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We study the statistics of infima, stopping times, and passage probabilities of entropy production in
nonequilibrium steady states, and we show that they are universal. We consider two examples of stopping
times: first-passage times of entropy production and waiting times of stochastic processes, which are the times
when a system reaches a given state for the first time. Our main results are as follows: (i) The distribution of
the global infimum of entropy production is exponential with mean equal to minus Boltzmann’s constant;
(i1) we find exact expressions for the passage probabilities of entropy production; (iii) we derive a fluctuation
theorem for stopping-time distributions of entropy production. These results have interesting implications for
stochastic processes that can be discussed in simple colloidal systems and in active molecular processes. In
particular, we show that the timing and statistics of discrete chemical transitions of molecular processes, such
as the steps of molecular motors, are governed by the statistics of entropy production. We also show that the
extreme-value statistics of active molecular processes are governed by entropy production; for example, we
derive a relation between the maximal excursion of a molecular motor against the direction of an external
force and the infimum of the corresponding entropy-production fluctuations. Using this relation, we make
predictions for the distribution of the maximum backtrack depth of RNA polymerases, which follow from our

universal results for entropy-production infima.
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I. INTRODUCTION AND STATEMENT
OF THE MAIN RESULTS

The total entropy S,y (#) produced by a mesoscopic
process in a finite time interval [0,7] is stochastic, and
for a single realization it can be negative because of
fluctuations. The second law of thermodynamics implies
that its average, taken over many realizations of the
process, increases in time, (S, (7)) > 0. In the 19th century,
Maxwell formulated the idea of a stochastic entropy [1],
and in the last few decades, definitions of entropy pro-
duction of nonequilibrium processes were established using
the theory of stochastic processes [2-20].

Little is known beyond the second law about the statistics
of entropy-production fluctuations. The best insights, so
far, in fluctuations of entropy production are provided
by fluctuation theorems. They express a fundamental
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asymmetry of the fluctuations of entropy production: It is
exponentially more likely to produce a positive amount of
entropy than to reduce entropy by the same but negative
amount. An example is the detailed fluctuation theorem,
which can be written as pg(Si:?)/ps(—Sws t) = eSo/ks,
where kg is Boltzmann’s constant. Here, pg(Siy;?) is the
probability density describing the distribution of the entropy
production Sy, at a given time ¢. The detailed fluctuation
theorem is universal and holds for a broad class of physical
processes in a steady state [3-5,8-10,14,21-26]. Moreover,
the detailed fluctuation theorem has been tested in several
experiments [27-36]; for reviews, see Refs. [37-39].

In addition to fluctuation theorems, an important
question is to understand the extreme-value statistics of
entropy production. In particular, because entropy must
increase on average, it is interesting to understand the
statistics of records of negative entropy production during
a given time interval [0, 7]. To address this question, here
we introduce the finite-time infimum of entropy produc-
tion, Siy¢(7) = infy<,<; Sy (7), Which is the negative record
of entropy production for a single realization of the
process over a time interval [0, 7].

In this paper, we derive universal equalities and inequal-
ities on the statistics of entropy-production infima. We
show that the mean of the finite-time infimum of the
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stochastic entropy production is bounded from below by
minus the Boltzmann constant:

(Sine()) = —kg. (1)

This infimum law for entropy production is illustrated in
Fig. 1(a) and expresses a fundamental bound on how much
entropy can be reduced in a finite time. The infimum law
follows from a universal bound for the cumulative distri-
bution of entropy-production infima:

Pr (Sin(1) 2 —s) 2 1 — ek, 2)

Here, Pr(-) denotes the probability of an event, and the left-
hand side is the cumulative distribution of entropy pro-
duction with s > 0. Remarkably, as we show in this paper,
the infimum law, given by Eq. (1), is universal and holds in
general for classical and stationary stochastic processes.

The global infimum of entropy production, S{%=
lim,_, o, Sint (7), is the lowest value that entropy production
will ever reach in one realization of the process; note that
the global infimum is always smaller than or equal to the
finite-time infimum, S5 < S;,¢(¢). We show that the dis-
tribution of the global infimum of entropy production is
exponential,

e—s/kB

Pes(-9) =1~ (3)
where s > 0, and the mean value of the global infimum is
equal to minus the Boltzmann constant:

(Siar) = —kg. (4)
The shape of the distribution of the global infimum implies
that the infimum lies with 50% probability within —kg In2 <
S <0, and its standard deviation equals the Boltzmann
constant. Whereas Eqgs. (1) and (2) hold generally in steady
states, the equalities given by Eqgs. (3) and (4) are shown to be
true for continuous stochastic processes.

Related to the global infimum are the passage proba-
bilities Pf) (P2) for entropy production to reach a
threshold s, (—s;,) without having reached —si, (s{,)
before. This corresponds to the stochastic process S;y(?)
with two absorbing boundaries, a positive absorbing
boundary at S, () = s;5, and a negative absorbing boun-
dary at Sy, () = —sg. If the process S, () is continuous
and (S,(?)) # 0, we find

S&_ot/kB — ]
() ew—1
Py = oSulks _ g—s/ks’ (5)
1 - _sgl/kB
pe —_‘tT7€¢ ™" (©)

o eSi/k — e_S:gn/kB !

Interestingly, if s, # si,. the relations (5) and (6) relate
entropy-production fluctuations of events with different
amplitudes. The asymptotic value of the passage
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FIG. 1. [Illustration of three key results of the paper. (a) Sche-
matic representation of the infimum law for entropy production.
Several stochastic trajectories of entropy production are shown
(solid lines), and their infima are indicated (filled circles). The
infimum law implies that the average infimum of the entropy
production (green solid line) is larger than or equal to —kg (orange
line). (b) First-passage-time fluctuation theorem for entropy
production with two absorbing boundaries. We show examples
of trajectories of stochastic entropy production as a function of
time, which first reach the positive threshold s, (horizontal thick
blue line) and which first reach the negative threshold —s
(horizontal thick red line). The probability distribution pr_(#; 5io)
to first reach the positive threshold at time 7 and the probability
distribution py (f;—sy,) to first reach the negative threshold at
time ¢ are related by Eq. (8). (c) Waiting-time fluctuations: The
statistics of the waiting times between two states I and II are the
same for forward and backward trajectories that absorb or
dissipate a certain amount of heat Q in isothermal conditions.

probability P'? for sf, = +co is the probability that
entropy never reaches the value —sg,. It is equal to the
probability that the global infimum is larger than or equal to
—si- The relations for the passage probabilities given by
Egs. (5) and (6) thus imply Egs. (3) and (4) for the global
infimum. Notably, the infima and passage statistics of
entropy production are independent of the strength of
the nonequilibrium driving, i.e., the mean entropy-
production rate.
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We also discuss stopping times. A stopping time is the
time when a stochastic process satisfies a certain criterion
for the first time. Here, we discuss s,-stopping times 7.,
for which entropy production at the stopping time equals
Siot(T4) = S0, With s > 0. An example is the first-
passage time of entropy production, at which entropy
production reaches s, for the first time. This value of
entropy Si(7.) is a new record of entropy production, and
first-passage times of entropy production are thus times at
which a given record is reached. Analogously, we define a
(—So)-stopping time 7_ associated with 7, for which
entropy production at the stopping time equals S, (7_) =
—5yo- For example, if 7', is the first-passage time of entropy
production to first reach s, then 7_ is the first-passage
time of entropy production to first reach —s,,;. Remarkably,
we find that the mean stopping time (7', ) equals the mean
stopping time (7_):

(T.) =(T-). (7)

A similar equality holds for all the higher-order moments of
stopping times of entropy production. These results follow
from the stopping-time fluctuation theorem

pT+(t; Stot)

frnd e-ylol/kB s (8)
pr (6 =5Sw0)

which we derive in this paper for classical and continuous
stochastic processes in a steady state. Here, pT+(t; Sior) 18
the probability density for the stopping time 7, and
pr_(t;—s) is the probability density for the stopping
time 7_. The stopping-time fluctuation theorem (8) is
illustrated in Fig. 1(b) for the example where 7', and 7_
are first-passage times of entropy production with two
absorbing boundaries.

Other examples of stopping times are waiting times,
defined as the time a stochastic trajectory takes while
changing from an initial state I to a final state II; see
Fig. 1(c). In this paper, we show that for a nonequilibrium
and stationary isothermal process, the ratio of waiting-time
distributions corresponding to forward trajectories (I — II)
and backward trajectories (Il — I) obeys

pTI:II (l; —Q)

pr-1(t; Q)
for all trajectories between I and II that exchange the amount
Q of heat with an equilibrated environment at temperature

Tenys if O > 0, then the system absorbs heat from the envir-
onment. Here, ppi-n(7; —Q) denotes the probability density

— e_Q/kBTenv s (9)

for the waiting time 7" to reach state Il while absorbing the
heat Q. Equation (9) is a generalization of the local detailed-
balance condition for transition rates K1/ k1= = ¢=Q/ks Teny
[40-42]. Indeed, transition rates are given by k~! =
J&° dt tpr(r). Notably, Eq. (9) implies a symmetry relation
on the normalized waiting-time distributions

pron(tl = Q) ppua(1|Q)
pL= T pier (10)
where P = [° d¢py(r). Therefore, the mean waiting times
(T) = 1/(kP) for the forward and backward transitions are
the same, (T'>11) = (T=1).

We derive all these results on infima, passage proba-
bilities, and stopping times of entropy production in a new
unified formalism that uses the theory of martingales
[26,43,44], and we apply our results to the dynamics of
colloidal particles in periodic potentials and molecular
motors, which transduce chemical energy into mechanical
work. The paper is structured as follows: In Sec. II, we
briefly review the formalism of stochastic thermodynamics.
In Sec. III, we discuss the connection between martingale
processes and entropy production. In Secs. IV-VI, we
derive, respectively, the infimum law (1) and the bound (2);
the statistics of the global infimum of entropy production
(3) and (4) and the equalities for the passage probabilities
(5) and (6); and fluctuation theorems for stopping times of
entropy production, which include first-passage times of
entropy production (8) and waiting times of stochastic
processes (9). We apply our results in Sec. VII to a drifted
colloidal particle moving in a periodic potential. In
Sec. VIII, we apply our results to discrete molecular
processes such as the stepping statistics of molecular
motors or the dynamics of enzymatic reactions. The paper
concludes with a discussion in Sec. IX.

II. STOCHASTIC THERMODYNAMICS
AND ENTROPY PRODUCTION

We first briefly review the basic concepts of stochastic
entropy production for discrete processes based on path
probabilities. Discrete processes include processes in discrete
time (e.g., Markov chains) and processes in continuous time
with discrete states (e.g., Markov jump processes). We then
present a measure-theoretic formalism of stochastic thermo-
dynamics, which defines entropy production for discrete and
continuous processes (e.g., Langevin processes).

A. Entropy production for discrete processes

We consider the dynamics of a mesoscopic system in a
nonequilibrium steady state and describe its dynamics with
the coarse-grained state variables w(t) = (q(1),q*(¢)) at
time ¢. The variables ¢ () represent n degrees of freedom that
are even under time reversal, and the variables g* () represent
n* degrees of freedom that are odd under time reversal [45].
Notably, the variables ¢(#) and g* () represent the dynamics
of collective modes in a system of interacting particles; for
instance, g(t) describes the position of a colloidal particle in a
fluid and ¢*(¢) its effective momentum.

In a given time window [0, 7], the coordinates w(7) trace a
path in phase space wfy = {®(7)}<,<,- We associate with
each trajectory wf, a probability density P(wf; pin;), which
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captures the limited information provided by the coarse-
grained variables @, and the fact that the exact microstate is
not known; the distribution p;,; is the probability density of
the initial state @(0). We define the entropy production
associated with a path |, of a stationary process by [7-9,11]

P(wpy; pss)

Siot(t) = kg In ————,
tOt( ) B np(@[wf);pss)

(11)

where ©,w(, = {&(t — 7)}'_, is the time-reversed trajectory
with @(7) = (q(7), —q* (7)), pss is the steady-state distribu-
tion in the forward dynamics, and p is the steady-state
distribution in the backward dynamics. The ensemble
average of entropy production of a stationary process can
be expressed as an integral:

P(a)f); pss)
P(Owp; pes)

Here, entropy production is therefore the observable that
quantifies time irreversibility of mesoscopic trajectories
[46]. In fact, by measuring entropy production, an observer
can determine within a minimal time whether a movie of a
stochastic process is run forwards or backwards [47].
Microscopic time-reversibility implies that a mesoscopic
system in contact with an equilibrium reservoir, or con-
secutively in contact with different equilibrium reservoirs,
satisfies local detailed balance [8,48-50]. Local detailed
balance manifests itself in a condition on the path prob-
abilities conditioned on the initial state and reads

(Sue()) = g / DuhP(wly py)In (12)

P(wp|(0)) — oSenv(1)/ ks (13)
P(Owjla(1) ’

where S, (7) is the entropy change in the environment. If
local detailed balance holds, then our definition of entropy
production (11) equals the total entropy change, i.e., the
sum of the system-entropy change ASy [14] and the
environment-entropy change Se,.:

Stot(t) = ASsys(t) + Senv(t)7 (14)
with

po(@(D))
M (@(0) (15)

Notice that in Eq. (15), we have used pg(@(f)) =
pss(@(2)) [11]. For systems in contact with one or several
thermal baths, the environment-entropy change is related to
the heat exchanged between the system and the environ-
ment [51]. For systems that violate the local detailed
balance condition (13), a physical interpretation of the
entropy production (11) in terms of heat exchange is not so
direct. Nevertheless, entropy production (11) can always be
interpreted as the functional that characterizes time-
irreversibility.

ASsyS(t) = _kB

B. Entropy production for continuous processes
that may have jumps

For discrete processes, the expressions Eqs. (11) and (12)
for the stochastic and the average entropy production are
well defined. However, for Langevin processes the path
probabilities densities PP are not normalizable. In order to
avoid this problem, we use a formalism based on measure
theory to define entropy production for continuous proc-
esses [43,44,53-56]. Note that this formalism also applies
to processes with continuous variables that may undergo
discrete jumps [57].

Measure theory studies probabilities of events in terms
of a probability space (Q,F,P). The set Q of all
trajectories @ is called the sample space, the set F of
all measurable subsets ® of Q is a c-algebra, and the
function P is a measure, which associates probabilities
with the measurable subsets ®. In the following, we
identify the symbol @ with the full trajectory of state
variables over all times, @ = {q(7),4"(7) } ;¢ (—co.00)-

The concept of a probability measure P(P) generalizes
the path probability densities P(w). The value P(®)
denotes the probability to observe a trajectory @ in the
set ®; in other words, P(®) = Pr(w € ®). An example of
a measure is

P(@) = /mdmx), (16)

where p(x) is a probability density of elements x in R".
Here, A denotes the Lebesgue measure, and the Lebesgue
integral is over the set ®. One can also define a probability
density R(w) of a measure P(®) = [, _, dP with respect
to a second probability measure Q(®) using the Radon-
Nikodym theorem [54]

P(®) = L _daR(o), (17)

where the integral is over the measurable set ¢ and with
respect to the probability space (Q,F,Q) [54,56]. The
function R(w) is called the Radon-Nikodym derivative,
which we denote by R(w) =5 (w). In Eq. (17), the
function R(w) is a generalization of the concept of a
probability density p(x), which also applies to spaces for
which the Lebesgue measure does not exist, e.g., the
Wiener space of trajectories of a Brownian particle.

We now consider probability measures of steady-state
processes. A stationary probability measure is time-
translation invariant and satisfies P = P o T,, where T, is
the map that translates a trajectory o by a time ¢ as q(7) —
q(z+1) and ¢*(7) = ¢"(z +1).

A stochastic process X(w;t) provides the value of an
observable X at time ¢ for a given trajectory . We denote
the average or expectation value of X(w; 1) by (X(w; t))p =
fweg X(w; t)dP. In the following, a stochastic process
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X(w;t) is sometimes simply denoted by X(z) and its
average by (X(1)).

Entropy production Sy, (w; ) is an example of a sto-
chastic process. An appropriate definition of entropy
production, which generalizes Eq. (11) and applies also
to continuous-time processes, can be written using the
Radon-Nikodym derivative

dlp']—'(z)

S ) =kgln—m—
tot(w ) B nd([po@)']:(t)

(@) (18)

of the measure P|x(,, with respect to the time-reversed
measure (P 0 ©)|z, [58]. Here, P| ;) denotes the restric-

tion of the measure P over those events in the sub-c-algebra
F(t) C F that is generated by trajectories w], in the time
interval [0, 7]. The time-reversed measure P o ® is defined
using the time-reversal map ©®, which time reverses
trajectories @ as q(t) - q(—t) and ¢*(1) > —q*(—1).
Note that Eq. (18) is well defined for continuous-time
processes that may contain jumps.

III. MARTINGALE THEORY FOR
ENTROPY PRODUCTION

A fundamental, but still unexplored, property of entropy
production is that in a steady state, its exponential e~Sw(1)/ks
is a positive and uniformly integrable martingale process.
A process is called martingale if its expected value at any
time ¢ equals its value at a previous time 7z, when the
expected value is conditioned on observations up to the
time 7 (see Appendix A). Therefore, martingales have zero
drift. Martingale processes represent fair games and are
widely studied in quantitative finance [59,60], but their use
for stochastic thermodynamics has not been explored
much [26].

Here, we show that the process eS=()/%s js a martingale
(see Appendix B) and thus obeys

<e_Slm(t>/kB |a)6> — e_Slm<T)/kB S (19)

for t > 7, where the average is conditioned on a particular
trajectory (') from ¢ = 0 up to time 7. From Eq. (19), it
follows that martingale processes have a time-independent
average. Interestingly, for e~Sw()/%  this implies the
integral fluctuation theorem. Indeed, using Eq. (19) for
7 =0 and S, (0) = 0, it follows that (e~Sw()/k) = 1, for
arbitrary initial conditions [2,8,14,61].

On average, the total entropy S, (z) always increases,
and therefore, it cannot be a martingale. However, entropy
production is a submartingale, with the property

<Stot<t>|w6> Z Stot(7>’ (20)

Equation (20) follows from Eq. (19) and the fact that
e~Sw(/ks s a convex function of Sy, (7). From Eq. (20), it

follows that the average entropy production is greater than
or equal to zero for any initial condition. Note that this
statement is stronger than (S (7)) > 0, where the brackets
denote the steady-state ensemble.

A key property of martingales is Doob’s maximal
inequality (see Appendix A) [43,44]. For e Sw(/ks  this
inequality provides a bound on the cumulative distribution
of its supremum:

1
Pr(supyefo {e~(/ho} 2 2) < 5 (e k). (21)

Equation (21) is a stronger condition than the well-known
Markov inequality Eq. (A7), and it holds for steady-state
processes in discrete time and steady-state continuous-time
processes with jumps.

Another key property of martingales is Doob’s optional
sampling theorem. For entropy production, this theorem
generalizes Eq. (19) to averages conditioned on stochastic
stopping times 7 < ¢ (see Appendix A):

<e_Sw(([)/kB |St0t(T)> — e_Slut(T)/kB . (22)

The stopping time 7 = T(w) is the time at which a
trajectory o satisfies a certain criterion for the first time,
and therefore differs for each realization @; this is a
generalization of passage times. Equation (22) holds for
steady-state discrete-time processes and for steady-state
continuous-time processes with jumps. Equation (22)
implies that the expected value of e~Sw()/ks over all
trajectories for which the value of entropy at the stochastic
stopping time 7 (with T < t) is given by the value s,
equals e~Sw/ks,

IV. INFIMUM LAW

Using the martingale property of e~Sw()/ks we derive
the infimum law for entropy production, which holds for
nonequilibrium stationary processes. From Eq. (21) and the
integral fluctuation theorem, (e~Sw()/ks) =1, we find
the following bound for the cumulative distribution of
the supremum of e~ Sw(t)/ks,

_ 1

Pr(supeepp, {e 5/} 2 2) <= (23)

for 4 > 0. Equation (23) implies a lower bound on the

cumulative distribution of the infimum of Sy, in a given
time interval [0, #]:

Pr <S'L(t) > —s> >1—e, (24)
kg
where
Sint (1) = infre[o.t] St (7) (25)
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is the finite-time infimum and s > 0. The right-hand side of
Eq. (24) is the cumulative distribution of an exponential
random variable S with distribution function pg(s) = e™*.
From Eq. (24), it thus follows that the random variable
—Sine(7)/kg dominates stochastically over S, and this
implies an inequality in the mean values of the correspond-
ing random variables, as we show in Appendix C. From
Eq. (24), we thus find the following universal bound for the
mean infimum of entropy production:

(Sine (1)) 2 —kg. (26)

The infimum law given by Eq. (26) holds for stationary
stochastic processes in discrete time and for stationary
stochastic processes in continuous time for which e~Sw(1)/ks
is right continuous.

For the special case of isothermal processes, the total
entropy change Stot(t) = ASsys<t) - Q(t)/Tenv = ASsys(t)+
[W(#) — AE(1)]/Teny> with Q(#) denoting the heat absorbed
by the system from the thermal reservoir, W (z) denoting the
work done on the system, and AE(¢) denoting the internal
energy change of the system. We thus have a bound on the
infimum of the dissipated part of the work WS, which
reads

<W;1ri;g(t)> 2 _kBTenv' (27)

Here, we have defined the dissipated work Wds(z) =
W(t) — AF(t), with AF(t) = AE(t) — TepyASgys(t). For
an isothermal process for which all states have the same
energy and entropy, we have AF(¢) = 0, and thus

<Winf(t)> 2 _kBTenv’ <qup(t)> < kBTenw (28)
with W () the infimum of the work done on the system
and Qg (?) the supremum of the heat absorbed by the
system in a time z. Equation (28) implies that a homo-
geneous system in isothermal conditions cannot absorb, on
average, more than kgT.,, of energy from the thermal
reservoir (regardless of the number of degrees of freedom
contained in the system).

V. PASSAGE PROBABILITIES AND GLOBAL
INFIMUM OF ENTROPY PRODUCTION

Using the theory of martingales, we now derive general
expressions for the passage probabilities and the global
infimum of entropy production in continuous steady-state
processes without jumps.

A. Passage probabilities of entropy production with two
asymmetric absorbing boundaries

We consider the stochastic entropy production S, (w; ¢)

of a stationary probability measure [P in a time interval

[0, T®) (w)], which starts at 7 =0 and ends at a stopping

time 7 (w). Here, T is the first-passage time at which
Siot(@; 1) passes, for the first time, one of the two threshold
values —sg; < 0 or 5.5 > 0 [see Fig. 1(b) for the particular
case of 5.5 = si].

We define the passage probability Pf) as the probability
that entropy production first passes s}, before passing —sg,,
and, analogously, P) as the probability that entropy
production first passes —s;, before passing s.,. These
passage probabilities can be written as

P =p(a,), (29)
P2 =P(d_), (30)

with @, the set of trajectories w for which entropy
production first passes the positive threshold sg,, and ®_
the set of trajectories @ for which entropy production first
passes the negative threshold —sp:

0, = {0 € Q: S (@; T (@) = 53}, (31)
O_={weQ:Su(0; T () = =sir}.  (32)

Note that if s,/ is different from s;,, then @, and ®_ are not
each other’s time reversal. Therefore, the probabilities of
these sets are, in general, not related by local detailed
balance. We also define the conjugate probabilities F~’<+2) and

PP of the sets ®, and ®_ under the time-reversed
dynamics:

PP = (Po@)(®,). (33)
P? = (Po@)(d.). (34)

For a steady-state process out of equilibrium, i.e.,
(Sii(1)) > 0, Sy (7) passes one of the two boundaries in
a finite time with probability 1. We thus have

PP 4P =1, (35)
PO L PO — 1. (36)

In addition, we derive, using Doob’s optional sampling
theorem, the following two identities:

O
—_——= est:t kB, (37)
PY

o
ﬁ = 6_5““/ B, (38)

Equation (37) follows from the equalities
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P~ [, deo )
wed,

_ / o~ Suxlwr+09) ks g (40)
wed

= / e_smt(“’QT(z)(w))/de[P) (41)
wed

— emalks / dp (42)

wed
_ e_s«tt/kB[FD<q)+) (43)
_ esiliop?), (44)

In Eq. (40), we have transformed an integral over the
measure P o ® to an integral over the measure P, using the
definition of entropy production given by Eq. (18) and
e Sm(@te)/ks — Jim,_  e~Sw(@N/ks (see Appendix B). In
Eq. (41), we have replaced e=Su(®+)/ks by its value at the
stopping time, e~ Se@T?(@)/ks - ysing Doob’s optional
sampling theorem given by Eq. (22). Finally, in
Eq. (42), we have used the fact that for continuous
processes, Sy (@;T? (w)) = s, for all realizations of
the process @ in the set @

From Egs. (35)-(38), we find the following explicit
expressions for the passage probabilities:

St/ k8 1
@__€*" "7
Py = (a5)
1- _s;l/kB
piy _ L=l »

= es;"/kB _ e—s:’[/kB .

. . S e —
For the case of symmetric boundaries s, = S5 = S, WE
have

Sor/ kg
2 __¢
ey )
1
2)
P2 — T (48)

We can also discuss the limits where one of the two
thresholds becomes large, whereas the other threshold
remains finite. This corresponds to a process with one
absorbing boundary. If the lower threshold s, > kg, the
process ends with probability 1 in the positive threshold,

PP =1, (49)
P® =0, (50)

in accordance with the second law of thermodynamics. If,
however, the upper threshold becomes large, s, > kg,

entropy production can still first reach the positive thresh-
old, but with a probability that depends on s, since on
average entropy always increases. In this case, the passage
probabilities are given by

PR =1 — esi/ks, (51)
P(_z) = e_“fot/kB . (52)

From these limits, we can also determine the passage
probabilities Pi1> and PY") of entropy production with one
absorbing boundary. They denote, respectively, the prob-
ability to reach a positive boundary s, or a negative

boundary —s:
P =1, (53)
PU) = g=sw/ks, (54)

The above arguments also hold for sets ®, ; and ®_; of
trajectories @ that are conditioned on an initial coarse-
grained state I. They are defined as the subsets of,
respectively, @, and ®_, with the additional constraint
that the initial state is part of the coarse-grained state I, i.e.,
®(0) € 1. With these definitions, Egs. (45) and (46) can be
generalized to passage probabilities of entropy production
conditioned on the initial state; see Appendix D. Note that
this generalization holds for coarse-grained states that are
invariant with respect to time reversal, i.e., I = O(I).

In Fig. 2, we illustrate the expressions of the passage
probabilities, given by Egs. (45) and (46), by plotting
In( Pf)/ P®) as a function of the thresholds sg, and sg,.
Characteristic features of this figure are the lines of constant

ratio P(f) /P® which are given by

)

P +
s = kg In (1 + pT+2> (1- e_smz/kB)). (55)

In situations for which P(f) = P® =1/2, the stopping
process is unbiased, and the probability to reach the
threshold s;f, equals the probability to reach the threshold
—S- Since entropy production is a stochastic process with
positive drift, the passage probabilities can be equal only if
the negative threshold lies closer to the origin than the
positive threshold, sy, < si,. Additionally, it follows

from Eq. (55) that for Pf) = P®), the negative threshold
obeys s < kg In2, as we illustrate in Fig. 2. This bound
on sy, can also be discussed for passage probabilities
P2 #£1/2, for which the lower threshold must satisfy
Siy < —kg InP®@),

The discussion of stopping events of entropy production
with two boundaries is an example of the thermodynamics
of symmetry breaking. Thermodynamics of symmetry
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3 —

25

h

S*I)t/kB

FIG. 2. Entropy-production passage-probability ratioln [Pf) /P@]
as a function of the thresholds sg, and s, obtained from
Egs. (45) and (46). The solid white line is the curve for which
P? = P® = 1/2,anditfollows fromEq. (55). This curve converges
asymptotically to the value sg, = kgIn2 for s, — +oco (white
dashed line).

breaking is usually discussed in finite times [62]. Here, we
find the analogous relation s > kg In Pf) , which is
valid for stopping times.

B. Global infimum of entropy production

The global infimum of entropy production S{% is the
lowest value of entropy production over all times ¢t > 0
during one realization of the process. The global infimum

can be defined in terms of the finite-time infima S;(#) as
S55; = 1im Siue(1). (56)

Therefore, the global infimum is always negative and
smaller than or equal to the finite-time infima S, (7).
The statistics of global infima follow from the expressions
for the passage probabilities (45) and (46). This can be most
easily understood in terms of the cumulative distribution of
the global infimum

Pr(SS = =5) = Pr (Su(t) 2 =5, Y12 0).  (57)
The right-hand side of Eq. (57) is the survival probability
for entropy production in a process with one absorbing

boundary located at —s, with s > 0. Therefore, the survival
probability is the passage probability Pf) with i = +o0
and si, = s. This implies Pr(S% > —s) = 1 — e~/*s_ The
corresponding distribution of the global infimum is

e_s/kB

pse (=s) = ky (58)

and the mean of the global infimum is

(Siar) = —kg. (59)
These properties of the global infimum hold for continuous
and stationary processes. The infimum law, given by
Eq. (26), thus becomes an equality at large times. Since
Sing (1) > S, the equalities on the global infimum, given
by Egs. (58) and (59), valid for continuous processes, imply
the inequalities for the local infima, given by Egs. (24)
and (26), for continuous processes. Note, however, that
Egs. (24) and (26) are also valid for processes in discrete
time and processes in continuous time with jumps.

Remarkably, the distribution of the global infimum of
entropy production is universal. For any continuous steady-
state process, the distribution of the global infimum is an
exponential with mean equal to —kg.

VI. STOPPING TIMES OF ENTROPY
PRODUCTION

In this section, we derive fluctuation theorems for
stopping times of entropy production using the martingale
property of e~Sw()/k The stopping-time fluctuation theo-
rem entails fluctuation theorems for first-passage times of
entropy production and for waiting times of stochastic
processes.

A. Stopping-time fluctuation theorem

We consider the statistics of s,-stopping times 7, =
T(w) for which entropy production at the stopping time
takes the value s, i.., Sii(7T+) = Sior (Sior > 0). An
example of such an s,,-stopping time is the first-passage
time T(j), which determines the time when entropy pro-
duction S, (?) reaches the value s, > O for the first time.
Another example is given by the first-passage time T(f),
which is the time when entropy production S () passes a
threshold value s for the first time, given that it has not
reached —s,, before. The latter process is therefore equiv-
alent to a first-passage problem with two absorbing
boundaries. More generally, s,,-stopping times T<+"> can
be defined by multiple threshold crossings and the con-
dition Smt(T(f )) = S, With n the order of threshold
crossings.

We derive the following cumulative fluctuation theorem
for s,-stopping times 7', (see Appendix E):

P((I)nst)

-~ A= eslot/kB s 60
P©r (27.)) (60)

where P(®7 ) is the probability to observe a trajectory @
that satisfies the stopping-time criterion at a time
T, <t <400, and 7 , denotes the set of these trajec-
tories. The set ®7 (®r ,) describes the time-reversed
trajectories of @7 ;. It is generated by applying the time-
reversal map Oy to all the elements of the original set. The
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map Oy =T, o® time reverses trajectories @ with
respect to the reference time 7., (w)/2, and thus
X(O®r (w);7) = X(0; T, (w) —7), for stochastic proc-
esses X that are even under time reversal. The fluctuation
theorem for s.,-stopping times, Eq. (60), is valid for
continuous and stationary stochastic processes.

The probability density pr, of the s,-stopping time 7'
is given by

d
PT+([§ Stot) :ap(‘bns:)’ (61)

for t < 4o0. Entropy production is odd under time reversal,
ie., S (Or, (0); Ty (@) = =Sii(@; T (@)), as shown in
Appendix B 1. Therefore, we can associate with the
Se-stopping time 7', a (—s,)-stopping time 7'_ with the
property

(a) One absorbing boundary

A (1)
Stot (1) Iy

Stot

t

o

Stot(t)‘k/\
AV Y
M

—Stot

70

(b) Two absorbing boundaries

(2)
A T
Stor(?) - Stot
0 t
—Stot
7@

FIG. 3. [llustration of the first-passage times for entropy
production. (a) First-passage time 7’ for entropy production
with one positive absorbing boundary s, (top) and first-passage
time 7 for entropy production with one negative absorbing
boundary —s,, (bottom). (b) First-passage times T@ and T for
entropy production with two absorbing boundaries at +£s,,. At
the time T(+2), entropy production passes the threshold s, for the

first time without having reached —s,,, before. At the time 72,
entropy production passes the threshold —s,, for the first time
without having reached s, before.

®T+ (¢T+St> - ¢T_§t‘ (62)

For example, the (—s)-stopping time 7_ associated with

the first-passage time T(ﬁ) is the first-passage time 7
when entropy production first reaches —s,; see Fig. 3(a).
Analogously, the (—s,)-stopping time 7_ associated with

the first-passage time T f) is the first-passage time 7%
when entropy production first reaches —s,, without having
reached s, before; see Fig. 3(b).

We can thus identify the distribution of 7_ with the
measure of time-reversed trajectories:

pr (i =sw) = L PO (Br.0). (63

This equation can be applied to all pairs of stopping times
T, and T_ related by Eq. (62). From Eqgs. (60), (61),
and (63), we get the stopping-time fluctuation theorem for
entropy production,

Pr.(Bsw) _ o (64)

Pr_ (t; _Stot)
The stopping-time fluctuation theorem for entropy produc-
tion, given by Eq. (64), generalizes the results derived in
Ref. [47] for first-passage times. Below, we discuss two
interesting implications of Eq. (64) for the stopping-time
statistics of entropy production.

B. Symmetry of the normalized stopping-time
distributions

The stopping-time fluctuation relation Eq. (64) implies
an equality between the normalized stopping-time distri-
butions pr (#]sy) and pr_(t| = s), Which reads

pT+(t|stot) = pr_(t| = Sio0)- (65)

The normalized distributions are defined as

pr. (1 Sior)
Pr, (t]s100) = - =

= o a e (66)
fo dipr, (3 Stot)

pr_(t;=S0)
t|— = = . 67
pT_( | Slot) f(;x, dtpT_ ([; _Stot) ( )

The symmetric relation Eq. (65) comes from the fact that
the ratio of the stopping-time distributions in Eq. (64) is
time independent. Consequently, the stopping-time statis-
tics for entropy production are identical for the ensembles
with stopping events for positive and negative entropy
production.

The stopping-time fluctuation theorem (64) thus implies
that the mean stopping time, given that the process
terminates at the positive boundary, is equal to the mean
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stopping time, given that the process terminates at the
negative boundary:

(Ty) =(T-). (68)
with (Ty) = [ detpr (1]s) and (T_) =
Jo ¥ dttpr (1] = si). This remarkable symmetry extends

to all the moments of the stopping-time distributions. A
similar result has been found for waiting-time distributions
in chemical kinetics [63—69], for cycle time distributions in
Markov chains [68,70], and for decision-time distributions
in sequential hypothesis tests [47,71]. These results could
therefore be interpreted as a consequence of the funda-
mental relation Eq. (65) for stopping-time fluctuations of
entropy production.

C. Passage probabilities for symmetric boundaries
Equation (64) implies the following relation for the ratio
of the passage probabilities of entropy production:
P,
P

— estot/kB . (69)

Passage probabilities are the probabilities that entropy
production satisfies the stopping-time criterion in a finite
time. They read

P, = / dtpr (1:500). (70)
P—:A d[pT_(t;_stot)- (71)

Equation (69) follows directly from integrating Eq. (64) over
time. The relations (53) and (54) for passage probabilities of
entropy production with one absorbing boundary, and the
relations (47) and (48) for passage probabilities of entropy
production with two symmetric absorbing boundaries, are
examples of passage probabilities that satisfy Eq. (69).

D. Fluctuation relation for waiting times

An interesting question, closely related to entropy
stopping times, is the following: What is the waiting time
T~ a process takes to travel from state I to state II. Here,
we derive exact relations characterizing (s, )-waiting
times 7', The (+s,y)-waiting time 7'7"!" denotes the time
a process takes to travel from state I to state II and to
produce a total positive or negative entropy s, (see
Appendix E 4).

Following Kramers [72], we define states as points in
phase space, i.e., I = {¢;} and Il = {qy}. In Appendix E 4,
we also consider the more general case for which states
consist of sets of points, which may also contain odd-parity
variables.

We first derive a cumulative fluctuation theorem that
applies to trajectories starting from a given initial state I
(see Appendix E 3):

P(®r, < NTY)
P(©r, (Pr, o, NTY))

— eswl/kB s (72)

with T the set of trajectories @ for which w(0) € 1.
We use Eq. (72) to derive the following fluctuation
theorem for waiting times (see Appendix E 4):

pr-n(t)

— Senv/kB 73
pao) 7

Pss (qII )
a1)

where ., = St + kB log is the change in the

environment entropy dur1ng the transition from state I to
state II. Equation (73) relates the waiting-time distributions
between two states with the environment-entropy change
along trajectories connecting both states.

We normalize the distributions in Eq. (73) and find a
relation for the normalized waiting-time distributions,

PT':"(t|Senv) = pri-i (1] = Seny ) (74)

and for the associated passage probabilities,

1T
P

PI_I—>I — esenv/kB . (75)

Interestingly, the relations Eqs. (73)—(75) are similar to the
stopping-time relations (64), (65), and (69) discussed
above. However, in Egs. (73)—(75), the environmental
entropy production appears, instead of the total entropy
production, because the trajectories are conditioned on
passage through initial and final states. For isothermal
processes, Sepy = —Q/Teny, With Q the heat absorbed by
the system and T,,, the temperature of the environment.

VII. APPLICATION TO SIMPLE
COLLOIDAL SYSTEMS

Infima of entropy-production fluctuations, and stopping
times of entropy production, can be calculated for specific
stochastic processes. In this section, we discuss these
quantities for the dynamics of a colloidal particle with
diffusion coefficient D, which moves in a periodic potential
V with period 7, and under the influence of a constant
external force F [73,74] (see Fig. 4 for a graphical
illustration). This process has been realized in several
experiments using colloidal particles trapped with toroidal
optical potentials [30,75-77]. We discuss how our results
can be tested in these types of experiments.

We describe the dynamics of this colloidal particle in
terms of a one-dimensional overdamped Brownian motion
with periodic boundary conditions. The state of the particle
at time 7 is characterized by a phase variable ¢(7) € [0,7).
In the illustration of a ring geometry in Fig. 4, ¢ is the
azimuthal angle and # = 2. Equivalently, one can con-
sider a stochastic process X(¢) given by the net distance
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FIG. 4. Ilustration of a Smoluchowski-Feynman ratchet. A
Brownian particle (gray sphere) immersed in a thermal bath of
temperature T.,, moves in a periodic potential V(¢) (black
shaded curve) with friction coefficient y. The coordinate ¢ is the
azimuthal angle of the particle. When applying an external
force F = yv in the azimuthal direction, the particle reaches
a nonequilibrium steady state. In this example, V(¢) =
kg Teny In[cos(¢p) + 2], a = Rcos(¢p) and f = Rsin(¢), with

R=2.
traveled by the Brownian particle up to time t:
X(1) = ¢(t) —¢N(t), where N(t) =N_(t)—N_(t) is

the negative winding number, or the number of turns
N_(¢) against the direction of the external force minus
the number of turns N, (¢) in the direction of the external
force, of the particle up to time ¢ [78]. The time evolution of
X (1) obeys the Langevin equation

dX(r)  10V(X(1))
dr _; Ox +

v+{(1), (76)

where y is the friction coefficient, v = F/y is the drift
velocity, and ¢ is a Gaussian white noise with zero mean
(¢(1)) =0 and with autocorrelation ((#){(¢)) =
2D5(t — t'). If the Einstein relation holds, D = kgT.,,/7,
with T.,, the temperature of the thermal reservoir. In
Eq. (76), V(x) is the periodic potential of period ¢,

_ V() _ V()
Vet £) = V(x). and PG = T

Ox
The steady-state entropy production after a time ¢ is
[73,79]

f))((((oo))# dye(v(y>_Fy>/kBTenv

fx((t)+f dye(VO)=F) ke Ten,

t

Sit(t) = kg In (77)

For the drift-diffusion process with V(x) =0, the total
entropy production reads

Selt) = ke 5 X (1) = X(0)]. (78)

Equation (78) implies that the first-passage and extreme-
value statistics of entropy production in the drift-diffusion

process follow from the statistics of the position X(7) of a
drifted Brownian particle on the real line. Consequently, the
drift-diffusion process is an example for which the infimum
and first-passage statistics of entropy production can be
calculated analytically. We also consider a Smoluchowski-
Feynman ratchet whose dynamics is given by Eq. (76) with
the nonzero potential

V(x) =

as illustrated in Fig. 4. For the potential (79) with
Vo = kgTeny, the stochastic entropy production in a steady
state, given by Eq. (77), equals [79]

Vo In(cos(2zx/€) + 2), (79)

Swlt) __F
kB kBTenv

w(X(1). 1)
. 0

= f2[cos(2zx/¢)+

(X(1) = X(0)) -

with f = F¢/(2rnkgTe,y) and y(x, f)
2] = fsin(2zx/¢) + 2.

In the following, we present analytical results for the
infima and passage statistics of entropy production in the
drift-diffusion process, and we present simulation results
for the Smoluchowski-Feynman ratchet with the potential
(79). The simulation results are for parameters correspond-
ing to conditions in optical tweezers experiments [75-77],
namely, for a polystyrene spherical Brownian particle of
radius 1 ym immersed in water at room temperature.

A. Infimum statistics

We present the statistics of infima of entropy production
for the drift-diffusion process and the Smoluchowski-
Feynman ratchet in a steady state.

In Fig. 5, we show that the cumulative distribution of the
finite-time entropy-production infima S;,¢(¢) is bounded
from below by 1 — ¢™*, which confirms the universality of
Eq. (2). We compare analytical results for the drift-
diffusion process [V (x) = 0, dashed lines] with numerical
results for the Smoluchowski-Feynman ratchet [with a
potential V(x) given by Eq. (79), solid lines], for different
values of the mean entropy production 5(¢) = (S(?))/kg.-
The analytical expression for the cumulative distribution of
Sin(7) is, for the drift-diffusion process, given by (see

Appendix F)
Pr( 1;2” > —s> - [erfc <_2_T<—x>>
el o

where s > 0, erfc(x) = (2/y/7) [ e dy is the comple-
mentary error function, and 5(z) is the average entropy
production in a steady state at time ¢, which for the drift-
diffusion process is 5(f) = (v?/D)t. Interestingly, the
bound saturates for large values of the average entropy
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FIG. 5. Cumulative distributions of the infimum of entropy
production for a Smoluchowski-Feynman ratchet in a steady
state for different values of the mean entropy change
5(1) = (Sit(2))/kg. Simulation results for the Smoluchowski-
Feynman ratchet with the potential (79) (solid lines) are com-
pared with analytical results for the drift-diffusion process given
by Eq. (81) (dashed lines), and with the universal bound given by
1 — e~ (rightmost yellow curve). Simulation parameters: 10*
simulations with T.,, =300 K, £ = 2z nm, y = 8.4 pNs/nm,
Vo = kg Teny, simulation time step Ar = 0.00127 s, and total
simulation time t = 0.4 s. The external force F and the drift
velocity v are determined by the average entropy production 5(z).

production 5(7), which illustrates the universal equality in
the distribution of the global infimum of entropy produc-
tion, given by Eq. (3). Remarkably, as shown in Fig. 5, the
cumulative distribution for the infimum of entropy pro-
duction of the Smoluchowski-Feynman ratchet is nearly
identical for different shapes of the potential V(x). This
equivalence between the infimum cumulative distributions
holds to a good approximation also for small values of 5(¢),
where the shape of the potential V(x) affects the entropy-
production fluctuations.

Second, in Fig. 6, we illustrate the infimum law,
(Sint(2)) > —kg. We show the average finite-time infimum
(Sine(7)) as a function of the mean entropy production
5(t); we compare analytical results for the drift-diffusion
process (dashed lines) with numerical results for the
Smoluchowski-Feynman ratchet with a potential given
by Eq. (79) (solid lines). The analytical expression for
the drift-diffusion process is (see Appendix F)

5(1) s (82)

where erf(x) = 1 — erfc(x) is the error function. In the limit
of large times, the global infimum (S$%) = —kg, in accor-
dance with the universal equality (4). The results in Fig. 6
show that the mean finite-time infimum of entropy pro-

duction has a functional dependence on 3(¢) that is to a

of , ,
| X At =0.0127s
o2l % + At =0.00127s
‘ -~ - Drift-diffusi
§ *‘ 1) Irrusion
= 04y
= *
= 0.6} \
~ .08/ * X
. Xax + 7

FIG. 6. Mean of the finite-time entropy-production infimum
(Sin(7)) as a function of the mean entropy change 5(¢) =
(Sii(2))/kg for a Smoluchowski-Feynman ratchet in a steady
state. Simulation results for the Smoluchowski-Feynman ratchet
with the potential (79) (symbols) are compared with analytical
results for the drift-diffusion process given by Eq. (82) (dashed
lines), and with the universal infimum law given by —kg (yellow
thick bar). Different symbols are obtained for different simulation
time steps Af. Simulation parameters: 10* simulations with
Tenw =300 K, ¢ =2znm, y=2384pNs/nm, V,=kgTen.,
and total simulation time t = 0.4 s.

good approximation independent of the potential V(x).
This points towards a universal behavior of the statistics of
local infima of entropy production.

B. Passage probabilities and first-passage times
1. Symmetric boundaries

We illustrate our universal results on passage probabil-
ities and first-passage times for the drift-diffusion process
and the Smoluchowski-Feynman ratchet.

For the drift-diffusion process, we recover the first-
passage-time fluctuation theorem for entropy production,
given by Eq. (8), from the analytical expressions of the
first-passage-time distributions for the position of a
Brownian particle (see Appendix G).

We also compute, using numerical simulations, the first-
passage-time statistics for entropy production for the
Smoluchowski-Feynman ratchet in a steady state and with
potential V(x) given by Eq. (79). First, we study the first-

passage times Tf) for entropy production with two
absorbing boundaries at the threshold values s, and
—Sior (With s, > 0). Figure 7 shows the empirical first-
passage-time distribution pT@(t; Sior) to first reach the
positive threshold (blue squares) together with the first-
passage-time distribution p_ ) (#; =) to first reach the
negative threshold (red circles; the distribution is rescaled
by e*w/*s). Since both distributions coincide, we confirm
the validity of the first-passage-time fluctuation theorem
given by Eq. (8). Moreover, the functional dependence of

the empirical passage probabilities Pf) and P® on the
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FIG. 7. Empirical two-boundary first-passage-time distribu-
tions of entropy production to first reach a positive threshold
pTa)(t; Sior) (blue squares) and the rescaled distribution for the

negative threshold p_ o (#; s )€’/ (red circles) for the
Smoluchowski-Feynman ratchet with the potential (79) in a
steady state. The distributions are obtained from 10* numerical
simulations, and the threshold values are set to +s,,, = +2.2kp.
The simulations are done using the Euler numerical scheme with
the following parameters: F = 0.64 pN, T, =300 K,
¢ =2z nm,y = 8.4 pNs/nm, Vy = kg T,,,, and simulation time
step At = 0.0127 s. Top inset: Empirical passage probabilities of
entropy production to first reach the positive threshold (P(f) , blue
squares) and to first reach the negative threshold (P%), red circles)
as a function of the threshold value s,,. The analytical expres-
sions for P(f) (blue solid line), given by Eq. (47), and for P®@ (red
dashed line), given by Eq. (48), are also shown. Bottom inset:
Logarithm of the ratio between the empirical passage probabil-
ities Pf) and P? as a function of the threshold value s,
(magenta diamonds). The solid line is a straight line of slope 1.

threshold value s, obeys the expressions given by
Eqgs. (47) and (48) (see top inset in Fig. 7). As a result,
the integral first-passage-time fluctuation theorem given by
Eq. (69) is also fulfilled in this example (see bottom inset in
Fig. 7). Notice that, for this example, analytical expressions

for Pf) and P®) can be obtained with the method described
in Refs. [80,81].

As a second case, we consider two one-boundary first-
passage problems for entropy production. We study the
first-passage times 77’ for entropy production with one
absorbing boundary at the threshold value s, and the
corresponding first-passage times TU) at the negative
threshold value —s,,,. We obtain numerical estimates of
the distribution Py (1; sor) and its conjugate distribution
Py (£ =S Figure 8 shows empirical estimates of these
first-passage-time distributions and confirms the validity of
the first-passage-time fluctuation theorem given by Eq. (8).
In the top inset of Fig. 8, we show that the passage
probabilities P(+1> and PU) are given by the analytical
expressions in Eqs. (53) and (54), and in the bottom
inset, we verify the integral first-passage-time fluctuation

One-boundary
first-passage probability

—_
o

10 102 108 10*

Time (s)

FIG. 8. Empirical one-boundary first-passage-time distribu-
tions of entropy production to first reach a positive threshold
pT(l)(t; Sit) (blue squares), and the rescaled distribution for the

negative threshold pT(_U(t; —sm)e“m'/ ks (red circles), for the
Smoluchowski-Feynman ratchet with the potential (79) in a
steady state. The estimate of p o (fi0) [Py (f=s)] is
obtained by measuring the time when entropy production first
reaches the single absorbing boundary s = 2.2kp
(=St = —2.2kg) in 10* simulations. The simulations are done
with the same parameters as in Fig. 7, and the empirical
probabilities are calculated over a total simulation time of
Tmax = 20 8. Top inset: Empirical passage probabilities of en-
tropy production with a positive-threshold (P(l), blue squares)
and with a negative-threshold (PW), red circles) as a function of
the values of the thresholds. For comparison, the expression for
P given by Eq. (53) (blue solid line) and the expression for P
given by Eq. (54) (red dashed line) are also shown. Bottom inset:
Logarithm of the ratio between P(+1) and PU) as a function of the
threshold value (magenta diamonds). The solid line is a straight
line of slope 1.

theorem given by Eq. (69) for one-boundary first-passage
processes.

2. Asymmetric boundaries

We now discuss the passage statistics for entropy
production with asymmetric boundaries. In Appendix G,
we discuss the drift-diffusion process, whereas here we
discuss the Smoluchowski-Feynman rachet with a potential
given by Eq. (79). In Fig. 9(a), we show the distributions of
the first-passage times p. o (7 5y) and p_o (t; =si) With
two boundaries located at s;, = 2kg and —sg, = —kg.
Interestingly, the ratio of the two distributions
pT(f)(t; Swi)/ Py (t;=si) is time dependent. Therefore,

the first-passage-time fluctuation relation, given by
Eq. (8), does not extend to asymmetric boundaries.
Consequently, for asymmetric boundaries, the mean first-

passage times <T<+2)> and (T?) to first reach, respectively,
the positive and negative boundaries are, in general,
different. In Fig. 9(b), we show numerical results for the
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FIG. 9. First-passage statistics of entropy production with two
absorbing and asymmetric boundaries at values sy, = 255, for the
Smoluchowski-Feynman ratchet with potential (79) in a steady
state. (a) The first-passage-time distribution pr)(t; sie) (blue

open squares) for entropy production to first reach si, = 2kg
given that it has not reached —sg,; = —kp before, and the first-
passage-time distribution p_ o) (#; —s;) (red open circles) to first
reach —sg, given that it has not reached s, before. The data are
from 10* simulations of the Smoluchowski-Feynman ratchet
using the same simulation parameters as in Fig. 7. (b) Passage
probabilities for entropy production P(f) (blue filled squares) to
first reach the positive threshold s/, given that it has not reached
—s,; before, and the passage probability for entropy production
P®) (red filled circles) to first reach the positive threshold —sg,
given that it has not reached s;,, before. We show the passage
probabilities as a function of the negative threshold value sg;;
the positive threshold is s;5 = 2sy;,. The curves represent the
analytical expressions for the passage probabilities given by

Egs. (5) and (6) (P\?), blue solid curve; P), red dashed curve).

entropy-production passage probabilities Pf) and P? as a
function of the value of the negative threshold sg.
Simulation results are in accordance with the universal
expressions given by Egs. (5) and (6).

C. Fluctuation theorem in waiting times

We illustrate the waiting-time fluctuation theorem, given
by Eq. (9) [or Eq. (73)], for the Smoluchowski-Feynman
ratchet. We compute, using numerical simulations, the
waiting times along forward trajectories I — II and

backward trajectories II — I between two states charac-
terized, respectively, by the coordinates X = X; and
X = Xy, as illustrated in Fig. 10(a). In agreement with
the fluctuation theorem for waiting times, we find that the
normalized distribution pyi-n(#[seny) is equal to the nor-

malized distribution pyu-i1(f| — s.,,) [see Fig. 10(b)]. Here,

the environment-entropy change is determined by the heat
exchange between the system and the environment, i.e.,
Seny = =0/ Teny = F(XH - XI)/Tenv + [V(XI) - V(XH)]/

Tenv- In the inset of Fig. 10(b), we show simulation results
for the ratio of passage probabilities, which is in agreement
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FIG. 10. Waiting-time statistics between the states X and Xy; as
illustrated in panel (a) for the Smoluchowski-Feynman ratchet
with the potential (79). In panel (b), simulation results are shown
for the normalized waiting-time distributions of transitions I — II
(blue squares) and of reversed transitions Il — I (red circles). The
simulations are done with the same parameters as in Fig. 7, and
the distributions are obtained from 10* trajectories. Inset:
Logarithm of the ratio between P’ and P"=! as a function
of the environment-entropy change in the transition I — II
(magenta diamonds). The transition probability P'=T(P1=T) is
the fraction of the trajectories starting from X (Xy) at t = 0 that
reach Xy (Xj) at a later time ¢ > 0 without returning to X; (Xy)
before. The solid line is a straight line of slope 1. The data in the
inset are obtained from 10° simulations starting from state I and
10° simulations starting from state II.
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with our theoretical result Eq. (75), i.e., P1/PI=T =
e_Q/kBTenv .

VIII. APPLICATIONS TO ACTIVE
MOLECULAR PROCESSES

In contrast to the driven colloidal particles discussed in the
last section, which are best viewed as continuous stochastic
processes, many biochemical processes are often described
in terms of transitions between discrete states. Examples are
the motion of a molecular motor on a substrate with discrete
binding sites or a chemical reaction that turns reactants into
products. The statistics of waiting times of discrete processes
can be obtained by a coarse-graining procedure of continu-
ous processes, which we describe below. We apply our
theory to a chemically driven hopping process with 1 degree
of freedom and to the dynamics of RNA polymerases
described by 2 degrees of freedom.

A. From continuous to discrete processes

We can apply the theory developed above to systems that
progress in discrete steps using a coarse-graining procedure
[82,83]. We consider a single continuous mesoscopic
degree of freedom X, which can be used to describe a
stochastic cyclic process. The variable X can be interpreted
as a generalized reaction coordinate or the position coor-
dinate of a molecular motor, and it obeys the Langevin
equation (76) with the same noise correlations. The
effective potential V(X) now describes the free energy
profile along a chemical reaction, or a position coordinate,
of a molecular motor.

We coarse grain the continuous variable X by consid-
ering events when the process X passes discrete points at
positions X,,. The transition times between these points are
examples of waiting times, similar to those in Kramers’
theory [72]. An example is shown in Fig. 11, for which the
points X, are located at the minima of the potential V. We
introduce the transition times 7',_,,,.; when the process X
reaches the final state X, for the first time, starting from
the initial state X,;, and given that the process X has not
reached X,,_; before; we allow for several passages of the
process X through X,,. Similarly, we define T, _,, for
the reverse process.

The entropy change associated with a transition is
Siort = F€/Teny, where we have used the fact that the
process is cyclic. Entropy production is therefore related
to position X, by

F?
Slt) = =N (1) 1. (83

env
where N (1) = [X3,(0) — X,(#)]/¢ is the number of steps in
the negative direction minus the number of steps in the
positive direction up to time ¢. The transition times are thus

first-passage times of entropy production: 7,41 = T(?

F p p
_> — + V(X)
4
I I [} 1 I I
I I I I 1 I
L@ @ @ @ @)
1 + I & 1 & 1 & I & I
P Y Y-V Y Ran W

w“—r ) “— “— w“—
T£2> T£2> T£2> T£2) TEZ)

» X

FIG. 11. Coarse-graining procedure from a continuous Lange-
vin process (top) to a discrete Markov process (bottom). The
horizonal axis denotes either a chemical coordinate, which
quantifies the progress of a chemical reaction, or a position
coordinate, which quantifies the position of a molecular motor. In
the Langevin description, this coordinate is described by the
position of a Brownian particle (gray circle) moving in a periodic
potential V(X) of period # (blue curve) and driven by an external
bias F = AG/¢ — F e In the discrete process, this coordinate
is described by the state of a Markov jump process with stepping
rates k, and k_, which are related to stopping times and passage
probabilities of entropy production through k, = P(f)(l/ T<+2>)
and k_ = P?)(1/T?). Our coarse-graining procedure corre-
sponds to a partitioning of the coordinate axis into intervals
(green shaded areas) centered on the minima of the potential
(dashed lines).

and Ty iy = T@, with thresholds sg, = F£/T.ny. The
probabilities for forward and backward hopping are the

passage probabilities for entropy production Pf) and P®),
The hopping probabilities and the statistics of transition
times therefore obey the universal equalities that we have
derived in Secs. IV=VI. They can also be related to the

usually discussed transition rates k. = Pf) (1/ TS?), which
satisfy the condition of local detailed balance k,/k_ =
ef?/keTean [40-42], as follows from Eqs. (65) and (69).

B. Chemically driven hopping processes described
by 1 degree of freedom

Enzymes or molecular motors that are driven out of
equilibrium by a chemical bias or an external force are
examples of stepping processes. The thermodynamic bias
of a chemical transition is often of the form
Ft = AG — Fesn?, where AG denotes the chemical free
energy change associated with the chemical transition and
F een 18 an externally applied force opposing motion driven
by positive AG.

We are interested in the statistics of chemical transition
times 7T',_,,r, Which are the first-passage times of entropy
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production Tf) and 7). Equation (65) implies that the

normalized distributions of T(+2> and T?) are identical. This
symmetry condition of the distributions of forward and
backward transition times could be tested experimentally.

For instance, the relation (Tf) ) = (T@) on the mean dwell
times could be tested experimentally for molecular motors
that make reversible steps, for example, FyF,;-ATP syn-
thases [84] and RNA polymerases in the backtracking
state [85,86].

We can also discuss the extreme-value statistics of the
number of steps N against the direction of the bias. We
denote by N (f) >0 the maximum number of steps
against the direction of the bias, which is the most extreme
fluctuation opposing the direction of the average current.
The infimum law Eq. (1) implies an upper bound for the
average of N, (t) given by

kBTenv
Nopax (1) L ——F7——,
< maX( )> —_ AG _ Fmechf

(84)
for AG > F..,Z- The right-hand side of Eq. (84) is the
inverse of the Péclet number Pe = vZ/D. Moreover, Eq. (2)
implies that the cumulative distribution of N, (¢) is
bounded from above by an exponential

Pr (Nmax(t) > l’l) < e_n(AG_Fmechf)/kBTenv’ (85)

with n > 0. Equation (85) states that the probability that a
molecular motor makes more than n backsteps is smaller
than or equal to e™(A0~Fueen?)/ks e Therefore, our results
on infima of entropy production constrain the maximum
excursion of a molecular motor against the direction of an
external force or a chemical bias.

C. Dynamics of RNA polymerases: An example
with 2 degrees of freedom

We now apply the general results of our theory to a more
complex example of a biomolecular process, which cannot
be described in terms of a single degree of freedom,
namely, the dynamics of RNA polymerases on a DNA
template. RNA polymerases transcribe genetic information
from DNA into RNA. During transcription, RNA polymer-
ases adopt two different states: the elongating state and the
backtracking state [85]. Elongation is an active process
where RNA polymerases move stepwise and unidirection-
ally along the DNA while polymerizing a complementary
RNA driven by the chemical free energy of the incorpo-
rated nucleotides, as illustrated in Fig. 12(a). In the
elongating state, the motion of RNA polymerase and the
polymerization reaction are fueled by the hydrolysis of
ribonucleotide triphosphate (NTP), which provides the
free energy AGytp per nucleotide [87]. Backtracking is
a passive motion of the RNA polymerase on the DNA
template that displaces the RNA 3’ end from the active site

(a) Elongation

Backtrack RNA Polymerase
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RNA
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FIG. 12. Stochastic model for transcription. (a) Sketch of an
elongating RNA polymerase. The polymerase can either incor-
porate a new nucleotide in its active site (red shaded square) or
enter a backtracked state. (b) Sketch of a backtracking RNA
polymerase. The polymerase diffuses along the DNA template
until its active site (red shaded area) aligns with the 3° end of the
transcribed RNA. (c) Network representation of a Markov jump
process describing the dynamics of RNA polymerases. The X
coordinate gives the position of the polymerase along the DNA
template, and the Y coordinate gives the number of nucleotides
transcribed. Green nodes represent elongating states, and brown
nodes represent backtracked states. The inset shows all possible
transitions from or to an elongating state. The green solid arrow
denotes active translocation of the RNA polymerase, and the
dashed green arrow denotes its time-reversed transition. Because
the heat dissipated during the forward translocation is much
larger than kgT,,,, the rate of the backward transition is very
small. The blue arrow corresponds to the entry in a backtracked
state, and the brown arrow is the exit from a backtracked state into
the elongating state. In the backtracked state, motion is biased
towards the elongating state.

of the polymerase and leaves the enzyme transcriptionally
inactive [88], as illustrated in Fig. 12(b). Transcription is
thus an active polymerization process that is interspersed
by pauses of passive stepping motion.

The main properties of the dynamics of RNA polymer-
ases are the following: In the elongating state, RNA
polymerases can either continue elongation [green arrows
in Figs. 12(a) and 12(c)] or enter a backtracking state [blue
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arrows in Figs. 12(a) and 12(c)]. A RNA polymerase in the
backtracking state diffuses on the DNA template until its
active site is realigned with the 3’ end of the RNA [85,89].
This diffusive motion is often biased by either the presence
of external opposing forces F,.., or by an energy barrier
AVygna related to the secondary structure of the nascent
RNA [91,92]; see Fig. 13.

The dynamics of RNA polymerase can thus be described
as a continuous-time Markov jump process on a two-
dimensional network [92-94]; see Fig. 12(c) . The state of a
polymerase is determined by two variables: X denotes the
position of the polymerase (in nucleotides) along the DNA
template, and Y denotes the number of NTP molecules
hydrolyzed during elongation. When X = Y, the polymer-
ase is in the elongating state, and when X <Y, the
polymerase is in the backtracked state. The variable
N =Y — X denotes the depth of the backtrack. We con-
sider, for simplicity, a stationary process with steady-state
distribution pg(X,Y) on a homogeneous DNA template.
Therefore, the steady-state probability to find the polymer-
ase in an elongating state is py(0) = ps (X, X), and the
steady-state probability to find the polymerase backtracked
by N steps is pg(N) = p(X, X + N).

Two relevant quantities in transcription are the pause
density [85,90,93,95], i.e., the probability per nucleotide
that an elongating polymerase enters a backtracked state,
and the maximum depth of a backtrack [85,86], i.e., the
maximum number of backtracked nucleotides. Our theory
provides expressions for the statistics of these quantities in
terms of infima and stopping-time statistics of entropy
production.
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FIG. 13. The dynamics of RNA polymerase during back-
tracking. The motion of the polymerase is represented as a
diffusion process in a tilted periodic potential with an absorbing
boundary on the right (which corresponds to the transition from
the backtracked state into the elongating state). The period of the
potential is equal to the length of one nucleotide (nt). The
potential is tilted towards the absorbing boundary due to an
energetic barrier AVgya, and an external opposing mechanical
force Fen pushes the polymerase away from the absorbing
boundary. This process can be coarse grained into a discrete one-

dimensional hopping process with waiting times T(f) and T®),

If the probability flux from the elongating state into the
backtracked state is smaller than the flux of the reverse
process, which implies that entropy S, reduces when the
polymerase enters a backtrack, the pause density is equal to
a passage probability P of entropy production. In
addition, we consider that an elongating polymerase only
moves forward. These conditions are necessary for back-
track entry to correspond to a first-passage process of
entropy production with two absorbing boundaries of

different sign. The probability Pf) then corresponds to
the probability for the polymerase to attach a new nucleo-
tide, as illustrated in the inset in Fig. 12(c). These
probabilities obey Egs. (5) and (6) [96], with —s, =
ASpe + Frneen?/ Teny and stht = (AGNTP - Fmechf)/Tenv-
Here, AS,. = —kgIn [pg(1)/ps(0)] is the system entropy
change when entering the backtrack. If AGyqp/
kgTeny > 1, which holds in typical experiments [93], we
have ¢~*w/*s < 1, and thus we find, using Egs. (51)-(52),
simple expressions for the pause densities and the prob-
ability to continue elongation,

Pf) ~ 1 —_ e(TenvASbe+Fmechf)/kBTenv’ (86)
P(_Z) = 6(TcnvASchrchchf)/kBTcnv_ (87)

The backtrack entry of a polymerase, and therefore the
pause density, is thus determined by a kinetic competition
between an entropic term T.,,ASy. < 0 and the work done
by the force acting on the polymerase, F..,Z > 0.

We can also discuss the dynamics of backtracked RNA
polymerases. During a backtrack, the dynamics of RNA
polymerase is captured by a one-dimensional biased
diffusion process with an absorbing boundary correspond-
ing to the transition to elongation [86]; see Fig. 13. During
backtracking, the bias F = AVina/? — Feens Where
AVgina 1S an energy barrier associated with the secondary
structure of the nascent RNA [90-92]. The waiting times of
the corresponding Markov jump process are equal to first-
passage times of entropy production. For a polymerase with
backtrack depth N, the waiting time to decrease N by one

T f) (N) and the waiting time to increase N by one T)(N)
are first-passage times of entropy production with two
absorbing boundaries s, = —kgln[py(N—1)/ps(N)| +
Ff/Tenv and _St_()t:_kBln[pss(N+l)/pss(N)]_Fl’ﬁ/Tenv-
If the bias dominates, the two boundaries have opposite
sign, and we can use the theory of stopping times developed
here. The hopping probabilities for forward and backward
steps in the backtrack then follow from our general
expressions for passage probabilities of entropy produc-
tion, Egs. (5) and (6).

The maximum backtrack depth N, (), at a time ¢ after
entering the backtrack state, is related to the infimum of
entropy production, S;¢(¢). The infimum law (1) therefore
provides a thermodynamic bound on the average of the
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maximum extent of a backtrack. Using Eq. (84) with
AVgna = 0.5kp T,y and  Feaq? = 0.4kgTe,, [90-92],
we estimate the upper bound for the maximum backtrack
depth (N (7)) < 10 nucleotides; we have used the
parameter values Fp.q, =5 pN, kgT.,, =4 pNnm, and
¢ = 0.34 nm (the distance between two nucleotides).
Similarly, from Eq. (85), we find that the cumulative
distribution of the maximum backtrack depth is upper
bounded by an exponential [97]. This is consistent with
single molecule experiments on RNA polymerase back-
tracking, which have reported that the distribution of the
maximum backtrack depth is exponential (see Fig. S3
in Ref. [85]).

IX. DISCUSSION

The second law of thermodynamics is a statement about
the average entropy production when many realizations of a
mesoscopic system are considered. This fundamental law
leaves open the question of whether fluctuations of entropy
production also obey general laws [37-39,47,78,98-101].
In the present paper, we have demonstrated that the
infimum of entropy production and stopping times of
entropy production exhibit statistical features that are
universal and do not depend on the physical nature of a
given system. The simplest example that illustrates these
universal features is the case where entropy production
follows a stochastic drift-diffusion process described by the
Langevin equation

Bl _ s 500 (59)
t

where the constant drift velocity »g > 0 corresponds
to the average entropy production rate. The Gaussian
white noise #5g(f) has zero mean, and the autocorre-
lation (n5(t)ns(0)) = 2Dg6(7). The diffusion constant
Dg characterizes entropy-production fluctuations and
obeys

DS = kas. (89)

Equations (88) and (89) can be derived from Eq. (78).
These equations exhibit all the universal properties of
entropy production discussed in this paper; see Sec. VIL

The infimum of entropy production up to a given time
must be either zero or negative, even though entropy
production is always positive on average. Here, we have
shown that when averaging over all realizations in a
nonequilibrium steady state, the average infimum of
entropy production is always greater than or equal to
—kg. Furthermore, the global infimum of entropy produc-
tion is exponentially distributed with mean —kg. This is an
exact result for the distribution of global infima of a
correlated stochastic process, which is interesting because
only a few similar results are known [102—-104].

Our results are of special interest for experiments
because entropy production reaches its global infimum
in a finite time. The exact results on entropy infima could
be verified experimentally, for example, using colloidal
particles trapped with optical tweezers [75,76,105] and
feedback traps [106]. Other experimental systems that
could be used to test our results are single-molecule
experiments [84,107,108] or mesoscopic electronic sys-
tems such as single-electron boxes [36].

We have furthermore shown that the stopping-time
statistics and the passage statistics of entropy production
exhibit universality. We have found a remarkable symmetry
for the stopping times of entropy production. In a network
of states, this symmetry relation implies that, for each link
between two states, the statistics of waiting times is the
same for forward and backward jumps along this link.
Measuring statistics of waiting times thus reveals whether
two forward and backward transitions along a link in a
network of states are each other’s time reverse. If the
corresponding waiting-time distributions are not equal,
then forward and backward transitions are not related by
time reversal. It would be interesting to relate this sym-
metry for the waiting-time distributions to other symmetry
properties of stochastic processes, such as the conditional
reversibility relations [109].

Our work is based on the finding that in a steady state,
e~Sw(/ks is a martingale process. A martingale is a process
for which the mean is unpredictable, or equivalently, it
represents a fair game with no net gain or loss. The theory
of martingales is well developed because of its importance
to fields such as quantitative finance [59,60] and decision
theory [110]. In stochastic thermodynamics, martingales
have not yet attracted much attention. However, the
martingale property and equations of the form (21) and
(23) have been discussed in the context of action func-
tionals in Ref. [26]. Our present work explores the
martingale property of eSw()/ks revealing several previ-
ously unknown properties of stochastic entropy production
of stationary processes. We show that entropy produc-
tion itself is a submartingale, and we relate this fact to the
second law of thermodynamics. Remarkably, the
universal statistics of infima and stopping times all follow
from the martingale property of e~Sw()/%s Our work thus
highlights the relevance of martingales to nonequilibrium
thermodynamics.

Our results on entropy production fluctuations provide
expressions for the hopping probabilities, the statistics of
waiting times, and the extreme-value statistics of active
molecular processes. We have illustrated our results on
active molecular processes described by 1 degree of free-
dom and on the stochastic dynamics of DNA transcription
by RNA polymerases. Our theory provides expressions for
the probability of molecular motors to step forward or
backward in terms of the entropy produced during the
forward and backward steps, and it relates waiting-time
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statistics of forward and backward transitions. Moreover,
the infimum law provides a thermodynamic bound on the
maximal excursion of a motor against the effective force
that drives its motion. For the dynamics of RNA polymer-
ases, this implies that the statistics of the maximum
backtrack depth is bounded by a limiting exponential
distribution. This provides predictions about the mean
and the second moment of backtrack depths that could
be tested in future single-molecule experiments.

Cells and proteins often execute complex functions at
random times. Stopping times provide a powerful tool to
characterize the timing of stochastic biological processes. It
will be interesting to explore whether our approach to the
statistics of stopping times of nonequilibrium processes is
also relevant to more complex systems, such as flagellar
motor switching [111], sensory systems [112—-115], self-
replicating nucleic acids [116,117], or cell-fate decisions
[118-120].
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APPENDIX A: MARTINGALE PROCESSES

We define martingale processes and discuss their proper-
ties using concepts and notations from probability and
martingale theory [53].

1. Definition of a martingale process

A sequence of random variables X, X,,X3,... is a
martingale when E(|X,|) < oo, for all n € N, and when
the conditional expectation E(X,|X,X>,....,X,,) = X,
for all m < n. A martingale is thus a process for which
the mean is unpredictable, or equivalently, it represents a
fair game with no net gain or loss. Notice that here we use
the standard notation Ep(X,) = (X,,)p for the expectation
of a random variable X, with respect to the measure P.

For our purposes, we also need a general definition
of a martingale process with respect to a filtered
probability space. We consider a stochastic process
X(w; 1), with 1 € [0, 0), and a filtered probability space
(Q, F,{F(t)}50.P). For processes in continuous time,
we consider that the filtration {F(¢)}, and the
process X are right continuous. A process X(w;?) is a
martingale with respect to the filtered probability space
(Q,F, {F(t)}50.P) when the following occur: X is
adapted to the filtration {F(#)},50; X is integrable, i.e.,
E(|X(w,1)|]) < oo; and the conditional expectation

E(X(w;1)|F(s)) = X(w;s) for all s < r. The latter con-
dition is equivalent to

/ X(w;s)d[F":/ X(w; t)dP,
wed wed

for any s <t and for any ® € F(s). A submartingale
satisfies the inequality

/ X(w;s)dP < / X(w; 1)dP,
wed wed

for any s < ¢ and for any ® € F(s). The Wiener process,
also called a Brownian motion, is an example of a
martingale process.

(A1)

(A2)

2. Uniform integrability
Uniformly integrable processes play an important
role in martingale theory. We call a stochastic process X
uniform integrable on the probability space [Q, (F(1))0.
F,P] if given e > 0, there exists a K € [0, 00) such
that

Ep (X (1) 1x(5)5k) <€, (A3)

for all 7 > 0. The indicator function /|y~ is defined as

, {1 if [X(1)| > K,
XOFE= Vo i [X(1)] < K.

A bounded random process is uniformly integrable,
and a uniformly integrable process is integrable, i.e.,
E(]X(z)|) < oo for all values of ¢. Uniform integrability
can thus be seen as a condition that is less stringent than
boundedness but more stringent than integrability.

For a uniformly integrable martingale process, the
random variable X(w;o0) = lim,_ X(w;t) exists [53],
and it is finite for P-almost all ® € Q. A process is uniform
integrable if and only if [53]

(A4)

X(w;1) = E(X(@; +00)|F (1)), (AS)

for >0, and with X(w;+o0)
E(|X(w; +00)]) < oo.

integrable, i.e.,

3. Doob’s maximal inequality
Doob’s maximal inequality provides an upper bound on
the cumulative distribution of the supremum of a non-
negative submartingale process X (w;7) in a time interval
[0, 7] [43], viz.,

Pr(sup.enX(@:7) 2 1) < Eo(X(:0)). (A9
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for any constant 4 > 0. Doob’s maximal inequality, given
by Eq. (A6), holds for non-negative submartingales in
discrete time and for right-continuous non-negative sub-
martingales in continuous time [53].

Note that Doob’s maximal inequality is a unique
property of martingales and a stronger result than
Markov’s inequality. Markov’s inequality provides an
upper bound on the cumulative distribution of a non-
negative random variable X:

1
Pr(X(w;t) > 1) < E[EP(X(a); 1)), (A7)
with 4 > 0. Since Pr(X(w;t)>4) > Pr(sup.p 4 X (0;7)>4),
Markov’s inequality does not imply Doob’s maximal
inequality, but Doob’s maximal inequality does imply
Markov’s inequality for non-negative martingales.

4. Doob’s optional sampling theorem

We consider a uniformly integrable martingale process
X(w; t) adapted to the filtration {F ()}, and two stop-
ping times 7' (w) and T, (w), with the property that for each
w € Q, Ti(w) < T,(w). Additionally, in continuous time,
X is right continuous. Doob’s optional sampling theorem
then states that [53,55]

/ X(a);Tz(a)))dP:/ X(0;T)(w))dP, (A8)
wed wed

for each set & € F(T). The sub-c-algebra F(T), corre-
sponding to the stopping time 7', is defined as

F(T)={2cQ:Vi>0,PN{w:T|(w) <t} € F(1)}.
(A9)

APPENDIX B: PROPERTIES OF STOCHASTIC
ENTROPY PRODUCTION

We discuss the mathematical properties of the stochas-
tic entropy production defined in Eq. (11). We first show
that entropy production is a process of odd parity
with respect to the time-inversion operator ®,. Second,
we show that e Sw(@0/ks js a uniformly integrable
martingale with respect to the filtered probability
space (2, F,{F(t)}s0.P) generated by the dynamics
of the mesoscopic degrees of freedom. This is a key
property of entropy production, and it allows us to apply
the techniques of martingale processes to entropy
production.

1. Entropy production is odd under time reversal

An interesting property of entropy production is the
change of its sign under the time-reversal operation
0, = T, 00, which time reverses trajectories with respect
to the reference time t/2, viz.,

APz

d(Po®,)|x ()
IGECEC

AP oT,00)] 5
AP o®oT,o0)r
d(P o ®)|
Wy
= =Sit(@; 1),

Siot(©(@); 1) = kg In (©,(w))

:kB In

= kgIn (@)

= kgIn (@)

(B1)

where we have used PoT, =P, Po®oT, =Po0, and
0=0""

2. The exponentiated negative entropy production
is a uniformly integrable martingale
in a steady state

Here, we first show that in a steady state, the exponential
e Swl(@0/ks js a martingale. We then show that it is also
uniformly integrable. Both properties follow from the fact
that e~Sw(@0/ks js a Radon-Nikodym density process.
Indeed, the process e Sw(@0/ks js the Radon-Nikodym
density process of the filtered probability space
(Q, F {F (1)} 50 Q) with respect to the filtered probability
space (Q,F {F()}50.P):

dQ|z(,)

e_Slm(w;t)/kB e
dP |z

(@), (B2)

with Q@ = P o ®, the time-reversed measure, and 7> 0.
Consider two sub-c-algebras F(7) and F(t) of F, with
7 < t. We first write the measure Q(®) of aset € F(z) as
an integral over the set ® with respect to the probability
space (L, F(7), Q| x(,)),

Q@) = / _dal

— / e_Stm(wQT)/kB dP|]__<T)
wed

— / e_Sloi({“;T>/de|]:D'
weP

Alternatively, we write the measure Q(®) as an integral
over the set & with respect to the probability space
(Q.F(1).Qlx(y),

Q®) = / dQl s,
wed

— / e_Slol({”;t>/kB dﬂ])|]__<t>
wed

— / e_Slol({U;[>/de|]])_
weP

(B3)
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In Egs. (B3) and (B4), we use that, for 7 < ¢, by definition,
H:D|]:(T)((I)) = P|f(t)(q)) = P((I)) for all sets ® € f(’l') We
thus have the equality

/ e~ Su(@)/ks P — / e~ Swl@D/ksdp, (BS)
wed wed

for all sets & € F(z), which is identical to Eq. (A1), which
defines a martingale process. The process e Sw(@t)/ks g
therefore a martingale process with respect to the measure
. Equation (B5) is an example of the martingale property
of a stochastic process. Other examples of martingales
have previously been discussed in the context of action
functionals [26].

We also show that e=Sw(@0/ks s yniformly integrable.
We use the necessary and sufficient condition (AS) for
uniform integrability. The process e~S«(®)/ks js uniformly
integrable since, by definition, e~Sw(®)/ks is a conditional
expectation:

)

() = e~Sw(@+=)/ks 3 positive and integrable
random variable.

(B6)

e

—Sot(@s) kg <d[F" o (—)

: dP o ®
with S5

APPENDIX C: STOCHASTIC DOMINANCE

Consider two positive-valued random variables X > 0
and Y > 0. We define their cumulative distributions as

Fx(x)

Fy(x)

We say that X dominates Y stochastically when the
cumulative distribution functions of X and Y satisfy the
relation Fy(x) > Fy(x). If X dominates Y stochastically,
then the mean value of X is smaller than the mean value of
Y: (X) < (Y). This follows directly from the relation (X) =
J¢° dx[1 — Fx(x)] between the mean and the cumulative
distribution.

=Pr(X <x), (C1)

= Pr(Y <x). (C2)

APPENDIX D: GENERALIZED PASSAGE
PROBABILITIES FOR ENTROPY PRODUCTION

We generalize the relations Eqgs. (45) and (46) for the
two-boundary passage probabilities of entropy production
in order to account for trajectories starting from a given
macrostate I. We define a macrostate I as a subset of the
phase space {q,q*}. Here, we consider macrostates defined
by a given set of constraints on the variables of even parity
L.yen SR". The initial state @(0) belongs to the macrostate I
if q(o) E Ieven'

We define the passage probability P(f)I (and P(_zj) as the
joint probability of the process being initially in the

macrostate I, i.e., @(0) €1, and of entropy production
to pass the threshold s;5, (sg,) before passing the thresh-
old si, (si,). Formally, these passage probabilities are
defined by

PP =P(@, N1y, (D1)
P =p(@_ N1y, (D2)

with ®, and ®_ the sets defined in Eqs. (31) and (32),
respectively, and I the set of trajectories starting from the
macrostate I:

= {weQ:0(0) el}. (D3)

We also define the conjugate probabilities IZ’(f)I and |5(_2}

P =(Po0)(d, NTY), (D4)

P% = (Po@) (@ NT). (D5)
Here, we have used I=1 since we have defined the
macrostate using constraints on variables of even parity only.

For a nonequilibrium steady-state process, i.e.,
(Sii(1)) > 0, Si((7) passes one of the two thresholds s,
in a finite time, with probability 1. We thus have

P? +P% = p(1y), (D6)
PP+ P2 =Py (D7)

In addition, we can derive, using Doob’s optional
sampling theorem, the following two identities:

P(z) .
TZ)I = eSlks, (D8)
P+,I
P%

— esults, (DY)
~(2
pC)

For instance, Eq. (D8) follows immediately from
Eqgs. (39)—(44), if we replace ®, by @, ;. Note that in
Eq. (40), we can still apply Doob’s optional sampling
theorem since the set ®__; belongs to the s-algebra F(T?)),
ie, ® ;€ F(T?), with T? the two-boundary first-
passage time of entropy production with thresholds s
and sg,. From Egs. (D4)—(D9), we find the following
explicit expressions for the passage probabilities P(f)l

and P(+2.)1:

Sk 1
PR = P(ry) — (D10)

Sk — e—stt‘/kB ’

011019-21



IZAAK NERI, EDGAR ROLDAN, and FRANK JULICHER

PHYS. REV. X 7, 011019 (2017)

1 — e Sw/ks

P =P() (D11)

Sk — e—s:;[/kg '

The conditional entropy-production passage probabilities,
for trajectories that are initially in the macrostate I, are

PJFZ’)I esan/ks -1 -
P(Ty) e/t — e—sulks’ (D12)
P(Z) 1— _‘Y:rm/kB

=5 = ) (D13)

P(FI) eSl_ot/kB —_ e_sttn/kB ’

The entropy-production passage probabilities conditioned
on the initial state are thus the same as the unconditioned
entropy-production passage probabilities, given by Eqgs. (45)
and (46).

APPENDIX E: STOPPING-TIME FLUCTUATION
THEOREMS FOR ENTROPY PRODUCTION

In this appendix, we derive fluctuation relations for
stopping times of entropy production. In the first subsec-
tion, we derive the fluctuation relation for entropy stopping
times, given by Eq. (64); in the second subsection, we apply
this fluctuation relation to first-passage times. In the third
subsection, we derive a cumulative fluctuation relation for
entropy stopping times of trajectories starting in a macro-
state I. In the last subsection, we use this generalized
cumulative fluctuation relation to derive the fluctuation
relation for waiting times of stochastic processes, Eq. (73).

1. Fluctuation theorem for entropy stopping times

The cumulative fluctuation theorem for entropy stopping
times, given by Eq. (60) in Sec. VI, follows from the
following identities:

P(O®r (P
@7 (¢r,2) -
P(®r, <)
.ﬁue@r (Pr <) dlp‘f(l)
_ +\PTy (Ez)
Joew, . Pl
. L)€¢T+5t d(l]j) O®T+)‘f([) (E3)
Joes,, ., APlF()
fmecbr < d([FD © TT+ © ®)|}‘(z)
_ Jostr.. (B4)
Joes,, ., APlF)
N d(Po0O)]
_ €dr, F(1) (ES)

Joea, . Plr)

011019

L)E@u ; e~ Swi(1:0)/ky dP| - 0

= (E6)
Joes, ., APlF
o (E7)
Joew, . dPLrq)
= e—Slol/kB j;”eq)nrﬁf dlp|]:(t) (ES)
vty ., Plre
— e_slol/kB . (E9)

Here, we have 0 < 7 < +o0. In Eq. (E2), we have written
the measures of the 7 ()-measurable sets ©7 (P, ,) and
@7 <, in terms of integrals over these sets with respect to
the probability space (, F (1), P|z(). In Eq. (E3), we
have transformed the variables of the integral in the
numerator with the change-of-variables formula, which
we have applied using the measurable morphism @7 . The
change-of-variables formula relates two integrals under a
change of variables, viz.,

/ X(a))d[P’—/ (X o ¢ (@)d(Pog™), (EI0)
wedP wEP(D)

with X arandom variable, measurable in a probability space
(Q, F,P); ® ameasurable set in this probability space, i.e.,
® € F;and ¢p: F - F' a measurable morphism from one
probability space (Q,F,P) to another probability space
(Q, F',P o ¢), with the property that ¢~' (=) € F for each
= € F' (see exercise 1.4.38 in Ref. [56]). In Eq. (E4), we
have used the definition of the composition ®7 = Ty ©©.
In Eq. (E5), we have used that P is a stationary measure,
and thus P=PoT; . In Eq. (E6), we have used the
Radon-Nikodym theorem, given by Eq. (17), in order to
change the integral with respect to the measure Po® into an
integral with respect to the measure P; subsequently,
we have used our measure-theoretic definition of entropy
production, given by Eq. (18), to write the Radon-Nikodym
derivative in terms of entropy production S(f). Since
e~Sw(/ks ig a uniformly integrable martingale with respect
to P, in Eq. (E7) we have used Doob’s optional sampling
theorem Eq. (AS8). In order to apply this theorem, we
additionally need e~Sw()/%s to be right continuous.
In Eq. (E8), we have used the fact that 7, (w) is an
Sior-Stopping time such that s, = Sio(@; T4 (@)). Finally,
in Eq. (E9), we have used that the measure of the set ®7
is larger than zero, and that a/a =1 for a # 0.

The fluctuation theorem Eq. (60) can be written as a ratio
between the cumulative distribution of the s-stopping
time 7, and the cumulative distribution of a conjugate
(—S1)-stopping time T_. We define the (—s,)-stopping
time 7_ associated with the stopping time 7', through the
relation

-22
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T_(0r,

(@) =T (). (E11)

We thus have

(I)T <t —

=07 (Pr, <), (E12)

and the cumulative fluctuation relation, given by Eq. (60),
reads for 0 <t < +o0

P(®r <)
P@’nsr)

Since the probability-density functions of 7, and 7'_ are,
respectively, given by

— eslol/kB .

(E13)

pr, (1) dtlp(q)nq)’ (E14)
pr ()= P <) (E15)

we find the following fluctuation theorem for the distri-
butions of entropy stopping times:

pr, (1) _

e‘Ylol/kB s
pr_(1)

(E16)

which is precisely the stopping-time fluctuation theorem
Eq. (64).

2. First-passage time fluctuation theorems
for entropy production

We apply the fluctuation theorem, given by Eq. (E16), to
first-passage times of entropy production. We consider here
first-passage times with one absorbing boundary TSE)
and first-passage times with two absorbing boundaries

(see Sec. VIA).
The first-passage time T( denotes the time when the
process S (w;t) first passes the threshold =+s. If

Sioi(@; t) never passes the threshold =+s,,,, then T< ) = too.

The first-passage time T( ) denotes the time when the
process Sy (w; t) first passes the threshold s, given that it
has not reached —s,, before:

1 1

T(2) _ Tgr) Tgr) < T(_l), (E17)

' too TV > T,

Analogously, we define 7):
(1) (1)
400 T, <TC

T — { + ’ E18
T Vs 70, (1)

Since entropy production is a process of odd parity with
respect to the time-reversal map ©, [see Eq. (B1)], we have
the relations

(E19)
and
(E20)

Using Egs. (E12), (E13), (E19), and (E20), we thus find the
first-passage-time fluctuation relations:

P ()
T+ — estm/kB (Ezl)
Py (1)
and
pro(t)
T esalks, (E22)
pTG)(Z

3. Generalized cumulative fluctuation theorem for
stopping times of entropy production

We define macrostates as subsets I [II] of the phase
space of configurations {¢,q*}. We also consider the
subsets I [II] of the corresponding time-reversed states

1={(q.4"):(q.—¢") €1} [ ={(q.q4"):(g.—¢") € }].
With each macrostate I, we associate a set of trajectories I'j:

I = {weQ:w() el (E23)

Note that Doob’s optional sampling theorem, given
by Eq. (A8), applies to the set ®p ., NIy since
Q7 o NI € F(T,). We can therefore follow the steps
of Egs. (E1)—(ES8) in order to find the following generalized
cumulative fluctuation relation:

P(Or, (Pr < NTY))

— e_‘Yln(/kB‘
P(®r, < NT7Y)

(E24)

4. Fluctuation relations for waiting times

Waiting times 7'~ denote the time a process takes to
travel between two macrostates I and II (the time it takes for
the system to change its macrostate from I to II). Here, we
derive a fluctuation theorem for waiting times along
trajectories that produce a given amount of entropy
production. The entropy waiting time T~ denotes the
time a process needs to travel from the macrostate I to the
macrostate II while producing a positive entropy s, and
given that the process has not returned to the macrostate I
before. Analogously, the entropy waiting time 77!
denotes the time a process needs to travel from the

macrostate II to the macrostate I while producing a negative
entropy —s., and given that the process has not returned to

the macrostate II before.
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In order to define waiting times, we first define stopping
times 7' and T" that denote the time when a process
reaches a given macrostate I or I, respectively:

THw) =inf{r >0 U {+o0}:0(r) €1}, (E25)

() = inf{r > 0 U {+oo}:w(r) €II}.  (E26)

The waiting time 7'~ denotes the time a process takes to
travel from I to II:

() ™ () < Tw),

(E27)
+o0 ™ () > THw),

(o) = {

for all trajectories @ for which (0) € I, and the associated
so-waiting time T is defined as

TI_)H(CU) Stot(Tl_)H(w);w) = Stot>
400 Stot(TI_)H(a)); ) # Stors
(E28)

o) = {

for all trajectories @ for which @(0) € 1. We also define the
(—51)-stopping time 71~ denoting the time it takes for a

process to travel from the macrostate 11 to the macrostate I,
while producing a negative entropy S

TIE_’i(a)) _ { Tﬁ_ﬁ(a}) Stot(Tlil_)f(w);a)) = —Stots
+o0 Stot(TH_)I(a));w) # —Stots
(E29)

for all trajectories @ for which (0) € II

We apply the generalized cumulative fluctuation theo-
rem, given by Eq. (E24), to the stopping time 7'~ and the
set I'; defined in (E23), and find for 0 <t < +o0

[P’(‘I)TI:HSI NnTy)
P(O7-1(®ng, N I7))

— eslm/kB .

(E30)

Notice that the waiting time 7'7"(w) is defined on all
trajectories w € Q, but we are interested in those trajecto-
ries for which @(0) € I, and we have thus set @ € I'}. Since

@Tlfll(q)Tl:ug n FI) = (I)TIE')TSI n FfI’ (E31)
we have
P(®p-un., NT
M — eoSalks (E32)
P(@Tg_qg n Fﬁ)

We write the probability densities of the entropy waiting

times 7' and 7"~1 in terms of the measures on the left-
hand side of the previous equation:

1 d

pTI:H(t) = P(FI)EP((I)TI?HS[ NIy, (E33)
1 d

pqur(t) = P[Fﬁ] &P((I)qujg N Fﬁ), (E34)

which holds for 0 <t < 4+o00. We thus find the following
fluctuation theorem for waiting times between macrostates:

] ()
pTIJr H(t) _ esw‘/kg-ﬁ-log%‘ (E35)
pr_I—'i(t)

If we set [} =T'y = Q, Eq. (E35) is equal to the entropy
stopping-time fluctuation theorem, given by Eq. (E16).
The quantity in the exponential of the right-hand
side of Eq. (E35) has, in general, no particular meaning.
For macrostates defined by variables of even parity, i.e.,
I =1Iand II = II, we have the relation I'y = I'y;. Then, we
recognize in Eq. (E35) the system entropy change:

P(FH)
P(Ty)

Asgys = —kg log (E36)
between the two macrostates I and II.

A particular important example of the waiting-time
fluctuation theorem, given by Eq. (E35), is for macrostates
Iand II, which correspond to one single point in phase space,
ie, I ={q;} and Il = {qy}. Then, we find the relation

pr-n(1)
pri-i(1)
with  5¢py = 5oy — Asgys the change in the environment

entropy and Asg, the system-entropy change, which here
is given by

— escnv/kB s (E37)

Asyys = —kg log Pss(qn) _

pss(ql) (E38)

APPENDIX F: INFIMUM STATISTICS
FOR THE DRIFT-DIFFUSION PROCESS

In this appendix, we derive explicit expressions for
the distribution and the mean of the infimum of
entropy production in the drift-diffusion process.
Since in a drift-diffusion process entropy production is
Sit(?)/kg = (v/D)[X(t) — X(0)], the infimum statistics of
entropy production follow from the infimum statistics of
the position coordinate X(¢). Therefore, we first derive the
extreme value statistics of X(7), and subsequently we derive
the infimum statistics of entropy production.

1. Cumulative distribution of the infimum
of entropy production

The cumulative distribution Pr(sup X(z) < L) of the
supremum  sup X(7) = sup,¢1X(z) of a stochastic
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process, over a time interval [0, 7], equals the survival
probability Oy (L, t) of the process, in the interval (—oo, L)
at time ¢ [104,121]:

Pr(supX(r) <L) =Pr(X(s) < L;s < 1) = Qx(L, 1),
(F1)

with L > 0. For a general stochastic process, the survival
probability in an interval can be calculated from the
distribution pr(z;L) of first-passage times to reach an
absorbing boundary located at L:
t
Ox(L.)=1- ["dtpy(zin). (F2)
We use this relation between survival probabilities and first-
passage-time distributions to determine the cumulative
distribution of extreme values of X(7).

The infimum of a drift-diffusion process with positive
drift is equal to the supremum of a drift-diffusion process
with the same but negative drift. We therefore consider the
following two conjugate drift-diffusion processes:

(1) X (r) with velocity v, diffusion D, and initial

condition X, (0) =0,

(2) X_(r) with velocity —v and diffusion D, and initial

condition X_(0) =0,

and v >0 in both processes. The dynamics of both
processes follows from Eq. (76) for V(x) =0 and for,
respectively, a positive and negative velocity. The infimum
value of X (¢) is equal to minus the supremum of the
conjugate process X_(t). In the following, we derive
analytical expressions for the statistics of the supremum
of X_(#) and use these to obtain the statistics of the
infimum of X (7).

The survival probability of X_(¢) can be obtained from
the distribution p; of first-passage times to first reach the
threshold L; see Eq. (F2). This first-passage-time distribu-
tion reads

L
VarDr

Substituting Eq. (F3) in Eq. (F2) results in the following
expression for the survival probability of X _:

Oy (L.1) =1 ! [erfc (L + m)

PT(I; L) _ e—(L+vt)2/4Dt_ (F3)

2 V4Dt

L — vt
+ e‘“’“/Derfc< )} , F4
V4Dt (F4)
where erfc is the complementary error function.

Equation (F4) yields the cumulative density function of
the supremum of X_, as follows from Eq. (F1).

From the relation between the conjugate processes, we
relate the cumulative distribution of the infimum of X, over
the interval [0, 7], inf X (), to the survival probability of
X_(1):

Pr(—infX (1) <L)
= Pr(infX,(r) > ~L)
=Pr(supX_(r) <L)

= Qx_(L.1). (F5)

Using Eq. (F4) and the property erfc(x) + erfc(—x) = 2,
we obtain an analytical expression for the cumulative

distribution of the infimum of the position of a drift-
diffusion process with positive velocity:

Pr(—infX. () <L) :% {erfc <_54__th>

— e "L/ Perfe (LJZ_I:;H . (F6)

Finally, for the stochastic process S (?)/kg =
(v/D)X (1), the infimum distribution can be obtained
by replacing v and D in Eq. (F6) by the effective values
for the process S (?)/kg, given by vy = v*/D and
Dt = v*/D. Defining 5(1) = (Swi(1))/ks = (v*/D)1,
we obtain

(502) L5

)}

which is equal to Eq. (81).

2. Mean infimum of entropy production
We first determine the distribution of the infimum
of X, and then compute its mean value. Note that the
infimum of X, equals minus the supremum of the con-
jugate process X_:
(inf X (1)) = —(sup X_(2)). (F8)
The cumulative distribution of the supremum of X_ is
given by

Pr(supX_(¢) <L)
— Qx_ (L, t)
1 —L — vt L— ot
= — |erfc - e"’L/Derfc< )] , F9
2 [ < V4Dt > V4Dt (F9)
where we have used Eq. (F4) and the property
erfc(x) + erfc(—x) = 2. The distribution of the supremum

of X_ can be found by deriving Eq. (F9) with respect to L,
which yields
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1 >
Pr(supX_(t) = L) = ———=e"1/*P
v rDt
v v/t
+ — e "L/Perfc <—> F10
2D 2/D (F10)

The mean of the supremum of X_ is the integral

(supX_(t))-/)oodL Pr(supX_(f) = L)L, (F11)

which, after some algebra, yields

(sup X_(1)) = % erf (;\}fg) - ere (20\/@))

+ /Ee—vztﬂD_
T

From Egs. (F8) and (F12), we find an exact expression for
the mean infimum of a drift-diffusion process with positive
velocity:

(inf X, (1)) = —%erf (;}%) +ere (z%)

(F12)

_ \/?e—vzt/élD‘ (Fl?,)
Using  5(1) = (Si(1))/kg = (v*/D)t  and Sy (1) =

(v/D)X (1), we obtain, from the expression (F13), an
analytical expression for the mean infimum of entropy
production in a drift-diffusion process at time ¢:

(St _ _erf<m> e (V50)

kg 2 2 2

@e—f@/“. (F14)
T

The above result is Eq. (82) in the main text.

APPENDIX G: PASSAGE PROBABILITIES
AND FIRST-PASSAGE TIMES
FOR THE DRIFT-DIFFUSION PROCESS

We determine the passage probabilities and the first-
passage-time statistics of entropy production for a drifted
Brownian particle with diffusion coefficient D and drift
velocity v, as described by the Langevin Eq. (76) [with
V(x) =0]. Since in a drift-diffusion process entropy
production is S, (t)/kg = (v/D)[X(t) — X(0)], the pas-
sage probabilities and the first-passage-time statistics of
entropy production follow from the corresponding statistics
of X(1).

1. First-passage-time statistics for one absorbing
boundary or two symmetric absorbing boundaries

The first-passage-time distribution for X to pass the
threshold L > 0 at time 7 = ¢ for the first time, starting
from the initial condition X(0) = 0, is given by Wald’s
distribution [122,123]

IL|

pr(t; L) _ \/ﬁe—@—vmﬂm' (Gl)
Equation (G1) implies
pT(t’L) — eryL/D‘ (GZ)
pr(t;—L)

Note that the argument of the exponential is equal to the
Péclet number Pe = vL/D.

The distribution of entropy first-passage times Tsrl) with
one absorbing boundary located at s, is equal to the first-
passage-time distribution for the position of the particle,
given by Eq. (G1), with one absorbing boundary located at
L = s, D/ (vkg). Equation (G2) implies thus a fluctuation
theorem for first-passage times of entropy production,
consistent with the fluctuation theorem for stopping times
given by Eq. (8). An analogous relation to Eq. (G2) holds
for two-boundary first-passage times T(f) for entropy
production in the drift-diffusion process and can be derived
using the results in Sec. 2.2.2.2 in Ref. [122] (see
also Ref. [47]).

2. Comparing first-passage-time statistics
for two asymmetric absorbing boundaries

We consider the drift-diffusion process with two absorb-
ing boundaries located at L, > 0 and —L_ < 0, and with
the initial position X (0) = 0. The passage probabilities Pf)
and P@), to first reach L., and —L_, respectively, are [122]

vL_/D _ 1
2 __ ¢
Py = oVL_/D _ ;=L /D’ (G3)
1— —vL,/D
PQ) — ¢ (G4)

- evL_/D _ e—L'LJr/D :

The corresponding entropy-production passage probabil-
ities follow from the expressions (G3) and (G4) using the
threshold values sy, /kg = vL_/D and s /kg = vL, /D.
Equations (G3) and (G4) are in correspondence with
Egs. (5) and (6) for passage probabilities of entropy
production.

Notably, the first-passage-time fluctuation theorem,
given by Eq. (8), does not simply extend to asymmetric
boundaries. From the expression (G1) for the first-passage-
time distribution of the position with one absorbing
boundary, we find
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pr(tiLy)

pr(s=L_) L_

Lt gt ye0) g-w2-12)/600 (G5

Using si, = vL_/D, sg = vL, /D, and 5 = (v*/D)t, we
find for the ratio of the first-passage time distributions of
entropy production

.ot
22 ) (l‘, St t) + _ S
T O_ _ St_ot e(%lﬂm)(l—ﬁ)/@ka)‘ (G6)
P (t:=Sw) St

For asymmetric boundaries, the ratio of the first-passage-
time distributions is time dependent and converges to a
finite value in the limit r —» oo [78]. Consequently, for
asymmetric boundaries, the mean first-passage time for
entropy production to reach the positive threshold s,
is different than the mean first-passage time for entropy
production to reach the negative threshold sg,

(T')y # (TM). When s3, = s5 = S, We recover the
time-independent ratio, eso/k8 in accordance with the
first-passage-time fluctuation theorem Eq. (8).
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