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Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-
inspired paradigm for processing temporal information. It involves learning a “read-out” interpretation
for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the
information signal to be processed. This novel computational paradigm is derived from recurrent neural
network and machine learning techniques. It has recently been implemented in photonic hardware for a
dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel
implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelec-
tronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is
demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach
one million words per second, with very low word error rate. Additionally, to record speed processing, our
investigations have revealed computing-efficiency improvements through yet-unexplored temporal-
information-processing techniques, such as simultaneous multisample injection and pitched sampling
at the read-out compared to information “write-in”.
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I. INTRODUCTION

Nowadays, digital computers based on the so-called
Turing–von Neumann architectures are ubiquitous and
deeply integrated in our daily lives. They provide many
fast and efficient calculation tasks, from complex scientific
computing through networking and communications sys-
tems, to smart phone device functionality and service. The
demand for greater computational power is naturally
always increasing, and as this demand develops, more
and more problems are identified as too complex and/or
too time consuming, even for the most advanced highly
paralleled digital computer farms. Alternative computa-
tional paradigms have already been explored for a long
time, one obvious direction naturally being suggested by
the human brain. However, most of the research dedicated
to the brain-inspired computational paradigm has been
performed essentially through computer simulations, i.e.,
through the use of the standard digital Turing–Von
Neumann computers that they are actually aimed to replace.
Among the numerous brain-inspired concepts, reservoir

computing (RC) [1], also known originally as an echo state

network [2] or a liquid state machine [3] (see Ref. [4] for a
review), has recently attracted much attention through an
unexpected physical implementation of the hardware [5–8].
Instead of the usual spatially extended networklike dynami-
cal reservoir, purely temporal delay dynamical systems
were used as a way to emulate the dynamical complexity
traditionally provided by a network of neurons. Delay
systems are time-domain, infinite-dimensional dynamics,
which have been shown to be able to act as complex
dynamical reservoirs, surprisingly and efficiently replacing
the traditional spatiotemporal neural-network architectures.
They provide technologically tractable hardware solutions,
where densely connected spatiotemporal architectures are
difficult to design, and they intrinsically benefit from
several available highly efficient signal-processing tools
and devices developed for modern telecommunications. In
addition to the already ground-breaking result of a physical
hardware implementation, photonic realizations [9–11]
can technically shift the intrinsic millisecond time scale
of the brain down to the picosecond or even femtosecond
time scale available in standard optical telecommunica-
tions, basically gaining 9 to 12 orders of magnitude in the
processing speed. The present work finds its place along
this line, reporting an electro-optic (EO) phase-delay
dynamics built with telecom bandwidth devices and pro-
viding ultrafast information processing while implementing
reservoir-computing concepts with dedicated hardware.
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Compared to the current state of the art [9], our novel
electro-optic phase architecture provides an improvement
by a factor of 3, reaching a million words per second when
tested on a standard speech-recognition database. As
reservoir computing is a universal computational concept,
many other complex problems can, in principle, be
addressed by our approach, such as real-time information
extraction from high bit-rate optical data flow or the
prediction of a high-dimensional deterministic time series.
The article is organized as follows: Section II introduces

some basic concepts of reservoir computing. Section III
bridges these neural-network–based concepts with a time-
domain only hardware implementation in the particular
case of the proposed electro-optic phase-delay oscillator.
Section IVA reports the experimental and numerical results
obtained on a first benchmark of spoken digit recognition
(TI46). This particular temporal task example gives us the
opportunity to discuss the importance of the time-scale
control revealed in our work, between the write-in (input
layer) of the information to be processed, the intrinsic
reservoir (internal layer), and the read-out (output layer).
Section IV C is devoted to additional experimental and
numerical speech-recognition results obtained from an
extended complexity speech-recognition database, namely,
the one used for the standard AURORA-2 benchmark. The
last section summarizes the results and gives a perspective
for future work for practical photonic RC processors.

II. RC CONCEPTS AND DELAY DYNAMICS

Until very recently, RC was essentially developed by the
neural-network computing, brain cognitive sciences, and
machine learning communities. Since the recent demon-
stration of its hardware implementation possibility, non-
linear physics and nonlinear dynamics communities have
also started to address this topic. In order to provide
nonlinear physics insights about the underlying concepts
to a broad audience, hereafter we propose a qualitative
description of the RC approach in the particular context
of its implementation with high-dimensional nonlinear
delay dynamics. The latter implementation unconvention-
ally offers the possibility to virtually emulate, in the time
domain only, the usual high-dimensional dynamics formed
by a spatiotemporal network of coupled dynamical nodes.

A. Standard RC model

An important computational concept used in RC is the
nonlinear dynamical expansion of the information to be
processed into a higher-dimensional phase space, such that
easy linear read-out of this expansion can be efficiently
applied (for a review of the concepts briefly recalled here,
see Ref. [4]). Figure 1 shows how the information is
encoded and injected (write-in step, also called the input
layer) into a nonlinear dynamical system (e.g., a network of
firing neurons). A transient motion is thus triggered in the

dynamical reservoir, describing a complex trajectory in its
high-dimensional phase space. A linear read-out (output
layer) operation is then performed on this transient motion
so that the expected solution can be extracted and com-
puted. This linear read-out comes conceptually to find,
within the reservoir phase space, a hyperplane whose
location is characteristic of the problem to be computed.
Finding this hyperplane is the goal of the learning pro-
cedure, which is to extract the optimized quantities char-
acterizing the hyperplane equation, i.e., the coefficients of a
linear combination operated on the phase-space coordinates
during the transient dynamics.
Considering a classical network formed by K spatially

distributed nodes xðnÞ ¼ ½x1ðnÞ…xkðnÞ…xKðnÞ�⊺, the dis-
crete time dynamics of the network (as time n is increased)
involves the coupling of each node with the other ones
according to the network coupling matrix WN . In addition
to the internal dynamics, the network also evolves because
of the injection of the input information uðnÞ to be
processed. The information injection is ruled by an input
layer coupling matrix WI . This results in a network
dynamics for each node amplitude xk at time n, which
can be expressed as follows:

xkðnÞ ¼ fNL

"XK
j¼1

wN
kjxjðn − 1Þ þ

XQ
q¼1

wI
kquqðnÞ

#
; ð1Þ

where fNL is the nonlinear node sensitivity on the accu-
mulated stimuli coming from both the network internal
connectivity and the input information connectivity. A
popular form for fNL is the tanh function, also known as
the sigmoid function. With this formalism, the read-out
operation extracting the computed M-dimensional solution
signal yðnÞ consists in a linear combination of the node
states:

(a) (b)

FIG. 1. Principles of RC, with an input mask WI spreading the
input information onto the RC nodes, and with a read-out WR

extracting the computed output from the node states. Left
diagram: A spatially extended dynamical network of nodes.
Right diagram: A nonlinear delayed feedback dynamics emulat-
ing virtual nodes which are addressed via time multiplexing.
Here, fðxÞ stands for the nonlinear feedback transformation, and
hðtÞ denotes the loop linear impulse response.
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ymðnÞ ¼
XK
k¼1

wR
mkxkðnÞ: ð2Þ

Contrary to standard recurrent neural-network (RNN)
computing approaches (with which learning can be very
difficult, time consuming, and not necessarily converging),
learning in RC is typically obtained from a very fast
regression operation that is always converging. For RC,
this learning procedure concerns the read-out only, whereas
in RNN, it generally aims at also optimizing the coupling
coefficients of many other layers, i.e., the input and output
layers, as well as the internal connectivity of the network.
This strong difference makes RC learning fast and reliable.
Surprisingly, it was also found to be computationally very
efficient in many benchmark tasks—comparable to and, in
some cases, even surpassing RNN techniques [4].

B. RC based on delay differential dynamics

Recently [5], an unconventional hardware implementa-
tion was successfully proposed as the dynamical system of
RC: Instead of the standard spatiotemporal structure con-
sisting in a dynamical network of interconnected nodes,
the use of nonlinear delay dynamics was proposed. It is an
attractive hardware solution, especially when photonic
implementation is concerned, for which high-speed optical
telecom devices can potentially provide unprecedented
processing speed [6–9]. Delay dynamics are indeed known
as having an infinite-dimensional phase space. To illustrate
this, let us consider the simplest scalar model for delay
systems, of the following form:

τ _xðtÞ ¼ −xðtÞ þ fNL½xðt − τDÞ�; ð3Þ

where τD is the delay and τ the characteristic response time
limiting the fastest time scales allowed in the oscillation
loop. In the common “large delay” case, one has τ ≪ τD,
which is well known for enabling the emergence of
high-dimensional chaotic attractors [12]. The infinite-
dimensional character of such a delay dynamical system
can be straightforwardly explained by the kind of initial
conditions actually required for the unique definition of a
given trajectory: It consists of a functional xðtÞ, with
t ∈ ½−τD; 0�, belonging to an infinite-dimensional space.
In the framework of RC, the expectation is that, compared
to the classical case of neural networks, information
injection into such delay dynamics can provide similar
expansion properties, also allowing for computational
capabilities. Conceptually and mathematically, this emu-
lation of delay dynamics into a spatiotemporal dynamics
has indeed been known for more than two decades [13].
The same emulation concept was also recently used by
our group to demonstrate the existence of chimera states
(complex spatiotemporal patterns) in delay dynamics [14].
This emulation makes use of a virtual space variable

corresponding to a short time scale σ of the dynamics
[of the order of τ in Eq. (3)], whereas the long time scale of
the order of the delay τD defines a discrete time evolution of
the functional from one time-delay interval to the next, i.e.,
fxσðnÞ ¼ xðtÞjt ¼ nτD þ σg with n ∈ N and σ ∈ ½0; τD�.
With this in mind, it appears more convenient to rewrite the
usual delay differential equation (DDE) (3) into an integral
convolution form involving the impulse response hðtÞ,
the latter characterizing the linear differential process ruling
the dynamics in the delayed feedback loop:

xðtÞ ¼
Z

t

−∞
hðt − ξÞfNL½xðξ − τDÞ�dξ: ð4Þ

The previous linear impulse response hðtÞ takes the usual
form hðtÞ ¼ ð1=τÞe−t=τ for t ≥ 0 (and 0 for t < 0 because
of causality) in the particular case of Eq. (3). Note that
here Eq. (4) is indeed more general than Eq. (3) since it
describes any kind of linear filtering in the delay oscillation
loop not restricted to the case of a first-order differential
process as in Eq. (3).
From Eq. (4), it can then be shown that delay dynamics is

also described by a more straightforward discrete time map
for the functional, thus highlighting the spatiotemporal
analogy:

xkðnÞ ¼ xkðn − 1Þ þ
Z

σk

σk−τD
hðσk − σÞfNL½xσðn − 1Þ�dσ;

ð5Þ

where xkðnÞ ¼ x½tðn; σkÞ�, with tðn; σkÞ ¼ nτD þ σk,
points to the multiple scale features of such dynamics (a
short time σ of the order of τ, and a long time n as an integer
multiple of τD). Such a multiple time-scale description
precisely highlights the space-time analogy with the stan-
dard discrete time RC model in Eq. (1). We recover the
discrete time dynamics as an iteration of the functional
from (n − 1) to n, and the usual spatial coupling in the
network of neurons is now revealed by the impulse
response hðtÞ in the integral term. The latter fulfills the
role of the coupling (matrixWN) between the nodes, within
the continuous virtual space in σ. The temporal width of the
impulse response is representative of the typical coupling
distance involved in the usual network of neurons.
However, Eqs. (3)–(5) correspond to a so-called autono-

mous dynamics. RC is a computing paradigm that deals
with the processing of time-dependent information through
transient dynamics. Thus, it is implicitly a nonautonomous
system. Typically, the information to be processed is mixed
within the delayed feedback loop by adding the encoded
input information to the feedback signal xðtÞ. The two
contributions together then form the argument of the
nonlinear transformation fNL½·�.
The information injected into the virtual space σ of delay

dynamics is achieved through a time division multiplexing
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(TDM) technique, for which the virtual node position k ∈
½1;K� is defined as a time position σk ¼ ðk − 1ÞτD=K
within a time-delay interval. This viewpoint defines a
constant node spacing δτ ¼ τD=K along the time-delay
interval [5] for all the K nodes of the emulated network.
Similarly to the information contribution in Eq. (1), a
given virtual node xkðnÞ receives an input information
signal contribution (write-in) which can be defined asP

qw
I
kquqðnÞδðt − nτD − σkÞ, where δðtÞ ¼ 1 at t ¼ 0

and it equals zero at any other time. In the particular case
of photonic delay dynamics as reported in this article, the
unit pulse δðtÞ is replaced by a physically more realistic
rectangular temporal window pδτðtÞ ¼ 1 for t ∈ ½0; δτ� and
zero elsewhere (also known as an “order zero” sample and
hold operation). This results in a dynamical law for the
transient according to the following equation [to be
identified with Eq. (1)]:

xkðnÞ ¼ xkðn − 1Þ þ
Z

σk

σk−τD
hðσ − σkÞ

× fNL½xσðn − 1Þ þ ρ · uIσðn − 1Þ�dσ; ð6Þ

where the input signal uIσðnÞ is a stepwise constant function
defined according to the TDM principle performing the
distribution of each input information sample uðnÞ over
each of the virtual nodes defined within a time-delay
interval:

uIσðnÞ ¼
XK
k¼1

�XQ
q¼1

wI
kquqðnÞ

�
pδτðσ − σkÞ: ð7Þ

In Eq. (6), we note the important incremental contribution
to the theoretical interpretation of delay-based RC systems.
Writing a convolution product for the reservoir dynamics
indeed provides a more accurate description compared to
previous work. In the past, analytical descriptions of the
virtual spatial coupling in delay dynamics were presented
either through the approximation provided by a Euler
discrete integration time step of the continuous dynamics
[5] or, roughly, by neglecting the temporal nearest-neighbor
coupling provided by the impulse response function
(coupling was then induced through the hypothesis of an
asynchronous configuration of the cyclic injected TDM
samples with respect to the delay [7,8]). Equation (6)
provides a rigorous analytical description of the delay
dynamics in a mathematical form that exhibits a close
analogy to the original ESN model (recalled in Sec. II A).
In the delay-based RC demonstrations proposed so far, it

was generally assumed that each input sample uðnÞ was
spread through the input layer (input connectivity matrix
WI) over the full time-delay duration τD. One goal of this
work is to report on the possibility to extend the internal
memory of the delay dynamics compared to the temporal
features of the input information. Practically, this offers

enhanced correlation-length capabilities (or “memory”) for
the reservoir, up to several time delays. Instead of a 1∶1
spanning of each input sample over all the K nodes of a
time delay, such an extended delay memory (EDM) is
emulated through an NL∶1 ratio defined as the number NL
of input samples spanned over one time delay. For a fixed
node distance δτ and a fixed number of virtual nodes, this
implies that the time delay has to be increased by a factor
NL, thus leading to the temporal parameter scaling equation
τD ¼ NLKδτ. These quantities rule the node spacing, the
number of emulated nodes, the number of internal layers,
and the time delay. The consequence is that the discrete
time dynamics previously derived in Eq. (6) will develop a
temporal mixing due to the delayed feedback loop, now
between input samples uðnÞ and uðnþ NLÞ instead of
uðnÞ and uðnþ 1Þ (see Fig. 1, where NL ¼ 3). Later, we
will discuss some issues related to this EDM concept for
delay dynamics.
Compared to the single layer essentially adopted so far in

the literature and for which the former theoretical descrip-
tion was detailed, one needs to slightly redefine some of the
equations of the RC processing model:

(i) The number of virtual nodes (per layer) is still
defined as K, which is imposed by the number of
columns of the input connectivity matrix WI per-
forming (through TDM) the spreading of the input
information over one single layer.

(ii) The recurrence time scale defined by the time
delay τD now covers NL successive reservoir vectors
fxkðnÞ; xkðnþ 1Þ;…; xkðnþNL − 1Þjk¼ 1;…;Kg,
instead of a single reservoir vector fxkðnÞjk ¼
1;…; Kg. The reservoir vector with K nodes
then corresponds to the following definition:
xkðnÞ ¼ xðtÞ with t ¼ nðτD=NLÞ þ σk and σk ¼
ðk − 1ÞτD=ðNLKÞ ∈ ½0; τD=NL�.

(iii) The delay-reservoir dynamics thus has to be rewrit-
ten accordingly:

xkðnÞ ¼ xkðn − NLÞ þ
Z

σk

σk−τD
hðσ − σkÞ

× fNL½xσðn − NLÞ þ ρ · uIσðn − NLÞ�dσ:
ð8Þ

In addition to the photonic architecture and to the EDM
concept, we finally propose a third original contribution to
the field of delay-based photonic RC. This contribution
provides a way for the read-out to be temporally designed.
We have seen that a relative timing is involved between
the intrinsic time scale of the reservoir (and its internal
time constants τ; τD;…) and the clock used to inject the
information to be processed according to the TDM prin-
ciple (node separation δτ, node numbers K, EDM scaling
NL). In previous works, the read-out operation was always
assumed to be necessarily clocked synchronously with the
clock already imposed at the write-in [rhythm at the
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information injection, fixing the node separation through
the input sampling rate ðδτÞ−1]. The read-out is, however,
an operation that is fully independent from any previous
RC information processing steps, according to the unidi-
rectional information flow from the input layer through the
reservoir layer and to the read-out layer. The read-out yðnÞ
can thus be expressed either in the same way as in Eq. (2) if
a synchronous write-in vs read-out sampling is adopted
(same node positions σk), or one can define asynchronous
node positions σRk for the read-out:

ymðnÞ ¼
XK
k¼1

wR
mkx

�
n
τD
NL

þ σRk

�
; with

σRk ∈
�
0;

τD
NL

�
: ð9Þ

We thus explored the influence of a slightly different
read-out sampling period δτR compared to the one at the
write-in δτ, δτR ¼ ð1þ εÞδτ. Subsequently, we observed,
for a specific relative desynchronization value ε, a signifi-
cantly improved RC processing efficiency by more than 1
order of magnitude. Such an improvement was confirmed
both in numerics and experiments.

III. EXPERIMENTAL SETUP

Experimental nonlinear delay photonic systems intended
for signal or information processing have already been
studied during the last two decades—however, for totally
different applications such as ultrahigh spectral purity
microwave generation [15] or physical layer optical encryp-
tion using broadband chaotic waveforms [16]. Among
the different setups reported in the literature, our group
contributed to several versions of the so-called optoelec-
tronic chaos oscillator [17]. The latest version was espe-
cially designed in the framework of 10 Gb=s optical chaos
communication, and it succeeded in establishing, through
the realistic conditions of a field experiment, the state of
the art in speed and transmission quality thanks to highly
controllable differential phase shift keying (DPSK) optical
communication techniques [18]. Beyond the operational
chaos communication demonstration, this so-called “phase
chaos setup” is characterized by temporally nonlocal
delayed feedback, which provided both additional virtual
space-time coupling features and novel bifurcation phe-
nomena [19,20]. The phase chaos setup with its bandwidth
capability and high controllability thus appeared to be of
great potential interest in the framework of RC photonic
processing as well.

A. EO phase-delay dynamics

The setup in which RC is performed through the
transient motion of an electro-optically modulated phase
of a laser beam is depicted in Fig. 2. The delayed feedback

loop is inspired by the standard optoelectronic chaos
architecture [17], which provides the “recurrent” character
of the dynamics. This oscillator makes use of two EO phase
modulators (PM), where electrical to optical phase con-
version efficiency is denoted Vπ (also technically referred
to as half-wave voltage). The first EO PM allows us to
imprint the initial electrical domain information uIσðnÞ onto
the optical phase of the laser light beam carrier, whereas
the second EO PM combines information for the nonlinear
delayed recurrent feedback xσðnÞ additively to this input.
The resulting total light phase modulation is φðtÞ ¼
xσðnÞ þ ρuIσðnÞ, where ρ is an amplification factor scaling
the information signal compared to the feedback one. The
recurrent dynamics of the RC concept is provided by the
delayed optoelectronic feedback loop. This loop consists of
the following:

(i) A significant time delay τD issued from the serial
combination of optical fiber pigtails and small
electrical links connecting the different electronic,
optoelectronic, and EO devices of the loop. This
results in a total closed-loop delay measured at
τD ≃ 63.33 ns.

(ii) A fiber-based passive imbalanced Mach-Zehnder
interferometer, which actually consists in a conven-
tional DPSK telecom demodulator, with a time
imbalance δT ≃ 402.68 ps. This demodulator con-
verts the input phase modulation φðtÞ nonlinearly
into an output intensity modulation, according to the
standard two-wave intensity interference function
(with an offset shift ensuring fNL½0� ¼ 0, and with a
gain factor β):

FIG. 2. EO phase setup involving two integrated optic phase
modulators followed by an imbalanced Mach-Zehnder DPSK
demodulator providing a temporally nonlocal, nonlinear, phase-
to-intensity conversion. The information to be processed by this
delay photonic reservoir is provided by a high-speed arbitrary
waveform generator (AWG). The response signal from the delay
dynamics is recorded by an ultrafast real-time digital oscilloscope
at the bottom of the setup, after the circulator, followed by an
amplified photodiode and a filter.
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fNL½φ� ¼ βfcos2½φðtÞ−φðt− δTÞ þΦ0�− cos2Φ0g;
ð10Þ

in which the imbalance δT is much greater than the
fastest time scales present in φðtÞ. In the recurrent
delayed dynamics, this provides a strong enough
nonlinear transformation through the modulation of
the interference condition at the DPSK output.
Compared to previous photonic RC, the phase chaos
setup not only performs the same neighboring node
coupling through τ and thus through hðtÞ as ex-
plained by Eq. (6), it also introduces an additional
“nonlocal” coupling between farther nodes separated
by the DPSK time imbalance δT ≫ δτ. It is worth
noticing the role of the offset phase Φ0 ¼ ω0δT,
which is to fix the shape of the nonlinear function
profile around which the nonlinear transformation is
operated. This actual shape can be set to linear or
quadratic for Φ0 ¼ π=4 or 0, modulo π=2, respec-
tively. For Φ0 ¼ π=4 and a strong enough phase
modulation span (parameter ρ), the actual shape can
even be of cubic type. The parameter Φ0 is practically
adjusted either through the central wavelength of the
laser λ0 ¼ 2πc=ω0 or through a fine-tuning of the
time imbalance. Fiber-based DPSK are indeed usu-
ally equipped with a heating wire rolled around one
interferometer arm, thus allowing us to finely and
actively control the absolute differential phase shift,
i.e., the DPSK rest point. Such an active control is
implemented in our setup, using the backward optical
path in the DPSK demodulator and injecting, along
this path, the same but unmodulated laser beam
extracted from a 10=90 fiber coupler as shown in
Fig. 2. Two optical circulators are used to separate
and combine the forward modulated light beam and
the backward unmodulated one.
The parameter β is a normalized weighting factor

for the nonlinear delayed feedback; it scales linearly
with the different electro-optic and optoelectronic
conversion efficiency (Vπ and S), as well as with the
electronic gain G and the forward path optical power
κP0. The latter power is practically tuned through a
variable optical attenuator (attenuation factor κ) in
order to experimentally adjust β to the optimal value
determined from numerical simulations.

(iii) Telecom-amplified photodiodes with sensitivity S
are used to convert the intensity fluctuations at the
DPSK demodulator output into electronic signals,
either for the delayed optoelectronic feedback ap-
plied to the second EO PM or to record the signal
xσðnÞ. The latter signal represents the reservoir
response to the transient that is triggered by the
input information, and it is recorded by a digital
scope for further off-line processing corresponding
to learning and testing of the read-out layer.

(iv) A 566-MHz cutoff low-pass filter is used to
“slow down” the internal delay dynamics time
scale, resulting in a characteristic response time
τ ≃ 284 ps; in other words, it results in the defi-
nition of the impulse response hðtÞ involved in
Eqs. (4)–(6). The motivation for this filter, which
slows down the actually available 10-GHz band-
width of the unfiltered optoelectronic feedback loop,
is governed on one side by empirically determined
[5] optimal distance between the virtual nodes of a
delay reservoir (δτ ¼ τ=5≃ 56.8 ps), and on the
other side by the maximum sampling frequency of
our AWG (Tektronix 7122C) up to 24 GS=s. The
input sampling rate ðδτÞ−1 ¼ 17.6 GHz deduced
from one-fifth of the low-pass filter characteristic
time scale indeed fulfilled these theoretical and
technical scaling requirements.

Motivated by a qualitative comparison of
performances with respect to the existing literature,
we tried to adjust the number of EDM within the
time delay so that our experiment also involves a
number of nodes per layer close to the 400 most
often used in the literature [5,6,9]. The time delay
τD ¼ 63.33 ns, resulting in a total number of nodes
τD=δτ ¼ 5τD=τ≃ 1113; we chose L ¼ 3 as the
EDM factor, thus leading to K ¼ 371 nodes per
layer.

(v) A broadband telecom RF driver with gain G is used
for amplification before applying the nonlinear
delayed filtered feedback to the second EO PM.
A similar driver is also used between the AWG
and the first EO PM to ensure a strong enough
modulation span [weight ρ in Eq. (6), practically set
through the adjustable output level of the AWG].

The previous nonlinear delay optoelectronic phase oscil-
lator can typically be modeled by an integro-differential
delay equation [19,21], with a nonlocal nonlinearity, and
with a driving term corresponding to the information to be
processed. This results in a nonautonomous DDE system
modeled by two coupled equations:

τ
dx
dt

ðtÞ ¼ −xðtÞ þ 1

θ
yðtÞ þ fNL½φðt − τDÞ�;

dy
dt

ðtÞ ¼ xðtÞ; ð11Þ

where φðtÞ ¼ xσðnÞ þ ρ · uIσðnÞ is a phase modulation
issued from both first and second EO PM (for write-in
and delayed feedback, respectively). The supplementary
variable yðtÞ originates from the necessary bandpass
filtering feature performed in any broadband optoelec-
tronic amplified process (low cutoff frequency of ca.
50 kHz, resulting in θ≃ 3 μs). In addition to the non-
local character of δT, this bandpass feature is also
unusual in the common delay dynamical systems such
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as the ones modeled by Eq. (3). Such a bandpass feature
is a source of supplementary dynamical complexity, as
illustrated by the many new interesting fundamental
dynamical properties they allow for, such as chaotic
breathers [22], chimera states [14], or period-one stable
asymmetric oscillations [23]. In the context of RC,
more complexity is also expected to provide enhanced
processing capabilities.

B. Role and setting of the delay
dynamics parameters

The previously described physical parameters are
directly accessible in experiment, so they can be adjusted
to optimize the performance of the RC processor. This
optimization concerns the sizing of the virtual network such
as the node separation δτ, the number K of such nodes per
virtual network layer, and the number of these layers, NL,
allowing for the EDM feature.
The node distance δτ within a layer, according to the

discrete time dynamics described in Eq. (5), can be viewed
as directly related to the local span of the impulse response
hðtÞ defined by the linear filter limiting the feedback
bandwidth, and thus it is ruled by the characteristic time
scale τ of this filter. This makes a connection between node
separation and filter bandwidth, as already mentioned
through an empirically defined optimal node distance of
ca. τ=5. However, similarly to what was introduced in
Ref. [24] with a multiple delayed feedback, here the
nonlocal character of the nonlinear transformation adds
another contribution to the virtual network connectivity
with an additional coupling distance related to δT.
Beyond the structural definition of the virtual network

(size and spatial coupling), one also has to set the (discrete
time) dynamical properties of the emulated network, which
are indirectly set by the amplitude parameters of the
delayed feedback dynamic. In conventional network-based
RC, these properties are essentially defined by two features:
the so-called spectral radius of the network, which can also
be viewed as a bifurcation parameter for the corresponding
autonomous network, and the nonlinear function ruling the
contribution of the other nodes, when one node has its
states updated from n to (nþ 1).
The spectral radius typically has to be set below unity in

order to ensure a stable steady state in an autonomous
regime (i.e., when no external drive is applied or, in other
words, when the reservoir has no information to process). A
value above unity would indeed correspond to the emer-
gence of a self-oscillation. Such auto-oscillations are
considered to prevent an important required property for
reservoir dynamics, referred to as the fading memory
property [3]. In the case of a differential delay dynamics
[5,6,9], the limit for the stability of a steady state typically
occurs at a Hopf bifurcation usually controlled through the
linear gain of the delayed feedback. Applying this criteria
to our EO phase-delay dynamics, one obtains

����
�
dfNL
dφ

�
φ≡0

���� ¼ j2β sinð2Φ0Þj < 1: ð12Þ

The strength of the fading memory property then directly
depends on the strength of the recurrence in the network,
which recurrence strength is tuned by the spectral radius in
the standard network reservoir, or the linear feedback gain
for a delay reservoir. For a more quantitative measure of
the recurrence-induced memory, one has to calculate the
real part of the eigenvalues for the linearized dynamics
around the stable steady state of concern: The (small-
amplitude) transient duration scales as its inverse. For very
low feedback levels [or for low recurrence strength,
f0NLð0Þ → 0], the memory is very small. Contrarily, if
the feedback is strong enough to get close to the bifurcation
threshold [jf0NLð0Þj → 1−], the memory can grow to infin-
ity, and the transient cannot fade fast enough to properly
process the information according to the RC concepts.
However, such feedback level tuning criteria have to be
considered as qualitative ones only since they refer to a
small amplitude linear approximation. Under realistic
operations, this approximation is poorly valid since large
amplitude nonlinear transients are actually triggered. A
finer setting of the feedback strength was practically
obtained through exhaustive numerical simulations under
many different parameter conditions (β;Φ0; ρ;…). It is
worth noticing that optimal values are generally not
universal for a delay reservoir, but they have different
optimal settings depending on the particular task to be
performed (classification, prediction, …). However, for
more complex delay reservoir topologies, it was recently
found [25] that “universal” computational power, i.e.,
without the requirement for task-dependent parameter
optimization, can be obtained. Work is currently in progress
to experimentally confirm this theoretical result.
Beyond its influence on the linear stability condition as

expressed in Eq. (12), the parameter Φ0 also determines the
actual large amplitude shape of the nonlinear transforma-
tion fNL for the discrete time dynamics as described by
Eq. (6). The role of this function shape can be compared to
the traditional sigmoid (or tanh) nonlinear function often
used in standard discrete-time RNN computing. However,
depending on the value of the parameter Φ0, our setup
provides a few technical differences. As already stated, the
choice ofΦ0 and ρ allows us to choose different polynomial
approximations for this nonlinear function: Φ0 ≃ 0 modulo
π=2 corresponds to the scan of the DPSK interferometer
around constructive or destructive interferences, thus lead-
ing to a nearly quadratic nonlinearity; Φ0 ¼ �π=4 modulo
π=2 sets the average operating point in the middle, between
a constructive and a destructive interference, resulting in
either a quasilinear operation (small ρ values) or a cubic
operation (for large enough ρ). If relevant, any intermediate
situation for Φ0 can of course be chosen, in principle. For
the classification task of concern in this paper, we found
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(consistently with Refs. [6,9]) that a nearly quadratic
operation corresponds to the most efficient computational
performance. Contrarily, note that, for prediction tasks, a
quasilinear operating point was found to be optimal in the
literature [6,9].
Because the different parameter settings lead to inter-

dependent RC properties, and in the absence of a global
self-consistent theory for the optimization of RC, intensive
numerical simulations based on Eq. (11) are required to
identify the best operating conditions for a given task. In
our work, we have focused on two benchmark classifica-
tion tasks for spoken digit recognition, which allowed us to
identify and confirm the qualitative optimization criteria for
ultrafast photonic delay setup, as they were described
above. However, a successful mathematical optimization
theory was recently proposed in single delay nonlinear
dynamics, in the case of a prediction task [26].

IV. TESTING ELECTRO-OPTIC PHASE RC
WITH SPEECH RECOGNITION

Up to now, most RC processing efficiency tests have
been performed through algorithmic implementations of
the concept. Such tests thus involve hardware whose
capabilities are necessarily limited by the ones of conven-
tional Turing–von Neumann machines (standard digital
computers), the same machines that RC approaches are
actually aimed to replace. Dedicated hardware can actually
open the path to ground-breaking efficient computing
machines, providing the expected gain in speed and energy
efficiency as an attractive perspective compared to the
current limitations. In this work, we aim to provide a
step toward this objective by proposing ultrafast photonic
hardware.
In addition to the hardware feasibility of a new concept,

it is also important to evaluate how such a brain-inspired
analog computing approach can offer hardware capabilities
in terms of computational power. To evaluate such com-
putational performances, we have implemented classifica-
tion tasks consisting of speech recognition. Two different
speech databases have been used for testing. The first
one corresponds to a test already widely used in several
recent photonic RC demonstrations—the TI46 test [5–9,
24,27,28]. This first test is important to compare with
already available hardware RC results in the literature. The
second test was also addressed in this work, based on a very
similar task—however, with an extended database for
which the classification problem is more realistic and thus
also more complex.

A. Database from the TI46 test

1. Preprocessing: 2D input from the Lyon ear model

Spoken digit recognition tasks are standard classification
tests, which have been widely used already to evaluate the
processing efficiency of RC. Such a test was introduced in

Ref. [28] and reused is several recent RC hardware
evaluation under the same condition; it consists in the
recognition of pronounced digits between 0 and 9, with
the database corresponding to 500 digits extracted from the
TI46 speech corpus [29]. The digits are pronounced by five
different female speakers uttering the 10 digits 10 times,
with the acoustic waveform being digitally recorded at a
sampling rate of 12.5 kHz.
Following the usually adopted preprocessing for such

kinds of speech recognition tasks, we applied the so-called
Lyon ear model before running the RC processing as
described previously. The Lyon ear model preprocessing
is motivated by a physiologically relevant transformation as
identified in the human ear. It converts the 1D sound
waveform (pressure variations over time) into a 2D fre-
quency-time matrix called a cochleagram: This graph
represents the time evolution, during the pronunciation,
of the Fourier spectral power distribution over Q ¼ 86
frequency channels. The 2D input information consists in a
cochleagram whose columns form the previously intro-
duced input information signal uðnÞ ¼ ½u1ðnÞ…uqðnÞ…
uQðnÞ�⊺: The successive columns of the cochleagram
matrix Mu are indexed by the discrete time n.
Depending on the duration of the pronounced digit, the
number N varies from 32 to 130, with an average of ca. 60.

2. Write-in signal injected into the delay RC

For RC processing as described in Sec. II, a connectivity
matrix WI is used to spread each of these input samples
uðnÞ onto each of the virtual nodes (position σk) defined
within one layer of the delay dynamics. The scalar input
waveform uIσðnÞ appears as the queued columns of the
matrix product Min ¼ WI ×Mu (see Fig. 3). According to
the matrix multiplication and consistently with Eq. (7), the
single-layer signal uIσkðnÞjk ∈ ½1;K� can be interpreted as a
set of K linear combinations of the Q different Fourier
frequency components occurring at time n. Each node k
of the network is thus excited by a different linear

FIG. 3. Illustration of the input information injection into the
dynamics. The (sparse and random) K ×Q write-in matrix WI

performs a spreading of the input cochleagram information
represented as a Q × N cochleagram matrix Mu. The resulting
K × N matrix Min defines a scalar temporal waveform uIσðnÞ
obtained after horizontally queuing the N columns, each of them
being formed by the K amplitudes addressing the virtual nodes in
one layer.
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combination whose coefficients are defined by the nonzero
elements in the rows of the connectivity matrixWI ¼ ½wI

kq�.
From numerical simulations, it turns out that, for this
particular classification task, the optimal connectivity
matrix is obtained for a sparsity of ca. 0.1, assuming a
random setting of its nonzero elements within the binary set
½−1; 1�. For scaling issues and consistency over various
numerical simulations, the input signal amplitude uIσðnÞ is
normalized in such a way that its maximum peak-to-peak
deviation for all 500 digits equals unity. The scaling factor
ρ was then considered as a normalized amplitude span,
independently from the random choice of the connectivity
matrix.
The signal ρuIσðnÞ is programmed in the AWG, which

technically seeds the RF driver modulating the first EO PM,
at the calculated optimal sampling rate of 17.6 GS=s. The
parameter ρ is set through the adjustable amplitude level of
the AWG output.

3. Transient response of the delay dynamics

As described previously, NL ¼ 3 EDM layers are intro-
duced in this work. This implies that three successive input
samples uIσðnÞ indexed from n to nþ 2 are needed to fill
the delay line, instead of a single one as practiced in
previous experiments. Each of these samples for a given n
is also spanned over τD=3 according to the input con-
nectivity, leading to a time division multiplexing of the
input information over K ¼ 371 virtual nodes covering the
duration τD=3, according to Eq. (7). Here, the node
separation is imposed by the AWG sampling rate set to
17.6 GHz, theoretically defining the node spacing
δτ ¼ 57.8 ps. Note that there actually exists a difference
between the stepwise constant input as described in Eq. (7)
and the physical light phase modulation. Indeed, the AWG
has a 24 GS=s maximum sampling rate, but it also has a
limited analog bandwidth of 9 GHz, thus preventing it from
generating a stepwise constant amplitude since the har-
monics, and even the fundamental frequency of the AWG,
are necessary filtered out by the AWG analog bandwidth.
The actual phase modulation ρuIσ is thus a smooth wave-
form of time. Nevertheless, there is no theoretical require-
ment for the stepwise constant profile of the input signal,
the motivation here being essentially to keep the reservoir
dynamics in the permanent transient regime all along the
duration of the input information. The latter condition is
indeed also fulfilled even with a smooth input waveform, as
long as its frequency content is fast enough compared to the
characteristic time scale of the delay dynamics.
Each response of the delay dynamics to each of the

500 encoded input spoken digit signals fuIσðnÞjn ∈ ½1;N�g
is recorded by a real-time ultrafast digital scope (Lecroy
WaveMaster 845Zi-A, 30-GHz analog bandwidth,
80 GS=s) as depicted in the bottom of Fig. 2, with an
oversampling allowing for further postprocessing [e.g.,

averaging, or selection of interpolated samples according
to the already mentioned asynchronous read-out sampling
in Eq. (9), i.e., δτR ¼ ð1þ εÞδτ]. Each sampled response
signal fxσRk ðnÞjn ∈ ½1;N�g is conditioned numerically in
the form of a K × N matrix Mx, thus in a similar form
compared to the previously introduced input signal matrix
Min for uσkðnÞ. Processing all the digits of the database thus
leads to 500 of such response matrices Mx.

4. Learning the optimal read-out matrix WR

A given response matrix Mx is representative of the
dynamical processing performed by the EO phase-delay
dynamics. It consists in the sampling of the transient
trajectory triggered by one input signal, with this trajectory
taking place in the infinite-dimensional phase space of the
delay dynamics. According to the concept of RC, one then
needs to learn the coefficients ½wR

mk� of a hyperplane in this
phase space, which is expected to have a characteristic role
for the problem presented to the RC processor. For the
particular case of a classification problem as for the spoken
digit recognition task, we expect to learnM ¼ 10 such sets
of coefficients, i.e., one for each of the 10 possible
modalities (the 10 digits from zero to nine). The M × K
read-out matrixWR can be constructed such that the matrix
product WR ·Mx results in a so-called target matrix My

with dimensions M × N (see Fig. 4). The correct digit is
then expected to be easily identified from the content of
My. A simple form for the construction of such a matrix
My is to set zeros on each (M − 1) lines related to the
wrong modality and to set ones on the line corresponding to
the correct modality.
Practically, the learning requires the use of a subset of

digits from the whole database of 500 spoken digits, the
complementary part of this subset being used later for the
testing of untaught digits. One of the most attractive
features of RC is its easy and always converging learning
technique to compute the optimal read-out matrix WR

opt.
This is basically performed through a simple ridge regres-
sion minimizing the error for all possible WR matrices in

FIG. 4. Illustration of the expected optimized read-out process-
ing through a (M × K) matrix WR, left multiplying the transient
response (K × N) matrix Mx, thus resulting in an easy-to-
interpret target (M × N) matrix My. The latter matrix is aimed
at designating the right answer for the digit to be identified (the
second line in this example, indicating digit “1”).
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order to obtain the proper target for each digit of the
training subset:

WR
opt ¼ argmin

WR
∥WR ·Mx −My∥

2 þ λ∥WR∥
2

; ð13Þ

where λ is the regression parameter to compensate for a
necessarily ill-posed problem. The matricesMx andMy are
the horizontally concatenated matrices gathering all the
experimental response matrices of the training subset and
all their corresponding targets, respectively. Practically, we
randomly chose 475 digits for the training subset, with the
25 remaining ones being left for testing. This partitioning is
essentially guided by the recent implementations of the
same test, thus allowing for a more confident relative
performance evaluation for the RC processing efficiency.
Cross-validation was performed through the repetition of
20 learning procedures, according to the choice of 20
nonintersecting subsets of 25 testing digits, and their
corresponding training subsets. This allowed us to obtain
an average computational performance measure in which
each of the 500 digits has been used once for testing.
The optimal read-out matrix was calculated off-line

using the experimentally recorded transient response matri-
ces Mx. This calculation was done by a Matlab routine
executing the ridge regression through a standard More-
Penrose matrix inversion, according to the following
expression:

WR
opt ¼ My ·M

⊺
xðMxM

⊺
x − λIKÞ−1; ð14Þ

where IK is the K-dimensional unity matrix, and ð:Þ⊺ refers
to the matrix transpose.

5. Testing and word error rate (WER) calculation

Testing is also done off-line (its physical implementation
could, however, be realized on-line through the design of a
standard analog signal correlator, thus preserving, for the
whole testing step, the full analog processing speed of the
photonic reservoir). Right after computing the optimal
read-out matrix WR

opt, we evaluated the result of the RC
processing on each of the testing digits by calculating
~My ¼ WR

optMx. This consists of a set of standard circular
correlation operations between each column of the read-
out, as well as the reservoir response. The corresponding
result of the matrix product is expected to resemble the
target matrix My. One naturally does not obtain a perfectly
correct line with ones and wrong lines with zeros; however,
integrating (summing) the elements of each line of ~My over
n leads to a score for each modality (see Fig. 5). The RC
processing is then simply determined by the modality
showing the best score. This procedure is depicted in
Fig. 6, which can be compared with the known answer in
order to count the number of errors. A word error rate is

finally obtained after 20-times repetition of learning and
testing (cross-validation), thus giving a WER over the 500
digits of the original database.

B. Numerical and experimental results

As indicated previously, intensive numerical simulations
of Eq. (11) have been performed in order to identify the
optimal parameter conditions for best RC performances.
These simulations allowed us to find qualitative criteria that
are fully consistent with previously obtained results [5,6,9].
Quantitatively, excellent RC classification performances
have been obtained both numerically and experimentally
with WER close to 0%, thus confirming previous results
from other photonic setups. Moreover, the EO phase-delay
dynamics setup allowed for the use of relatively fast
processing (though not yet optimized), reaching state-of-
the-art classification speed: For an average duration of 60
samples for one spoken digit, the analog processing can be
performed within 1.3 μs, thus resulting in a processing
speed of the order of 1 million words per second.
The numerical simulations used to set the experimental

parameter have given the following optimized operating
conditions:

(i) Nearly quadratic nonlinearity is found to be optimal
for this classification task; i.e., an offset phase Φ0

close to 0 modulo π=2 is obtained numerically [see
Fig. 7(a)]. It is worth noticing that an operation close

FIG. 5. Example of an imperfect “reservoir-computed” target
answer while testing the optimal read-out WR

opt on an untrained
digit of response Mx. However, the digit “2” clearly appears as
the most obvious answer for this untrained tested digit.

FIG. 6. Illustration of the decision procedure for the computed
answer. The temporal amplitudes of the actual target are summed
over time for each line (or modality), i.e., for each of the 10
possible digits. The right modality is then declared as the one with
the highest sum.
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to a minimum or a maximum led to comparable
performance optimizations compared to the linear
operating point (π=4 modulo π=2), with a WER
improvement factor of the order of 10. We also
notice that the minimum WER is not obtained for a
purely parabolic operating condition but always for a
slightly shifted position from the minimum or the
maximum, e.g., π=10 or 2π=5 instead of 0 and π=2.
This indicates that a linear contribution might be
needed for an optimal processing of this classifica-
tion task.

(ii) For each offset phase value Φ0 ∈ ½0; π�, we numeri-
cally scanned the delayed feedback gain parameter
β ∈ ½0.01; 1.4�. Again, we consistently found an
optimal value slightly below the instability threshold
for the fixed point, as described by Eq. (12) in our
setup. An optimal value of β≃ 0.7 was obtained
for the optimal, nearly quadratic, offset phase Φ0 ≃
2π=5 [Fig. 7(b)].

(iii) The weight ρ for the input signal injected into the
first EO PM allows for a more or less wide scan of
the nonlinear function profile, thus controlling the
actual nonlinear expansion of the information into
the delay dynamics phase space. A value close to
unity confirmed that large-amplitude injected infor-
mation is in favor of optimal performances. This unit
peak-to-peak amplitude is compared to the delayed
feedback signal peak-to-peak amplitude, xσðnÞ,
which is of the order of j2β sinð2Φ0Þj ≪ 1 (for
Φ0 ≃ π=2). Excessive values of ρ are detrimental
to RC processing because they can trigger transient
self-oscillations if β is above the minimum Hopf
threshold (at β ¼ 0.5 in this setup).

(iv) The effect of an asynchronous read-out (sampling of
the transient response) with respect to the write-in
(rhythm imposed by the AWG) was explored, both
numerically and also from the experimentally re-
corded responses. We discovered a significant RC
processing enhancement by a factor of more than 10,
for a very small relative ε deviation between δτ and
δτR, of the order of 10−4. Such an improvement was
moreover obtained for either positive or negative
relative asynchrony, the exact synchrony actually
leading to a nonoptimal RC classification when
considering moderate asynchrony (jεj≃ 5 × 10−4)
[see Fig. 7(c)]. The origin of this phenomenon has
not been explained yet and was not discovered
earlier, to the best of our knowledge. Because of
the extremely small time-scale shifts of concern, this
phenomenon is necessarily related to fast response
times and thus to the continuous-time information
mixing through the impulse response hðtÞ. We
anticipate that efficient information extraction from
the input signal actually requires asynchrony, pos-
sibly related to globally nonuniform sampling issues
(we anticipate that a theoretical explanation of this
fact might come from irregular sampling theory
and/or compressive sensing theory).

(v) Finally, the concept of EDM for a delay-based
reservoir was also found to be of practical interest
for improving the RC processing efficiency. Its
motivation was initially inspired by the long time
delays compared to the fast response times of
photonic telecom devices, essentially due to the
too-long fiber pigtails in these devices. This resulted
in an initial scaling of the delay dynamics with more
than 1000 virtual nodes. Introducing three EDM
layers enabled us to process information with a
comparable number of nodes (a few hundred) with
respect to existing literature. Simulating the process-
ing with an arbitrary integer number ruling the
EDM concept has indicated that this concept indeed
improved the performances compared to the single-
delay memory topology reported up to now. Addi-
tional numerical simulations showed us that an
optimal scaling can even be obtained for six time
EDM. This might be related to some internal
correlation of human speech, which could be more
efficiently revealed by the use of the EDM RC
topology.

C. Database from the AURORA-2 test

The AURORA-2 test is a standardized benchmark
developed in the framework of speech recognition for
mobile-phone communications. The original acoustic
waveforms are extracted from the TIDigit corpus database
(from the Linguistic Data Consortium) as for the TI46 test.
It is, however, much richer in terms of speaker variability

(a) (b)

(c) (d)

FIG. 7. Numerical and experimental results for the parameter
optimization with the TI46 database. (a) The cos2 static nonlinear
transformation function and its scanned portion in red, under the
best operating points close to a minimum or a maximum.
(b) WER vs β parameter, under synchronous write-in and
read-out, i.e., δτ ¼ δτR. The red line is the numerics; the blue
line is experimental (best: 1.3%). (c) WER as a function of the
relative read-out vs write-in asynchrony quantified as
ε ¼ δτR=δτ − 1. (d) WER vs the β parameter, under asynchro-
nous write-in and read-out. The red line is the numerics; the blue
line is experimental (best: 0.04%).
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and thus more challenging in terms of recognition
difficulty. The database is constructed of 326 speakers
(111 men, 114 women, 50 boys, and 51 girls), each
speaking approximately 77 digit sequences from one
(isolated) to seven digits. The sequences were made up
of the following digits: zero, oh, one, two, three, four, five,
six, seven, eight, and nine. On this basis of a set of clean
speeches, the AURORA-2 test consists in the construction
of test and training subsets, in which different kinds of
noise can be added with different noise levels. The whole
AURORA-2 thus forms a highly complex test of significant
size (more than 28000 digits) corresponding to realistic
conditions [30].
For the sake of simplicity and also for ease of

comparison with the previous TI46 test popular in
photonic RC literature, we have restricted this second
test to clean and isolated digits from the AURORA-2 test.
Nevertheless, this second test processed through our
photonic RC involved a training set of 2412 clean digits
(folder train/clean of the AURORA-2 test set), and a
testing set of 289 untaught digits (folder test/clean1 in the
AURORA-2 test set). This allowed us to essentially focus
on the influence of the enhanced speech variability
compared to the TI46 test (digits spoken by females only)
and thus to focus on the performance impact with our
photonic RC. It is worth noticing that performance on
clean sets is available in the literature [30] and, moreover,
also in the recent case of an advanced RC-based recog-
nition algorithm [31]. In the latter reference, a complex
multistate architecture and very high number of nodes
were used (up 20 thousand), resulting in performances
very close to the state of the art, with the best WER of
about 1% on clean digits conditions.
We have performed, both numerically and experimen-

tally, a speech recognition test on the clean and isolated
digits subset of the AURORA-2 database. The parameters
of our photonic reservoir are the following: number of
nodes ¼ 1000, the feedback gain is β ¼ 0.7, the offset
phase is ϕ ¼ 2π=5, and the scalar factor is ρ ¼ 1. We have
also used 3 times EDM so that we have indeed 1000 × 3 ¼
3000 nodes per time delay. One should notice that these

parameters have not been optimized and were essentially
chosen from the exhaustive parameter scan already done for
the TI46 test. Very similar qualitative signal processing is
obtained compared to the TI46 test, as can be observed in
Figs. 8–10. Despite the simplicity of our approach (single
delayed feedback reservoir, dedicated analog hardware
necessarily including processing noise and drifts, and
moderate number of nodes compared to the advanced
algorithmic RC approach in Ref. [31]) and despite the
absence of any fine optimization of the operating param-
eters, we obtained WER below the state of the art but of the
same order of magnitude (numerically 1.2% for the learn-
ing set WER and 4.5% for the testing set WER; exper-
imentally 6.6% for the learning WER, and 8.9% for the
testing WER). The more difficult character of this second
test can be illustrated through the speech recognition
performance obtained from a direct read-out on the input
data. This relevant test highlights the contribution of the
reservoir (effect of nonlinear dynamical expansion in a
high-dimensional phase space) since it consists in applying
a linear read-out only to the input information after the
input layer. While 6% WER can already be obtained with
the TI46, one only gets 40% when the clean and isolated
subset of the AURORA-2 test is concerned. In both cases,
the photonic reservoir clearly shows the efficiency of the
nonlinear transient expansion performed by the delay
dynamics.

FIG. 8. Illustration of the expected optimized read-out process-
ing for the AURORA-2 test. This illustration is to be compared
with Fig. 4 (TI46 test). The latter matrix is aimed at designating
the right answer for the digit to be identified (here, the digit “5”).

FIG. 9. Example of an imperfect “reservoir-computed” target
answer while testing the optimal read-outWR

opt for the AURORA-
2 test (to be compared to Fig. 5 for the TI46 test). The answer
appears to be the digit “5” here.

FIG. 10. Decision procedure for the computed answer for the
AURORA-2 test (to be compared to Fig. 6 for the TI46 test). The
outcome of the test is the digit “5.”
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V. CONCLUSION

This work has demonstrated the potential of photonic
delay dynamics for ultrafast and efficient RC processing
techniques, with a novel electro-optic phase-delay dynam-
ics architecture. A rigorous modeling correspondence of
the nonlinear delay dynamics with the original RC concept
was proposed, thus theoretically supporting the efficiency
of the experimental demonstration. The reported photonic
implementation of the RC concept proposes several attrac-
tive features: speed related to a structure based on optical
telecommunication devices; processing efficiency demon-
strated in the particular case of speech recognition;
processing universality, according to the universal comput-
ing machine concept of RC; design simplification and
accurate modeling, through its pure temporal signal-
processing architecture compared to complex spatio-
temporal attempts for photonic RC processors
[10,32,33]. The reported photonic RC architecture also
has an important chip integration potential, through the use
of conventional photonic devices. The latter are indeed now
available in many libraries for photonic integrated chips
making use of hybrid III-V and silicon photonics technol-
ogies [34]: Lasers, phase modulators, delay lines, and
detectors together could provide a “reservoir on a chip,”
as could additional in-line signal-processing functions such
as correlators for a direct on-chip write-in and read-out.
The temporal character of the proposed delay-dynamics
approach indeed enables the use of many efficient signal-
processing techniques available from modern telecommu-
nication technologies (advanced filtering and modulation
techniques), thus offering numerous practical solutions for
a powerful implementation of a time-domain RC concept
with ultrafast analog photonic systems.
Aside from these many technological and computing

potentials, photonic RC still requires important efforts to
improve its fundamental understanding, which is obviously
needed for a full and self-consistent implementation
capable of providing a future breakthrough in brain-
inspired computing machines. Perspectives are indeed
numerous and challenging in this respect, a few of which
have been proposed in this article: through the accurate
modeling of the continuous time processing with delay
dynamics, through the suggestion for EDM structures, and
through the discovery of the tiny but efficient asynchronous
sampling between information write-in and dynamical
response read-out. Work is also in progress to implement
a recently proposed parallel architecture of a smaller
delay reservoir [25], allowing for a universal processing
of such architecture without the need for the currently time-
consuming and task-dependent parameter optimization.
Additional research directions concern the investigation
of a fully consistent RC system combining both digital and
analog subsystems, in which all the different RC processing
steps can be integrated (e.g., a digital part taking care of the
tasks sequencing, learning and testing coordination, and an

analog photonic part providing the ultrafast RC processing
core of the dynamical reservoir).
Last but not least, work is also in progress to address

the possibility to design unsupervised learning architec-
tures for these delay-based photonic RC processor. This
would make such brain-inspired processors universal and
independent from the current algorithmic tool required for
the ridge regression in the learning step. We anticipate that
particular nonlinear dynamics properties such as pattern
formation and emergence of chimera states [35] might be
of great importance for this highly challenging perspective
in nonlinear dynamics for brain-inspired computing
machines.
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