extremely long time and are infeasible in many-body systems, leading to the notion of quantum
pseudorandomness, also known as unitary designs. Here, to explore microscopic dynamics of generating
quantum pseudorandomness in many-body systems, we provide new efficient constructions of unitary
designs and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a
unitary design after a threshold time. The new constructions are based on the alternate applications of
random potentials in the generalized position and momentum spaces, and we provide explicit quantum
circuits generating quantum pseudorandomness significantly more efficient than previous ones. We then
provide a design Hamiltonian in disordered systems with periodically changing spin-glass-type inter-
actions. The design Hamiltonian generates quantum pseudorandomness in a constant time even in the
system composed of a large number of spins. We also point out the close relationship between the design
Hamiltonian and quantum chaos.
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I. INTRODUCTION

Random quantum process is a useful resource in quan-
tum information processing, as one of the fundamental
primitives in quantum Shannon theory [1–8] and to
demonstrate quantum advantages in many protocols
[9–18]. In recent years, random processes have also turned
out to play key roles in understanding fundamental physics
in complex quantum systems, leading to new developments
in quantum thermodynamics [19–21] (see Ref. [22] for a
comprehensive review), black hole information science
[23–28], and strongly correlated many-body physics
[29–31]. Quantum randomness is often represented by
random unitaries drawn uniformly at random according
to the Haar measure, referred to as Haar random unitaries.
However, when a system is large, it takes an extremely long
time to realize Haar random unitaries, implying that they
rarely appear in natural systems composed of many
particles. This is especially the case when the interactions
are local. This fact has led to the research area on quantum
pseudorandomness [32–35], particularly in terms of unitary

t-designs [36–38], and their efficient implementations
[33–35,39–47]. A unitary t-design is a finite-degree
approximation of Haar random unitaries, and is called
exact when it simulates all the first t moments of Haar
random unitaries and approximate when the simulations are
with errors.
Traditionally, unitary t-designs have been investigated

for small t. In particular, unitary 2-designs were intensely
studied [34,36–42,44,45] due to the fact that they are useful
in important tasks, such as decoupling [5–8] and random-
ized benchmarking [9–12], and that the Clifford group is an
exact unitary 2-design [36]. Unitary 2-designs have already
been implemented experimentally in small systems and are
a standard tool of evaluating the performance of quantum
devices [48–51]. Later, the Clifford group on two-level
systems, known as qubits, was also shown to be a unitary
3-design but not to be a 4-design [46,47,52]. For t ≥ 4, a
few applications are known (e.g., state discrimination [13],
quantum speed-ups in query complexity [14], and com-
pressed sensing [15,17]), but they are of potential impor-
tance when strong large deviation bounds are needed,
which typically leads to better performance of quantum
protocols. So far, only a couple of efficient implementa-
tions for t ≥ 4 are known, to the best of our knowledge.
One is to use a classical tensor product expander and
the Fourier transformation, forming approximate unitary
t-designs for t ¼ OðN=logNÞ by using polyðNÞ quantum
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gates [33]. The other is to use local random quantum
circuits composed of random two-qubit gates applied onto
neighboring qubits, which achieves approximate unitary
t-designs for t ¼ polyðNÞ using Oðt10N2Þ gates [35,43].
Despite these implementations of unitary designs by

quantum circuits, there exists a certain gap between the
constructions and physically feasible dynamics in quantum
many-body systems. The constructions require a finely
structured circuit [33] or the use of randomly varying
interactions [35,43], while dynamics in physically feasible
many-body systems is typically not structured and is
generated by a Hamiltonian, which may slightly fluctuate
over time but should be based on a time-independent one.
Indeed, if we interpret local random quantum circuits on N
qubits in terms of Hamiltonian dynamics, the interactions
should be changed uniformly at random Oðt10NÞ times
before the dynamics achieves unitary t-designs. Because of
its dependence on the number of qubits, the total
Hamiltonian should be highly time dependent and may
not be so physically feasible in large systems, resulting in
the lack of a solid basis of a number of studies in many-
body systems based on quantum pseudorandomness
[19–28]. There is also an increasing demand from black hole
information science and quantum chaos to fully understand
microscopic dynamics of randomization, where so-called
scrambling has been intensely studied [23–31]. Scrambling
is a weak variant of quantum pseudorandomness, and study-
ing natural Hamiltonians generating unitary designs will
elaborate the understandings in context. Furthermore, imple-
mentations of unitary designs by Hamiltonian dynamics
are of practical importance, helping experimental realizations
of designs, as any quantum circuit is fundamentally imple-
mented by engineering Hamiltonians.
In this paper, to better understand microscopic dynamics

generating quantum pseudorandomness, we provide new
constructions of unitary t-designs and propose a design
Hamiltonian, a random Hamiltonian of which dynamics
forms a unitary design at any time after a threshold time. The
constructions are based on the scheme of repeating random
unitaries diagonal in mutually unbiased bases [45,53–55].
We first show that the process on a d-dimensional Hilbert
space, known as a qudit, achieves unitary t-designs afterOðtÞ
repetitions if a pair of the two bases satisfies a certain
condition, which is considered to be a generalization of the
position andmomentumbases.As the constructionworks for
any space, it will be useful to implement unitary designs in a
subspace, such as a bosonic subspace, which is a strong
resource to demonstrate a quantum advantage in metrology
[18]. We then focus on random diagonal unitaries in the
Pauli-X and -Z bases on N qubits and investigate how to
approximate them efficiently by quantum circuits. By map-
ping this problem to a combinatorial problem, called a local
permutation check problem, we show that an approximate
unitary t-design for t ¼ oðN1=2Þ can be achieved by using
OðtN2Þ gates. In terms of t, this drastically improves the

previous result [35,43], which uses Oðt10N2Þ gates, and is
essentially optimal. As higher designs are useful to improve
the performance of any applications of lower designs due to
their large deviation bounds [56], this construction will
contribute to improving the performance of any applications
of designs [1–18]. Finally, we present a nearly time-
independent design Hamiltonian with spin-glass-type inter-
actions, where it suffices to vary the interactions only OðtÞ
times before the corresponding time-evolution operators
form unitary t-designs. As a consequence, the design
Hamiltonians saturate expectationvalues of any observables,
e.g., the so-called out-of-time-ordered (OTO) correlators
[29–31], to the fully uniform averages in a constant time.
As the saturation of OTO correlators is expected to be a sign
of quantum chaos [28], this shows a close relation between
design Hamiltonians and quantum chaos, further suggesting
the possibility to explore fascinating features of random
dynamics in complex quantum systems by design
Hamiltonians and by the methods developed in quantum
information science. We also propose a conjecture about the
time scale for a natural design Hamiltonian to generate
unitary designs, which can be seen as a generalization of the
fast scrambling conjecture [24].
This paper is organised as follows. In Sec. II, we

introduce necessary notations and explain several defini-
tions and properties of random unitaries. All of the main
results are summarized in Sec. III, of which proofs are
provided in Sec. IV. We conclude and discuss possible
future directions in Sec. V. Small propositions presented in
the paper are explained in Appendixes.

II. PRELIMINARIES

We use the following standard asymptotic notation. Let
fðnÞ and gðnÞ be functions onRþ. We say fðnÞ ¼ O(gðnÞ)
if there exist c, n0 > 0 such that fðnÞ ≤ cgðnÞ for all
n ≥ n0. When there exist c, n0 > 0 such that fðnÞ ≥ cgðnÞ
for all n ≥ n0, we say fðnÞ ¼ Ω(gðnÞ). If fðnÞ ¼ O(gðnÞ)
and fðnÞ ¼ Ω(gðnÞ), we denote it by fðnÞ ¼ Θ(gðnÞ). If
limn→∞fðnÞ=gðnÞ ¼ 0, we write it by fðnÞ ¼ o(gðnÞ). For
given i, j (i < j), we denote by ½i; j� a sequence of numbers
from i to j, ½i; j� ≔ fi; iþ 1;…; j − 1; jg. We also use a
floor function ⌊x⌋ for x ∈ R, which is the largest integer
less than or equal to x.
Let H be a Hilbert space and BðHÞ be a set of bounded

operators on H. We use several norms of operators and
superoperators. For operators, we use the operator norm
∥ · ∥∞ and the p-norm (p ≥ 1) defined by ∥X∥∞ ≔
maxixi, where fxig are the singular values of X, and
∥X∥p ≔ ðtrjXjpÞ1=p, respectively. For a superoperator
C∶BðHÞ → BðHÞ, we use a family of superoperator norms
∥C∥q→p (q, p ≥ 1) and the diamond norm [57] defined by

∥C∥q→p ¼ sup
X≠0

∥CðXÞ∥p
∥X∥q

; ∥C∥⋄ ≔ sup
k
∥C⊗ idk∥1→1; ð1Þ
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respectively, where idk is the identity map acting on a
Hilbert space of dimension k.
Perfect quantum randomness is often represented by a

Haar random unitary, a unitary drawn from a unitary group
uniformly at random. Formally, it is given as follows: let
UðdÞ be a unitary group of degree d, and H be the Haar
measure (i.e., the unique unitarily invariant probability
measure) on UðdÞ. A Haar random unitary UH is a UðdÞ-
valued random variable distributed according to the Haar
measure, UH ∼ H. Quantum randomness is hard to gen-
erate when the dimension of the unitary group is large due
to its full uniformity. Moreover, when we consider the
generation of quantum randomness in isolated physical
systems, Haar random unitaries are extremely rare to
appear because the dynamics in a physical system is
generated by a system Hamiltonian and, if it is time
independent, the dynamics leaves the eigenspaces invari-
ant. In such situations, it may be more physically feasible to
fix the basis and to consider random time evolution under
the fixed basis. This is the idea of a random diagonal
unitary [58] in a fixed basis: let E ¼ fjkigk∈½0;d−1� be an
orthogonal basis in a Hilbert spaceHwith dimension d. Let
DEðdÞ be the set of d × d unitaries diagonal in the basis E.
Let DE denote a probability measure on DEðdÞ induced by
a uniform probability measure on the parameter space
½0; 2πÞd. A random diagonal unitary in the basis of E [53],
DE, is a DEðdÞ-valued random variable distributed accord-
ing to DE, DE ∼ DE.
In practice, quantum randomness described by Haar

random unitaries should be considered to be an idealization
because the time necessary for exactly generating quantum
randomness scales exponentially in the number of particles
in the system. Hence, it is important to consider quantum
pseudorandomness often described by a unitary t-design

(t ∈ Zþ). To explain unitary designs, let GðtÞ
U∼νðXÞ be a

superoperator given by GðtÞ
U∼νðXÞ ≔ EU∼ν½U⊗tXU†⊗t� for

any X ∈ BðH⊗tÞ, where EU∼ν represents an average over a
random unitary U according to a probability measure ν.
Then, a random unitary U ∼ ν is called an ϵ-approximate

unitary t-design [34,37] if ∥GðtÞ
U∼ν − GðtÞ

U∼H∥⋄ ≤ ϵ. Quantum
pseudorandomness, in the sense of unitary t-designs, is
indistinguishable from a fully random one even if we have t
copies of the system and are allowed to collectively act on
the whole of them. Hence, it is regarded as a lower-order
approximation of quantum randomness.
Note that, if U is an ϵ-approximate unitary t-design, then

for any random unitary V independent of U, UV and VU
are also ϵ-approximate unitary t-designs. This can be seen
in a straightforward way as follows:

∥GðtÞ
V ∘GðtÞ

U∼ν − GðtÞ
U∼H∥⋄ ¼ ∥GðtÞ

V ∘ ðGðtÞ
U∼ν − GðtÞ

U∼HÞ∥⋄ ð2Þ

≤ ∥GðtÞ
V ∥⋄∥G

ðtÞ
U∼ν − GðtÞ

U∼H∥⋄ ð3Þ

≤ ϵ; ð4Þ

where we use the unitary invariance of the Haar measure in

the first line, and a fact that GðtÞ
V is a completely positive and

trace-preserving map in the last line. The proof for UV is
also similar.
We also use a quantum (η,t)-tensor product expander ν

(TPE), which is considered to be a “seed” of quantum
pseudorandomness, defined by

∥EU∼ν½U⊗t;t� − EU∼H½U⊗t;t�∥∞ ≤ η; ð5Þ

where η < 1, U⊗t;t ≔ U⊗t ⊗ U�⊗t, and U� is a complex
conjugation of U [59]. This definition is equivalent to

∥GðtÞ
U∼ν − GðtÞ

U∼H∥2→2 ≤ η; ð6Þ

and, hence, the difference between a quantum TPE and a
unitary t-design is just the norm used in their definitions.
The quantum TPE is useful simply because iterating
quantum ðη; tÞ TPE yields an approximate unitary t-design.
This fact is often used in the literature [33,35,43], which is
stated in the following theorem (a proof is given in
Appendix A for completeness).
Theorem 1.—Let ν be a quantum (η,t) TPE. Then,

iterating the TPE l ≥ f1=½logð1=ηÞ�g logðdt=ϵÞ times
results in an ϵ-approximate unitary t-design.

III. MAIN RESULTS

Here, we present a summary of our three main results.
We first provide implementations of approximate unitary
designs on one qudit in Sec. III A. In Sec. III B, we consider
N-qubit systems and show that ϵ-approximate unitary
t-designs can be implemented by quantum circuits with
length OfN½tN þ logð1=ϵÞ�g. Finally, in Sec. III C, we
propose design Hamiltonians and provide a design
Hamiltonian with two-body interactions that achieves
unitary designs in a short time.

A. One qudit case

We introduce a Fourier-type pair of bases. A pair of
orthogonal bases ðE;FÞ is called a Fourier-type pair if each
element in F ¼ fjαiFgα∈½0;d−1� is expanded in the basis of
E ¼ fjkiEgk∈½0;d−1� as follows:

jαiF ¼ 1ffiffiffi
d

p
X

k∈½0;d−1�
eiθkα jkiE; ð7Þ

where the phases θkα ∈ ½0; 2πÞ satisfy the condition that
∀k, l, α ∈ ½0; d − 1�, θkþl;α ¼ θkα þ θlα. In the index of
θ, þ should be an additive operation with respect to which
½0; d − 1� is an additive group. Two important examples of
Fourier-type pairs of bases are the following (seeAppendixB
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for the details): (1) any orthogonal basis fjkigk∈½0;d−1� and its
Fourier basis fd−1=2Pkω

αkjkigα∈½0;d−1�, where ω is a dth
root of unity, and (2) the Pauli-X and Pauli-Z bases on N
qubits. These two examples are versions of the position and
momentum bases in continuous and discrete spaces, respec-
tively. It is known that if DW (W ¼ E, F) is applied to the
state with a large support in the basis ofW, then the resulting
state is strongly randomized [58,60]. This fact naturally leads
us to expect that alternate applications of DE and DF

randomize any states and eventually achieve quantum
pseudorandomness. This is indeed the case.
Theorem 2.—Let d ¼ Ωðt2t!2Þ and ðE;FÞ be a Fourier-

type pair of bases. For independent random diagonal
unitaries DE and D0E in the basis of E and DF in the
basis of F, DEDFD0E is a quantum ðη; tÞ TPE with η
given by

η ¼ ð1þ t2Þt!2 þ t2

d
þO

�
t4t!2

d2

�
: ð8Þ

The proof is given in Sec. IV B. From Theorems 1 and 2,
and noticing that applying two random diagonal unitaries in
the same basis is equivalent to applying one random
diagonal unitary in that basis, we obtain our first main
result.
Corollary 3 (Main result 1).—Let ðE;FÞ be a Fourier-

type pair of bases and assume that d ¼ Ωðt2t!2Þ. A random
unitary D½l� ≔ DE

lD
F
lD

E
l−1D

F
l−1…DE

1D
F
1D

E
0 , where DE

i
and DF

i are independent random diagonal unitaries in
the basis of E and F, respectively, is an ϵ-approximate
unitary t-design if

l ≥
1

log d − 2 logðt!Þ ½t log dþ logð1=ϵÞ�; ð9Þ

up to the leading order of d and t.
This construction of designs works for any space, which

is not necessarily a whole tensor-product space, and will be
useful when we need designs in certain subspaces. This is
the case, for instance, in quantum metrology, where it was
recently shown that almost any random symmetric states
are useful to demonstrate a quantum advantage [18]. As
unitary designs in the symmetric subspace are needed for
generating such random states, our construction will help
the demonstration of a quantum advantage in metrology.
Another interesting instance is an experimental demon-
stration of self-thermalization in isolated quantum systems,
which can be done by applying Haar random unitaries or
unitary designs onto the system and the environmental
system [19–21]. Since the temperature of the system is
determined by the total energy in the system and the
environment, unitary designs should act on the subspace
with restricted energy. Our construction is suited in this
situation because a pair of position and momentum bases of

pseudoparticles with fixed energies forms a Fourier-type
pair and may be physically feasible to deal with.
Before we proceed to the next section, we make a short

remark on the assumption d ¼ Ωðt2t!2Þ in Theorem 2 and
Corollary 3. This assumption comes from a technical
reason and it remains open whether the assumption can
be removed (see Sec. IV B for more details).

B. N-qubits case

We now focus on N-qubit systems. In particular, we
consider applying random diagonal unitaries in the Pauli-X
and -Z bases. From Corollary 3, repeating these random
diagonal unitaries yields an ϵ-approximate unitary t-design
if the number l of repetitions satisfies

l ≥
1

N − 2 log2ðt!Þ
½tN þ log2ð1=ϵÞ�; ð10Þ

as long as 2N ¼ Ωðt2t!2Þ. However, this construction is
inefficient because an exact implementation of random
diagonal unitaires by quantum circuits requires an expo-
nential number of local gates. Thus, we need to find
efficient implementations of approximate random diagonal
unitaries by quantum circuits. As the Pauli-X and -Z bases
are related by the Hadamard transformation, it suffices to
consider those only in the Pauli-Z basis.

1. Random diagonal circuits and
local permutation checks

We especially study the following family of random
diagonal circuits (RDC). Let I ¼ fIig be a set of
Ii ⊂ ½1; N�, and denote Mi ≔ 2jIij − 1. At the ith
step of the circuit, we apply a random diagonal gate
diagZfeiφ0 ;…; eiφMig onto the qubits located in Ii, where
the gate is diagonal in the Pauli-Z basis and the phases φk
(k ∈ ½0;Mi�) are chosen independently and uniformly at
random from ½0; 2πÞ every step. Since the circuit is fully
specified by I, we denote it by RDCðIÞ. We refer to jI j as
the length of the circuit.
The problem of approximating random diagonal uni-

taries in the Pauli-Z basis by RDCðIÞ is related to an
elementary combinatorial problem, which may be of
interest in its own right. We first introduce the combina-
torial problem here, and then show the connection to the
original problem.
Let K and K0 be t × N matrices with elements in f0; 1g.

For given s ∈ ½1; t� and I ⊂ ½1; N�, we denote a sub-
sequence ðKs;mÞm∈I of the sth row of K by Ks;I and a
set fKs;Igs∈½1;t� of such subsequences over all s by KI. We
use the same notation also for K0. Let Ω be a canonical map
that rearranges the subsequences KI in ascending order,
where the subsequences are regarded as binary numbers.
For I ¼ fIg, we say that K is an I-local permutation of K0
if ∀I ∈ I ,ΩðKIÞ ¼ ΩðK0

IÞ. In particular, we say K is a row
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permutation of K0 if ΩðKIÞ ¼ ΩðK0
IÞ for I ¼ ½1; N�, which

simply implies that a set of rows of K is a permutation of
that of K0. In the following, we denote by Ir a set of all
subsets in ½1; N� with r elements. Using this notation, the
task of local permutation check problems is to count the
number of pairs ðK;K0Þ such that K is not a row
permutation but an I-local permutation of K0. We denote
the number of such pairs by ΛðIÞ. In particular, for Ir, we
call the problem an r-local permutation check problem and
denote the number of pairs by Λr. For a couple of examples
of local permutation checks, see Fig. 1.
To see the connection between the implementations of

quantum TPEs by RDCðIÞ and the I-local permutation
check problem, we consider EDZ∼RDCðIÞ½ðDZÞ⊗t;t�, which
is an operator diagonal in the Pauli-Z basis on
ðC2Þ⊗tN ⊗ ðC2Þ⊗tN . We label each vector of the Z basis
in ðC2Þ⊗tN by a t × N matrixK with elements in f0; 1g (see
Appendix C for further details). Then, we can show that

hK;K0jEDZ∼RDCðIÞ½ðDZÞ⊗t;t�jK;K0i

¼
8<
:

1 if K is an I-local permutation of K0

0 otherwise:
ð11Þ

See Fig. 1(c) as well. Based on this fact, we obtain that,
when 2N ¼ Ωðt2t!2Þ, iterating RDCðIÞ and the
Hadamard transformation HN on N qubits, such as
RDCðIÞHNRDCðIÞHNRDCðIÞ [see Fig. 2(a)], yields a
quantum ð~η; tÞ TPE, where

~η ≤ ηþ 3t!
ΛðIÞ
2tN

þ
�
ΛðIÞ
2tN

�
2

; ð12Þ

with η ¼ ½ð1þ t2Þt!2 þ t2�=2N þOðt4t!2=22NÞ (see
Appendix C for the details).

2. Approximating random diagonal
unitaries by RDCðI 2Þ

To obtain our second main result, RDCðI2Þ [see
Fig. 2(b)] and the 2-local permutation check problem are
of particular importance. Because of the result in Ref. [61],
we know that Λ2 ¼ 0 for t ≤ 3. When t ≥ 4, the problem
can be rephrased as an extremal problem under dimension
constraints, which is a constrained problem in extremal
algebraic theory [62,63]. By solving a special case of the
problem (see Sec. IV C), we obtain Λ2 ≤ 22t

2þðt−1ÞN . Thus,
for t ¼ oðN1=2Þ, iterating RDCðI2Þ and the Hadamard
transformation is a quantum ð~η; tÞ TPE, where

~η ≤ 22t
2þ2−Nt!þOðt2t!22−NÞ; ð13Þ

from which we obtain an efficient implementation of a
unitary t-design due to Theorem 1.

We can further reduce the number of randomness in the
implementation by replacing all gates in RDCðI2Þ with
those in the form of

ðdiagf1; eiφ1g ⊗ diagf1; eiφ2gÞdiagf1; 1; 1; eiϑg: ð14Þ

When φ1 and φ2 are chosen independently from
f2πm=a∶m ∈ ½0; a − 1�g uniformly at random, and ϑ is
chosen from f2πm=b∶m ∈ ½0; b − 1�g, we denote the
circuit RDCdiscðI2∶a; bÞ. Using the same technique as in

(a)

(b)

(c)

FIG. 1. (a),(b) Examples of local permutation check problems
for t ¼ 4 and N ¼ 10. In (a), KI1 ¼ f1111; 0110; 1000; 0001g is
a permutation of K0

I1
¼ f0110; 0001; 1111; 1000g (blue dashed

boxes). However, KI2 is not a permutation ofK0
I2
(red dash-dotted

boxes). Hence, K is an fI1g-local but not an fI2g-local
permutation of K0, also implying that K is not a row permutation
of K0. In (b), K is identical to K0 except the columns in the blue
dashed boxes and is a 2-local permutation of K0. However,K fails
to be a 3-local permutation of K0 due to the last column (see, e.g.,
KI2 and K

0
I2
). Panel (c) illustrates a relation between RDCðIÞ and

an I-local permutation check problem. As diagonal gates act on
I1, I2, and I3, we first check if K is a fI1; I2; I3g-local
permutation of K0. That is, we check the permutation relations
between sets of rows in the red dash-dotted, green dotted, and
blue dashed boxes. If K is fI1; I2; I3g-local but not a row
permutation of K0, then hK;K0jEDZ∼RDCðIÞ½ðDZÞ⊗t;t�jK;K0i ¼ 1.
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Ref. [61], we obtain that if a ≥ tþ 1 and b ≥ ⌊t=2⌋þ 1,
RDCdiscðI2∶a; bÞ simulates up to the tth-order moments of
RDCðI2Þ. In particular, we denote RDCdiscðI2∶tþ 1;

⌊t=2⌋þ 1Þ simply by RDCðtÞ
discðI2Þ, where one two-qubit

gate requires 2log2ðtþ1Þþ log2ð⌊t=2⌋þ1Þ<3log2ðtþ1Þ
random bits. Together with all of these, we obtain our
second main result.
Theorem 4 (Main result 2).—For t ¼ oðN1=2Þ, iterating

RDCðtÞ
discðI2Þ and the Hadamard transformation on N

qubits, such as ½RDCðtÞ
discðI2ÞHN �2lRDCðtÞ

discðI2Þ, yields
an ϵ-approximate unitary t-design if

l ≥ tþ 1

N
log2ð1=ϵÞ; ð15Þ

up to the leading order of N and t. The total number of two-
qubit gates and random bits are given by

no: of two-qubit gates ¼ ΘfN½tN þ log2ð1=ϵÞ�g; ð16Þ

no: of random bits ¼ Θfðlog2 tÞN½tN þ log2ð1=ϵÞ�g;
ð17Þ

respectively.
We assume in Theorem 4 that t ¼ oðN1=2Þ. However, we

believe that Theorem 4 holds even for t ¼ oðN=logNÞ,
which comes from the conjecture we explain in more detail
in Sec. IV C.
In terms of t, Theorem 4 drastically improves the

previous result using Oft9N½tN þ logð1=ϵÞ�g two-qubit
gates [35,43] (see also Table I for the comparison) and
is essentially optimal when the design is defined on a finite
set of unitaries. This is because the support of a unitary
t-design should contain at least Oð22tNÞ unitaries [64].
Thus, when each gate in a random quantum circuit is
chosen from a finite set, the scaling of the length necessary
for the circuit achieving a t-design cannot be substantially
better than linear in t.
In practical uses of unitary designs, such as decoupling

[5–8] and randomized benchmarking [9–12], unitary
2-designs are known to be sufficient, for which a more
efficient construction by Clifford circuits with length
OðN log2NÞ is known [44]. However, unitary 4-designs
are needed in a few applications [13–15], which cannot be
achieved by any Clifford circuit [46]. Moreover, higher
designs are generally more useful than lower designs
because they have stronger large deviation bounds [56],
which are finite approximations of the concentration of
measure for Haar random unitaries stating that values of
any slowly varying function on a unitary group are likely to
be almost constant if the dimension is large [65]. This
implies that using higher designs in any applications of
unitary designs results in better performance. Since our
implementation provides a quantum circuit for t-designs
shorter than the existing ones [34,35,43], it contributes to
improving the performance of quantum protocols using
quantum pseudorandomness [1–16,18].
This construction of approximate designs also has

advantages from an experimental point of view. As high-
lighted in Refs. [45,55], the quantum circuits repeating

RDCðI2Þ or RDCðtÞ
discðI2Þ and the Hadamard transforma-

tion are divided into a constant number of commuting parts.

(a)

(b)

FIG. 2. Panel (a) depicts iterations of RDCðIÞ and theHadamard
transformation. Panel (b) showsRDCðI2Þ, where randomdiagonal
two-qubit gates are applied onto all pairs. The circuit is called

RDCðtÞ
discðI2Þ when each two-qubit gate is replaced with

ðdiagZf1; eiφ1g ⊗ diagZf1; eiφ2gÞdiagZf1; 1; 1; eiϑg, where the
phases ϕ1, ϕ2 and ϑ are chosen from discrete sets given in the
main text.

TABLE I. A comparison between quantum circuit constructions of unitary t-designs on N qubits, which works for
t ≥ 3. The total number of quantum gates to achieve classical tensor expanders is known to be polyðNÞ, but is not
explicitly presented in Ref. [33]. The noncommuting depth was introduced in Ref. [55] and is defined by the circuit
depth when each commuting part of the circuit is counted as one step. The noncommuting depth may be of
experimental importance.

Total number of gates t Noncommuting depth [55]

Classical tensor expanders [33] polyðNÞ OðN= logNÞ polyðNÞ
Local random circuits [35,43] Oft9N½tN þ logð1=ϵÞ�g polyðNÞ Oft9½tN þ logð1=ϵÞ�g
Random diagonal circuits OfN½tN þ log2ð1=ϵÞ�g oðN1=2Þ O½tþ ð1=NÞlog2ð1=ϵÞ�
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Indeed, only noncommuting parts are the Hadamard parts.
Because the gates in each commuting part do not have any
temporal order, they can be applied simultaneously in
experimental realizations, possibly making the actual
implementation time shorter. Hence, the commuting struc-
ture of our construction may help reduce the practical time
and increase the robustness of the implementations. This
property can be rephrased in terms of the noncommuting
depth proposed in Ref. [55] (see Table I).

C. Hamiltonian dynamics and unitary designs

In the past decade, quantum randomness was revealed to
be the key to understanding fascinating phenomena in
complex quantum many-body systems [19–28], in most of
which the dynamics is assumed to be so random that it can
be described by Haar random unitaries or unitary designs.
This assumption may be reasonable as a first approxima-
tion. However, due to the lack of full understanding of
natural microscopic dynamics generating unitary designs, it
is not clear to what extent the assumption can be justified.
Most recently, the idea of scrambling was introduced in

black hole information science [23,24]. The main concern
there is the fast scrambling conjecture, stating that the
shortest time necessary for natural dynamics to scramble
many-body systems scales logarithmically with the system
size [24–28]. While it is known that 0-dimensional systems,
where all particles interact with each other, can be scrambled
in a constant time [66], the conjecture is strongly believed to
hold in higher dimensions. The fast scrambling conjecture
originally arose from a thought experiment concerning the
black hole evaporation and the no-cloning theorem [24], but
has also been studied intensely in connection with quantum
chaos [29–31]. So far, several inequivalent definitions of
scrambling have been proposed [24,26,28]. Although they
are useful for clarifying the relationship between scrambling
and other notions of randomization, such as unitary designs
and the OTO correlators diagnosing quantum chaos
[29–31], there does not seem to be consensus on a rigorous
mathematical definition of scrambling.
Here, we introduce design Hamiltonians as a unifying

framework for studying natural microscopic dynamics of
quantum randomness. In terms of the design Hamiltonians,
we generalize the fast scrambling conjecture and propose a
natural design Hamiltonian conjecture. We then construct a
design Hamiltonian, where the interactions need to be
changed only a few times before the corresponding
dynamics form unitary designs. This is in sharp contrast
to the Hamiltonian dynamics based on local random
quantum circuits [35,43], which we elaborate on later.

1. Design Hamiltonians

We especially consider k-local Hamiltonians [57] on N
qubits, H ¼ P

iHi. Here, each term Hi may be dependent
on time, ∥Hi∥∞ ≤ 1, and acts nontrivially only on the
qubits in Λi ⊂ ½1; N�, which satisfies jΛjj ≤ k and Λi ≠ Λj

if i ≠ j. We denote by Hk a set of all k-local Hamiltonians.
The interactions in k-local Hamiltonians are not necessarily
geometrically local on lattice systems. They are, rather,
interpreted as interactions on a given graph, where each
vertex represents a particle. To normalize the time scale of the
dynamics, we also assume that the strength of each local
interaction is bounded. In the following, to avoid confusion,
we always use small t and capital T for t-designs and time,
respectively. We denote UHðTÞ ≔ T exp½−i R T

0 dsHðsÞ�,
where T exp is the time-ordered exponential, the time
evolution operator at time T generated by a possibly time-
dependent Hamiltonian H. An ϵ-approximate t-design
Hamiltonian with k-local interaction is a random k-local
HamiltonianH, where there exists T0 > 0 such that, for any
T ≥ T0, a random unitary UHðTÞ generated by H is an ϵ-
approximate unitary t-design. We call the shortest such time
T0 a design time of H (see Fig. 3 for intuitive illustrations).
This definition of design Hamiltonians is a little strong

and can be weakened if necessary. Indeed, there is no
design Hamiltonian in this sense on a finite ensemble of
time-independent Hamiltonians. Because of the Poincaré
recurrence theorem [67], the time-evolution operator
generated by a time-independent Hamiltonian is in the

(a) (b)

(c) (d)

FIG. 3. Schematic figures illustrating the distributions of
random unitaries in a whole unitary group. For the visualization,
the unitary group is represented by an ellipse and each red dot
corresponds to a unitary operator. Panel (a) illustrates a Haar
random unitary, which is uniformly and continuously distributed
over the whole unitary group. For unitary designs, the distribution
is not necessarily continuous and is often defined on a finite
support, which is depicted in (b). Panel (c) provides an intuitive
picture of time-evolution operators generated by a design
Hamiltonian, starting from the identity. As time passes, a design
Hamiltonian generates random unitary distributed over the whole
unitary. The time evolution is illustrated by a trajectory in the
panel. When the design Hamiltonian is defined on a finite
ensemble of Hamiltonians, there exists a time Trec, where all
time evolution operators are in the neighborhood of the identity,
due to the Poincaré recurrence theorem as depicted in (d).
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neighborhood of the identity operator at the recurrence
time. Although the time-evolution operators generated by
other Hamiltonians are possibly not close to the identity at
the recurrence time of one Hamiltonian, we can always find
the time Trec where all operators are close to the identity.
Hence, at that time Trec, an ensemble of time-evolution
operators does not form unitary designs (see also Fig. 3).
However, this problem can be avoided if we consider time-
dependent Hamiltonians or a continuous ensemble of time-
independent Hamiltonians. We can also relax the condition
of ∀T ≥ T0 to most of the time after T0.

2. Natural design Hamiltonian conjecture

As our main purpose is to find physically natural
Hamiltonians generating unitary designs, we are most
interested in the design Hamiltonians that are not finely
structured, are time independent, and are with geometri-
cally local interactions. In addition, we may further require
that, due to the fast scrambling conjecture, the design time
scales logarithmically with the system size, which may
depend on t. Thus, we arrive at the natural design
Hamiltonian conjecture that there exist ϵ-approximate
t-design Hamiltonians on N qubits that satisfy the follow-
ing three conditions: (1) the interactions are geometrically
local, (2) the interactions are all time independent, and
(3) the design time is given by Oðt logNÞ, which may also
depend on ϵ.
In general, the Hamiltonians with random interactions

are expected to exhibit many-body localization [68–70],
preventing the corresponding dynamics from achieving
unitary designs quickly. However, this is not always the
case. For instance, the dynamics of a Majorana fermion
model with random four-body interactions, also known as
the Sachdev-Ye-Kitaev (SYK) model [71,72], is known to
be strongly chaotic [73,74] and is likely to achieve unitary
designs at least on the low-energy subspace. Although the
SYK model consists of all-to-all interactions and does not
meet the first condition of the conjecture, further inves-
tigation of this model may help in the search of natural
design Hamiltonians satisfying all three conditions.
The conjecture is based on an established language of

unitary designs and sowill be helpful to explore randomizing
operations in physically natural systems in a mathematically
rigorous manner. We note that the conjecture is not only of
theoretical interest but also of practical importance because,
by applying such a random Hamiltonian onto a system, a
unitary design will be spontaneously obtained. Most impor-
tantly, there is no need to change the interactions and no fine
control of time is required. This will drastically simplify the
implementations of unitary designs in experiments, also
resulting in the simplification of many quantum protocols
[1–16,18].
The construction of designs by local random quantum

circuits [35,43] can be naturally translated into design
Hamiltonians: a random Hamiltonian with neighboring

two-body interactions is a t-design Hamiltonian if the
interactions vary randomly and independently at every
time step. Such varying interactions can be considered to be
fluctuations induced by white noise on two-body inter-
actions [75]. This design Hamiltonian Hrand satisfies the
first condition of the conjecture, as it uses only neighboring
interactions, but not the second and the third ones. Indeed,
to achieve a unitary t-design by the dynamics of Hrand, the
interactions should be changed Oðt10NÞ times uniformly at
random. This is far from time independent and takes much
longer than Oðt logNÞ. Here, we are more concerned with
the second condition of the conjecture and provide a design
Hamiltonian HXZ based on Theorem 4.

3. Design Hamiltonian HXZ

We first introduce a parameter set PtðcÞ by

PtðcÞ ¼
�

m
2ð⌊t=2⌋þ 1Þ ∶m ∈ ½−c; c�

�
: ð18Þ

Our design Hamiltonian consists of two types of disordered
commuting Hamiltonians, which may appear in many-body
localized systems [68–70]:

HðtÞ
Z ≔

�
−
X
j<k

JikZj ⊗ Zk −
X
j

BjZj

�
Jjk;Bj

; ð19Þ

HðtÞ
X ≔

�
−
X
j<k

JikXj ⊗ Xk −
X
j

BjXj

�
Jjk;Bj

; ð20Þ

where the coefficients Jjk and Bj are chosen from PtðJÞ
and PtðBÞ, where J ¼ ½ð⌊t=2⌋Þ=2� and B ¼ ⌊t=2⌋þ 1

2
,

respectively. Our third main result is that alternate appli-

cations of HZ randomly chosen from HðtÞ
Z and HX ran-

domly chosen from HðtÞ
X are a design Hamiltonian. To be

precise, we introduce a notation ∈R, which implies that the
left-hand side is drawn uniformly at random from the set in
the right-hand side. Then, our third main result is given as
follows.
Corollary 5 (Main result 3).—Let t ¼ oðN1=2Þ and HðtÞ

XZ
be a set of 2-local time-dependent Hamiltonians in the
form of

HXZðTÞ ¼
�
HðmÞ

Z if 2mπ ≤ T < ð2mþ 1Þπ
HðmÞ

X if ð2mþ 1Þπ ≤ T < 2ðmþ 1Þπ;
ð21Þ

where T denotes time, andHðmÞ
W ∈HðtÞ

W for anym ¼ 0; 1;…

(W ¼ X, Z). Then, the random Hamiltonian HXZ ∈R HðtÞ
XZ

is an ϵ-approximate t-design Hamiltonian. The design time
of HXZ is at most ½2tþ 1þ ð2=NÞlog2ð1=ϵÞ�π.
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Since HXZ is composed of HZ and HX, both of which
exhibit many-body localization, one may think that the time-

evolution operators generated by HXZ ∈R HðtÞ
XZ shall not

spread over the whole unitary group. However, due to the
periodic change of the interaction basis, the localization
indeed helps the time-evolution operators to be uniform. This
can be observed from the fact that a random unitary diagonal
in a fixed basis has a strong randomization power when the
initial state has a large support in that basis [58,60]. Since a
localized state in one basis has a large support in the
complementary basis, the time evolution by HZ (HX)
randomizes the localized eigenstates of HX (HZ) strongly.
For this reason, it is natural to expect that the time-evolution
operators generated byHXZ eventually formaunitary design,
which can be rigorously proven in Corollary 5. Technically,
Corollary 5 is obtained by interpreting Theorem 4 in terms of
the Hamiltonian dynamics and using the fact that, if U is an
ϵ-approximate unitary t-design, then VU is also an ϵ-
approximate unitary t-design for a random unitary V
independent of U. For the details, see Sec. IVD.
Note that our specific choice of the parameters in the

Hamiltonians HZ and HX, namely, Jjk ∈R PtðJÞ and
Bj ∈R PtðBÞ, is to minimize the randomness needed to
construct a design Hamiltonian. It is possible to choose the
parameters from different sets as long as they are suffi-
ciently random, where the design time will be accordingly
changed. From a physical point of view, it may be

interesting to consider physically feasible noises as param-
eter sets, which is in the same spirit as Ref. [75].
We observe from Corollary 5 that the time evolution

generated by HXZ ∈R HðtÞ
XZ quickly becomes hard to dis-

tinguish from a completely random one (see also Fig. 4).
Most notably, the design time isOðtÞ and independent of the
system size. As a simple consequence, any correlation
functions at time T in the system described by such a
Hamiltonian quickly converge to the Haar averaged values.
One of the important instances is the 2t-point OTO corre-
lator, which is expected to diagnose quantum chaos and has
been studied in strongly correlated systems [29–31]. As the
2t-point OTO correlators are polynomials of a unitary with
degree t, their values in the system of a randomHamiltonian
HXZ are ϵ close to the Haar random averages when
T ≳ ½2tþ 1þ ð2=NÞlog2ð1=ϵÞ�π. Furthermore, due to the
large deviation bounds for unitary designs [56], this implies

that almost any Hamiltonian in HðtÞ
XZ saturates the 2t-point

OTO correlators to the Haar random averages in a short time
irrespective of the system size. As the OTO correlators are
saturated in quantum chaotic systems [28], our result
indicates a close connection between the Hamiltonians in

HðtÞ
XZ and quantum chaos, which suggests that the framework

of design Hamiltonians may be useful to investigate the
dynamics in quantumchaotic systems.This is also supported
by a recently clarified relation between unitary designs and
quantum chaos [76].

FIG. 4. A schematic figure about the design Hamiltonian HXZ ∈R HðtÞ
XZ. At each time interval m, HðmÞ

Z or HðmÞ
X is chosen uniformly at

random fromHðtÞ
Z orHðtÞ

X , respectively. As depicted at the bottom of the figure, a random unitary generated byHXZ rapidly spreads over
the whole unitary group and forms unitary designs in a short time independent of the system size.

TABLE II. A comparison of design Hamiltonians, Hrand [35,43] and HXZ, in terms of the three conditions of the
natural design Hamiltonian conjecture. The design time ofHXZ is much shorter than that of Hrand, both in terms of t
and N. Although the improvement in terms of t is generic to HXZ, that in terms of N is probably due to its all-to-all
interactions (see the main text).

Design Hamiltonian Interactions Time dependence Design time

Hrand Nearest-neighbor interactions Highly dependent Oðt10NÞ
HXZ All-to-all two-body interactions Nearly time independent OðtÞ
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In Table II, we compare two design Hamiltonians Hrand
andHXZ. We emphasize that the design timeOðtÞ ofHXZ is
significantly faster than the design timeOðt10NÞ ofHrand in
terms of both t and N. We should note, however, that
although the improvement in terms of t is intrinsic to HXZ,
the improvement in terms of N may be, rather, due to the
all-to-all interactions of HXZ. Such interactions may
naturally appear in cavity QED [77–79] due to the cavity
modes mediating long-range interactions, and unitary
designs may possibly be realized in a constant time.
Nevertheless, for a fair comparison with Hrand, the reali-
zation of all-to-all interactions by neighboring ones should
be taken into account. This can be achieved if every particle
travels all corners of the system and interacts with all the
other particles, taking OðNÞ time. Hence, when the
interactions are neighboring, the actual time for HXZ to
generate unitary designs is considered to be OðtNÞ, also
implying that it does not violate the fast scrambling
conjecture.
Unfortunately, both design Hamiltonians Hrand and HXZ

do not satisfy all three conditions of the natural design
Hamiltonian conjecture. However, we believe that the
existence of two design Hamiltonians Hrand and HXZ
and previous analyses on the original fast scrambling
conjecture [24–28] provide substantial evidence for the
natural design Hamiltonian conjecture.

IV. PROOFS

In this section, we provide proofs of our main results
given in Sec. III. We first introduce additional notation and
useful lemmas in Sec. IVA. The proof of our first main
result, Theorem 2, is given in Sec. IV B. We prove the key
lemma to obtain our second main result in Sec. IV C, and
conclude this section by showing Corollary 5 about design
Hamiltonians in Sec. IV D.

A. Additional notation

Let E ¼ fjkiEgk∈½0;d−1� and F ¼ fjαiFgα∈½0;d−1� be
orthogonal bases in a d-dimensional Hilbert space H. As
we deal with t copies of the Hilbert space H⊗t, we denote
½0; d − 1�t byN and introduce bases fjkiWgk∈N (W¼E,F)

in H⊗t, where jkiW¼ ⊗
t

s¼1
jksiW , k¼ðk1;…;ktÞT∈N ,

and T represents the transpose. In the following, we always
label the basis E and F by latin and greek alphabets,
respectively, anddonotwrite the subscriptE andF explicitly.
Let St be a permutation group of degree t. For π ∈ St, we

denote ðkπ−1ð1Þ;…; kπ−1ðtÞÞT by kπ, and define a state jΨπi ∈
H⊗2t by

jΨπi ≔ I ⊗ VðπÞjΦi ð22Þ

¼ 1

dt=2
X
k∈N

jk;k�
πi ð23Þ

¼ 1

dt=2
X
α∈N

jα;α�
πi; ð24Þ

where VðπÞ is a unitary representation of π, jΦi is the
maximally entangled state between the first H⊗t and the
second H⊗t, jk;k�

πi ¼ jki ⊗ ðjkπiÞ�, and jα;α�
πi ¼

jαi ⊗ ðjαπiÞ�. Note that jΨπi and jΨσi are not necessarily
orthogonal depending on the permutation element. We
denote jΨπihΨπj simply by Ψπ.
We also introduce three subspaces in H⊗2t:

HE ¼ spanfjk;k�
πi∶k ∈ N ; π ∈ Stg; ð25Þ

HF ¼ spanfjα;α�
πi∶α ∈ N ; π ∈ Stg; ð26Þ

H0 ¼ spanfjΨπi∶π ∈ Stg: ð27Þ

Obviously, HE ⊋ H0 and HF ⊋ H0. The projectors onto
the subspacesHE,HF, andH0 are denoted by PE, PF, and
P0, respectively. We further introduce an equivalent relation
∼k (k ∈ N ) in St such that π ∼k σ if and only if kπ ¼ kσ.
A set of representative elements in equivalence classes by
∼k is denote by Skt . Using this notation, the projectors PE
and PF are explicitly given by

PE ¼
X
k∈N

X
π∈Skt

jk;k�
πihk;k�

πj; ð28Þ

PF ¼
X
α∈N

X
π∈Sαt

jα;α�
πihα;α�

πj: ð29Þ

These projectors have the following properties [35,43,61]:

EU∼H½U⊗t;t� ¼ P0; ð30Þ

EDE∼DE
½ðDEÞ⊗t;t� ¼ PE; ð31Þ

EDF∼DF
½ðDFÞ⊗t;t� ¼ PF; ð32Þ

and

∥P0 −
X
π∈St

Ψπ∥∞ ≤
t2

d
: ð33Þ

B. Proof of the first main result

We now prove Theorem 2. Because of the independence
of random diagonal unitaries DE, D0E, and DF and
Eqs. (30)–(32), we have
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∥E½ðDEDFD0EÞ⊗t;t� − E½U⊗t;t�∥∞ ¼ ∥PEPFPE − P0∥∞;

ð34Þ

where the averages in the left-hand side are taken over all
random unitaries independently. Using the triangular
inequality, the fact that jΨπi ∈ H0 ⊂ HE, and Eq. (33),
this is bounded from above as follows:

∥PEPFPE − P0∥∞ ð35Þ

≤ ∥PEPFPE −
X
π∈St

Ψπ∥∞þ∥P0 −
X
π∈St

Ψπ∥∞ ð36Þ

≤ ∥PE

�
PF −

X
π∈St

Ψπ

�
PE∥∞ þ t2

d
: ð37Þ

Since the operator norm for Hermitian operators is bounded
from above by the row norm, defined by maxj

P
i jAijj for a

Hermitian operator A, we have

∥E½ðDEDFD0EÞ⊗t;t� − E½U⊗t;t�∥∞ ≤ C; ð38Þ

where

C ¼ max
l∈N
σ∈Slt

X
k∈N
χ∈Skt

jhl; l�σjPF −
X
π∈St

Ψπjk;k�
χij þ

t2

d
: ð39Þ

Note that it suffices to consider only vectors in H⊗t;t
E when

we compute the first term of Eq. (37), which is because
the operator is sandwiched by the projector PE. In the
following, we evaluate C.
Substituting jΨπi ¼ ð1= ffiffiffiffi

dt
p ÞPm∈N jm;m�

πi, the second
term is given by

hl; l�σj
X
π∈St

Ψπjk;k�
χi ¼

1

dt
X
π∈St

δlπ ;lσ δkπ ;kχ
: ð40Þ

On the other hand, using an explicit form of PF given in
Eq. (29), the first term can be expanded to be

hl; l�σjPFjk;k�
χi ¼

X
α∈N

X
π∈Sαt

hljαihαjkihkπ−1∘χ jαihαjlπ−1∘σi:

ð41Þ

Since a pair of the bases ðE;FÞ is a Fourier-type pair, it
satisfies for any l, k, α ∈ ½0; d − 1� that hljαihkjαi ¼
hlþ kjαi=d1=2, where lþ k ∈ ½0; d − 1� as ½0; d − 1�
is an additive group with respect to þ. Denoting
ðl1 þ k1;…; lt þ ktÞT by lþ k, we have

hl; l�σjPFjk;k�
χi ð42Þ

¼ 1

dt
X
α∈N

X
π∈Sαt

hlþ kπ−1∘χ jαihαjkþ lπ−1∘σi ð43Þ

¼ 1

dt
X
α∈N

�X
π∈St

−
X

π∈StnSαt

�
hlþkπ−1∘χ jαihαjkþ lπ−1∘σi ð44Þ

¼ 1

dt

�X
π∈St

δlþkπ−1∘χ ;kþlπ−1∘σ −Ml;k

�
; ð45Þ

where

Ml;k ¼
X
α∈N

X
π∈StnSαt

hlþ kπ−1∘χ jαihαjkþ lπ−1∘σi; ð46Þ

and we use
P

α∈N jαihαj ¼ IH⊗t . Hence, we obtain

����hl; l�σjPF −
X
π∈St

Ψπjk;k�
χi
���� ð47Þ

¼ 1

dt

����
X
π∈St

ðδlþk
π−1∘χ ;kþl

π−1∘σ − δlπ ;lσ δkπ ;kχ
Þ −Ml;k

���� ð48Þ

≤
1

dt

����
X
π∈St

ðδlþkπ−1∘χ ;kþlπ−1∘σ − δlπ ;lσ δkπ ;kχ
Þ
����þ 1

dt
jMl;kj: ð49Þ

An upper bound of jMl;kj can be obtained from the fact
that the bases E and F are mutually unbiased, leading to

jMl;kj ≤
1

dt
X
α∈N

jStnSαt j: ð50Þ

As jStnSαt j depends only on how many different elements α
contains, the number of which we denote by k, and the
number of every different element αi in α, denoted by si, we
replace the summation over α ∈ N with that over k and
obtain

X
α∈N

jStnSαt j ¼
Xt

k¼1

�
d
k

�
gðkÞðtÞ; ð51Þ

where the binomial coefficient counts the number of
possible choices of k different numbers from ½0; d − 1�,
and gðkÞðtÞ is the function that depends only on k and t
given by

gðkÞðtÞ ¼
X

ðs1;…;skÞ

t!
s1!…sk!

�
t! −

t!
s1!…sk!

�
: ð52Þ

Here, the summation is taken over all possible ðs1;…; skÞ
such that ∀i ∈ ½1; k� si ∈ ½1; t� andPk

i¼1 si ¼ t. For a fixed
k, the number of such combinations is simply given by
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ðt−1k−1Þ. For k ¼ t, si ¼ 1 for all i ∈ ½1; k�, and, thus,
gðtÞðtÞ ¼ 0. For the remaining terms gðkÞðtÞ
(k ∈ ½1; t − 1�), we use an upper bound given by

gðkÞðtÞ ≤
�
t − 1

k − 1

�
t!2

4
; ð53Þ

which is optimal when k ¼ t − 1. Substituting these, we
obtain

X
α∈N

jStnSαt j ≤
t!2

4

Xt−1
k¼1

�
d
k

��
t − 1

k − 1

�
ð54Þ

¼ t!2

4

��
d − 1þ t

t

�
−
�
d
t

�	
; ð55Þ

where the last line is obtained due toVandermonde’s identity.
Since d ¼ Ωðt2Þ, an upper bound is obtained such as

X
α∈N

jStnSαt j ≤ t2t!dt−1 þOðt4t!dt−2Þ; ð56Þ

which leads to

jhl; l�σjPF −
X
π∈St

Ψπjk;k�
χij

≤
1

dt

����
X
π∈St

ðδlþk
π−1∘χ ;kþl

π−1∘σ − δlπ ;lσ δkπ ;kχ
Þ
����

þ t2t!
dtþ1

þO

�
t4t!
dtþ2

�
: ð57Þ

Substituting this into C, the following upper bound can be
obtained:

C ≤
t2ðt!2 þ 1Þ

d
þ 1

dt
max
l∈N

max
σ∈Slt

X
k∈N

X
χ∈Skt

����
X
π∈St

ðδlþkπ−1∘χ ;kþlπ−1∘σ − δlπ ;lσ δkπ ;kχ
Þ
����þO

�
t4t!2

d2

�
ð58Þ

¼ t2ðt!2 þ 1Þ
d

þ 1

dt
max
l∈N

max
σ∈Slt

X
k∈N

X
χ∈Skt

X
π∈St

ðδlþkπ−1∘χ ;kþlπ−1∘σ − δlπ ;lσ δkπ ;kχ
Þ þO

�
t4t!2

d2

�
ð59Þ

≤
t2ðt!2 þ 1Þ

d
þ 1

dt
max
l∈N

max
σ∈Slt

X
π∈St

X
k∈N

X
χð≠πÞ∈Skt

δlþk
π−1∘χ ;kþl

π−1∘σ þO

�
t4t!2

d2

�
ð60Þ

≤
t2ðt!2 þ 1Þ

d
þ 1

dt
max
l∈N

max
σ∈Slt

X
π∈St

X
χð≠πÞ∈St

X
k∈N

δlþkπ−1∘χ ;kþlπ−1∘σ þO

�
t4t!2

d2

�
; ð61Þ

where the second line is due to a fact that the term in the
modulus is non-negative because, when the second term is
one, the first term is also one, the third line is obtained by
using a fact that the first and the second terms cancel each
other when χ ¼ π and by dropping negative terms when
χ ≠ π, and the last line is due to Skt ⊂ St. For the delta
function δlþkπ−1∘χ ;kþlπ−1∘σ , we have

δlþkπ−1∘χ ;kþlπ−1∘σ ¼ 1

⇔∀s ∈ ½1; t�; ls þ kχ−1∘πðsÞ ¼ ks þ lσ−1∘πðsÞ: ð62Þ

When χ ≠ π, there exists at least one pair ðs; s0Þ
(s ≠ s0 ∈ ½1; t�) such that πðsÞ ¼ χðs0Þ. Hence, ks0 ¼ ks þ
lσ−1∘πðsÞ − ls should be at least satisfied for the delta function
to be nonzero. Thus, the number of k for which the delta
function is nonzero is atmostdt−1. Based on this observation,
we obtain

max
l∈N

max
σ∈Slt

X
π∈St

X
χð≠πÞ∈St

X
k∈N

δlþkπ−1∘χ ;kþlπ−1∘σ ≤ t!2dt−1: ð63Þ

Substituting this into Eq. (61), we obtain an upper bound of
C, leading to

∥E½ðDEDFD0EÞ⊗t;t� − E½U⊗t;t�∥∞
≤
ð1þ t2Þt!2 þ t2

d
þO

�
t4t!2

d2

�
: ð64Þ

This concludes the proof. ▪

C. Proof of the second main result

Here, we prove that Λ2 ¼ jL2j ≤ 22t
2þðt−1ÞN for the 2-

local permutation check problem, which is the key to
obtaining Theorem 4. Here, L2 is the set of pairs ðK;K0Þ,
where K is a 2-local but not a row permutation of K0.
Throughout the proof, we denote the column vectors of

K and K0 by ~ki and ~k0i, respectively, for i ∈ ½1; N�. The
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2-local permutation condition is equivalent to the
following:

∀i; j ∈ ½1; N�; ~ki · ~kj ¼ ~k0i · ~k
0
j; ð65Þ

where the center dot (·) is the usual Euclidean inner
product. This is because the conditions for i ¼ j imply

that the number of 1’s in ~ki and that in ~k0i should be the
same, and those for i ≠ j imply that the number of 11 in
Kfi;jg is equal to that in K0

fi;jg. These conditions together
correspond to the necessary and sufficient conditions for
the pair ðK;K0Þ to be 2-local permutations. Moreover,

Eq. (65) implies that the Gram matrix of a set f~ki∶i ∈
½1; N�g of column vectors is the same as that of

f~k0i∶i ∈ ½1; N�g. Hence, spanf~ki∶i ∈ ½1; N�g has the same

dimension as spanf~k0i∶i ∈ ½1; N�g, and there exists a partial
isometry O that satisfies O~ki ¼ ~k0i for any i ∈ ½1; N�, i.e.,
OK ¼ K0. If the partial isometry is restricted to its support,
it is an orthogonal matrix as the elements of the vectors are
in f0; 1g, and it is not a permutation operator due to the
assumption that K is not a row permutation of K0.
We now construct a set O of orthogonal matrices on Rt

that satisfies

∀ ðK;K0Þ ∈ L2; ∃O ∈ O; such that OK ¼ K0: ð66Þ
This can be done as follows. Let s ≔ 22t and ½0; s − 1�≤t be
the set of s-ary strings of length t or smaller. We describe a
procedure of defining a set S2 ⊂ ½0; s − 1�≤t and orthogonal
matrices Ob for b ∈ S2, such that S2 is a prefix code and
that O ≔ fObjb ∈ S2g satisfies Eq. (66). Our construction
starts with S2 ¼ ∅ and is recursive in terms of the rank κ of
the partial isometry obtained from ðK;K0Þ. We repeat the
subroutine described below from κ ¼ t to κ ¼ 1 by
decreasing κ one by one. In the subroutine, we first choose
ðK;K0Þ ∈ L2 that defines a partial isometry with rank κ. We
pick up an arbitrary set of independent column vectors

f~kimgκm¼1 in K and those f~k0imgκm¼1 in K
0. These vectors can

be converted to an s-ary string b ¼ ð2tki1 þ k0i1 ; 2
tki2 þ

k0i2 ;…; 2tkiκ þ k0iκÞ of length κ by regarding each vector as a
binary number with length t. If b is a prefix of a string
b0 ∈ S2, then the orthogonal matrix Ob0 satisfies Ob0K ¼
K0 because, on the support of the partial isometry obtained
from ðK;K0Þ, the action of Ob0 is the same as that of the
isometry by construction. Otherwise, we append b to S2
and define an orthogonal matrix Ob as an arbitrary
extension of the partial isometry. The subroutine is run
for all ðK;K0Þ ∈ L2 with a partial isometry of rank κ.
Eventually, we obtain a setO of orthogonal matrices onRt.
Importantly, it does not contain a permutation matrix and,
by construction, jOj ¼ jS2j ≤ 22t

2

.
Introducing a set L2ðOÞ by fðK;OKÞ∶K;OK ∈

f0; 1gtNg for a given orthogonal matrix O ∈ Rt, we have
L2 ⊂ ∪O∈OL2ðOÞ, leading to

Λ2 ≤
X
O∈O

jL2ðOÞj ð67Þ

≤ jOjmax
O∈O

jL2ðOÞj ð68Þ

≤ 22t
2

max
O∈O

jL2ðOÞj: ð69Þ

Since the condition OK ∈ f0; 1gtN consists of an identical
and independent condition on each column of K, jL2ðOÞj
for O ∈ O is bounded from above by

jL2ðOÞj ≤ ðmax
O∈O

jf~k ∈ f0; 1gt∶O~k ∈ f0; 1gtgjÞN: ð70Þ

To obtain an upper bound on the right-hand side, we use the
following fact: let O be an orthogonal matrix acting on the
Euclidean space Rt, which contains the set of apexes of a
hypercube, f0; 1gt. If there exists a set S ⊂ f0; 1gt such that
OS ⊂ f0; 1gt and jSj > 2t−1, then O is a permutation
matrix. This is considered to be a type of constrained
problems in extremal algebraic theory [62,63], and the
proof is given in Appendix D. AsO ∈ O is onRt and is not
a permutation matrix, we obtain

max
O∈O

jf~k ∈ f0; 1gt∶O~k ∈ f0; 1gtj ≤ 2t−1: ð71Þ

Thus, we have Λ2 ≤ 22t
2þðt−1ÞN . ▪

Finally, we note that the upper bound of Λ2 is unlikely to
be tight in terms of t because jOj ≤ 22t

2

in the proof is far
from optimal. This is observed from the fact that jOj ¼ jS2j
but S2 does not contain all strings with length t. To be more
concrete, we provide instances for a small t. From the result
in Ref. [61], we know that, for any pair ðK;K0Þ, K is a row
permutation of K0 if and only if K is a ð⌊log2t⌋þ 1Þ-local
permutation of K0. Hence, the smallest tmaking the 2-local
permutation check problem nontrivial is 4. In this case, we
can show that if K is a 2-local but not a row permutation of
K0, the four rows of K and those of K0 can be rearranged
independently, resulting in Kπ and K0

σ, respectively
(π; σ ∈ S4), such that a pair of the ith column of Kπ and
that of K0

σ are in the set C0 ∪C1 (∀i ∈ ½1; N�), where

C0¼f½ð0;0;0;0ÞT;ð0;0;0;0ÞT �; ½ð1;1;1;1ÞT;ð1;1;1;1ÞT �
½ð0;0;1;1ÞT;ð0;0;1;1ÞT �; ½ð1;1;0;0ÞT;ð1;1;0;0ÞT �
½ð1;0;1;0ÞT;ð1;0;1;0ÞT �; ½ð0;1;0;1ÞT;ð0;1;0;1ÞT �g;

ð72Þ

C1¼f½ð0;1;1;0ÞT;ð1;0;0;1ÞT �; ½ð1;0;0;1ÞT;ð0;1;1;0ÞT �g:
ð73Þ

EFFICIENT QUANTUM PSEUDORANDOMNESS WITH … PHYS. REV. X 7, 021006 (2017)

021006-13



Taking the number of choices of π and σ into account, we
have

Λ2 < t!2ðjC0j þ jC1jÞN ¼ t!28N; ð74Þ

which corresponds to t!22ðt−1ÞN for t ¼ 4. For this reason,
we conjecture that the optimal bound should be given by
fðtÞ2ðt−1ÞN , where fðtÞ ¼ O(polyðt!Þ), which we analyti-
cally confirm for t ≤ 7. If this conjecture is true, Theorem 4
works for t ¼ oðN= logNÞ instead of t ¼ oðN1=2Þ.

D. Proof of the third main result

We prove Corollary 5 that, ∀ T ≥
½2tþ 1þ ð2=NÞ logð1=ϵÞ�π, a random unitary UXZðTÞ ¼
T exp½−i R T

0 dsHXZðsÞ� generated by HXZðTÞ ∈R HðtÞ
XZ at

time T is an ϵ-approximate unitary t-design, where HðtÞ
XZ is

the set of Hamiltonians in the form of Eq. (21).

In the proof, we denote e−iτH
ðmÞ
W by UðmÞ

W ðτÞ (W ¼ X, Z).
As both Hamiltonians are composed of commuting terms,
they are simply given by

e−iτH
ðmÞ
X ¼

Y
k<k0

eiτJ
ðmÞ
kk0 Xk⊗Xk0

Y
k

eiτB
ðmÞ
k Xk ; ð75Þ

e−iτH
ðmÞ
Z ¼

Y
k<k0

eiτ
~JðmÞ
kk0 Zk⊗Zk0

Y
k

eiτ ~B
ðmÞ
k Zk : ð76Þ

We first consider a random unitary UXZðTlÞ at time
Tl ¼ ð2lþ 1Þπ (l ¼ 1; 2;…). Using the above notation, it
is given by

UXZðTlÞ ¼ Uðlþ1Þ
Z ðπÞ

Y1
m¼l

UðmÞ
X ðπÞUðmÞ

Z ðπÞ: ð77Þ

We take the average of UXZðTlÞ⊗t;t over HXZ ∈R HðtÞ
XZ,

which is equivalent to taking the average over all param-

eters BðmÞ
k ; ~BðmÞ

k0 ∈R PtðBÞ and JðmÞ
kk0 ; ~J

ðmÞ
kk0 ∈R PtðJÞ. Here,

the parameter set PtðcÞ is given by Eq. (18), such as

PtðcÞ ¼
�

m
2ð⌊t=2⌋þ 1Þ ∶m ∈ ½−c; c�

�
; ð78Þ

and ðB; JÞ ¼ ð⌊t=2⌋þ 1=2; ⌊t=2⌋=2Þ. Since it holds that

eiπJ
ðmÞ
kk0 Zk⊗Zk0eiπB

ðmÞ
k Zk ⊗ eiπB

ðmÞ
k0 Zk0

¼ eπiðJ
ðmÞ
kk0 þBðmÞ

k þBðmÞ
k0 ÞðdiagZf1; e−2πiðJ

ðmÞ
kk0 þBðmÞ

k0 Þg
⊗ diagZf1; e−2πiðJ

ðmÞ
kk0 þBðmÞ

k ÞgÞdiagZf1; 1; 1; e4πiJ
ðmÞ
kk0 g;
ð79Þ

if BðmÞ
k , BðmÞ

k0 ∈R Bt and JðmÞ
kk0 ∈R J t, where

Bt ¼
�

m
2ð⌊t=2⌋þ 1Þ ∶m ∈ ½0; 2⌊t=2⌋þ 1�

�
; ð80Þ

J t ¼
�

m
2ð⌊t=2⌋þ 1Þ ∶m ∈ ½0; ⌊t=2⌋�

�
; ð81Þ

then the probability distribution of ½−2πðJðmÞ
kk0 þ Bk0 Þ;

−2πðJðmÞ
kk0 þ BðmÞ

k Þ; 4πJðmÞ
kk0 � is identical to that of ðφ;φ0; θÞ

in Eq. (14) with a ¼ 2ð⌊t=2⌋þ 1Þ and b ¼ ⌊t=2⌋þ 1,

implying that UðmÞ
Z ðTlÞ is equivalent to RDCdiscðI2∶2b; bÞ

up to a global phase. Noting that the global phase

is canceled in UðmÞ
Z ðTlÞ⊗t;t and recalling that

E½RDCdiscðI2∶a; bÞ⊗t;t� ¼ E½RDCðI2Þ⊗t;t� if a ≥ tþ 1
and b ≥ ⌊t=2⌋þ 1, we have

E
BðmÞ
k ∈RBt;J

ðmÞ
kk0 ∈RJ t

½UðmÞ
Z ðTlÞ⊗t;t� ¼ E½RDCðI2Þ⊗t;t�: ð82Þ

Using a product of two-qubit diagonal gates V given by

V ¼ ⊗
N

k¼1
diagðkÞZ f1; e2πiΔBg ⊗

k<k0
diagðkk

0Þ
Z f1; 1; 1; e−4πiΔJg;

ð83Þ
where the superscript of diagZ, such as (k) and ðkk0Þ,
indicates the place of qubits the gate acts on, 2ΔB¼
ð⌊t=2⌋þ 1=2Þ=ð⌊t=2⌋þ 1Þ; and4ΔJ¼ ⌊t=2⌋=ð⌊t=2⌋þ 1Þ,
we obtain

E
BðmÞ
k ∈RPtðBÞ;JðmÞ

kk0 ∈RPtðJÞ½U
ðmÞ
Z ðTlÞ⊗t;t�

¼ E
BðmÞ
k ∈RBt;J

ðmÞ
kk0 ∈RJ t

½UðmÞ
Z ðTlÞ⊗t;t�V⊗t;t ð84Þ

¼ E½RDCðI2Þ⊗t;t�V⊗t;t; ð85Þ
where we use Eq. (82) in the last line. Further, because
RDCðI2Þ is composed of two-qubit diagonal gates with
random phases uniformly drawn from ½0; 2πÞ, the average
of RDCðI2Þ⊗t;t does not change even when additional
diagonal two-qubit gates, such as V, are applied. Thus, we
obtain

E
BðmÞ
k ∈RPtðBÞ;JðmÞ

kk0 ∈RPtðJÞ½U
ðmÞ
Z ðTlÞ⊗t;t� ¼ E½RDCðI2Þ⊗t;t�:

ð86Þ
As a similar relation holds for X Hamiltonians, we
conclude that

E½UXZðTlÞ⊗t;t� ¼ Ef½ðRDCðI2ÞHNÞ2lRDCðI2Þ�⊗t;tg;
ð87Þ

where HN is the Hadamard transformation on N qubits,
implying that UXZðTlÞ is an ϵ-approximate unitary t-
design if l ≥ tþ ð1=NÞlog2ð1=ϵÞ.
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To complete the proof, consider the time T satisfying
Tl < T < Tlþ1, where l ≥ tþ ð1=NÞlog2ð1=ϵÞ. Because
the time-evolution operator from time Tl to time T
is independent of the one before Tl, UXZðTÞ is also an
ϵ-approximate unitary t-design. ▪

V. CONCLUSION AND DISCUSSION

In this paper, we present new constructions of unitary
t-designs and propose design Hamiltonians as a general
framework to investigate randomizing operations in complex
quantum many-body systems. The new constructions are
based on repetitions of randomdiagonal unitaries inmutually
unbiased bases. We first show that, if the bases are Fourier-
type, approximate unitary t-designs can be achieved on one
qudit after OðtÞ repetitions. We then constructed quantum
circuits on N qubits that achieve approximate unitary
t-designs using OðtN2Þ gates, which drastically improves
the previous result [35,43] in terms of t. The dependence on t
is essentially optimal among designs with finite supports.
The circuits are obtained by solving a special case of
combinatorial problems, which we call the local permutation
check problems, showing an interesting connection between
combinatorics and efficient implementations of designs.
Based on these results, we provide a design Hamiltonian,
which changes the interactions only a few times to generate
designs. This result supports the natural design Hamiltonian
conjecture and is also practically important as it simplifies the
experimental implementations of unitary designs.
Our approach of studying unitary designs and random-

izing operations in physically natural systems opens a lot of
interesting questions. The following are a few questions
concerning unitary designs.
(1) In one-qudit systems, is it possible to implement

unitary t-designs by repeating random diagonal unitaries in
any nontrivial pairs of bases? If so, how many repetitions
are sufficient for the implementations?
(2) What is the best strategy of the local permutation

check problems?
(3) What is the most efficient implementation by

quantum circuits that approximate random diagonal uni-
taries in the Pauli-Z basis?
(4) What are the further applications of unitary t-designs

for t ≥ 4?
Regarding question (1), we find that repeating random

diagonal unitaries in nontrivial pairs of bases achieves a
unitary 1-design if any vector in one basis is not orthogonal
to any vector in the other basis. Although this nonortho-
gonality condition may not be necessary, we expect that, for
arbitrary nontrivial pairs of bases satisfying the nonortho-
gonality condition, the process eventually achieves unitary
t-designs. Questions (2) and (3) are related to each other. In
this paper, we considered only 2-local permutation check
problems. However, if there exists a set I ¼ fIg such that
ΛðIÞ ¼ Oð2ðt−1ÞNÞ and jIj ¼ const for all I ∈ I , then we
can implement approximate unitary t-designs usingOðtjI jÞ

quantum gates. Hence, finding a better strategy for the local
permutation check problems immediately results in a faster
implementation of unitary designs. It is also desirable to
directly search efficient quantum circuits approximating
random diagonal unitaries in the Z basis. Finally, it is
important to find applications of unitary t-designs for
large t. A possible and promising direction is to further
explore large deviation bounds for unitary designs, as
mentioned in Sec. III B.
We also list a few open questions about design

Hamiltonians from the physical point of view.
(I) Prove or disprove the natural design Hamiltonian

conjecture.
(II) What are the exact relations between natural design

Hamiltonians and various definitions of scrambling or OTO
correlators?
(III) If a design Hamiltonian is defined on a finite

ensemble of local Hamiltonians, how many Hamiltonians
are needed?
(IV) What are the static features of design Hamiltonians

such as thermal or quantum phases?
Question (I) is the most interesting one, where we

could use the methods developed in the random matrix
theory [80]. A natural candidate of design Hamiltonians
satisfying all three conditions of the conjecture may be
Hlocal GUE ¼ P

hi;jihij, where each local term hij is drawn
randomly and independently from the so-called Gaussian
unitary ensemble [80] and the summation is taken over all
neighboring qubits. We expect that Hlocal GUE generates a
unitary design after some time, although it may also be
possible that it does not, due to the many-body localization.
Question (II) is important to clarify the roles of design
Hamiltonians in black hole information science and quan-
tum chaos. As design Hamiltonians are based on unitary
designs, it suffices to investigate explicit relations between
unitary designs and scrambling or the OTO correlators. The
relation between unitary designs and the OTO correlators
has been addressed recently and is clarified in Ref. [76].
Question (III) is not only of theoretical interest but also of
practical importance because it determines the number of
random bits necessary to construct design Hamiltonians. To
address this question, it is needed to relax the definition of
design Hamiltonians to exclude the Poincaré recurrence
time, as we mention in Sec. III C. Note that, since the
support of unitary t-designs on N qubits should contain at
least Oð22tNÞ unitaries [64], the ensemble should contain at
least the same number of Hamiltonians. Finally, as design
Hamiltonians are certain types of disordered Hamiltonians,
it is natural to expect that they have special static properties,
which is question (IV). A static property of the above
random Hamiltonian Hlocal GUE was numerically studied
from the viewpoint of distributions in a state space, and
evidence of phase transitions was obtained [81]. However,
as Hlocal GUE is not yet shown to be a design Hamiltonian
and no time-independent design Hamiltonians have been
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found yet, it would be more realistic to start with inves-
tigating static properties of the Hamiltonian HZ of HXZ,
which has similarity to many-body localized systems, and
their dependence on t.
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APPENDIX A: PROOF OF THEOREM 1

Here, we provide a proof of Theorem 1, which follows
almost directly from the simple fact that, for any unitary U,
U⊗t;t ¼ P0 þ ðI − P0ÞU⊗t;tðI − P0Þ. This observation is
obtained as follows: using jΨπi ¼ I ⊗ VðπÞjΦi, we have
for any π ∈ St that

U⊗t;tjΨπi ¼ U⊗t ⊗ U�⊗tVðπÞjΦi ðA1Þ

¼ U⊗t ⊗ VðπÞU�⊗tjΦi ðA2Þ

¼ U⊗tU†⊗t ⊗ VðπÞjΦi ðA3Þ

¼ I ⊗ VðπÞjΦi ðA4Þ

¼ jΨπi; ðA5Þ

where we use the fact that U�⊗t commutes with VðπÞ in the
second line and the property of themaximally entangled state
in the third line. This implies that ðI − P0ÞU⊗t;tP0 ¼ 0.
Replacing U with U† in Eq. (A5), we also have
ðI − P0ÞU†⊗t;tP0 ¼ 0, implying P0U⊗t;tðI − P0Þ ¼ 0.
Hence, we obtain U⊗t;t ¼ P0 þ ðI − P0ÞU⊗t;tðI − P0Þ.
To prove Theorem 1, let ν be a quantum ðη; tÞ TPE

satisfying

∥EU∼ν½U⊗t;t� − EU∼H½U⊗t;t�∥∞ ≤ η: ðA6Þ

Decomposing U⊗t;t into P0 þ ðI − P0ÞU⊗t;tðI − P0Þ, we
have

EU∼ν½U⊗t;t� ¼ P0 þ ðI − P0ÞEU∼ν½U⊗t;t�ðI − P0Þ: ðA7Þ

Because of Eq. (30), the quantum TPE ν satisfies that

∥ðI − P0ÞEU∼ν½U⊗t;t�ðI − P0Þ∥∞ ≤ η: ðA8Þ

Let νl be a measure corresponding to that of the l iterations
of the quantum TPE ν. Then,

∥GðtÞ
U∼νl − GðtÞ

U∼H∥⋄ ðA9Þ

≤ dt∥GðtÞ
U∼νl − GðtÞ

U∼H∥2→2 ðA10Þ

¼ dt∥EU∼νl ½U⊗t;t� − EU∼H½U⊗t;t�∥∞ ðA11Þ

¼ dt∥ðEU∼ν½U⊗t;t�Þl − EU∼H½U⊗t;t�∥∞ ðA12Þ

¼ dt∥½ðI − P0ÞEU∼ν½U⊗t;t�ðI − P0Þ�l∥∞ ðA13Þ

≤ dt∥ðI − P0ÞEU∼ν½U⊗t;t�ðI − P0Þ∥l∞ ðA14Þ

≤ dtηl: ðA15Þ

Here, the second line is due to the inequality that ∥E∥⋄ ≤
D∥E∥2→2 for any superoperators E acting on a D-
dimensional system, the fourth line is obtained due to
the independence of the measure of each iteration, the fifth
line is from Eq. (A7), and the last line is from Eq. (A8).
This implies that l iterations of a quantum ðη; tÞ TPE is an
ϵ-approximate unitary t-design if dtηl ≤ ϵ.

APPENDIX B: FOURIER-TYPE PAIRS OF BASES

Here, we show that a pair of arbitrary basis and its
Fourier basis, and a pair of the Pauli-X and -Z bases are
Fourier type.
When a pair of two bases is that of an arbitrary basis and

its Fourier basis, it is clear that θkα ¼ ð2πkα=dÞ and the
additive operation in the index is given by an addition
modulo d. It is also obvious that ½0; d − 1� is an additive
group with respect to the modular addition.
When the pair is given by the Pauli-X and -Z bases,

using the binary representation such as α ¼ α1…αN
ð∀j ∈ ½1; N�; αj ∈ f0; 1gÞ, the Pauli-X and -Z bases can
be represented by

jαiX ¼ ⊗
N

j¼1
jαjiX; jkiZ ¼ ⊗

N

j¼1
jkjiZ; ðB1Þ

respectively. Using the fact that ZhkjjαjiX ¼ XhαjjkjiZ is

equal to 1=
ffiffiffi
2

p
if ðαj; kjÞ ¼ ð0; 0Þ; ð0; 1Þ; ð1; 0Þ and

is equal to −1=
ffiffiffi
2

p
if ðαj; kjÞ ¼ ð1; 1Þ, we have

θkα ¼ π
P

N
j¼1 δkj1δαj1, leading to
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exp½iðθkα þ θlαÞ� ¼ exp

�
iπ

XN
j¼1

ðδkj1 þ δlj1Þδαj1
	

ðB2Þ

¼ exp

�
iπ

XN
j¼1

δkjþlj;1δαj1

	
ðB3Þ

¼ exp½iθk⊕l;α�; ðB4Þ

where ⊕ is a bitwise XOR, defined by a ⊕ b ¼ 0 when
a ¼ b and otherwise 1 for binary numbers a and b, and is the
additive operation.

APPENDIX C: LOCAL PERMUTATION CHECK
PROBLEMS AND THE ACHIEVABILITY

OF QUANTUM TPE

Here, we show how the achievability of quantum TPE
with a random diagonal circuit RDCðIÞ is connected to the
I-local permutation check problem.
Let RDCðIÞ be the probability measure of RDCðIÞ. We

denote the averaged operators EDZ∼RDCðIÞ½ðDZÞ⊗t;t� and
EDZ∼DZ

½ðDZÞ⊗t;t� byQZ and PZ, respectively. There exists a
projector RZ diagonal in the Pauli-Z basis such that QZ ¼
PZ þ RZ because QZPZ ¼ PZQZ ¼ PZ and QZ is a pro-
jector diagonal in the Pauli-Z basis. DenotingH⊗t;t

N QZH
⊗t;t
N

by QX, where HN ≔ H⊗N is the Hadamard transformation
on N qubits, and similarly decomposing it into PX þ RX

(PX ≔ H⊗t;t
N PZH

⊗t;t
N and RX ≔ H⊗t;t

N RZH
⊗t;t
N ), we have

∥QZQXQZ − P0∥∞ ¼ ∥PZPXPZ − P0 þ RZPXPZ þQZPXRZ þQZRXPZ þQZRXRZ∥∞ ðC1Þ

≤ ∥PZPXPZ − P0∥∞ þ 2∥PXRZ∥∞ þ ∥RXPZ∥∞ þ ∥RXRZ∥∞ ðC2Þ

≤ ηþ 2∥PXRZ∥∞ þ ∥RXPZ∥∞ þ ∥RXRZ∥∞; ðC3Þ

where we use Theorem 2 in the last line.

We denote by WZ a set of ðk1;k2Þ ∈ N ×N such that
hk1;k2jRZjk1;k2i ¼ 1. Using an upper bound of the
operator norm by the row norm and using the fact that
jhl1; l2jPXjk1;k2ij ¼ ðtrPXÞ=22tN ≤ t!=2tN for any ðk1;k2Þ
and ðl1; l2Þ, we obtain

∥RXPZ∥∞ ¼ ∥PXRZ∥∞ ðC4Þ

≤ max
ðl1;l2Þ∈WZ

X
ðk1;k2Þ∈WZ

jhl1; l2jPXjk1;k2ij ðC5Þ

≤
t!
2tN

jWZj: ðC6Þ

Similarly, we have

∥RXRZ∥∞ ≤ max
ðl1;l2Þ∈WZ

X
ðk1;k2Þ∈WZ

jhl1; l2jRXjk1;k2ij ðC7Þ

≤
�jWZj

2tN

�
2

: ðC8Þ

Substituting Eqs. (C6) and (C8) into Eq. (C3), we obtain

∥QZQXQZ − P0∥∞ ≤ ηþ 3t!
jWZj
2tN

þ
�jWZj

2tN

�
2

: ðC9Þ

We finally show that jWZj ¼ ΛðIÞ. Note thatΛðIÞ is the
number of ðK;K0Þ ∈ f0; 1gtN × f0; 1gtN such that K is not
a row permutation but is an I-local permutation of K0. We
first express each ks ∈ k in binary, such as ks ¼ ks1…ksN ,
and define a t × N matrix K with elements in f0; 1g
corresponding to k:

K ≔

0
BBB@

k11 k12 � � � k1N

..

. ..
. . .

. ..
.

kt1 kt2 � � � ktN

1
CCCA; ðC10Þ

where ksm ∈ f0; 1g. Using this notation and noting that the
Z basis is real, the state jk;k0�i is expressed as jK;K0i. A
random diagonal gate in RDCðIÞ applied on qubits in I ∈
I corresponds to, after taking the tensor product and the
average, a projector onto spanfjK;K0i∶ΩðKIÞ ¼ ΩðK0

IÞg,
where Ω is a canonical map that rearranges jIj-bit sequen-
ces fKs;Igs∈½1;t� in ascending order. Thus, we have

hK;K0jQZjK;K0i ¼
�
1 if ∀ I ∈ I ;ΩðKIÞ ¼ ΩðK0

IÞ
0 otherwise

:

ðC11Þ

Note that the off-diagonal elements of QZ are always zero
because it is diagonal in the Z basis. We also have
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hK;K0jPZjK;K0i ¼
�
1 if K is a row permutation of K0

0 otherwise:

ðC12Þ

From these two equations, it is clear that RZ ¼ QZ − PZ
satisfies that hK;K0jRZjK;K0i ¼ 1 if and only if K
is not a row permutation but is an I-local permutation
of K0. Otherwise, hK;K0jRZjK;K0i ¼ 0. This implies
jWZj ¼ ΛðIÞ.

APPENDIX D: KEY STATEMENT
IN THE PROOF OF THEOREM 4

Here, we prove the following statement, which is used in
the proof of Theorem 4: let O be an orthogonal matrix
acting on the Euclidean space Rt, which contains a
hypercube f0; 1gt. If there exists a set S ⊂ f0; 1gt such
that OS ⊂ f0; 1gt and jSj > 2t−1, then O is a permutation
matrix.
Let i ∈ ½1; t� and ~ei be a vector with elements in f0; 1g,

where only the ith element is 1:

~ei ¼ ð0;…; 0; 1
⌣
i

; 0;…; 0ÞT: ðD1Þ

Then, for any i, there exists a vector ~vi ∈ f0; 1gt such that
both ~vi and ~vi þ ~ei are contained in S. This is for the
following reason: if there is no such pair of ~vi and ~vi þ ~ei, it
implies that a pair of vectors, which have different values
only at the ith element, is not contained in S. This results in
jSj ≤ 2t−1, which is in contradiction to the assumption
that jSj > 2t−1.
As ~vi þ ~ei ∈ S ⊂ f0; 1gt, the ith element of ~vi is 0.

Hence, we have ~vi · ~ei ¼ 0, implying that

O~ei ·Oð~vi þ ~eiÞ ¼ ~ei · ~vi þ ~ei · ~ei ¼ ~ei · ~ei ¼ 1: ðD2Þ

It is also trivial that O~ei ·O~ei ¼ 1 and that
O~ei ∈ f−1; 0; 1gt, which follows from an identity O~ei ¼
Oð~vi þ ~eiÞ −O~vi and the fact that bothOð~vi þ ~eiÞ andO~vi
are in f0; 1gt. From these three relations and again
Oð~vi þ ~eiÞ ∈ f0; 1gt, we conclude that

O~ei ¼ ~ej ¼ ð0;…; 0; 1
⌣
j

; 0;…; 0ÞT ðD3Þ

for some j ∈ ½1; t�. BecauseO is invertible, this implies that
O is a permutation matrix.

[1] I. Devetak, The Private Classical Capacity and Quantum
Capacity of a Quantum Channel, IEEE Trans. Inf. Theory
51, 44 (2005).

[2] I. Devetak and A. Winter, Relating Quantum Privacy and
Quantum Coherence: An Operational Approach, Phys. Rev.
Lett. 93, 080501 (2004).

[3] B. Groisman, S. Popescu, and A. Winter, Quantum,
Classical, and Total Amount of Correlations in a Quantum
State, Phys. Rev. A 72, 032317 (2005).

[4] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, The
Mother of All Protocols: Restructuring Quantum Informa-
tion’s Family Tree, Proc. R. Soc. A 465, 2537 (2009).

[5] P. Hayden, Quantum Information Theory via Decoupling,
http://qip2011.quantumlah.org/images/QIPtutorial1.pdf.

[6] F. Dupuis, M. Berta, J. Wullschleger, and R. Renner,
One-Shot Decoupling, Commun. Math. Phys. 328, 251
(2014).

[7] O. Szehr, F. Dupuis, M. Tomamichel, and R. Renner,
Decoupling with Unitary Approximate Two-Designs, New
J. Phys. 15, 053022 (2013).

[8] C. Hirche and C. Morgan, in Proceedings of the 2014 IEEE
International Symposium on Information Theory (IEEE,
New York, 2014), p. 536.

[9] J. Emerson, R. Alicki, and K. Życzkowski, Scalable Noise
Estimation with Random Unitary Operators, J. Opt. B 7,
S347 (2005).

[10] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin,
and D. J. Wineland, Randomized Benchmarking of
Quantum Gates, Phys. Rev. A 77, 012307 (2008).

[11] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and
Robust Randomized Benchmarking of Quantum Processes,
Phys. Rev. Lett. 106, 180504 (2011).

[12] E. Magesan, J. M. Gambetta, and J. Emerson, Character-
izing Quantum Gates via Randomized Benchmarking, Phys.
Rev. A 85, 042311 (2012).

[13] P. Sen, Random Measurement Bases, Quantum State
Distinction and Applications to the Hidden Subgroup
Problem, arXiv:quant-ph/0512085.

[14] F. G. S. L. Brandão and M. Horodecki, Exponential Quan-
tum Speed-ups are Generic, Quantum Inf. Comput. 13,
0901 (2013).

[15] R. Kueng, H. Rauhut, and U. Terstiege, Low Rank Matrix
Recovery from Rank One Measurements, arXiv:1410.6913.

[16] S. Kimmel and Y.-K. Liu, Quantum Compressed Sensing
Using 2-Designs, arXiv:1510.08887.

[17] R. Kueng, H. Zhu, and D. Gross, Distinguishing Quantum
States Using Clifford Orbits, arXiv:1609.08595.

[18] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński,
A. Acín, and M. Lewenstein, Random Bosonic States for
Robust Quantum Metrology, Phys. Rev. X 6, 041044
(2016).

[19] S. Popescu, A. J. Short, and A. Winter, Entanglement and
the Foundations of Statistical Mechanics, Nat. Phys. 2, 754
(2006).

[20] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghí,
Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006).

[21] P. Reimann, Foundation of Statistical Mechanics under
Experimentally Realistic Conditions, Phys. Rev. Lett. 101,
190403 (2008).

[22] C. Gogolin and J. Eisert, Equilibration, Thermalisation, and
the Emergence of Statistical Mechanics in Closed Quantum
Systems, Rep. Prog. Phys. 79, 056001 (2016).

NAKATA, HIRCHE, KOASHI, and WINTER PHYS. REV. X 7, 021006 (2017)

021006-18

https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1103/PhysRevLett.93.080501
https://doi.org/10.1103/PhysRevLett.93.080501
https://doi.org/10.1103/PhysRevA.72.032317
https://doi.org/10.1098/rspa.2009.0202
http://qip2011.quantumlah.org/images/QIPtutorial1.pdf
http://qip2011.quantumlah.org/images/QIPtutorial1.pdf
http://qip2011.quantumlah.org/images/QIPtutorial1.pdf
http://qip2011.quantumlah.org/images/QIPtutorial1.pdf
https://doi.org/10.1007/s00220-014-1990-4
https://doi.org/10.1007/s00220-014-1990-4
https://doi.org/10.1088/1367-2630/15/5/053022
https://doi.org/10.1088/1367-2630/15/5/053022
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevA.85.042311
https://doi.org/10.1103/PhysRevA.85.042311
http://arXiv.org/abs/quant-ph/0512085
http://arXiv.org/abs/1410.6913
http://arXiv.org/abs/1510.08887
http://arXiv.org/abs/1609.08595
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1088/0034-4885/79/5/056001


[23] P. Hayden and J. Preskill, Black Holes as Mirrors: Quantum
Information in Random Subsystems, J. High Energy Phys.
09 (2007) 120.

[24] Y. Sekino and L. Susskind, Fast Scramblers, J. High Energy
Phys. 10 (2008) 065.

[25] L. Susskind, Addendum to Fast Scramblers, arXiv:
1101.6048.

[26] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.
Hayden, Towards the Fast Scrambling Conjecture, J. High
Energy Phys. 04 (2013) 022.

[27] L. Susskind, Computational Complexity and Black Hole
Horizons, arXiv:1402.5674.

[28] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in
Quantum Channels, J. High Energy Phys. 02 (2016) 04.

[29] H. Shenker and D. Stanfor, Black Holes and the Butterfly
Effect, J. High Energy Phys. 03 (2014) 67.

[30] D. A. Roberts and D. Stanford, Diagnosing Chaos Using
Four-Point Functions in Two-Dimensional Conformal
Field Theory, Phys. Rev. Lett. 115, 131603 (2015).

[31] S. H. Shenker and D. Stanford, Stringy Effects in Scram-
bling, J. High Energy Phys. 05 (2015) 132.

[32] A. Ambainis and A. Smith, in Proceedings of RANDOM
2004 (Springer-Verlag, Berlin, Heidelberg, 2004),
pp. 249–260.

[33] A.W. Harrow and R. A. Low, in Proceedings of RANDOM
2009 (Springer-Verlag, Berlin, Heidelberg, 2009), pp. 548–
561.

[34] A.W. Harrow and R. A. Low, Random Quantum Circuits
are Approximate 2-Designs, Commun. Math. Phys. 291,
257 (2009).

[35] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki,
Efficient Quantum Pseudorandomness, Phys. Rev. Lett.
116, 170502 (2016).

[36] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal,
Quantum Data Hiding, IEEE Trans. Inf. Theory 48, 580
(2002).

[37] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and
Approximate Unitary 2-Designs and Their Application to
Fidelity Estimation, Phys. Rev. A 80, 012304 (2009).

[38] D. Gross, K. Audenaert, and J. Eisert, Evenly Distributed
Unitaries: On the Structure of Unitary Designs, J. Math.
Phys. (N.Y.) 48, 052104 (2007).

[39] G. Tóth and J. J. García-Ripoll, Efficient Algorithm for
Multiqudit Twirling for Ensemble Quantum Computation,
Phys. Rev. A 75, 042311 (2007).

[40] W. G. Brown, Y. S. Weinstein, and L. Viola, Quantum
Pseudorandomness from Cluster-State Quantum Computa-
tion, Phys. Rev. A 77, 040303(R) (2008).

[41] Y. S. Weinstein, W. G. Brown, and L. Viola, Parameters of
Pseudorandom Quantum Circuits, Phys. Rev. A 78, 052332
(2008).

[42] I. T. Diniz and D. Jonathan, Comment on “Random Quan-
tum Circuits Are Approximate 2-Designs”, Commun. Math.
Phys. 304, 281 (2011).

[43] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki,
Local Random Quantum Circuits Are Approximate
Polynomial-Designs, arXiv:1208.0692.

[44] R. Cleve, D. Leung, L. Liu, and C. Wang, Near-Linear
Constructions of Exact Unitary 2-Designs, Quantum Inf.
Comput. 16, 0721 (2016).

[45] Y. Nakata, C. Hirche, C. Morgan, and A. Winter, Unitary
2-Designs from Random X- and Z-Diagonal Unitaries,
arXiv:1502.07514.

[46] H. Zhu, Multiqubit Clifford Groups Are Unitary 3-Designs,
arXiv:1510.02619.

[47] Z. Webb, The Clifford Group Forms a Unitary 3-Design,
Quantum Inf. Comput. 16, 1379 (2016).

[48] C. A. Ryan, M. Laforest, and R. Laflamme, Randomized
Benchmarking of Single- and Multi-Qubit Control in
Liquid-State NMR Quantum Information Processing,
New J. Phys. 11, 013034 (2009).

[49] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus,
A. M. Meier, E. Knill, D. Leibfried, and D. J. Wineland,
Single-Qubit-Gate Error Below 10−4 in a Trapped Ion,
Phys. Rev. A 84, 030303 (2011).

[50] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A. Smolin,
M. Ware, J. Strand, B. L. T. Plourde, and M. Steffen,
Process Verification of Two-Qubit Quantum Gates by
Randomized Benchmarking, Phys. Rev. A 87, 030301
(2013).

[51] R. Barends et al., Superconducting Quantum Circuits at the
Surface Code Threshold for Fault Tolerance, Nature
(London) 508, 500 (2014).

[52] H. Zhu, R. Kueng, M. Grassl, and D. Gross, The Clifford
Group Fails Gracefully to be a Unitary 4-Design,
arXiv:1609.08172.

[53] Y. Nakata and M. Murao, Diagonal-Unitary 2-Designs and
Their Implementations by Quantum Circuits, Int. J. Quan-
tum. Inform. 11, 1350062 (2013).

[54] Y. Nakata and M. Murao, Diagonal Quantum Circuits:
Their Computational Power and Applications, Eur. Phys. J.
Plus 129, 152 (2014).

[55] Y. Nakata, C. Hirche, C. Morgan, and A. Winter, Decou-
pling with Random Diagonal Unitaries, arXiv:1509.05155.

[56] R. A. Low, Large Deviation Bounds for k-Designs, Proc. R.
Soc. A 465, 3289 (2009).

[57] A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum
Computation (American Mathematical Society, Boston,
2002).

[58] Y. Nakata, P. S. Turner, and M. Murao, Phase-Random
States: Ensembles of States with Fixed Amplitudes and
Uniformly Distributed Phases in a Fixed Basis, Phys. Rev.
A 86, 012301 (2012).

[59] M. B. Hastings and A.W. Harrow, Classical and Quantum
Tensor Product Expanders, Quantum Inf. Comput. 9, 336
(2009).

[60] Y. Nakata, Ph.D. thesis, The University of Tokyo, 2012.
[61] Y. Nakata, M. Koashi, and M. Murao, Generating a State

t-Design by Diagonal Quantum Circuits, New J. Phys. 16,
053043 (2014).

[62] R. Ahlswede, H. Aydinian, and L. H. Khachatrian, Extremal
Problems under Dimension Constraints, Discrete Math.
273, 9 (2003).

[63] R. Ahlswede, H. Aydinian, and L. H. Khachatrian,Maximal
Antichains under Dimension Constraints, Discrete Math.
273, 23 (2003).

[64] A. Roy and A. J. Scott, Unitary Designs and Codes, Des.
Code Cryptogr. 53, 13 (2009).

[65] M. Ledoux, The Concentration of Measure Phenomenon
(American Mathematical Society, Providence, 2001).

EFFICIENT QUANTUM PSEUDORANDOMNESS WITH … PHYS. REV. X 7, 021006 (2017)

021006-19

https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
http://arXiv.org/abs/1101.6048
http://arXiv.org/abs/1101.6048
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
http://arXiv.org/abs/1402.5674
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1103/PhysRevLett.116.170502
https://doi.org/10.1103/PhysRevLett.116.170502
https://doi.org/10.1109/18.985948
https://doi.org/10.1109/18.985948
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1063/1.2716992
https://doi.org/10.1063/1.2716992
https://doi.org/10.1103/PhysRevA.75.042311
https://doi.org/10.1103/PhysRevA.77.040303
https://doi.org/10.1103/PhysRevA.78.052332
https://doi.org/10.1103/PhysRevA.78.052332
https://doi.org/10.1007/s00220-011-1217-x
https://doi.org/10.1007/s00220-011-1217-x
http://arXiv.org/abs/1208.0692
http://arXiv.org/abs/1502.07514
http://arXiv.org/abs/1510.02619
https://doi.org/10.1088/1367-2630/11/1/013034
https://doi.org/10.1103/PhysRevA.84.030303
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
http://arXiv.org/abs/1609.08172
https://doi.org/10.1142/S0219749913500627
https://doi.org/10.1142/S0219749913500627
https://doi.org/10.1140/epjp/i2014-14152-9
https://doi.org/10.1140/epjp/i2014-14152-9
http://arXiv.org/abs/1509.05155
https://doi.org/10.1098/rspa.2009.0232
https://doi.org/10.1098/rspa.2009.0232
https://doi.org/10.1103/PhysRevA.86.012301
https://doi.org/10.1103/PhysRevA.86.012301
https://doi.org/10.1088/1367-2630/16/5/053043
https://doi.org/10.1088/1367-2630/16/5/053043
https://doi.org/10.1016/S0012-365X(03)00225-5
https://doi.org/10.1016/S0012-365X(03)00225-5
https://doi.org/10.1016/S0012-365X(03)00226-7
https://doi.org/10.1016/S0012-365X(03)00226-7
https://doi.org/10.1007/s10623-009-9290-2
https://doi.org/10.1007/s10623-009-9290-2


[66] J. M. Magán, Black Holes as Random Particles: Entangle-
ment Dynamics in Infinite Range and Matrix Models, J.
High Energy Phys. 08 (2016) 81.

[67] P. Bocchieri and A. Loinger, Quantum Recurrence
Theorem, Phys. Rev. 107, 337 (1957).

[68] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[69] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenom-
enology of Fully Many-Body-Localized Systems, Phys. Rev.
B 90, 174202 (2014).

[70] R. Nandkishore and D. A. Huse, Many-Body Localization
and Thermalization in Quantum Statistical Mechanics,
Annu. Rev. Condens. Matter Phys. 6, 15 (2015).

[71] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[72] A. Kitaev, http://online.kitp.ucsb.edu/online/entangled15/
kitaev/; http://online.kitp.ucsb.edu/online/entangled15/
kitaev2/.

[73] A. Kitaev, http://online.kitp.ucsb.edu/online/joint98/kitaev/.
[74] J. Maldacena, S. H. Shenker, and D. Stanford, A Bound on

Chaos, J. High Energy Phys. 08 (2016) 106.
[75] E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A. H.

Werner, and J. Eisert, Mixing Properties of Stochastic
Quantum Hamiltonians, arXiv:1606.01914.

[76] D. A. Roberts and B. Yoshida, Chaos and Complexity by
Design, arXiv:1610.04903.

[77] A. S. Sørensen and K. Mølmer, Entangling Atoms in Bad
Cavities, Phys. Rev. A 66, 022314 (2002).

[78] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Frus-
tration and Glassiness in Spin Models with Cavity-Mediated
Interactions, Phys. Rev. Lett. 107, 277201 (2011).

[79] P. Strack and S. Sachdev, Dicke Quantum Spin Glass of
Atoms and Photons, Phys. Rev. Lett. 107, 277202 (2011).

[80] M. L.Metha,RandomMatrices (Academic Press, Amsterdam,
1990).

[81] Y. Nakata and T. J. Osborne, Thermal States of Random
Quantum Many-Body Systems, Phys. Rev. A 90, 050304(R)
(2014).

NAKATA, HIRCHE, KOASHI, and WINTER PHYS. REV. X 7, 021006 (2017)

021006-20

https://doi.org/10.1007/JHEP08(2016)081
https://doi.org/10.1007/JHEP08(2016)081
https://doi.org/10.1103/PhysRev.107.337
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://online.kitp.ucsb.edu/online/joint98/kitaev/
http://online.kitp.ucsb.edu/online/joint98/kitaev/
http://online.kitp.ucsb.edu/online/joint98/kitaev/
http://online.kitp.ucsb.edu/online/joint98/kitaev/
https://doi.org/10.1007/JHEP08(2016)106
http://arXiv.org/abs/1606.01914
http://arXiv.org/abs/1610.04903
https://doi.org/10.1103/PhysRevA.66.022314
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1103/PhysRevA.90.050304
https://doi.org/10.1103/PhysRevA.90.050304

