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Communication over proven-secure quantum channels is potentially one of the most wide-ranging
applications of currently developed quantum technologies. It is generally envisioned that in future quantum
networks, separated nodes containing stationary solid-state or atomic qubits are connected via the exchange
of optical photons over large distances. In this work, we explore an intriguing alternative for quantum
communication via all-microwave networks. To make this possible, we describe a general protocol for
sending quantum states through thermal channels, even when the number of thermal photons in the channel
is much larger than 1. The protocol can be implemented with state-of-the-art superconducting circuits and
enables the transfer of quantum states over distances of about 100 m via microwave transmission lines
cooled to only T ¼ 4 K. This opens up new possibilities for quantum communication within and across
buildings and, consequently, for the implementation of intracity quantum networks based on microwave
technology only.
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I. INTRODUCTION

Superconducting circuits [1–3] are considered one of the
most promising platforms for implementing quantum
information processing schemes, where all the key ele-
ments, like high-fidelity single- and two-qubit gates [4],
efficient readout [5,6], and error-correction capabilities
[7–9], have already been experimentally demonstrated.
However, superconducting qubits are usually operated at
transition frequencies of a few GHz, which requires cooling
of the circuits to a few tens of mK in order to avoid
detrimental thermal excitations. In practice, this restricts the
generation of entanglement and the coherent exchange of
quantum information to qubits and photons located within
the same dilution refrigerator [10–13]. To overcome this
limitation, various hybrid system approaches for coherently
interfacing microwave and optical photons are currently
explored [14,15]. Establishing such interfaces with, e.g.,
optomechanical systems [16–23], atoms [24,25], or spin
ensembles [26–32] would provide access to optical long-
distance quantum communication [33–35] but naturally
comes at the price of introducing additional experimental
overheads and sources of decoherence.
In this work, we discuss an interesting alternative

approach for superconducting quantum communication,

which avoids technical challenges associated with optical
interfaces and pursues the direct transmission of quantum
states via thermal microwave channels. To make this idea
feasible in practice, we describe a conceptually simple but
at the same time very powerful strategy, which enables a
perfect transfer of quantum states through a thermal
channel, even if the average number of thermal photons
in the channel is much larger than 1. This becomes possible
by introducing at each node an intermediary oscillator as a
controllable port between the finite-dimensional qubits and
the bosonic channel. By making use of the large Hilbert
space provided by the oscillator, one is further able to
implement error-correction protocols [36,37], which cor-
rect for both photon loss and photon absorption errors [38],
as is relevant in a finite-temperature environment. This
process makes the protocol robust against pulse imperfec-
tions and losses encountered in a realistic scenario.
While already on a chip-scale various phononic [39–42],

microwave, or hybrid quantum networks could benefit
from the following protocol, a key application lies in the
coherent coupling of superconducting qubits located in
different dilution refrigerators, via superconducting trans-
mission lines held at a much more convenient temperature
of T ≈ 4 K. Our analysis shows that by using already-
existing superconducting circuit technology combined with
realistically achievable loss rates in microwave transmis-
sion lines, a deterministic exchange of quantum informa-
tion over tens and even hundreds of meters is possible. At
this threshold, communication across buildings and, con-
sequently, the establishment of fully connected microwave
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quantum networks within densely populated areas are
within technological reach.

II. QUANTUM STATE TRANSFER

Figure 1 shows a minimal instance of a quantum net-
work, where two nodes i ¼ 1, 2 are connected via a
unidirectional quantum communication channel. Each
node is represented by a single well-isolated quantum
system, for example, a superconducting two-level system,
with a ground state j0i and a first excited state j1i≡ L†j0i
with creation operator L†, which are separated in frequency
by ω0. At time t ¼ t0, the qubit in node 1 is prepared in a
pure quantum state jψqi ¼ αj0i þ βj1i, and the second
qubit is in its ground state. A fundamental task in a
quantum network is to transfer the state jψqi from node
1 to node 2 via a tunable coupling to the quantum channel.
Starting from the density operator of the whole network,
ρðt0Þ ¼ jψqi1hψqj ⊗ ρchðt0Þ ⊗ j0i2h0j, where ρchðt0Þ is
the initial state of the quantum channel, this corresponds
to a mapping

ρðt0Þ → ρðtfÞ ¼ ρ1&chðtfÞ ⊗ jψqi2hψqj; ð1Þ

where ρ1&chðtfÞ denotes the combined states of node 1 and
the channel at the final time tf. Under realistic conditions,
this transfer will never be perfect, and we use the average
fidelity [43],

F̄ ¼
Z

dψqTrfjψqi2hψqjρðtfÞg ≤ 1; ð2Þ

as a measure for the quality of the state transfer protocol.
Above a minimum of F̄ > 2=3, the transfer is genuinely
quantum; i.e., it cannot be reproduced by measurements
and classical communication [44].
To illustrate the basic idea behind a noise-resilient

transfer protocol, it is instructive to first consider a simple
toy model, where the channel is represented by a single
bosonic mode with annihilation operator c and frequency
ωch ¼ ω0. Given that this mode is initially in the vacuum
state, i.e., jΨðt0Þi ¼ jψqi1j0ichj0i2, a state transfer can be
achieved by applying the coupling

Hint ¼ ℏg½ðL1 þ L2Þc† þ cðL†
1 þ L†

2Þ�; ð3Þ

for a time tp ¼ tf − t0 ¼ π=ð ffiffiffi
2

p
gÞ. Then, the unitary

evolution UðtÞ ¼ expð−iHintt=ℏÞ implements the desired
operation

Uðt ¼ tpÞjΨðt0Þi ¼ j0i1 ⊗ j0ich ⊗ jψqi2; ð4Þ

with perfect fidelity. However, the same process fails if the
channel is initially in a thermal state with a temperature
Tch > ℏω0=kB and, therefore, a random distribution of
number states jnich. In this case, the second qubit can
absorb either a photon from the first node or simply a
thermal photon already present in the channel. As shown in
Figs. 2(a) and 2(b), the resulting transfer fidelity drops
significantly for an equilibrium occupation number
Nch ¼ ðeℏω0=kBTch − 1Þ−1 ≳ 1.
Surprisingly, this seemingly unavoidable thermal degrad-

ing of quantum channels is not fundamental and is mainly a
problem of interfacing the two-level qubit directly with the

(b)

(a)

FIG. 1. (a) Sketch of a thermal quantum network, where two
nodes (for example, two superconducting qubits located inside
separated dilution refrigerators) are connected via a unidirectional
quantum communication channel at finite temperature Tch.
(b) For the implementation of a noise-resilient transfer protocol,
the qubit state is first mapped onto an intermediary oscillator. The
oscillator is then coupled to the incoming and outgoing fields of
the channel, fin;iðtÞ and fout;iðtÞ, via a tunable decay rate γiðtÞ,
which can be realized, for example, by a flux-tunable quantum
interference device [45–47].

(b)(a)

(c)

FIG. 2. (a) Occupation number of qubits 1 and 2 (Li ≡ σ−i )
during the evolution generated byHint in Eq. (3) and for a thermal
occupation Nch ¼ 2 of the channel mode. (b) Comparison of the
average fidelity F̄ for quantum states encoded locally in a two-
level system (TLS) and a harmonic oscillator. (c) Average transfer
fidelity for the case, where the dynamics of the local oscillators is
restricted to the Nloc lowest number states.
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infinite-dimensional bosonic channel. If instead the initial
and final quantum states are encoded in the lowest levels of a
harmonic oscillator, where Li ≡ ai are bosonic annihilation
operators, i.e., ½ai; a†j � ¼ δij, the same evolution from above
implements the swap operation

UðtpÞjψqi1 ⊗ jnich ⊗ j0i2 ¼ j0i1 ⊗ jnich ⊗ jψqi2; ð5Þ

independently of the initial number state jnich. In other
words, the strict linearity of this simple toy model ensures a
perfect state transfer fidelity, independently of the channel
temperature [cf. Fig. 2(b)]. To further illustrate this point, we
also consider in Fig. 2(c) the casewhere the dynamics of each
node oscillator is restricted to states jnii with n < Nloc. We
see that for a given Nch, the linearity of the local quantum
systems must be preserved up to Nloc ≈ 3Nch to achieve
fidelities of F̄≃ 0.99. More generally, this example shows
that, in contrast to the Tch ¼ 0 case, a quantum state transfer
at finite temperatures will strongly depend on the Hilbert
space dimension of the local system that is used to encode the
quantum state.

III. LONG-DISTANCE QUANTUM
COMMUNICATION

The transfer of quantum states through thermal commu-
nication channels has been discussed previously, for
example, in the context of harmonic oscillator [48] and
spin chains [48,49] of finite length or in multimode
optomechanical systems [16,17]. These schemes either
rely on fine-tuned couplings or the existence of a single
isolated channel mode [48], which can be resonantly
addressed to achieve a situation similar to the one discussed
above. The key observation is that the basic mechanism that
underlies the coherent cancellation of noise in finite-size
systems can be generalized to a continuum scenario, as is
relevant for long-distance quantum communication. This
suggests the general three-step protocol involving a two-
level qubit and an additional intermediary oscillator at each
node [cf. Fig. 1(b)]. In a first step, the state of the qubit is
mapped onto a superposition of two oscillator states, i.e.,
jϕ0i ¼ jn ¼ 0i and jϕ1i ¼ jn ¼ 1i, by a unitary encoding
operation, Uencjψqi ⊗ j0i ¼ j0i ⊗ ðαjϕ0i þ βjϕ1iÞ. In a
second step, the qubits and the oscillators are decoupled,
and a state transfer between the oscillators via the thermal
channel is implemented. Finally, the encoding operation is
reversed in the second node.
For the analysis of the state transfer between the

intermediary oscillators, we consider a unidirectional
quantum channel represented by a continuum of right-
propagating bosonic modes. Each node is coupled to the
channel by a controllable interaction of the form

HintðtÞ ¼ iℏ
X
i

ffiffiffiffiffiffiffiffiffi
γiðtÞ

p
ðaif†chðzi; tÞ − a†i fchðzi; tÞÞ; ð6Þ

where zi denotes the position of node i along the channel. In
Eq. (6), fchðzi; tÞ ¼ 1=

ffiffiffiffiffiffi
2π

p R ω0þΔ
ω0−Δ dωfωe−iωðt−zi=vgÞ is the

operator for the right-propagating field in the channel, where
vg is the group velocity and fω is the bosonic operator for the

plane wave mode normalized to ½fω; f†ω0 � ¼ δðω − ω0Þ. In
the limit where the bandwidth Δ is sufficiently large, this
coupling gives rise to a Markovian decay of the oscillators
with tunable rates γiðtÞ. In a frame rotating with ω0, the
dynamics of the whole network is then well described by a
set of quantum Langevin equations for the Heisenberg
operators aiðtÞ [50–52],

_aiðtÞ ¼ −
γiðtÞ
2

aiðtÞ −
ffiffiffiffiffiffiffiffiffi
γiðtÞ

p
fin;iðtÞ; ð7Þ

together with the input-output relations fout;iðtÞ ¼ fin;iðtÞþffiffiffiffiffiffiffiffiffi
γiðtÞ

p
aiðtÞ. Here, fin;iðtÞ ¼ fchðzi þ 0−; tÞ and fout;iðtÞ ¼

fchðzi þ 0þ; tÞ represent the field of the channel right
before and after interacting with node i. For the first
node, fin;1ðtÞ≡ finðtÞ is the unperturbed field
satisfying hf†inðtÞfinðt0Þi¼ δðt− t0ÞNch and hfinðtÞf†inðt0Þi¼
δðt−t0ÞðNchþ1Þ. The incoming field at the second node is
fin;2ðtÞ ¼ fout;1ðt − τÞ, or

fin;2ðtÞ ¼ finðt − τÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ðt − τÞ

p
a1ðt − τÞ: ð8Þ

Without loss of generality, we can set the retardation
time τ ¼ ðz2 − z1Þ=vg to zero, which amounts to a redefi-
nition of all operators and pulses in the first node, i.e.,
a1ðt − τÞ → a1ðtÞ, γ1ðt − τÞ → γ1ðtÞ, etc.
Combining Eqs. (7) and (8), we obtain a coupled set of

linear differential equations for the operators aiðtÞ with a
general solution [53] (see Appendix A),

a1ðtÞ ¼ A1ðt; t0Þa1ðt0Þ þ F1ðt; t0Þ; ð9Þ

a2ðtÞ ¼ A2ðt; t0Þa2ðt0Þ þ Tðt; t0Þa1ðt0Þ þ F2ðt; t0Þ: ð10Þ

Here, Aiðt; t0Þ ¼ e−Γiðt;t0Þ=2 accounts for the decay of the
initial amplitudes with an integrated loss Γi ¼

R
t
t0
dsγiðsÞ,

Tðt; t0Þ ¼ −
Z

t

t0

dsA2ðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ðsÞγ2ðsÞ

p
A1ðs; t0Þ ð11Þ

is the transfer amplitude, and the Fiðt; t0Þ ¼R
t
t0
dsDiðt; sÞfinðsÞ represent the accumulated noise in each

node. For the first node,D1ðt; sÞ ¼ −
ffiffiffiffiffiffiffiffiffiffi
γ1ðsÞ

p
A1ðt; sÞ, while

for the second node, which we are primarily interested in,
the filter function is

D2ðt; sÞ ¼ −Tðt; sÞ
ffiffiffiffiffiffiffiffiffiffi
γ1ðsÞ

p
− A2ðt; sÞ

ffiffiffiffiffiffiffiffiffiffi
γ2ðsÞ

p
: ð12Þ

It reflects the interference between noise that is driving
node 2 directly and noise that was first absorbed and then

INTRACITY QUANTUM COMMUNICATION VIA THERMAL … PHYS. REV. X 7, 011035 (2017)

011035-3



reemitted by node 1. Equations (9) and (10) are the general
results for a state transfer process in a unidirectional
resonator network. For zero temperature, where such
processes have already been analyzed in more detail
[45,53,54], the noise terms F1;2 do not contribute. In this
case, these results are also identical to the corresponding
equations for the state transfer amplitudes of coupled two-
level systems [33,40,55]. At finite temperature, this corre-
spondence is lost.
From Eq. (10), it follows that a perfect state transfer is

achieved if, at some final time, jTðtf; t0Þj → 1, while
A2ðtf; t0Þ → 0, D2ðtf; t0Þ → 0. To see that there are indeed
pulses γiðtÞ that can achieve these conditions, one can first
look at the known case Nch ¼ 0, where a perfect state
transfer also implies that no photon leaves the system to the
right, i.e., fout;2ðtÞjΨðt0Þi ¼ 0, ∀t [33]. From this obser-
vation and using finðtÞjΨðt0Þi ¼ a2ðt0ÞjΨðt0Þi ¼ 0, the
dark state condition

A1ðt; t0Þ
ffiffiffiffiffiffiffiffiffiffi
γ1ðtÞ

p
þ Tðt; t0Þ

ffiffiffiffiffiffiffiffiffiffi
γ2ðtÞ

p
¼ 0 ð13Þ

can be derived. It relates γ1ðtÞ and γ2ðtÞ at each point in
time and can be used to explicitly construct optimal transfer
pulses [33,55]. In the presence of thermal photons, such a
physical argument no longer applies. However, one can
show instead that condition (13) also implies that the
quantity N ðtÞ ¼ jA1ðt; t0Þj2 þ jTðt; t0Þj2 is conserved
[40], i.e., ∂tN ðtÞ ¼ 0, ∀t. In view of A1ðt0; t0Þ ¼ 1 and
A1ðtf; t0Þ → 0, this ensures jTðtf; t0Þj → 1 also for a noisy
channel. Finally, we can use the commutation relation
½a2ðtÞ; a†2ðtÞ� ¼ 1 to obtain the relation

1 ¼ jA2ðt; t0Þj2 þ jTðt; t0Þj2 þ
Z

t

t0

dsjD2ðt; sÞj2; ð14Þ

and prove that for jTðtf; t0Þj2 ¼ 1, jA2ðtf; t0Þj2 ¼ 0 and
D2ðtf; sÞ ¼ 0, ∀s ∈ ½t0; tf� are automatically fulfilled.
Therefore, we have shown that although the dynamics of
a thermal network is much more involved during the
process, a perfect state transfer can still be implemented
using the same control pulse as is applicable for a vacuum
channel. This result is independent of the amount of
thermal or other types of noise, but it requires a strict
linearity of the intermediary oscillators, up to a number of
excitations Nloc estimated above.
Figure 3 summarizes the results of the transfer protocol for

a specific example of a time-symmetric pulse, which imple-
ments a quantum state transfer with a residual error
εp ∼ e−γtp=2, where γ is the maximal decay rate. The
evolution of the populations plotted in Fig. 3(b) clearly
demonstrates that while the second node quickly thermalizes
at the beginning of the process, all the noise is completely
rejected at the end of the pulse. In Fig. 3(c), we also show the
outcome of a (hypothetical) measurement of the photon

number in the channel between node 1 and node 2. Here, we
have defined hNΩ

outðtÞi ¼ h½fΩoutðtÞ�†fΩoutðtÞi, wherefΩoutðtÞ ¼ffiffiffiffi
Ω

p R
t
−∞ dse−ðΩ=2Þðt−sÞfout;1ðsÞ, and Ω is the bandwidth of

the detector. Under the conditions where one is interested in
observing the evolution of the transmitted state, i.e.,Ω ≫ γ,
we obtain

hNΩ
outðtÞi≃ 4γ1ðtÞ

Ω
jA1ðt; t0Þj2ha†1ðt0Þa1ðt0Þi

þ Nch

�
1 −

4γ1ðtÞ
Ω

A2
1ðt; t0Þ

�
: ð15Þ

This result demonstrates another interesting point, namely,
that at every instance in time, the actual photon number in the
channel is much larger than the amplitude of the transmitted
signal photon. Compared to the case of a vacuum channel, it
is thus not possible to detect the transmitted photon without
knowing the precise shape of the recovery pulse.

IV. IMPERFECTIONS AND ERROR CORRECTION

In our analysis so far, we have considered an arbitrary
initial thermal occupation of the channel but assumed
otherwise ideal conditions. To assess the actual practicabil-
ity of the protocol, we must evaluate its robustness with
respect to various sources of imperfections. By restricting
the following discussion to imperfections related to the

(a)

(b)
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FIG. 3. (a) Example control pulses γiðtÞ for implementing a
perfect state transfer over long distances via a thermal quantum
communication channel. Here, γ1ðtÞ ¼ γeγðt−tpÞ=ð2 − eγðt−tpÞÞ for
t < tp=2 and γ1ðtÞ ¼ γ for t ≥ tp=2 [55]. The recapture pulse
γ2ðtÞ is chosen to be symmetric with respect to t ¼ tp=2, and for
all plots, a total pulse duration of tp ¼ 20γ−1 has been assumed.
(b) The resulting evolution of the populations of each interme-
diary oscillator for an initial state jψqi ¼ j1i. The green dashed
line shows the average transfer fidelity for the same pulse
sequence. (c) Expectation value of the photon number in the
channel measured in between node 1 and node 2 with a detector
of bandwidthΩ=γ ¼ 4. The individual curves show the results for
Nch ¼ 0 and jψqi ¼ j1i (green line), Nch ¼ 5 and jψqi ¼ j1i
(blue line), and Nch ¼ 5 and jψqi ¼ j0i (red line).
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transfer itself, we observe that, first of all, imprecisions in
the control pulses lead to an incomplete transfer,
jTðtf; t0Þj < 1. As a consequence, the rejection of noise
will also be incomplete. Second, any losses in the channel
will not only reduce the signal but are also necessarily
accompanied by additional thermal noise, which is uncor-
related with finðtÞ and therefore cannot be coherently
canceled.
To include the effect of propagation losses in a channel

with absorption length Lab, we divide the whole waveguide
into small segments of length Δz. The losses within one
segment can be modeled by a beam splitter with reflectance
ΔR ¼ Δz=Lab [see Fig. 4(a)], which implies the following
relation between the fields at zn and znþ1 ¼ zn þ Δz,

fch

�
znþ1; tþ

Δz
vg

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΔR

p
fchðzn; tÞ þ

ffiffiffiffiffiffiffi
ΔR

p
hnðtÞ:

ð16Þ

Here, hnðtÞ represents the thermal field entering through
the second port of the beam splitter, which is characterized
by the local thermal occupation number NðzÞ, i.e.,
hh†nðtÞhmðt0Þi ¼ δn;mδðt − t0ÞNðznÞ. By taking the con-
tinuum limit Δz → 0, we then obtain the propagation
equation [40]

� ∂
∂zþ

1

vg

∂
∂t
�
fchðz; tÞ ¼ −

fchðz; tÞ
2Lab

þ hðz; tÞffiffiffiffiffiffiffi
Lab

p ; ð17Þ

where hðz; tÞ is a continuous bosonic field, with variance
hh†ðz; tÞhðz0; t0Þi ¼ NðzÞδðt − t0Þδðz − z0Þ. This equation
results in the following modified propagation relation:

fin;2ðtÞ ¼ e−½L=ð2LabÞ�fout;1ðtÞ

þ 1ffiffiffiffiffiffiffi
Lab

p
Z

L

0

dze−½ðL−zÞ=2Lab�hðz; tÞ; ð18Þ

where we have already absorbed all retardation times by an
appropriate redefinition of the field operators. For the
following analysis, we focus on the case where the channel
temperature is approximately uniform, NðzÞ≃ Nch, and we
can further simply this relation to

fin;2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εch

p
½finðtÞ þ

ffiffiffiffiffiffiffiffiffiffi
γ1ðtÞ

p
a1ðtÞ� þ

ffiffiffiffiffiffi
εch

p
hinðtÞ:

ð19Þ

Here, εch ¼ 1 − e−L=Lab can be identifiedwith the total loss in
the channel, andhinðtÞ satisfies hh†inðtÞhinðt0Þi¼ δðt− t0ÞNch.
By taking into account the influence of loss via

relation (19) and assuming pulses long enough such that
A2ðtf; t0Þ → 0, the solution for a2ðt ¼ tfÞ is

a2ðtfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εch

p
½Tðtf; t0Þa1ðt0Þ þ F2ðtf; t0Þ�

−
ffiffiffiffiffiffi
εch

p Z
tf

t0

dsA2ðtf; sÞ
ffiffiffiffiffiffiffiffiffiffi
γ2ðsÞ

p
hinðsÞ: ð20Þ

This result already shows that, although in the presence of
finite losses a perfect transfer is no longer possible, the
transfer pulses obeying condition (13) maximize jTðt; t0Þj;
therefore, these pulses are still optimal. By now
including small deviations from this condition, i.e.,
Tðtf; t0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − εp

p
, the final result can be written in a

compact form as (see Appendix A)

a2ðtfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − εchÞð1 − εpÞ

q
a1ðt0Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εpð1 − εchÞ

q
f̄ þ ffiffiffiffiffiffi

εch
p

h̄; ð21Þ

where the effect of the integrated noise is now simply
represented by two bosonic operators, f̄ and h̄, obeying
½f̄; f̄†� ¼ ½h̄; h̄†� ¼ 1 and hf̄†f̄i ¼ hh̄†h̄i ¼ Nch. From this

(b)(a)

(c)
classical bound

10-3

10-2

10-1

10 0

classical bound

10-3

10-2

10-1

10 0

10-3 10-2 10-1

FIG. 4. (a) Channel losses are modeled by a series of beam
splitters with reflectance ΔR ¼ Δz=Lab. For a homogeneous
waveguide, the total loss can be taken into account by mixing the
outgoing field of node 1 with a thermal field hin on a beam splitter
with reflectance εch ¼ 1 − e−L=Lab . (b) Illustration of the code
words jWσi used for correcting single-photon loss errors (left)
and for correcting single-photon loss and single-photon absorp-
tion errors (right). (c) The average transfer fidelity is shown for a
state transfer protocol without error correction (green solid line),
for the case when single-photon losses are corrected (blue dotted
line), and for the case when both single-photon loss and single-
photon absorption errors are corrected (red dashed line).
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exact relation between the Heisenberg operators of the
nodes and the channel fields, we can reconstruct the
reduced density matrix ρ2ðtfÞ after the transfer from
the initial state of node 1, as detailed in Appendix B.
After expanding the result to lowest order in ε≃ εp þ εch,
we obtain

ρ2ðtfÞ ¼
X
l¼0;�

Elρðt0ÞE†
l þOðε2Þ; ð22Þ

where Eþ ¼ ffiffiffiffiffiffiffiffiffiffi
εNch

p
a†2 and E− ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðNch þ 1Þp
a2 are

Kraus operators associated with the addition and subtrac-
tion of a single photon and E0 ¼ 1 − ε½ðNch þ 1=2Þa†2a2 þ
Nch=2� describes the distortion of the final state under the
condition that no error has occurred.
In summary, Eq. (22) shows that, in a thermal network,

various types of imperfections introduce both photon loss
and photon absorption errors with a characteristic rate
E ¼ εðNch þ 1=2Þ. In view of these thermally enhanced
error rates, an important question is if and under which
conditions such errors can be further reduced by supple-
menting quantum state transfer protocols with error-
correction schemes. Here, again, the large Hilbert space
of the intermediary oscillator is to our advantage.
In general, a set of errors specified by the Kraus map
(22), can be corrected by encoding the initial state in two
code words jϕ0i ¼ jW0i and jϕ1i ¼ jW1i, satisfying
hWσjE†

lEkjWσ0 i ¼ αlkδσσ0 [36,37]. In addition, the meas-
urement of an observable OM must be able to distinguish
the error words jEl

σi ¼ EljWσi= ffiffiffiffiffiffiffi
αll

p
for different errors

l, but without revealing information about σ. Then, for a
measurement outcome l, an appropriate unitary operation
RljEl

σi ¼ jWσi can be implemented to recover the original
states without affecting the original superposition.
To illustrate more specifically the application of error-

correction schemes for the thermal state transfer problem at
hand, we now consider two specific codes that have
recently been introduced in Ref. [38] [see Fig. 4(b)].
The first code, jW0i ¼ ðj0i þ j4iÞ= ffiffiffi

2
p

, and jW1i ¼ j2i,
corrects for photon loss only. This means that these two
states remain orthogonal under the action of E−, and the
occurrence of an error can be detected by measuring
OM ≡ ða†aÞmod 2, i.e., the photon number modulo 2. The
second code uses the states jW0i ¼ ðj0i þ ffiffiffi

3
p j6iÞ=2 and

jW1i ¼ ð ffiffiffi
3

p j3i þ j9iÞ=2. It corrects for both photon loss
and photon absorption errors, which can be distinguished
from each other by a measurement of the operator
OM ≡ ða†aÞmod 3. We remark that such measurements
represent generalized photon-number parity measurements
as implemented in many pioneering cavity QED experi-
ments with Rydberg atoms [56] or superconducting
qubits [6,57].
In Fig. 4(c), we compare the performance of the two

codes with respect to the noncorrected transfer of states j0i

and j1i. Note that, for this plot, it is assumed that all the
measurements and recovery operations are implemented
with perfect fidelity. As expected, for Nch ¼ 0, the first
code corrects all single-photon losses, which leads to an
improved scaling of the infidelity, 1 − F̄ , from ∼E to ∼E2.
Although the second code corrects photon losses as well, it
performs much worse. This poor performance is due to the
fact that the average excitation number hWσja†ajWσi ¼
9=2 is much higher than in the first encoding scheme where
hWσja†ajWσi ¼ 2 or in the case of the nonencoded states.
This enhances the effective rate for multiphoton errors
which are not corrected by these codes. At higher thermal
occupation numbers, this picture changes. The correction
of only photon losses is no longer enough, and we see that
the first code performs even worse than a transfer without
error correction. However, a more sophisticated encoding,
even in very fragile states, as is the case for the second code,
can still drastically improve state transfer fidelities once a
threshold of E ≲ 0.1 is reached. This result demonstrates
that even in the presence of weak losses, a fault-tolerant
transfer of quantum states through thermal communication
channels is possible.

V. APPLICATIONS FOR MICROWAVE
NETWORKS

The ability to deterministically transfer quantum states
through noisy communication channels can be crucial for a
wide range of networking applications. Most importantly, it
provides access to microwave-based quantum communi-
cation schemes already at temperatures of several kelvin,
thereby drastically reducing the technical overhead that
would otherwise be required to cool large networks down
to millikelvin temperatures. In the field of superconducting
quantum circuits, all the individual tools for implementing
the proposed transfer and error-correction protocols have
already been demonstrated and are the focus of ongoing
experimental investigations. This includes the implemen-
tation of tunable decay rates [13,46,47,58–62] for releasing
and catching the photons, coherent circulators for unidi-
rectional coupling [63,64], and techniques for preparing
arbitrary superpositions of photon-number states [57,65]
and number state readout [8].
To estimate the distances over which a quantum state

transfer through a thermal microwave network can poten-
tially be achieved, we first consider a microwave channel
with an absorption loss of 0.01 dB=m. This value has
recently been measured [66] for commercially available
waveguides at a frequency of ω0=ð2πÞ ≈ 5 GHz and
T ¼ 4 K. It corresponds to an absorption length of roughly
Lab ≈ 500 m, which, together with a thermal occupation
number of Nch ≈ 15, translates into errors in the range of
E ≈ 0.03–0.15 for transfer distances of L ¼ 1–5 m. This is
already sufficient to deterministically transfer quantum
states between two dilution refrigerators. However, for
3D superconducting microwave resonators, quality factors
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as high as Q ¼ 106–108 [67] have been observed, which
corresponds to an integrated propagation length of
Lab ≈ cQ=ω0 ≈ 104 ∼ 106 m. Therefore, the intrinsic
losses of optimized microwave waveguides can be sub-
stantially smaller, in which case transfer errors as low as
E ≈ 0.0015–0.15 over a distance of L ¼ 100 m become
possible. These estimates demonstrate the huge potential of
thermal microwave networks, ranging from fridge-to-fridge
to intracity quantum communication.

VI. OTHER EXPERIMENTAL CONSIDERATIONS

In this section, we briefly comment on several other
experimental issues, which are less fundamental but of
relevance for the operation of larger networks, in particular,
at nonzero temperature. This concerns, first of all, the
incomplete decoupling of the local node from the thermal
channel, meaning that γiðtÞ ≥ γmin cannot be switched off
completely. As a consequence, the local oscillator will be in
a thermal state with temperature T ≈ Tch at the beginning of
the protocol, and the thermal noise entering through the
channel will degrade the encoding operation. The first issue
can be solved by implementing another tunable decay
channel into the zero-temperature bath with maximal rate
γc ≫ γmin. This can be used to precool the local oscillator to
a residual occupation number Nres ¼ ðγmin=γcÞNch ≪ 1.
The error introduced during the encoding operation
depends on the detailed implementation, but as long as
it is sufficiently small, it can be approximately taken into
account by a thermal Kraus map (22) acting on the ideal
state ρðt0Þ. Both effects combined lead to two additional
contributions in the error budget, i.e., ε → εþ εres þ εenc,
where εres ¼ γmin=γc and εenc ≈ γmintenc for a time tenc of the
encoding operation Uenc. By making the reasonable
assumption that t−1enc, γc ≳ γ, these additional errors are
on the scale of the off/on ratio ∼γmin=γ. Note that flux-
tunable [59,68] as well as parametric [13,62] couplers with
maximal rates γ=ð2πÞ ∼ 0.5–10 MHz and off/on ratios of
10−3 have already been experimentally demonstrated.
When integrating multiple dilution refrigerators into

larger networks, impedance mismatches between the local
nodes and the microwave channel, the integration of
circulators, or simply the presence of defects in the wave-
guide can lead to coherent backscattering, even without
introducing loss. Such a situation is illustrated by the
setting in Fig. 5(a), where a scattering element with
reflectance Rs ¼ jrsj2 and transmittance Ts ¼ jtsj2 is intro-
duce between node 1 and node 2. This leads to a delayed
backaction of the emitted field onto node 1, via the relation
fin;1ðtÞ ¼ tsfinðtÞ þ rsfout;1ðt − τsÞ, where τs ¼ 2Ls=vg,
and it significantly distorts the wave function at the receiver
node, as shown in Fig. 5(b). However, in the absence of
absorption, i.e., jrsj2 þ jtsj2 ¼ 1, the requirements for
implementing a perfect state transfer do not rely on a
specific pulse shape but solely on A1ðtf; t0Þ → 0 and on the

dark state condition (13) being fulfilled for all t ∈ ½t0; tf�.
Thus, by stepwise integrating the equations of motion for
the network and adjusting

ffiffiffiffiffiffiffiffiffiffi
γ2ðtÞ

p
¼ −

ffiffiffiffiffiffiffiffiffiffi
γ1ðtÞ

p A1ðt; t0Þ
Tðt; t0Þ

; ð23Þ

at each point in time, a perfect recovery pulse γ2ðtÞ can also
be found numerically for more complicated propagation
relations, semidirectional and bidirectional channels, etc.
Note that, in general, this construction requires that γ2ðtÞ ¼
jγ2ðtÞje−i2ϕ2ðtÞ must be tunable in phase and amplitude, as is
the case for parametric couplers [13,62]. A time-dependent
ϕ2ðtÞ can further be used to compensate for small
frequency shifts between the local resonators, which is

(a)

node 1

node 2

(b)

(c)

(d)

0

0.5

1

0.5

0

0

1

0.5

25.15.00 1

FIG. 5. (a) The coherent backscattering of fields by defects or
imperfect connections is modeled by a pointlike scatterer with
reflectance jrsj2 ¼ 1 − jtsj2, located at a distance Ls from the first
node. (b) Shape of the emitted wave packet (solid line) measured
after the scatterer at the input of node 2. For this plot, γ1ðtÞ is the
same as in Fig. 3(a), τs ¼ 2Ls=vg ¼ 0.15tp, tp ¼ 20γ−1,

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2s

p
¼ 0.6, and a detuning δ ¼ ω1 − ω2 ¼ γ between

the two local oscillators has been assumed. The green dashed line
shows the unperturbed wave packet for rs ¼ 0. (c) Shape of the
recovery pulse γ2ðtÞ ¼ jγ2ðtÞje−i2ϕ2ðtÞ with a final phase
ϕ2ð2tpÞ≃ 2.03 × δtp obtained from a numerical optimization
of the state transfer problem. (d) Plot of the resulting evolution of
the population of each oscillator for an initial state jψqi ¼ j1i.
The dashed line shows the population in the second oscillator
for the original pulse γ2ðtÞ given in Fig. 3(a).
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another source of imperfections for couplers without this
tunability [54]. An example for a numerically optimized
recovery pulse and the resulting transfer dynamics is shown
in Figs. 5(c) and 5(d).
Finally, we emphasize that throughout this work we have

assumed that at the beginning of the transfer the channel
field is in equilibrium at temperature Tch. This is a
reasonable assumption for cases where the two nodes of
interest are part of a much larger connected network in
contact with a thermal reservoir. However, given the rather
long rethermalization length and time scales, Lab and
Lab=vg [see Eq. (17)], the effective occupation number
Nin ¼ hf̄†f̄i characterizing the incoming field finðtÞ can be
both much smaller than Nch [e.g., Nin ∼ ðL=LabÞNch, if the
input channel is connected instead to a cryogenic reservoir]
and also much higher [e.g., if parts of the network are
affected by nonequilibrium (technical) noise]. In contrast,
the noise associated with absorption,

hh̄†h̄i ¼ 1

εchLab

Z
L

0

dze−½ðL−zÞ=Lab�NmatðzÞ; ð24Þ

is mainly determined by the temperature TmatðzÞ of the
waveguide material along the channel, i.e., NmatðzÞ ¼
ðeℏω0=kBTmatðzÞ − 1Þ−1. These considerations show that, apart
from the routing of quantum information, controlling the
flow of noise fields may by itself become a relevant
optimization problem in larger microwave networks.
Independent of the precise operation strategy, coherent noise
cancellation as discussed in this work can be very beneficial
since it avoids many additional switching and cooling
elements and can tolerate noise levels far beyond what is
acceptable for qubit networks.

VII. CONCLUSIONS AND OUTLOOK

In summary, we have shown how quantum states can be
transmitted with close to unit fidelity through a thermal
channel. The key ingredient, namely, the use of an
intermediary oscillator as a controllable port between the
local qubit and the quantum communication channel, not
only provides the necessary degree of linearity for a
coherent cancellation of noise, it also enables the imple-
mentation of protocols for correcting the residual photon
loss and absorption errors under realistic conditions. This
combination opens the new possibility of building robust
microwave quantum networks on medium and large scales.
While the coherent cancellation of noise would already be
very beneficial for continuous variable quantum commu-
nication [69] and key distribution [70,71] schemes in this
frequency range, the protocol enables, in particular, a direct
deterministic exchange of quantum information over ther-
mal microwave channels at rates of about 106–108 qubits
per second. Such capabilities are very challenging
to implement in the optical domain and may have a

wide-ranging impact on future quantum communication
strategies.
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Note added.—Avery similar protocol has been described in
a parallel work by B. Vermersch et al. [72].

APPENDIX A: GENERAL SOLUTIONS
FOR THE HEISENBERG OPERATORS

In this appendix, we summarize the general solutions for
the Heisenberg operators aiðtÞ. We start with the quantum
Langevin equation for a1ðtÞ given in Eq. (7), which can be
directly integrated to obtain

a1ðtÞ ¼ A1ðt; t0Þa1ðt0Þ −
Z

t

t0

ds
ffiffiffiffiffiffiffiffiffiffi
γ1ðsÞ

p
A1ðt; sÞfinðsÞ;

ðA1Þ
where ½d=ðdtÞ�A1ðt; t0Þ ¼ −f½γ1ðtÞ�=2gA1ðt; t0Þ and
A1ðt0; t0Þ ¼ 1. By using this result and including channel
loss via relation (19), the integration of the resulting
quantum Langevin equation for a2ðtÞ gives
a2ðtÞ ¼ A2ðt; t0Þa2ðt0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εch

p
Tðt; t0Þa1ð0Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εch

p
F2ðt; t0Þ

−
ffiffiffiffiffiffi
εch

p Z
t

t0

dsA2ðt; sÞ
ffiffiffiffiffiffiffiffiffiffi
γ2ðsÞ

p
hinðsÞ; ðA2Þ

where Tðt; t0Þ is defined in Eq. (11) and

F2ðt; t0Þ ¼ −
Z

t

t0

dt0A2ðt; t0Þ
ffiffiffiffiffiffiffiffiffiffiffi
γ2ðt0Þ

p
finðt0Þ

þ
Z

t

t0

dt0A2ðt0; t0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ðt0Þγ2ðt0Þ

p
A1ðt0; t0Þ

×
Z

t0

t0

dt00A1ðt0; t00Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ1ðt00Þ

p
finðt00Þ: ðA3Þ

We can write this integral as F2ðt; t0Þ ¼
R
t
t0
½Xðt0Þ−

_Yðt0ÞZðt0Þ�dt0, where Xðt0Þ, _Yðt0Þ, and Zðt0Þ represent the
individual terms in each line of Eq. (A3). Then, after
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integrating by parts, i.e., F2ðt;t0Þ¼
R
t
t0
Xðt0Þdt0−YðtÞZðtÞþR

t
t0
dt0Yðt0Þ _Zðt0Þ, we obtain the simpler expression

F2ðt; t0Þ ¼
R
t
t0
dsD2ðt; sÞfinðsÞ, with D2ðt; sÞ given

in Eq. (12).
From the commutation relation ½a2ðtÞ; a†2ðtÞ� ¼ 1, we

obtain the general result

1 ¼ jA2ðt; t0Þj2 þ ð1 − εchÞT2ðt; t0Þ

þ ð1 − εchÞ
Z

t

t0

dsD2
2ðt; sÞ þ εch½1 − jA2ðt; t0Þj2�:

ðA4Þ

By assuming imperfect pulses with T2ðtf; t0Þ ¼ 1 − εp, but
long enough such that A2

2ðtf; t0Þ → 0, this relation allows
us to identify the correct prefactors for the noise operators f̄
and h̄ in Eq. (21), independent of the exact pulse shape.

APPENDIX B: RECONSTRUCTION
OF THE DENSITY OPERATOR

In this appendix, we derive the explicit result for the final
state of the second node ρ2ðtfÞ ¼

P∞
r;r0¼0

½ρ2ðtfÞ�r;r0 jrihr0j
for a given initial state of the first node ρ1ðt0Þ ¼P∞

n;n0¼0
½ρ1ðt0Þ�n;n0 jnihn0j [54,73]. According to Eq. (21),

we can write

a2ðtfÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
a1ðt0Þ þ

ffiffiffi
ε

p
b; ðB1Þ

where ε ¼ εch þ εp − εchεp, and we have combined the two
noise fields into a single bosonic operator,

b ¼ 1ffiffiffi
ε

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εpð1 − εchÞ
q

f̄ þ ffiffiffiffiffiffi
εch

p
h̄
�
; ðB2Þ

obeying ½b; b†� ¼ 1 and hb†bi ¼ Nch. Note that this
assumes equal temperatures for the original fields, fin
and hin. Given that the mode b is a mixture of different
number states jki with probability pk, the mapping of
Eq. (B1) corresponds to a completely positive and trace
preserving map from the first node to the second node with
Kraus operator representation

ρ2ðtfÞ ¼
X∞
k¼0

X∞
q¼0

Kk;qρ1ðt0ÞK†
k;q: ðB3Þ

The Kraus operators are

Kk;q ¼
X
r

ffiffiffiffiffi
pk

p
Kðr;rþq−k;kÞjri2hrþq−kj1; ðB4Þ

with

Kðr; n; kÞ ¼
Xn
i¼0

ð−1Þn−iε½ðnþr−2iÞ=2�ð1 − εÞ½ðk−rþ2iÞ=2�

×

�
n
i

��
k

r − i

� ffiffiffiffiffiffiffiffiffiffi
ðnþk

n Þ
ðnþk

r Þ

s
ðB5Þ

for r ≤ nþ k and Kðr; n; kÞ ¼ 0 otherwise. The binomial
coefficients are ðnmÞ ¼ fn!=½m!ðn −mÞ!�Þ for 0 ≤ m ≤ n
and ðnmÞ ¼ 0 otherwise. Finally, we obtain the expression in
terms of the density matrix elements in the number basis,

½ρ2ðtfÞ�r;r0 ¼
X∞
k¼0

pk

X∞
n;n0¼0

Gðr;r0;n;n0;kÞ½ρ1ðt0Þ�n;n0 ; ðB6Þ

with

Gðr; r0; n; n0; kÞ ¼ Kðr; n; kÞKðr0; n0; kÞ; ðB7Þ

and Kðr; n; kÞ as defined in Eq. (B5).
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