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Quantum randomness is an essential key to understanding the dynamics of complex many-body systems
and also a powerful tool for quantum engineering. However, exact realizations of quantum randomness take
an extremely long time and are infeasible in many-body systems, leading to the notion of quantum
pseudorandomness, also known as unitary designs. Here, to explore microscopic dynamics of generating
quantum pseudorandomness in many-body systems, we provide new efficient constructions of unitary
designs and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a
unitary design after a threshold time. The new constructions are based on the alternate applications of
random potentials in the generalized position and momentum spaces, and we provide explicit quantum
circuits generating quantum pseudorandomness significantly more efficient than previous ones. We then
provide a design Hamiltonian in disordered systems with periodically changing spin-glass-type inter-
actions. The design Hamiltonian generates quantum pseudorandomness in a constant time even in the
system composed of a large number of spins. We also point out the close relationship between the design

Hamiltonian and quantum chaos.
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I. INTRODUCTION

Random quantum process is a useful resource in quan-
tum information processing, as one of the fundamental
primitives in quantum Shannon theory [1-8] and to
demonstrate quantum advantages in many protocols
[9-18]. In recent years, random processes have also turned
out to play key roles in understanding fundamental physics
in complex quantum systems, leading to new developments
in quantum thermodynamics [19-21] (see Ref. [22] for a
comprehensive review), black hole information science
[23-28], and strongly correlated many-body physics
[29-31]. Quantum randomness is often represented by
random unitaries drawn uniformly at random according
to the Haar measure, referred to as Haar random unitaries.
However, when a system is large, it takes an extremely long
time to realize Haar random unitaries, implying that they
rarely appear in natural systems composed of many
particles. This is especially the case when the interactions
are local. This fact has led to the research area on quantum
pseudorandomness [32—35], particularly in terms of unitary
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t-designs [36-38], and their efficient implementations
[33-35,39-47]. A unitary f-design is a finite-degree
approximation of Haar random unitaries, and is called
exact when it simulates all the first + moments of Haar
random unitaries and approximate when the simulations are
with errors.

Traditionally, unitary z-designs have been investigated
for small 7. In particular, unitary 2-designs were intensely
studied [34,36-42,44,45] due to the fact that they are useful
in important tasks, such as decoupling [5-8] and random-
ized benchmarking [9-12], and that the Clifford group is an
exact unitary 2-design [36]. Unitary 2-designs have already
been implemented experimentally in small systems and are
a standard tool of evaluating the performance of quantum
devices [48-51]. Later, the Clifford group on two-level
systems, known as qubits, was also shown to be a unitary
3-design but not to be a 4-design [46,47,52]. For t > 4, a
few applications are known (e.g., state discrimination [13],
quantum speed-ups in query complexity [14], and com-
pressed sensing [15,17]), but they are of potential impor-
tance when strong large deviation bounds are needed,
which typically leads to better performance of quantum
protocols. So far, only a couple of efficient implementa-
tions for t > 4 are known, to the best of our knowledge.
One is to use a classical tensor product expander and
the Fourier transformation, forming approximate unitary
t-designs for t = O(N/log N) by using poly(N) quantum
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gates [33]. The other is to use local random quantum
circuits composed of random two-qubit gates applied onto
neighboring qubits, which achieves approximate unitary
t-designs for ¢ = poly(N) using O(t'°N?) gates [35,43].

Despite these implementations of unitary designs by
quantum circuits, there exists a certain gap between the
constructions and physically feasible dynamics in quantum
many-body systems. The constructions require a finely
structured circuit [33] or the use of randomly varying
interactions [35,43], while dynamics in physically feasible
many-body systems is typically not structured and is
generated by a Hamiltonian, which may slightly fluctuate
over time but should be based on a time-independent one.
Indeed, if we interpret local random quantum circuits on N
qubits in terms of Hamiltonian dynamics, the interactions
should be changed uniformly at random O(#'°N) times
before the dynamics achieves unitary 7-designs. Because of
its dependence on the number of qubits, the total
Hamiltonian should be highly time dependent and may
not be so physically feasible in large systems, resulting in
the lack of a solid basis of a number of studies in many-
body systems based on quantum pseudorandomness
[19-28]. There is also an increasing demand from black hole
information science and quantum chaos to fully understand
microscopic dynamics of randomization, where so-called
scrambling has been intensely studied [23-31]. Scrambling
is a weak variant of quantum pseudorandomness, and study-
ing natural Hamiltonians generating unitary designs will
elaborate the understandings in context. Furthermore, imple-
mentations of unitary designs by Hamiltonian dynamics
are of practical importance, helping experimental realizations
of designs, as any quantum circuit is fundamentally imple-
mented by engineering Hamiltonians.

In this paper, to better understand microscopic dynamics
generating quantum pseudorandomness, we provide new
constructions of unitary ¢-designs and propose a design
Hamiltonian, a random Hamiltonian of which dynamics
forms a unitary design at any time after a threshold time. The
constructions are based on the scheme of repeating random
unitaries diagonal in mutually unbiased bases [45,53-55].
We first show that the process on a d-dimensional Hilbert
space, known as a qudit, achieves unitary 7-designs after O(r)
repetitions if a pair of the two bases satisfies a certain
condition, which is considered to be a generalization of the
position and momentum bases. As the construction works for
any space, it will be useful to implement unitary designs in a
subspace, such as a bosonic subspace, which is a strong
resource to demonstrate a quantum advantage in metrology
[18]. We then focus on random diagonal unitaries in the
Pauli-X and -Z bases on N qubits and investigate how to
approximate them efficiently by quantum circuits. By map-
ping this problem to a combinatorial problem, called a local
permutation check problem, we show that an approximate
unitary ¢-design for # = o(N'/?) can be achieved by using
O(tN?) gates. In terms of ¢, this drastically improves the

previous result [35,43], which uses O(#'°N?) gates, and is
essentially optimal. As higher designs are useful to improve
the performance of any applications of lower designs due to
their large deviation bounds [56], this construction will
contribute to improving the performance of any applications
of designs [1-18]. Finally, we present a nearly time-
independent design Hamiltonian with spin-glass-type inter-
actions, where it suffices to vary the interactions only O(t)
times before the corresponding time-evolution operators
form unitary 7-designs. As a consequence, the design
Hamiltonians saturate expectation values of any observables,
e.g., the so-called out-of-time-ordered (OTO) correlators
[29-31], to the fully uniform averages in a constant time.
As the saturation of OTO correlators is expected to be a sign
of quantum chaos [28], this shows a close relation between
design Hamiltonians and quantum chaos, further suggesting
the possibility to explore fascinating features of random
dynamics in complex quantum systems by design
Hamiltonians and by the methods developed in quantum
information science. We also propose a conjecture about the
time scale for a natural design Hamiltonian to generate
unitary designs, which can be seen as a generalization of the
fast scrambling conjecture [24].

This paper is organised as follows. In Sec. II, we
introduce necessary notations and explain several defini-
tions and properties of random unitaries. All of the main
results are summarized in Sec. III, of which proofs are
provided in Sec. IV. We conclude and discuss possible
future directions in Sec. V. Small propositions presented in
the paper are explained in Appendixes.

II. PRELIMINARIES

We use the following standard asymptotic notation. Let
f(n) and g(n) be functions on R*. We say f(n) = O(g(n))
if there exist ¢, ny > 0 such that f(n) < cg(n) for all
n > ny. When there exist ¢, ng > 0 such that f(n) > cg(n)
for all n > ny, we say f(n) = Q(g(n)). If f(n) = 0O(g(n))
and f(n) = Q(g(n)), we denote it by f(n) = ©(g(n)). If
lim,_,.f(n)/g(n) = 0, we write it by f(n) = 0(g(n)). For
given i, j (i < j), we denote by [, j] a sequence of numbers
from i to j, [i,j]:={i,i+1,...,j—1,j}. We also use a
floor function |x| for x € R, which is the largest integer
less than or equal to x.

Let H be a Hilbert space and B(H) be a set of bounded
operators on H. We use several norms of operators and
superoperators. For operators, we use the operator norm
[l -l and the p-norm (p > 1) defined by |X| :=
max;x;, where {x;} are the singular values of X, and
IX|l, = (tr|X|?)"/P, respectively. For a superoperator
C:B(H) — B(H), we use a family of superoperator norms
ICll4~, (g, p > 1) and the diamond norm [57] defined by

ICX)II .
||C||qqp=5up&7 IClls =suplIC ®idgll1~1, (1)
xz0 Xl k
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respectively, where id; is the identity map acting on a
Hilbert space of dimension k.

Perfect quantum randomness is often represented by a
Haar random unitary, a unitary drawn from a unitary group
uniformly at random. Formally, it is given as follows: let
U(d) be a unitary group of degree d, and H be the Haar
measure (i.e., the unique unitarily invariant probability
measure) on U(d). A Haar random unitary U is a U(d)-
valued random variable distributed according to the Haar
measure, U” ~H. Quantum randomness is hard to gen-
erate when the dimension of the unitary group is large due
to its full uniformity. Moreover, when we consider the
generation of quantum randomness in isolated physical
systems, Haar random unitaries are extremely rare to
appear because the dynamics in a physical system is
generated by a system Hamiltonian and, if it is time
independent, the dynamics leaves the eigenspaces invari-
ant. In such situations, it may be more physically feasible to
fix the basis and to consider random time evolution under
the fixed basis. This is the idea of a random diagonal
unitary [58] in a fixed basis: let E = {[k) };cp.4—1] be an
orthogonal basis in a Hilbert space H with dimension d. Let
Dg(d) be the set of d x d unitaries diagonal in the basis E.
Let Dy denote a probability measure on Dg(d) induced by
a uniform probability measure on the parameter space
[0,27)9. A random diagonal unitary in the basis of E [53],
DE, is a Dg(d)-valued random variable distributed accord-
ing to D, DF ~ Dyg.

In practice, quantum randomness described by Haar
random unitaries should be considered to be an idealization
because the time necessary for exactly generating quantum
randomness scales exponentially in the number of particles
in the system. Hence, it is important to consider quantum
pseudorandomness often described by a unitary #-design

(t € Z"). To explain unitary designs, let QSLD(X) be a
superoperator given by ley(X) = By, [US'XUT®] for
any X € B(H®"), where E;., represents an average over a

random unitary U according to a probability measure v.
Then, a random unitary U ~ v is called an e-approximate
unitary t-design [34,37] if ||g§j>w - QS)N ylle < €. Quantum
pseudorandomness, in the sense of unitary f-designs, is
indistinguishable from a fully random one even if we have ¢
copies of the system and are allowed to collectively act on
the whole of them. Hence, it is regarded as a lower-order
approximation of quantum randomness.

Note that, if U is an e-approximate unitary 7-design, then
for any random unitary V independent of U, UV and VU
are also e-approximate unitary 7-designs. This can be seen
in a straightforward way as follows:

169G — G o = 169 0 (G, — 6% )l (@)

<16 N, 1IG5L, = Gl (3)

<e

: (4)

where we use the unitary invariance of the Haar measure in

the first line, and a fact that g<v’> is a completely positive and
trace-preserving map in the last line. The proof for UV is
also similar.

We also use a quantum (#,¢)-tensor product expander v
(TPE), which is considered to be a “seed” of quantum
pseudorandomness, defined by

”lEUND[U@m] - [EUNH[U®M]”00 < 7, (5)

where n < 1, U®" := U® @ U*®", and U* is a complex
conjugation of U [59]. This definition is equivalent to

1GE., — Gl <. (6)

and, hence, the difference between a quantum TPE and a
unitary 7-design is just the norm used in their definitions.
The quantum TPE is useful simply because iterating
quantum (7, ) TPE yields an approximate unitary 7-design.
This fact is often used in the literature [33,35,43], which is
stated in the following theorem (a proof is given in
Appendix A for completeness).

Theorem 1.—Let v be a quantum (,/) TPE. Then,
iterating the TPE ¢ > {1/[log(1/#n)]}log(d'/e) times
results in an e-approximate unitary #-design.

III. MAIN RESULTS

Here, we present a summary of our three main results.
We first provide implementations of approximate unitary
designs on one qudit in Sec. IIT A. In Sec. III B, we consider
N-qubit systems and show that e-approximate unitary
t-designs can be implemented by quantum circuits with
length O{N[tN + log(1/¢)]}. Finally, in Sec. IIIC, we
propose design Hamiltonians and provide a design
Hamiltonian with two-body interactions that achieves
unitary designs in a short time.

A. One qudit case

We introduce a Fourier-type pair of bases. A pair of
orthogonal bases (E, F) is called a Fourier-type pair if each
element in F = {|a) },e0.4-1) is expanded in the basis of

E = {|k) g }refo.4-1) as follows:

1 )
la)p = Vi Z ealk) (7)

ke(0.d-1]

where the phases 6y, € [0,2x) satisfy the condition that
Vk, l, ae [0, d— 1], ekJrl’a = Hk(, + Hla' In the index of
0, + should be an additive operation with respect to which
[0,d — 1] is an additive group. Two important examples of
Fourier-type pairs of bases are the following (see Appendix B
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for the details): (1) any orthogonal basis {|k) } kel0.d—1] and its
Fourier basis {d~'/2}",&™|k)} (0 4-1)» Where @ is a dth
root of unity, and (2) the Pauli-X and Pauli-Z bases on N
qubits. These two examples are versions of the position and
momentum bases in continuous and discrete spaces, respec-
tively. It is known that if DY (W = E, F) is applied to the
state with a large support in the basis of W, then the resulting
state is strongly randomized [58,60]. This fact naturally leads
us to expect that alternate applications of Df and DF
randomize any states and eventually achieve quantum
pseudorandomness. This is indeed the case.

Theorem 2.—Let d = Q(1*t!?) and (E, F) be a Fourier-
type pair of bases. For independent random diagonal
unitaries DF and D'F in the basis of E and DY in the
basis of F, DEDFD'E is a quantum (5,7) TPE with 5
given by

= (8)

1+t + 1 412
—4+ 0| — |-
d + d?

The proofis given in Sec. IV B. From Theorems 1 and 2,
and noticing that applying two random diagonal unitaries in
the same basis is equivalent to applying one random
diagonal unitary in that basis, we obtain our first main
result.

Corollary 3 (Main result 1).—Let (E, F) be a Fourier-
type pair of bases and assume that d = Q(#*#!?). A random
unitary D[¢]:= DEDEDE_ DL _|...DEDYDE, where DF
and DI are independent random diagonal unitaries in
the basis of E and F, respectively, is an e-approximate
unitary 7-design if

1
me[tlogd+10g(l/€)]’ ©)

up to the leading order of d and t.

This construction of designs works for any space, which
is not necessarily a whole tensor-product space, and will be
useful when we need designs in certain subspaces. This is
the case, for instance, in quantum metrology, where it was
recently shown that almost any random symmetric states
are useful to demonstrate a quantum advantage [18]. As
unitary designs in the symmetric subspace are needed for
generating such random states, our construction will help
the demonstration of a quantum advantage in metrology.
Another interesting instance is an experimental demon-
stration of self-thermalization in isolated quantum systems,
which can be done by applying Haar random unitaries or
unitary designs onto the system and the environmental
system [19-21]. Since the temperature of the system is
determined by the total energy in the system and the
environment, unitary designs should act on the subspace
with restricted energy. Our construction is suited in this
situation because a pair of position and momentum bases of

pseudoparticles with fixed energies forms a Fourier-type
pair and may be physically feasible to deal with.

Before we proceed to the next section, we make a short
remark on the assumption d = Q(#*t!*) in Theorem 2 and
Corollary 3. This assumption comes from a technical
reason and it remains open whether the assumption can
be removed (see Sec. IV B for more details).

B. N-qubits case

We now focus on N-qubit systems. In particular, we
consider applying random diagonal unitaries in the Pauli-X
and -Z bases. From Corollary 3, repeating these random
diagonal unitaries yields an e-approximate unitary ¢-design
if the number Z of repetitions satisfies

¢ (N +logy(1/6)].  (10)

>
TN —2log,(1!)

as long as 2V = Q(#*t!?). However, this construction is
inefficient because an exact implementation of random
diagonal unitaires by quantum circuits requires an expo-
nential number of local gates. Thus, we need to find
efficient implementations of approximate random diagonal
unitaries by quantum circuits. As the Pauli-X and -Z bases
are related by the Hadamard transformation, it suffices to
consider those only in the Pauli-Z basis.

1. Random diagonal circuits and
local permutation checks

We especially study the following family of random
diagonal circuits (RDC). Let Z = {I;} be a set of
I;C[1,N], and denote M,:=2il —1. At the ith
step of the circuit, we apply a random diagonal gate
diag,{e, ..., e’} onto the qubits located in I;, where
the gate is diagonal in the Pauli-Z basis and the phases ¢,
(k € [0, M;)) are chosen independently and uniformly at
random from [0, 27) every step. Since the circuit is fully
specified by Z, we denote it by RDC(Z). We refer to |Z| as
the length of the circuit.

The problem of approximating random diagonal uni-
taries in the Pauli-Z basis by RDC(Z) is related to an
elementary combinatorial problem, which may be of
interest in its own right. We first introduce the combina-
torial problem here, and then show the connection to the
original problem.

Let K and K’ be ¢ x N matrices with elements in {0, 1}.
For given s €[l,#] and I C [l,N], we denote a sub-
sequence (K ,,),.c; of the sth row of K by K,; and a
set {K1}epn, Of such subsequences over all s by K;. We

use the same notation also for K'. Let Q be a canonical map
that rearranges the subsequences K; in ascending order,
where the subsequences are regarded as binary numbers.
For Z = {I}, we say that K is an Z-local permutation of K’
if VI € Z,Q(K;) = Q(K}). In particular, we say K is a row
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permutation of K’ if Q(K;) = Q(K}) for I = [1, N], which
simply implies that a set of rows of K is a permutation of
that of K. In the following, we denote by Z, a set of all
subsets in [1, N] with r elements. Using this notation, the
task of local permutation check problems is to count the
number of pairs (K,K’) such that K is not a row
permutation but an Z-local permutation of K’. We denote
the number of such pairs by A(Z). In particular, for Z,, we
call the problem an r-local permutation check problem and
denote the number of pairs by A,. For a couple of examples
of local permutation checks, see Fig. 1.

To see the connection between the implementations of
quantum TPEs by RDC(Z) and the Z-local permutation
check problem, we consider EDZNRDC(I)[(DZ)@”'I], which
is an operator diagonal in the Pauli-Z basis on
(C?)®N @ (C*)®N, We label each vector of the Z basis
in (C?)®™N by at x N matrix K with elements in {0, 1} (see
Appendix C for further details). Then, we can show that

(K, K'|Epz.moc(z) [(D?)®]|K, K')

1 if K is an Z-local permutation of K’

— (11)

0 otherwise.

See Fig. 1(c) as well. Based on this fact, we obtain that,
when 2V = Q(#?1!%), iterating RDC(Z) and the
Hadamard transformation Hy on N qubits, such as
RDC(Z)HyRDC(Z)HyRDC(Z) [see Fig. 2(a)], yields a
quantum (7, ) TPE, where

ﬁ5n+31!%+ (/\2(5))2’ (12)

with n= [(1 + tz)t!2 + t2]/2N + O(l‘4t!2/22N) (see
Appendix C for the details).

2. Approximating random diagonal
unitaries by RDC(Z,)

To obtain our second main result, RDC(Z,) [see
Fig. 2(b)] and the 2-local permutation check problem are
of particular importance. Because of the result in Ref. [61],
we know that A, = 0 for r < 3. When ¢ > 4, the problem
can be rephrased as an extremal problem under dimension
constraints, which is a constrained problem in extremal
algebraic theory [62,63]. By solving a special case of the
problem (see Sec. IV C), we obtain A, < 22°+(=DN Thys,
for t = o(N'/?), iterating RDC(Z,) and the Hadamard
transformation is a quantum (7, t) TPE, where

< 222N 4 0(211227N), (13)

from which we obtain an efficient implementation of a
unitary #-design due to Theorem 1.

(a) 1V T 0 1810 0
_ | 1r0 1 1 0:0 0il 1 1i
K= 0:1 .0 0 031 111 0 1]
00000 L+l 10 0 L
130T 17050 171701}
10 0 0 1:0 0i1 1 1i
’_ i ] b 3
K= 0+l 1 1 1:1 111 0 1
0:1..0..0. 021 1:0_ 0 0
‘- - [
(b) 1y 1 01001 150 0101
go| 0oyt 0atp Lil 0 1ly
Tl ti000 0130 1i0 11
01110 03030 1;1 1:04
- - [ A |
13001 0411 10 0113
K 0111 0:001 111 010y
| 11100 0v0ro0 1i0 1104
0100 0:1:0 111 1!_1_-3)

(©)

N qubits
| =
]

T-local permutation check

RDC(Z) (T = {11, 1>, 15})

FIG. 1. (a),(b) Examples of local permutation check problems
fort =4and N = 10.In (a), K; = {1111,0110, 1000, 0001} is
a permutation of KQI ={0110,0001, 1111, 1000} (blue dashed
boxes). However, K, is not a permutation of K’ 7, (red dash-dotted
boxes). Hence, K is an {I;}-local but not an {I,}-local
permutation of K’, also implying that K is not a row permutation
of K. In (b), K is identical to K’ except the columns in the blue
dashed boxes and is a 2-local permutation of K’. However, K fails
to be a 3-local permutation of K’ due to the last column (see, e.g.,
K, and K7,). Panel (c) illustrates a relation between RDC(Z) and
an Z-local permutation check problem. As diagonal gates act on
Iy, I,, and I3, we first check if K is a {I,,1,,15}-local
permutation of K’. That is, we check the permutation relations
between sets of rows in the red dash-dotted, green dotted, and
blue dashed boxes. If K is {I,I,,I3}-local but not a row
permutation of K', then (K, K'|Epz. gpc(z) [(D#)®"]|K, K') = 1.

We can further reduce the number of randomness in the
implementation by replacing all gates in RDC(Z,) with
those in the form of

(diag{1, e} ® diag{1, e'*>})diag{1,1,1,¢"}. (14)

When ¢, and ¢, are chosen independently from
{2zm/a:m € [0,a — 1]} uniformly at random, and 9 is
chosen from {2zm/b:m €[0,b— 1]}, we denote the
circuit RDCy;.(Z5: a, b). Using the same technique as in
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OLTHET HE F
- —
— RDC(T) RDC(T) RDC(T) |—
- —

(b)

I s

FIG. 2. Panel (a) depicts iterations of RDC(Z) and the Hadamard
transformation. Panel (b) shows RDC(Z, ), where random diagonal
two-qubit gates are applied onto all pairs. The circuit is called
RDCEj'iZC(Iz) when each two-qubit gate is replaced with
(diagz{1, e} ® diag,{1, e2})diag;{1,1,1,e®}, where the
phases ¢, ¢, and 9 are chosen from discrete sets given in the
main text.

Ref. [61], we obtain that if a > ¢+ 1 and b > |£/2] + 1,
RDCis.(Z,: @, b) simulates up to the sth-order moments of
RDC(Z,). In particular, we denote RDCpgi.(Z,:7+ 1,

[z/2] + 1) simply by RDCS?SC (Z,), where one two-qubit
gate requires 2log,(r+1)+log, (/2] +1) <3log,(r+1)
random bits. Together with all of these, we obtain our
second main result.

Theorem 4 (Main result 2).—For t = o(N'/?), iterating

RDCfi’i)SC(Iz) and the Hadamard transformation on N

qubits, such as [RDCY) (Z,)Hy]*RDCY) (T,), yields

disc disc
an e-approximate unitary f-design if

£ 214 log(1/e), (15)

up to the leading order of N and ¢. The total number of two-
qubit gates and random bits are given by

no. of two-qubit gates = O{N[tN + log,(1/¢€)]}, (16)

TABLE L.

no. of random bits = @{(log, 1)N[tN + log,(1/¢)]},
(17)

respectively.

We assume in Theorem 4 that t = o(N'/?). However, we
believe that Theorem 4 holds even for t = o(N/logN),
which comes from the conjecture we explain in more detail
in Sec. IV C.

In terms of ¢, Theorem 4 drastically improves the
previous result using O{°N[tN + log(1/¢)]} two-qubit
gates [35,43] (see also Table I for the comparison) and
is essentially optimal when the design is defined on a finite
set of unitaries. This is because the support of a unitary
t-design should contain at least O(2*") unitaries [64].
Thus, when each gate in a random quantum circuit is
chosen from a finite set, the scaling of the length necessary
for the circuit achieving a t-design cannot be substantially
better than linear in .

In practical uses of unitary designs, such as decoupling
[5-8] and randomized benchmarking [9-12], unitary
2-designs are known to be sufficient, for which a more
efficient construction by Clifford circuits with length
O(Nlog®N) is known [44]. However, unitary 4-designs
are needed in a few applications [13—15], which cannot be
achieved by any Clifford circuit [46]. Moreover, higher
designs are generally more useful than lower designs
because they have stronger large deviation bounds [56],
which are finite approximations of the concentration of
measure for Haar random unitaries stating that values of
any slowly varying function on a unitary group are likely to
be almost constant if the dimension is large [65]. This
implies that using higher designs in any applications of
unitary designs results in better performance. Since our
implementation provides a quantum circuit for s-designs
shorter than the existing ones [34,35,43], it contributes to
improving the performance of quantum protocols using
quantum pseudorandomness [1-16,18].

This construction of approximate designs also has
advantages from an experimental point of view. As high-

lighted in Refs. [45,55], the quantum circuits repeating
RDC(Z,) or RDCfi?SC(IZ) and the Hadamard transforma-

tion are divided into a constant number of commuting parts.

A comparison between quantum circuit constructions of unitary 7-designs on N qubits, which works for

t > 3. The total number of quantum gates to achieve classical tensor expanders is known to be poly(N), but is not
explicitly presented in Ref. [33]. The noncommuting depth was introduced in Ref. [55] and is defined by the circuit
depth when each commuting part of the circuit is counted as one step. The noncommuting depth may be of

experimental importance.

Total number of gates t Noncommuting depth [55]
Classical tensor expanders [33] poly(N) O(N/1logN) poly(N)
Local random circuits [35,43] O{N[tN +log(1/e)]} poly(N) O{°[tN + log(1/€)]}
Random diagonal circuits O{N[tN + log,(1/€)]} o(N'/?) O[t+ (1/N)logy(1/¢€)]
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Indeed, only noncommuting parts are the Hadamard parts.
Because the gates in each commuting part do not have any
temporal order, they can be applied simultaneously in
experimental realizations, possibly making the actual
implementation time shorter. Hence, the commuting struc-
ture of our construction may help reduce the practical time
and increase the robustness of the implementations. This
property can be rephrased in terms of the noncommuting
depth proposed in Ref. [55] (see Table I).

C. Hamiltonian dynamics and unitary designs

In the past decade, quantum randomness was revealed to
be the key to understanding fascinating phenomena in
complex quantum many-body systems [19-28], in most of
which the dynamics is assumed to be so random that it can
be described by Haar random unitaries or unitary designs.
This assumption may be reasonable as a first approxima-
tion. However, due to the lack of full understanding of
natural microscopic dynamics generating unitary designs, it
is not clear to what extent the assumption can be justified.

Most recently, the idea of scrambling was introduced in
black hole information science [23,24]. The main concern
there is the fast scrambling conjecture, stating that the
shortest time necessary for natural dynamics to scramble
many-body systems scales logarithmically with the system
size [24-28]. While it is known that O-dimensional systems,
where all particles interact with each other, can be scrambled
in a constant time [66], the conjecture is strongly believed to
hold in higher dimensions. The fast scrambling conjecture
originally arose from a thought experiment concerning the
black hole evaporation and the no-cloning theorem [24], but
has also been studied intensely in connection with quantum
chaos [29-31]. So far, several inequivalent definitions of
scrambling have been proposed [24,26,28]. Although they
are useful for clarifying the relationship between scrambling
and other notions of randomization, such as unitary designs
and the OTO correlators diagnosing quantum chaos
[29-31], there does not seem to be consensus on a rigorous
mathematical definition of scrambling.

Here, we introduce design Hamiltonians as a unifying
framework for studying natural microscopic dynamics of
quantum randomness. In terms of the design Hamiltonians,
we generalize the fast scrambling conjecture and propose a
natural design Hamiltonian conjecture. We then construct a
design Hamiltonian, where the interactions need to be
changed only a few times before the corresponding
dynamics form unitary designs. This is in sharp contrast
to the Hamiltonian dynamics based on local random
quantum circuits [35,43], which we elaborate on later.

1. Design Hamiltonians

We especially consider k-local Hamiltonians [57] on N
qubits, H = ) .H;. Here, each term H; may be dependent
on time, ||H;||l <1, and acts nontrivially only on the

qubits in A; C [1, N], which satisfies |A;| < k and A; # A;

Distribution of
a unitary design

Distribution of
a Haar random unitary

Time evolutions by
a design Hamiltonian

Time evolutions at
the recurrence time Tjec

FIG. 3. Schematic figures illustrating the distributions of
random unitaries in a whole unitary group. For the visualization,
the unitary group is represented by an ellipse and each red dot
corresponds to a unitary operator. Panel (a) illustrates a Haar
random unitary, which is uniformly and continuously distributed
over the whole unitary group. For unitary designs, the distribution
is not necessarily continuous and is often defined on a finite
support, which is depicted in (b). Panel (c) provides an intuitive
picture of time-evolution operators generated by a design
Hamiltonian, starting from the identity. As time passes, a design
Hamiltonian generates random unitary distributed over the whole
unitary. The time evolution is illustrated by a trajectory in the
panel. When the design Hamiltonian is defined on a finite
ensemble of Hamiltonians, there exists a time T,.., where all
time evolution operators are in the neighborhood of the identity,
due to the Poincaré recurrence theorem as depicted in (d).

if i # j. We denote by $, a set of all k-local Hamiltonians.
The interactions in k-local Hamiltonians are not necessarily
geometrically local on lattice systems. They are, rather,
interpreted as interactions on a given graph, where each
vertex represents a particle. To normalize the time scale of the
dynamics, we also assume that the strength of each local
interaction is bounded. In the following, to avoid confusion,
we always use small ¢ and capital T for z-designs and time,
respectively. We denote Uy(T) := T exp[—i [] dsH(s)],
where 7 exp is the time-ordered exponential, the time
evolution operator at time 7" generated by a possibly time-
dependent Hamiltonian H. An e-approximate ¢-design
Hamiltonian with k-local interaction is a random k-local
Hamiltonian H, where there exists 7y > 0 such that, for any
T > T,, a random unitary Uy (T) generated by H is an e-
approximate unitary 7-design. We call the shortest such time
Ty a design time of H (see Fig. 3 for intuitive illustrations).

This definition of design Hamiltonians is a little strong
and can be weakened if necessary. Indeed, there is no
design Hamiltonian in this sense on a finite ensemble of
time-independent Hamiltonians. Because of the Poincaré
recurrence theorem [67], the time-evolution operator
generated by a time-independent Hamiltonian is in the
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neighborhood of the identity operator at the recurrence
time. Although the time-evolution operators generated by
other Hamiltonians are possibly not close to the identity at
the recurrence time of one Hamiltonian, we can always find
the time 7,.. where all operators are close to the identity.
Hence, at that time 7., an ensemble of time-evolution
operators does not form unitary designs (see also Fig. 3).
However, this problem can be avoided if we consider time-
dependent Hamiltonians or a continuous ensemble of time-
independent Hamiltonians. We can also relax the condition
of VT > T to most of the time after T,.

2. Natural design Hamiltonian conjecture

As our main purpose is to find physically natural
Hamiltonians generating unitary designs, we are most
interested in the design Hamiltonians that are not finely
structured, are time independent, and are with geometri-
cally local interactions. In addition, we may further require
that, due to the fast scrambling conjecture, the design time
scales logarithmically with the system size, which may
depend on t. Thus, we arrive at the natural design
Hamiltonian conjecture that there exist e-approximate
t-design Hamiltonians on N qubits that satisfy the follow-
ing three conditions: (1) the interactions are geometrically
local, (2) the interactions are all time independent, and
(3) the design time is given by O(zlog N), which may also
depend on e.

In general, the Hamiltonians with random interactions
are expected to exhibit many-body localization [68-70],
preventing the corresponding dynamics from achieving
unitary designs quickly. However, this is not always the
case. For instance, the dynamics of a Majorana fermion
model with random four-body interactions, also known as
the Sachdev-Ye-Kitaev (SYK) model [71,72], is known to
be strongly chaotic [73,74] and is likely to achieve unitary
designs at least on the low-energy subspace. Although the
SYK model consists of all-to-all interactions and does not
meet the first condition of the conjecture, further inves-
tigation of this model may help in the search of natural
design Hamiltonians satisfying all three conditions.

The conjecture is based on an established language of
unitary designs and so will be helpful to explore randomizing
operations in physically natural systems in a mathematically
rigorous manner. We note that the conjecture is not only of
theoretical interest but also of practical importance because,
by applying such a random Hamiltonian onto a system, a
unitary design will be spontaneously obtained. Most impor-
tantly, there is no need to change the interactions and no fine
control of time is required. This will drastically simplify the
implementations of unitary designs in experiments, also
resulting in the simplification of many quantum protocols
[1-16,18].

The construction of designs by local random quantum
circuits [35,43] can be naturally translated into design
Hamiltonians: a random Hamiltonian with neighboring

two-body interactions is a t-design Hamiltonian if the
interactions vary randomly and independently at every
time step. Such varying interactions can be considered to be
fluctuations induced by white noise on two-body inter-
actions [75]. This design Hamiltonian H,,y satisfies the
first condition of the conjecture, as it uses only neighboring
interactions, but not the second and the third ones. Indeed,
to achieve a unitary #-design by the dynamics of H 4, the
interactions should be changed O(#'°N) times uniformly at
random. This is far from time independent and takes much
longer than O(tlog N). Here, we are more concerned with
the second condition of the conjecture and provide a design
Hamiltonian Hy, based on Theorem 4.

3. Design Hamiltonian Hy,

We first introduce a parameter set P,(c) by

m

Pic) = {m im & [—C@}- (18)

Our design Hamiltonian consists of two types of disordered
commuting Hamiltonians, which may appear in many-body
localized systems [68—70]:

JiB;

<k j

f)g(t) = {_Zjika ® Xi — ZB,'X,} . (20)
Jjw-Bj

J<k J

where the coefficients J; and B; are chosen from P,(J)
and P,(B), where J=[(|7/2])/2] and B = [t/2] +3,
respectively. Our third main result is that alternate appli-
cations of H; randomly chosen from Sj(zt) and Hy ran-

domly chosen from ﬁg) are a design Hamiltonian. To be
precise, we introduce a notation €, which implies that the
left-hand side is drawn uniformly at random from the set in
the right-hand side. Then, our third main result is given as
follows.

Corollary 5 (Main result 3).—Let t = o(N'/?) and $\)
be a set of 2-local time-dependent Hamiltonians in the
form of

HY if 2mr<T < (@m+ Dz
Hg(m) if Cm+ ) <T <2(m+ 1)x,
(21)

() = {

where T denotes time, and qu) € Sj(vf,) foranym = 0,1, ...

(W = X, Z). Then, the random Hamiltonian Hy, €y @g)z
is an e-approximate ¢-design Hamiltonian. The design time
of Hyz is at most [2¢ + 1 + (2/N)log,(1/¢)]x.
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Hamiltonian
T (2) (4)
(t) H H,
Dz | 5 H —_— ) —_—
0 x % 3 i 5 6 T & 9 .
: : 5 : : : : ; T Time
© e ; —_—
HY e ) 1)
t H H :H
f)(x ) X : Hﬁf) : X E X
1-design

R

Distributions of time-evolution operators in the unitary group

FIG. 4. A schematic figure about the design Hamiltonian Hy, €g Sjg(t)z At each time interval m, H(Zm> or H §{”) is chosen uniformly at

random from 5(2’) or 5&’), respectively. As depicted at the bottom of the figure, a random unitary generated by Hy rapidly spreads over
the whole unitary group and forms unitary designs in a short time independent of the system size.

Since Hy, is composed of H, and Hy, both of which
exhibit many-body localization, one may think that the time-

evolution operators generated by Hy; €x s,aﬁ;’z shall not
spread over the whole unitary group. However, due to the
periodic change of the interaction basis, the localization
indeed helps the time-evolution operators to be uniform. This
can be observed from the fact that a random unitary diagonal
in a fixed basis has a strong randomization power when the
initial state has a large support in that basis [58,60]. Since a
localized state in one basis has a large support in the
complementary basis, the time evolution by H, (Hy)
randomizes the localized eigenstates of Hy (H,) strongly.
For this reason, it is natural to expect that the time-evolution
operators generated by H y, eventually form a unitary design,
which can be rigorously proven in Corollary 5. Technically,
Corollary 5 is obtained by interpreting Theorem 4 in terms of
the Hamiltonian dynamics and using the fact that, if U is an
e-approximate unitary #-design, then VU is also an e-
approximate unitary ¢-design for a random unitary V
independent of U. For the details, see Sec. IV D.

Note that our specific choice of the parameters in the
Hamiltonians H, and Hy, namely, J; €z P,(J) and
B; €g P,(B), is to minimize the randomness needed to
construct a design Hamiltonian. It is possible to choose the
parameters from different sets as long as they are suffi-
ciently random, where the design time will be accordingly
changed. From a physical point of view, it may be

TABLE II.

interesting to consider physically feasible noises as param-
eter sets, which is in the same spirit as Ref. [75].

We observe from Corollary 5 that the time evolution
generated by Hy, €p sjﬁ?z quickly becomes hard to dis-
tinguish from a completely random one (see also Fig. 4).
Most notably, the design time is O(¢) and independent of the
system size. As a simple consequence, any correlation
functions at time 7 in the system described by such a
Hamiltonian quickly converge to the Haar averaged values.
One of the important instances is the 2¢-point OTO corre-
lator, which is expected to diagnose quantum chaos and has
been studied in strongly correlated systems [29-31]. As the
2¢t-point OTO correlators are polynomials of a unitary with
degree ¢, their values in the system of a random Hamiltonian
Hy, are ¢ close to the Haar random averages when
T Z [2t+ 1+ (2/N)log,(1/¢)|n. Furthermore, due to the
large deviation bounds for unitary designs [56], this implies

that almost any Hamiltonian in 5% saturates the 2¢-point
OTO correlators to the Haar random averages in a short time
irrespective of the system size. As the OTO correlators are
saturated in quantum chaotic systems [28], our result
indicates a close connection between the Hamiltonians in

$§§f)z and quantum chaos, which suggests that the framework
of design Hamiltonians may be useful to investigate the
dynamics in quantum chaotic systems. This is also supported
by a recently clarified relation between unitary designs and
quantum chaos [76].

A comparison of design Hamiltonians, H ,,q [35,43] and Hy,, in terms of the three conditions of the

natural design Hamiltonian conjecture. The design time of H, is much shorter than that of H 4, both in terms of ¢
and N. Although the improvement in terms of ¢ is generic to Hy, that in terms of N is probably due to its all-to-all

interactions (see the main text).

Design Hamiltonian Interactions Time dependence Design time
H na Nearest-neighbor interactions Highly dependent O(1'°N)
Hy, All-to-all two-body interactions Nearly time independent Oo(t)
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In Table II, we compare two design Hamiltonians H 4
and Hy,. We emphasize that the design time O(t) of Hy is
significantly faster than the design time O(¢t'°N) of H 4 in
terms of both r and N. We should note, however, that
although the improvement in terms of ¢ is intrinsic to Hy,
the improvement in terms of N may be, rather, due to the
all-to-all interactions of Hy;. Such interactions may
naturally appear in cavity QED [77-79] due to the cavity
modes mediating long-range interactions, and unitary
designs may possibly be realized in a constant time.
Nevertheless, for a fair comparison with H,,q, the reali-
zation of all-to-all interactions by neighboring ones should
be taken into account. This can be achieved if every particle
travels all corners of the system and interacts with all the
other particles, taking O(N) time. Hence, when the
interactions are neighboring, the actual time for Hy, to
generate unitary designs is considered to be O(tN), also
implying that it does not violate the fast scrambling
conjecture.

Unfortunately, both design Hamiltonians H ,,q and Hy,
do not satisfy all three conditions of the natural design
Hamiltonian conjecture. However, we believe that the
existence of two design Hamiltonians H, 4 and Hy,
and previous analyses on the original fast scrambling
conjecture [24-28] provide substantial evidence for the
natural design Hamiltonian conjecture.

IV. PROOFS

In this section, we provide proofs of our main results
given in Sec. III. We first introduce additional notation and
useful lemmas in Sec. IVA. The proof of our first main
result, Theorem 2, is given in Sec. IV B. We prove the key
lemma to obtain our second main result in Sec. IV C, and
conclude this section by showing Corollary 5 about design
Hamiltonians in Sec. IV D.

A. Additional notation
Let E={|k)g}iefoa-1) and F ={|a)p}taepa-) be
orthogonal bases in a d-dimensional Hilbert space H. As

we deal with ¢ copies of the Hilbert space H®’, we denote
[0, d — 1]" by AV and introduce bases {|k) y }xen (W=E, F)
t
in H®, where |K)y=®Q |ko)w, k=(ki,....k)T €N,
s=1

and T represents the transpose. In the following, we always

label the basis £ and F by latin and greek alphabets,

respectively, and do not write the subscript £ and F explicitly.
Let S, be a permutation group of degree t. For 7 € §,, we

denote (k,-1(1), ..., k1 ()" by k, and define a state [¥;) €

H®? by

Wz) =1 Q V(r)|®) (22

~—

1 *
— 5 > kk3) @3)

keN

1
=Y

aeN

a,ak), (24)

where V() is a unitary representation of z, |®@) is the
maximally entangled state between the first H®' and the
second H®, |k, ki) =|k)® (k,))", and |a,a}) =
) ® (|e,))*. Note that |¥,) and |¥,) are not necessarily
orthogonal depending on the permutation element. We
denote |¥,)(¥,| simply by ¥,.

We also introduce three subspaces in H®":

He = span{|k,k:):k e N,z € S,}, (25)
Hp = span{|a,a):a € N,n € S,}, (26)
Hy = span{|¥,):7 € S,}. (27)

Obviously, Hg 2 Hy and Hy 2 H,. The projectors onto
the subspaces Hg, Hp, and H are denoted by Pg, Pr, and
Py, respectively. We further introduce an equivalent relation
~k (k € N) in S, such that 7 ~ ¢ if and only if k, = k.
A set of representative elements in equivalence classes by
~ is denote by S¥. Using this notation, the projectors Pg
and P are explicitly given by

Pp=> > |k.k;)(k Kk, (28)

keN resk

Pr=> > laa)aa;. (29)

aeN res?

These projectors have the following properties [35,43,61]:

Eyn[U®] = Py, (30)
Epe.p,[(DF)®"] = Py, (31)
Epr.p,[(D")®"] = Pp. (32)
and
t2
Po=Y ¥, llo <. 33
1P 2; o <= (33)

B. Proof of the first main result

We now prove Theorem 2. Because of the independence
of random diagonal unitaries Df, D'F, and D and
Egs. (30)-(32), we have
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IE[(DEDFDE)®] = E[USlloo = IIPEPFPE = Pollo

(34)

where the averages in the left-hand side are taken over all
random unitaries independently. Using the triangular
inequality, the fact that |¥,) € Hy C H, and Eq. (33),
this is bounded from above as follows:

”PEPFPE_P()”oo (35)

< NPePrPr =) WollotlIPo =D il (36)

nEeS, nEeS,

£
< I1P (PF - Z%) Pellot~.  (37)

nes,

Since the operator norm for Hermitian operators is bounded
from above by the row norm, defined by max; > °; |A;;| fora
Hermitian operator A, we have

IE[(DED"D'E)®H] - E[U®]]lo <C. (38)

where

C= max2|11;|PF > Wk k . (39)

zreS] ke’\/ €S,
’ ;(ES

Note that it suffices to consider only vectors in 1" when
we compute the first term of Eq. (37), which is because
the operator is sandwiched by the projector Pg. In the
following, we evaluate C.

Substituting [¥,) = (1/Vd")3 mer/m, mz), the second
term is given by

LD Wk k Zal 1Ok, (40)

nes, J‘L’GS

On the other hand, using an explicit form of Py given in
Eq. (29), the first term can be expanded to be

=> > (la)alk)(k

aeN res”

(L1

ﬂ'lox|a> <a|lzz‘loa>'
(41)

Since a pair of the bases (E, F) is a Fourier-type pair, it
satisfies for any I, k, a€[0,d—1] that (/|a)(k|la) =
(1+ kla)/d'?, where [+ke[0,d—1] as [0,d—1]
is an additive group with respect to +. Denoting
(L, + kyy..osl, + k)T by 1+ K, we have

(L1 2 (42)

=—ZZ L+ Ko o) (afk + 1o1,,) (43)

aeN neS}

<Z > > (14K, o) (alk +1,-1.,)  (44)
aeN

€S, €S, \S¥

1
~a <Z<5 —Mu(), (43)

nES,

Ml.k = Z Z <l + kﬂ‘lo;(|a> <a‘k + lﬂ_106>’ (46)

aeN reS,\S*

and we use >,y |@) (@] = Ie. Hence, we obtain

‘ (LI Py — (47)
n€ES,
Z(5l+k Lk, T 00,0k, k) — Mi (48)
TES,
1 1
S Z(éukf]%,kﬂ[lw —61,1,0k, k) +E|M1.k|- (49)
€S,

An upper bound of |M) x| can be obtained from the fact
that the bases E and F' are mutually unbiased, leading to

M| < — Z|S \S%[. (50)

aeJ\/

As |S,\S¥| depends only on how many different elements a
contains, the number of which we denote by &, and the
number of every different element a; in e, denoted by s;, we
replace the summation over @ € A/ with that over k and
obtain

IR —Z( )0 (51)

aeN

where the binomial coefficient counts the number of
possible choices of k different numbers from [0,d — 1],
and ¢®)(¢) is the function that depends only on k and ¢
given by

t! t!
t— . 52
Z sq! sk‘< s1l...8 v) (52)

(S] ..... Sk) ceee . IERRT ) '

Here, the summation is taken over all possible (s, ..., s;)
such that Vi € [1,k] s; € [1,7] and >_*_, s; = 1. For a fixed
k, the number of such combinations is simply given by

021006-11



NAKATA, HIRCHE, KOASHI, and WINTER

PHYS. REV. X 7, 021006 (2017)

(i"}). For k=1t s;=1 for all i€ [l,k], and, thus,

where the last line is obtained due to Vandermonde’s identity.

¢"(t)=0. For the remaining terms g¢¥(s) Sinced = Q(#?), an upper bound is obtained such as
(k € [1,1—1]), we use an upper bound given by
[ ] D IS\SH < 2ld ! + O 11d ), (56)
r—1\ 12 e
®(r) < - 53
9o < <k—1) 4"’ (53) which leads to
which is optimal when k = ¢ — 1. Substituting these, we (LIG[Pr — len“(’ k;)
obtain €S
1
2o o <= Z(‘Sl—kkﬂ_lw,kﬂﬂ_lw = d1,1,0k, k)
a < - neSs,
,,%\:[ls ASH Z( ) (k - 1) 34) 21! 1!
tg o (W) : (57)
2 -
_ % [ <d 1+ t> B <d)] ’ (55)  Substituting this into C, the following upper bound can be
4 ? obtained:
|
P+ 1) t411?
c<———= (6 -0 10 O(— 58
=T 4 o 4NN oes) .;7 xezsk nzes: ek e, T 00 )|+ 0 38)
12(1‘!2 +1) 112
:Ter,lgl&(I;ngZZ&w Lok — 010k k) + O 7 (59)

" keN yesk zes,

112
d’rlne%(?e%)'(zz z Otk 1 kA1, +0<aa> (60)

2t +1
LU
! 7€S, keN y(#r)esk
20412
(11" + 1) 1
<——+ —maxmax
- d dt IeEN ses!

*11?
> Z5I+k N +0<d2 ) (61)

1 €S, y(#n)ES; kKEN

where the second line is due to a fact that the term in the
modulus is non-negative because, when the second term is
one, the first term is also one, the third line is obtained by
using a fact that the first and the second terms cancel each
other when y = z and by dropping negative terms when
y # 7, and the last line is due to S¥ C S,. For the delta
function 5l+kn_1%’k+lﬂ_]w, we have

Otk kel o, = 1

l + k-1

& Vs e [1,1], - lon(s)

= ks + l(,—loﬂ<s). (62)

When y # , there exists at least one pair (s,s)
(s # 5" € [1,1]) such that z(s) = y(s’). Hence, ky = k, +
lg-10n(5) — I should be at least satisfied for the delta function
to be nonzero. Thus, the number of k for which the delta
function is nonzero is at most d'~!. Based on this observation,
we obtain

|
max ma ) < t!2dl_1, 63
leN {)’GS)I( Z Z Z l+kn’]a)(’k+l;f|og - ( )

! 7€S, y(#7)€S, keN

Substituting this into Eq. (61), we obtain an upper bound of
C, leading to
IE[(DF DT D'F)®] — E[U®]|| o

1+ )12 + 72 112
< (L+ F)e + + 0 .
d d?

(64)

This concludes the proof. m

C. Proof of the second main result

Here, we prove that A, = |L,| < 22°+(=DN for the 2-
local permutation check problem, which is the key to
obtaining Theorem 4. Here, L, is the set of pairs (K, K'),
where K is a 2-local but not a row permutation of K'.

Throughout the proof, we denote the column vectors of

K and K’ by %i and H respectively, for i € [1, N]. The
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2-local permutation condition is
following:

equivalent to the

Vi,je[,N],  k-k =Kk, (65)
where the center dot (-) is the usual Euclidean inner
product. This is because the conditions for i = j imply

that the number of 1’s in %i and that in E should be the
same, and those for i # j imply that the number of 11 in
K jy is equal to that in K’{i’j}. These conditions together

correspond to the necessary and sufficient conditions for
the pair (K,K’) to be 2-local permutations. Moreover,

Eq. (65) implies that the Gram matrix of a set {%i:i €
[1,N]} of column vectors is the same as that of
{IQ;:i € [1, N|}. Hence, span{zi:i € [1, N]} has the same
dimension as span{z- :i € [1, N]}, and there exists a partial
isometry O that satisfies 07<',- = E for any i € [1,N], i.e.,
OK = K'.If the partial isometry is restricted to its support,
it is an orthogonal matrix as the elements of the vectors are
in {0, 1}, and it is not a permutation operator due to the
assumption that K is not a row permutation of K’.

We now construct a set O of orthogonal matrices on R’
that satisfies

V (K,K') € L,,30 € O, such that OK = K'. (66)
This can be done as follows. Let s := 2% and [0, s — 1]/ be
the set of s-ary strings of length ¢ or smaller. We describe a
procedure of defining a set S, C [0, s — 1] and orthogonal
matrices Oy, for b € §S,, such that S, is a prefix code and
that O := {Oy|b € S, } satisfies Eq. (66). Our construction
starts with S, = @ and is recursive in terms of the rank « of
the partial isometry obtained from (K, K’'). We repeat the
subroutine described below from k=17 to k=1 by
decreasing x one by one. In the subroutine, we first choose
(K,K') € L, that defines a partial isometry with rank k. We
pick up an arbitrary set of independent column vectors
{%im }* _, in K and those {E }*_, in K’. These vectors can
be converted to an s-ary string b = (2'k;, + k] ,2'k;, +
ki ,....,2'k; + ki ) of length « by regarding each vector as a
binary number with length 7. If b is a prefix of a string
b’ € S,, then the orthogonal matrix Oy, satisfies Oy K =
K’ because, on the support of the partial isometry obtained
from (K, K'), the action of Oy is the same as that of the
isometry by construction. Otherwise, we append b to S,
and define an orthogonal matrix O) as an arbitrary
extension of the partial isometry. The subroutine is run
for all (K,K’) € L, with a partial isometry of rank «.
Eventually, we obtain a set O of orthogonal matrices on R’.
Importantly, it does not contain a permutation matrix and,
by construction, |O] = |S,| < 22"

Introducing a set L,(0) by {(K,OK):K,OK €
{0,1}"} for a given orthogonal matrix O € R’, we have
Ly C UpepL,(0), leading to

Ay <) |L,(0)] (67)
0e0

< |Olmax|L,(0)| (68)
21

< 27" max|L,(0)]. (69)

Since the condition OK € {0, 1}V consists of an identical
and independent condition on each column of K, |L,(0)|
for O € O is bounded from above by

IL2(0)] < (max|{k € {0.1}: 0k € {0. 1}})". (70)

To obtain an upper bound on the right-hand side, we use the
following fact: let O be an orthogonal matrix acting on the
Euclidean space R’, which contains the set of apexes of a
hypercube, {0, 1}'. If there exists aset S C {0, 1}’ such that
0S c{0,1}' and |S|>2""!, then O is a permutation
matrix. This is considered to be a type of constrained
problems in extremal algebraic theory [62,63], and the
proof is given in Appendix D. As O € O is on R’ and is not
a permutation matrix, we obtain

max|{k € {0,1}':0k € {0,1}/| < 2. (71)
0e0

Thus, we have A, < 220°+(=DN, n
Finally, we note that the upper bound of A, is unlikely to
be tight in terms of ¢ because |O] < 22 in the proof is far
from optimal. This is observed from the fact that |O] = |S,|
but S, does not contain all strings with length ¢. To be more
concrete, we provide instances for a small 7. From the result
in Ref. [61], we know that, for any pair (K, K'), K is a row
permutation of K’ if and only if K is a (|log,?| + 1)-local
permutation of K’. Hence, the smallest  making the 2-local
permutation check problem nontrivial is 4. In this case, we
can show that if K is a 2-local but not a row permutation of
K’, the four rows of K and those of K’ can be rearranged
independently, resulting in K, and K/, respectively
(z,0 € S4), such that a pair of the ith column of K, and
that of K/, are in the set Cy U C; (Vi € [1, N]), where

Co={[(0,0,0,0)7,(0,0,0,0)7].[(1,1,1, 1), (1,1,1,1)7]
[(0,0,1,1)7,(0,0,1,1)7],[(1,1,0,0)7,(1,1,0,0)7]
[(1,0,1,0)7,(1,0,1,0)7].[(0,1,0,1)7,(0,1,0,1)7]},

(72)

¢, ={[(0,1,1,0)",(1,0,0,1)7],[(1.0,0,1)7,(0,1,1,0)]}.
(73)
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Taking the number of choices of 7 and ¢ into account, we
have

Ay < 112(|Col + |Cy)N = 1128V, (74)

which corresponds to 71220~V for t = 4. For this reason,
we conjecture that the optimal bound should be given by
F()20=DN where f(f) = O(poly(t!)), which we analyti-
cally confirm for ¢ < 7. If this conjecture is true, Theorem 4
works for t = o(N/log N) instead of t = o(N'/?).

D. Proof of the third main result
We prove Corollary 5 that, VT2>
[2t+ 1+ (2/N)log(1/e)]x, a random unitary Uy,(T) =
i [ dsHy,(s)] generated by Hy,(T) €g Sjg)z at

time 7 is an e-approximate unitary z-design, where 3§§§)Z is
the set of Hamiltonians in the form of Eq 21).

In the proof, we denote ity by U (1) W =X, 2).
As both Hamiltonians are composed of commuting terms,
they are simply given by

omitHY! Hezrlkk, X, ®Xy H iB"X; (75)

T exp|—

k<k'
e-itHy — H il Zk®Zk/HeiTB§<m)Zk. (76)
k<k k

We first consider a random unitary Uy,(T,) at time
T,=2¢+ 1)z (¢ =1,2,...). Using the above notation, it
is given by

Uxz(Ts) = U ™ (n >HUX M (m).  (77)

We take the average of Uxz(T,)®"" over Hy, € sjgf)z,
which is equivalent to taking the average over all param-

eters B,((m),f?,(;") €r P,(B) and ],(:,Z),j%) €z P.(J). Here,
the parameter set P,(c) is given by Eq. (18), such as

P.(c) = {m im € [—c, C]}v (78)

and (B,J) = ([#/2] +1/2,|t/2]/2). Since it holds that

lﬂ]kk’ Z,{®ZU ,,[B zk ® emB( >Zk’

(m) | p(m) | p(m) m) | p(m)
_ em(jkk’+3k +B (dlagz{l e —27i( Jkk,+B )}

S )
® diag, {1, e Vi +5 )})dlagz{l, 1, 1,e4mjkk/}

(79)

if B, B\ € B, and J\") € J,, where

B, = {m im €[0,2[1/2] + 1]}, (80)

JZ—{m:me[O,wzﬂ}, (81)

then the probability distribution of [—27:(],(!,':,) + By),
—27(J\%) + B, 4] is identical to that of (¢, ¢, 0)
in Eq. (14) with a =2(|#/2] + 1) and b = |1/2] + 1,
implying that U™ (T',) is equivalent to RDCyec(Z5 : 2b, b)
up to a global phase. Noting that the global phase
is canceled in Ug")(T 2)® and recalling that
[E[RDCdiSC(IZIa, b)®t't] = [E[RDC(Iz)®t’t] if a >+ 1
and b > |t/2] + 1, we have

E, [US"(T,)®"] = ERDC(Z,)®"].  (82)

B exB,.J") €r,

kK’

Using a product of two-qubit diagonal gates V' given by

V= ® diag' {1, ez’”AB} ® dlag 01,1, 1, e4mingy,

(83)

where the superscript of diagy, such as (k) and (kk'),
indicates the place of qubits the gate acts on, 2AB =
(Lt/2] +1/2)/(1#/2] + 1), and4AJ = [1/2]/(11/2] + 1),

we obtain

(m) :

Esreer ) nlUz T;)®"]
= By, ERJI[U(Zm(Tf)@m]V@m (84)
= E[RDC(Z,)®"| V@, (85)

where we use Eq. (82) in the last line. Further, because
RDC(Z,) is composed of two-qubit diagonal gates with
random phases uniformly drawn from [0, 27), the average
of RDC(Z,)®"" does not change even when additional
diagonal two-qubit gates, such as V, are applied. Thus, we
obtain

E [US"(T,)®"] = E[RDC(T,)®"].

nl)GRP ()

kk’

B,Em>eRP,(B),
(86)

As a similar relation holds for X Hamiltonians, we
conclude that

E[Uxz(T,)®"] = E{[(RDC(Z,)Hy)* RDC(Z,)|®"},

(87)
where Hp is the Hadamard transformation on N qubits,

implying that Uy,(T,) is an e-approximate unitary ¢-
design if £ > ¢+ (1/N)log,(1/¢).
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To complete the proof, consider the time 7 satisfying
T,<T<T,., where £ > t+ (1/N)log,(1/¢). Because
the time-evolution operator from time 7, to time T
is independent of the one before T,, Ux,(T) is also an
e-approximate unitary f-design. [

V. CONCLUSION AND DISCUSSION

In this paper, we present new constructions of unitary
t-designs and propose design Hamiltonians as a general
framework to investigate randomizing operations in complex
quantum many-body systems. The new constructions are
based on repetitions of random diagonal unitaries in mutually
unbiased bases. We first show that, if the bases are Fourier-
type, approximate unitary z-designs can be achieved on one
qudit after O(¢) repetitions. We then constructed quantum
circuits on N qubits that achieve approximate unitary
t-designs using O(tN?) gates, which drastically improves
the previous result [35,43] in terms of ¢. The dependence on ¢
is essentially optimal among designs with finite supports.
The circuits are obtained by solving a special case of
combinatorial problems, which we call the local permutation
check problems, showing an interesting connection between
combinatorics and efficient implementations of designs.
Based on these results, we provide a design Hamiltonian,
which changes the interactions only a few times to generate
designs. This result supports the natural design Hamiltonian
conjecture and is also practically important as it simplifies the
experimental implementations of unitary designs.

Our approach of studying unitary designs and random-
izing operations in physically natural systems opens a lot of
interesting questions. The following are a few questions
concerning unitary designs.

(1) In one-qudit systems, is it possible to implement
unitary 7-designs by repeating random diagonal unitaries in
any nontrivial pairs of bases? If so, how many repetitions
are sufficient for the implementations?

(2) What is the best strategy of the local permutation
check problems?

(3) What is the most efficient implementation by
quantum circuits that approximate random diagonal uni-
taries in the Pauli-Z basis?

(4) What are the further applications of unitary 7-designs
for t > 47

Regarding question (1), we find that repeating random
diagonal unitaries in nontrivial pairs of bases achieves a
unitary 1-design if any vector in one basis is not orthogonal
to any vector in the other basis. Although this nonortho-
gonality condition may not be necessary, we expect that, for
arbitrary nontrivial pairs of bases satisfying the nonortho-
gonality condition, the process eventually achieves unitary
t-designs. Questions (2) and (3) are related to each other. In
this paper, we considered only 2-local permutation check
problems. However, if there exists a set Z = {I} such that
A(Z) = 0(2U=YN) and |I| = const for all I € Z, then we
can implement approximate unitary 7-designs using O(¢|Z])

quantum gates. Hence, finding a better strategy for the local
permutation check problems immediately results in a faster
implementation of unitary designs. It is also desirable to
directly search efficient quantum circuits approximating
random diagonal unitaries in the Z basis. Finally, it is
important to find applications of unitary t-designs for
large t. A possible and promising direction is to further
explore large deviation bounds for unitary designs, as
mentioned in Sec. III B.

We also list a few open questions about design
Hamiltonians from the physical point of view.

(I) Prove or disprove the natural design Hamiltonian
conjecture.

(IT) What are the exact relations between natural design
Hamiltonians and various definitions of scrambling or OTO
correlators?

(II) If a design Hamiltonian is defined on a finite
ensemble of local Hamiltonians, how many Hamiltonians
are needed?

(IV) What are the static features of design Hamiltonians
such as thermal or quantum phases?

Question (I) is the most interesting one, where we
could use the methods developed in the random matrix
theory [80]. A natural candidate of design Hamiltonians
satisfying all three conditions of the conjecture may be
Hioeal GUE = ZG. jyhij, where each local term h;; is drawn

randomly and independently from the so-called Gaussian
unitary ensemble [80] and the summation is taken over all
neighboring qubits. We expect that H,,., gug generates a
unitary design after some time, although it may also be
possible that it does not, due to the many-body localization.
Question (II) is important to clarify the roles of design
Hamiltonians in black hole information science and quan-
tum chaos. As design Hamiltonians are based on unitary
designs, it suffices to investigate explicit relations between
unitary designs and scrambling or the OTO correlators. The
relation between unitary designs and the OTO correlators
has been addressed recently and is clarified in Ref. [76].
Question (III) is not only of theoretical interest but also of
practical importance because it determines the number of
random bits necessary to construct design Hamiltonians. To
address this question, it is needed to relax the definition of
design Hamiltonians to exclude the Poincaré recurrence
time, as we mention in Sec. III C. Note that, since the
support of unitary 7-designs on N qubits should contain at
least O(2%™V) unitaries [64], the ensemble should contain at
least the same number of Hamiltonians. Finally, as design
Hamiltonians are certain types of disordered Hamiltonians,
it is natural to expect that they have special static properties,
which is question (IV). A static property of the above
random Hamiltonian Hj,., gug Was numerically studied
from the viewpoint of distributions in a state space, and
evidence of phase transitions was obtained [81]. However,
as Hi,ey gug 18 not yet shown to be a design Hamiltonian
and no time-independent design Hamiltonians have been
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found yet, it would be more realistic to start with inves-
tigating static properties of the Hamiltonian H, of Hy,
which has similarity to many-body localized systems, and
their dependence on r.
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APPENDIX A: PROOF OF THEOREM 1

Here, we provide a proof of Theorem 1, which follows
almost directly from the simple fact that, for any unitary U,
U® = Py + (I — Py)U®"(I — Py). This observation is
obtained as follows: using |¥,) =1 ® V(z)|®), we have
for any & € S, that

U |P,) = U® @ UV (x)|®) (A1)
= U® @ V(r)U*®|®) (A2)
— URUT® @ V(r)|®) (A3)
=1® V(z)|®) (A4)
= ¥,). (AS)

where we use the fact that U*®’ commutes with V(z) in the
second line and the property of the maximally entangled state
in the third line. This implies that (I — Py)U®"'P, = 0.
Replacing U with U in Eq. (A5), we also have
(I — P())U%®I’IPO = O, 1mply1ng POU®t’t(1 — Po) =0.
Hence, we obtain U®" = Py + (I — Po)U®" (I — Py).

To prove Theorem 1, let v be a quantum (7,7) TPE
satisfying

IEy~, [U®"] = Eyon[U®]lleo < - (A6)

Decomposing U®"! into Py + (I — Py)U®"(I — Py), we
have

Ey[UB] = Py + (I = Po)Ey, [UBY](I = Py). (A7)
Because of Eq. (30), the quantum TPE v satisfies that
I = Po)Ey, [US](I = Po)lles <1 (AB)

Let 2/ be a measure corresponding to that of the # iterations
of the quantum TPE v. Then,

1G5, = Gyl (A9)
< d' 0 _ a0 Al10
> ”gUNDf gU~H”2—’2 ( )
= d'|Ey [U®"] = Eyon[U®"]llo (AL1)
= d'l|(Ey~ [UB])" = Eyen[U® ]l (A12)
= d'||[( = Po)Ey-, [UP"](I = P)]’ llco (A13)
< d'lI(1 = Po)Ey., [UB)(I = Po)ll% (Al14)
<d. (A15)

Here, the second line is due to the inequality that ||£]|, <
D||€||l,-, for any superoperators &£ acting on a D-
dimensional system, the fourth line is obtained due to
the independence of the measure of each iteration, the fifth
line is from Eq. (A7), and the last line is from Eq. (AS8).
This implies that ¢ iterations of a quantum (7, t) TPE is an
e-approximate unitary t-design if d'n’ < e.

APPENDIX B: FOURIER-TYPE PAIRS OF BASES

Here, we show that a pair of arbitrary basis and its
Fourier basis, and a pair of the Pauli-X and -Z bases are
Fourier type.

When a pair of two bases is that of an arbitrary basis and
its Fourier basis, it is clear that 6;, = (2rka/d) and the
additive operation in the index is given by an addition
modulo d. It is also obvious that [0, d — 1] is an additive
group with respect to the modular addition.

When the pair is given by the Pauli-X and -Z bases,
using the binary representation such as a = a;...ay
(Vje[l,N],a; € {0,1}), the Pauli-X and -Z bases can
be represented by

N N
la)y = j§1 |O‘j>x’ k), = j§1 |kj>z’

(B1)

respectively. Using the fact that ,(k;|a;), = y(a;|k;), is
equal to 1/v2 if (a;.k;)=(0,0),(0,1),(1,0) and
is equal to —1/v2 if (a;.k;)=(1.1),
Ora = 7D 11 8k,184,1, leading to

we have
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N
expli(Ora + 01)] = exp [iﬂ (61,1 + 51_,-1)5@,1} (B2)

j=1

(B3)

N
= eXp {iﬂz 5k,+1j,15aj1}

Jj=1

= eXP[iekeaz,a]’ (B4)

where @ is a bitwise XOR, defined by a @ b = 0 when
a = b and otherwise 1 for binary numbers a and b, and is the
additive operation.

APPENDIX C: LOCAL PERMUTATION CHECK
PROBLEMS AND THE ACHIEVABILITY
OF QUANTUM TPE

Here, we show how the achievability of quantum TPE
with a random diagonal circuit RDC(Z) is connected to the
Z-local permutation check problem.

Let RDC(Z) be the probability measure of RDC(Z). We
denote the averaged operators Epz gpc(z) [(D?)®"] and
Epz.p, [(D?)®"] by Q7 and Py, respectively. There exists a
projector R, diagonal in the Pauli-Z basis such that Q, =
P, + R, because Q,P, = P,Q, = P, and Qy is a pro-
jector diagonal in the Pauli-Z basis. Denoting HY"'Q,HY""
by Oy, where Hy := H®" is the Hadamard transformation
on N qubits, and similarly decomposing it into Py + Ry
(Py = HY"'P,HS" and Ry := HY"'R,HS""), we have

1020x07 — Polle = l|1PzPxPz — Py + RzPxP; + QzPxR; + QzRx Pz + Q7RxR; || (C1)
S |PzPxPz = Poyllo + 2IPxRzlleo + [IRxPzllo + [IRxRz|l & (C2)
<N+ 2/PxRz|lo + IRxPzlleo + [IRxRzl oo (C3)

where we use Theorem 2 in the last line.

We denote by W; a set of (k;,k,) € N x A such that
(ki,k,|R,|k;,Kk,) = 1. Using an upper bound of the
operator norm by the row norm and using the fact that
(11, |Px ki, Ky)| = (rPy) /27N <11/2' for any (ky, k)
and (1;,1,), we obtain

IRxPzllco = IPxRzllco (C4)
< max 1,,L,|Pyv|k, k C5
W, 2 bipkall - (€)
t!
SW|WZ|' (Co)
Similarly, we have
IRyRZllw < max >~ |(I,L|Ry[k;, ky)|  (C7)
(11-12>€WZ (k[,kg)EWZ
(Wzl\?
< ( el (c8)

Substituting Eqs. (C6) and (C8) into Eq. (C3), we obtain

1070507 — Pollos <5+ 30122 ('Wz')z. (C9)

2tN 2rN

We finally show that WW,| = A(Z). Note that A(Z) is the
number of (K, K’) € {0,1}M x {0, 1}'N such that K is not
a row permutation but is an Z-local permutation of K. We
first express each k; € k in binary, such as k; = k;...kgy,
and define a 7x N matrix K with elements in {0, 1}
corresponding to k:

kll k12 e klN
S (C10)
ko ko ook

where kg, € {0, 1}. Using this notation and noting that the
Z basis is real, the state |k, k’*) is expressed as |K, K'). A
random diagonal gate in RDC(Z) applied on qubits in I €
T corresponds to, after taking the tensor product and the
average, a projector onto span{|K, K'):Q(K;) = Q(K})},
where Q is a canonical map that rearranges |/|-bit sequen-
ces {K,s},ep,q in ascending order. Thus, we have

1 if VIeZ QK;) =Q(K))

K, K K. K') =
< 0] ) {O otherwise

(C11)

Note that the off-diagonal elements of Q, are always zero
because it is diagonal in the Z basis. We also have
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1 if Kis a row permutation of K’
(K.K'|Pz|K.K') = :
0 otherwise.

(C12)

From these two equations, it is clear that R, = Q, — P,
satisfies that (K,K'|R;|K,K') =1 if and only if K
is not a row permutation but is an Z-local permutation
of K'. Otherwise, (K,K'|Rz|K,K') =0. This implies
Wil = A(Z).

APPENDIX D: KEY STATEMENT
IN THE PROOF OF THEOREM 4

Here, we prove the following statement, which is used in
the proof of Theorem 4: let O be an orthogonal matrix
acting on the Euclidean space R’, which contains a
hypercube {0, 1}'. If there exists a set S C {0, 1}" such
that OS C {0, 1} and |S| > 27!, then O is a permutation
matrix.

Let i € [1,7] and ¢; be a vector with elements in {0, 1},
where only the ith element is 1:

(D1)

Then, for any i, there exists a vector v; € {0, 1}’ such that
both 7; and »; + ¢; are contained in S. This is for the
following reason: if there is no such pair of 7; and »; + ¢;, it
implies that a pair of vectors, which have different values
only at the ith element, is not contained in S. This results in
|S| <2'=!, which is in contradiction to the assumption
that |S| > 271,

As 7;+e¢; €S c{0,1}, the ith element of v; is 0.
Hence, we have 7, - ¢; = 0, implying that

-

O_él0(?},+2l):2,17l+e,2,=§,_é,:1 (DZ)

It is also trivial that O¢;-0O¢; =1 and that
O¢; € {—1,0,1}', which follows from an identity O¢; =
O(v; + ¢;) — O; and the fact that both O(%; + ¢;) and O%;
are in {0,1}". From these three relations and again
O(v; + ¢;) € {0, 1}, we conclude that

.,0,1,0,...,0)7 (D3)
for some j € [1, 7]. Because O is invertible, this implies that
O is a permutation matrix.
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