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The creation of composite quantum gates that implement quantum response functions ÛðθÞ dependent
on some parameter of interest θ is often more of an art than a science. Through inspired design, a sequence
of L primitive gates also depending on θ can engineer a highly nontrivial ÛðθÞ that enables myriad
precision metrology, spectroscopy, and control techniques. However, discovering new, useful examples
of ÛðθÞ requires great intuition to perceive the possibilities, and often brute force to find optimal
implementations. We present a systematic and efficient methodology for composite gate design of arbitrary
length, where phase-controlled primitive gates all rotating by θ act on a single spin. We fully characterize
the realizable family of ÛðθÞ, provide an efficient algorithm that decomposes a choice of ÛðθÞ into its
shortest sequence of gates, and show how to efficiently choose an achievable ÛðθÞ that, for fixed L, is an
optimal approximation to objective functions on its quadratures. A strong connection is forged with
classical discrete-time signal processing, allowing us to swiftly construct, as examples, compensated gates
with optimal bandwidth that implement arbitrary single-spin rotations with subwavelength spatial
selectivity.
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I. INTRODUCTION

Composite quantum gates [1,2] are indispensable to
many important quantum technologies, such as nuclear
magnetic resonance, magnetic resonance imaging, quan-
tum sensing, and quantum computation [3]. Their versa-
tility arises from cunningly chosen sequences of L
primitive quantum gates that produce an effective quantum
gate Û with a more desirable dependence on some
parameters of interest θ, such as drive amplitude or back-
ground magnetic fields. As a function of θ, the quantum
response function ÛðθÞ can be tailored to amplify weak
signals beyond the statistics of repetition and suppress
noise without measurement. Finding such useful composite
gates is thus the subject of intense research.
Even in single-spin systems, the focus of this work,

extraordinary richness can be found in the possible forms of
ÛðθÞ. Examples include the following: NMR spectroscopy,
where minute chemical shifts θ are made clearer through
ÛðθÞ [2,4,5]; Heisenberg-limited quantum imaging, where
ÛðθÞ is made sensitive to subwavelength position varia-
tions θ [6] without aliasing [7,8]; subwavelength spatial
addressing, where arbitrary quantum gates ÛðθÞ with low
crosstalk are applied on spin arrays [8–10]; quantum phase
estimation for atomic clocks [11] or tomography [12],

where extremely small drifts θ are amplified by a factor L in
the gradient of ÛðθÞ; error compensation, where fractional
control errors θ are exponentially suppressed like ÛðθÞ ¼
Ûð0Þ þOðθpolyðLÞÞ [13–20]; and quantum algorithms such
as amplitude amplification [21,22], where a computation
ÛðθÞ proceeds with input θ. The discovery of other
applications would be expedited if a useful characterization
of all achievable ÛðθÞ could be found.
However, the road to new results does not end with a

choice of ÛðθÞ. Given some reasonable system-dependent
quantum control [23], its realization as a composite gate
must be found. Only with rare exceptions [8,9,16] and great
effort are optimal arbitrary-length examples found in
closed form. Thus, celebrated techniques including gra-
dient ascent algorithms [5] and pseudospectral methods
[24,25] formulate this as a systematic optimization problem
that can be solved by brute force but unfortunately with an
exponential worst-case runtime OðeLÞ for finding opti-
mally short L approximations. Finding efficient solutions
to various control problems would expand the potential of
long composite gates, for which the most sophisticated
quantum response functions can be constructed.
A tantalizing similarity is seen in discrete-time signal

processing [26]. Optimal finite-impulse response filters
[27] can be designed simply by choosing the lowest-degree
L polynomial that is the optimal approximation to a desired
frequency response, from which an optimal and exact
implementation is computed—made possible by efficient
algorithms for both steps. It is recognized that composite
gates implement a filter on physical parameters [20,28],

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 6, 041067 (2016)

2160-3308=16=6(4)=041067(13) 041067-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.6.041067
http://dx.doi.org/10.1103/PhysRevX.6.041067
http://dx.doi.org/10.1103/PhysRevX.6.041067
http://dx.doi.org/10.1103/PhysRevX.6.041067
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


and the use of polynomials in quantum response functions
is well known [29,30]. Unfortunately, quantum constraints
can render computing these polynomials and their optimal
implementation a hard problem. It would be a tremendous
advance if efficient solutions to these problems could be
found and even more so if the countless results from the
exalted history of classical discrete-time signal processing
were transferable to the quantum realm.
One noteworthy step in this direction is the Shinnar–Le

Roux algorithm [31,32] and its refinements [33–35], which
have so far been restricted to the field of magnetic
resonance imaging. In this case, θ represents the amplitude
of background magnetic fields and manifests as an off-
resonant rotation. Given otherwise perfect and arbitrary
single-spin control, this approach enables the efficient
design of ÛðθÞ by a connection to finite-impulse response
filters. Unfortunately, extending the concept to situations
with different controls and additional restrictions, particu-
larly the case of on-resonant compensating pulse sequen-
ces, appears to have been difficult.
We contribute to this aspiration with a methodology,

similar to the Shinnar–Le Roux algorithm, for designing
composite gates built from L resonant primitive gates
acting on a single spin, all rotating by an angle θ but
not necessarily with the same phase. We rigorously
characterize the quantum response functions ÛðθÞ achiev-
able in this manner, proving how we can efficiently choose
the form with trigonometric polynomials of degree L and
how their optimal implementation with the shortest
sequence of primitive gates can be efficiently computed.
In the process, a connection is made with discrete-time
signal processing that allows us to inherit some of its
machinery. These powerful tools expedite composite gate
design, which we demonstrate with three optimal important
examples: (1) narrow-band and broadband composite
population inversion gates, (2) compensated NOT gates
with optimal bandwidth, and (3) spatially selective arbitrary
single-spin rotations below the diffraction limit.
In Sec. II, we elucidate the controls available to our

single-qubit system, and in Sec. III, we demonstrate how
equiangular composite gates motivate the intuitive concept
of choosing polynomials to explicitly define the quantum
response function ÛðθÞ. This is made rigorous and tractable
in Sec. III A by a simple characterization of the space of
achievable ÛðθÞ and, in Sec. III B, by showing how an
optimal implementation of any such ÛðθÞ can be efficiently
computed. We then show in Sec. III C how an achievable
ÛðθÞ can be efficiently computed from a partial specifi-
cation with polynomials that describe only the composite
gate fidelity or transition probability response functions.
In Sec. III D, this enables the efficient design of achievable
ÛðθÞ by inheriting existing polynomials and efficient
polynomial design algorithms from discrete-time signal
processing. Together, these provide the methodology out-
lined in Sec. III E for the systematic and efficient design of

composite quantum gates. Use of this methodology is
demonstrated in Sec. IV with the creation of optimal-
bandwidth-compensated gates in Sec. IV B that provide an
optimal solution in Sec. IV C to the problem of implement-
ing subwavelength spatially selective arbitrary quantum
gates. Further directions are discussed in Sec. V.

II. MODEL

The unitary quantum response function ÛðθÞ describes
how a quantum system evolves under the influence of
some parameter θ of interest. We consider the generic
system of a resonantly driven single spin and present a
construction for composite quantum gates that motivates
a powerful approach for designing their implemented
response functions.
A two-level system driven by time-dependent

Rabi frequency ΩðtÞ and phase ϕðtÞ is controlled by
the Hamiltonian ĤcðtÞ ¼ ðΩðtÞ=2Þσ̂ϕðtÞ, where σ̂ϕ ¼
cosðϕÞσ̂x þ sinðϕÞσ̂y and σx;y;z are Pauli matrices. Taking
ϕðtÞ ¼ ϕ to be constant over time τ, we generate the
primitive rotation

R̂ϕðθÞ ¼ e−iðθ=2Þσ̂ϕ ; θ ¼
Z

τ

0

ΩðtÞdt: ð1Þ

Note that ΩðtÞ might only be partially under our control;
thus, it contains an uncontrollable residual signal. Our
parameter of interest is thus θ, which captures the effects
of both control and signal.
An equiangular composite gate of length L is built from

these primitive rotations, each with the same rotation

amplitude θ but with varying phases ~ϕ ¼ ðϕ1;…;ϕLÞ.
This produces a θ-dependent unitary ÛðθÞ, or quantum
response function, of the form

ÛðθÞ ¼ R̂ϕL
ðθÞR̂ϕL−1

ðθÞ…R̂ϕ1
ðθÞ;

¼
XL
j¼0

ð−iÞjsinj
�
θ

2

�
cosL−j

�
θ

2

�
Φ̂L;j; ð2Þ

where Φ̂L;j ¼ σ̂jxðRe½ΦL;j�1̂þ iIm½ΦL;j�σ̂zÞ, and the phase
sums ΦL;j are defined through the recurrence [19]

Φk;j ¼ Φk−1;j þ Φk−1;j−1eið−1Þ
jþ1ϕj ;

Φ0;0 ¼ 1; Φ0;j≠0 ¼ 0; ð3Þ

performed over j ¼ 0; 1;…; k and then k ¼ 1; 2;…; L.
Now, we make the crucial observation that ÛðθÞ

is a polynomial of degree L in x≡ cos ðθ=2Þ and
y≡ sin ðθ=2Þ, with a particularly elegant representation.
Using the trigonometric relation x2 þ y2 ¼ 1, ÛðθÞ has
the form
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ÛðθÞ

¼
�
AðxÞ1̂þ iBðxÞσ̂z þ iCðyÞσ̂x þ iDðyÞσ̂y L odd

AðxÞ1̂þ iBðxÞσ̂z þ ixCðyÞσ̂x þ ixDðyÞσ̂y L even;

ð4Þ
where AðxÞ, BðxÞ, CðyÞ, and DðyÞ are polynomials of, at
most, degree L with coefficients ak, bk, ck, and dk
(k ¼ 0; 1;…; L), respectively. In the following, A, B, C,
and D without arguments are understood to be functions of
the x, y seen in Eq. (4). As the tuple ðA;B;C;DÞ is an
equivalent representation of ÛðθÞ, we refer to both inter-
changeably. In particular, achievable tuples are those that can
be realized by some composite gate of Eq. (2).
Definition 1.—(Achievable polynomial tuples). A tuple

of polynomials ðA;B;C;DÞ is achievable if ∃L ∈ N and
ϕ⃗ ∈ RL s.t. ÛðθÞ¼R̂ϕL

ðθÞR̂ϕL−1
ðθÞ…R̂ϕ1

ðθÞ has the form
of Eq. (4).
We are often interested in only a few components of

ðA;B; C;DÞ. For example, the partial tuple ðA; ·; C; ·Þ fully
defines the gate fidelity response function FχðθÞ ¼
1
4
jTr½R̂†

0ðχÞÛ�j2 with respect to some target gate R̂0ðχÞ.

FχðθÞ ¼
� j cosðχ

2
ÞA − sinðχ

2
ÞCj2 L odd

j cosðχ
2
ÞA − x sinðχ

2
ÞCj2 L even:

ð5Þ

Similarly, ðA;B; ·; ·Þ or ð·; ·; C;DÞ fully defines the tran-
sition probability response function pðθÞ ¼ jh0jÛj1ij2,

pðθÞ ¼ 1 − A2 − B2 ¼ ðC2 þD2Þ
�
1 L odd

x2 L even:
ð6Þ

We refer to a tuple with n empty slots as an n-partial tuple.
An n-partial tuple is achievable if it is consistent with some
achievable tuple.
A brute-force approach to composite gate design is

minimizing an objective function for ÛðθÞ over a space

L ∈ N, ~ϕ ∈ RL. Though useful examples have been dis-
covered in this manner, such an approach is highly
unappealing. In addition to being inefficient with a runtime
OðeLÞ, there is no guarantee that a globally optimal
solution will be found. Furthermore, the procedure pro-
vides little of the necessary insight into possible ÛðθÞ for
envisioning further novel applications.

III. SYSTEMATIC AND EFFICIENT DESIGN
OF OPTIMAL COMPOSITE GATES

The functional form of ÛðθÞ hints at a powerful
methodology for composite gate design via choices of
the polynomials ðA; B;C;DÞ of degree L. This ambition
must solve long-standing problems:
(P1) An insightful characterization of achievable

ðA;B;C;DÞ to eliminate the traditional guesswork

in envisioning novel quantum response functions

and their dependence on ~ϕ.
(P2) An efficient algorithm to compute the optimal ~ϕ

implementing an achievable ðA;B; C;DÞ, in contrast
to the intractable random search in time OðeLÞ of
current state of the art [8].

(P3) An efficient algorithm to compute an achievable
ðA;B;C;DÞ from achievable partial tuples, e.g.,
ðA; ·; C; ·Þ, as might be encountered with common
objective functions for Eqs. (5) and (6).

(P4) An efficient algorithm for computing achievable
partial tuples optimal for some objective function.

Our main technical advances are precisely the reso-
lution of problems (1–4). We describe, in a simple and
intuitive manner, the set of achievable ðA;B;C;DÞ and
provide efficient algorithms for solving what have tradi-
tionally been the hardest aspects of composite gate
design. In particular, a beautiful connection is made with
the historic field of discrete-time signal processing that
allows us to inherit much of its prior work in polynomial
design. In this manner, the inspired art of composite
gates is transformed into a systematic science. Optimal
composite gates are simply polynomials that are optimal
for the objective function, and these polynomials can be
found efficiently.

A. Characterization of quantum response functions

Here, we characterize achievable choices of quantum
response functions ðA;B; C;DÞ in a manner independent

of ~ϕ, hence resolving problem (P1). By providing insight
into the forms of possible ÛðθÞ, we also obtain a quanti-
tative explanation for the remarkable versatility of
composite gates. Achievability constraints on the polyno-
mials ðA; B;C;DÞ are as follows:
Theorem 1 (Achievable tuples). A tuple of polyno-

mials ðA; B;C;DÞ of, at most, degree L is achievable iff all
the following are true:
(1) A, B, C, D are real.
(2) Að1Þ ¼ 1 or Bð1Þ ¼ 0.

(3)

�
A;B; C;D are odd L odd;
A; B are even andC;D are odd L even:

(4) 1¼
�
AðxÞ2þBðxÞ2þCðyÞ2þDðyÞ2 Lodd
AðxÞ2þBðxÞ2þx2CðyÞ2þx2DðyÞ2 Leven:

Proof.—In the forward direction, (1) and (3) are true if
we apply the trigonometric substitution x2 þ y2 ¼ 1 in
Eq. (2) and collect coefficients of 1̂; σ̂x;y;z. Case (2) is true

as Ûð0Þ ¼ 1̂ in Eq. (2). Case (4) is true as Û is unitary, so
Û†Û ¼ 1̂ and 1

2
Tr½Û†Û� evaluated via Eq. (4) produces

1¼
�
AðxÞ2þBðxÞ2þCðyÞ2þDðyÞ2 Lodd

AðxÞ2þBðxÞ2þx2CðyÞ2þx2DðyÞ2 Leven:
ð7Þ
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In the reverse direction, we need to show that any
ðA;B; C;DÞ satisfying (1–4) is achievable in the sense
of Definition 1. We leave these steps to Lemma 1. ▪
Conditions (1–4) for achievable ðA;B;C;DÞ appear

fairly general, which allows for great flexibility in choosing
arbitrary response functions. They are also understandable
and intuitive. A characterization of achievable partial tuples
is also useful. Not all quadratures of ÛðθÞmight be relevant
to an objective function, and optimizing over a subset
ðA;B; C;DÞ could be easier. In the following, we examine
how the unitarity constraint of condition (4) is weakened
for all possible 2-partial tuples.
Theorem 2 (Achievable 2-partial tuples). Assuming A,

B, C, D satisfy conditions (1–3) of Theorem 1,
(1) ðA; ·; C; ·Þ, ðA; ·; ·; CÞ is achievable iff

(i) ∀ θ ∈ R;
nAðxÞ2 þ CðyÞ2 ≤ 1 L odd
AðxÞ2 þ x2CðyÞ2 ≤ 1 L even:

(2) ð·; B; C; ·Þ, ð·; B; ·; CÞ is achievable iff

(i) ∀ θ ∈ R;
nBðxÞ2 þ CðyÞ2 ≤ 1 L odd
BðxÞ2 þ x2CðyÞ2 ≤ 1 L even:

(3) ðA;B; ·; ·Þ is achievable iff
(i) ∀ θ ∈ R; AðxÞ2 þ BðxÞ2 ≤ 1, and
(ii) ∀ x ≥ 1; AðxÞ2 þ BðxÞ2 ≥ 1, and
(iii) ∀ L even; ∀ x ≥ 0; AðixÞ2 þ BðixÞ2 ≥ 1.

(4) ð·; ·; C;DÞ is achievable iff

(4a) ∀ θ ∈ R;
nCðyÞ2 þDðyÞ2 ≤ 1 L odd
x2CðyÞ2 þ x2DðyÞ2 ≤ 1 L even;and

(4b) ∀ L odd; y ≥ 1; CðyÞ2 þDðyÞ2 ≥ 1.
Proof.—In the forward direction, all the (a) conditions

are true from Eq. (7) using the fact that A, B, C, D are all
real; hence, their squares are positive. Condition (3b) is true
if we consider Eq. (7) with the substitution x ¼ ffiffiffi

λ
p

,
y ¼ ffiffiffiffiffiffiffiffiffiffi

1 − λ
p

, and compute 1 − A2ð ffiffiffi
λ

p Þ − B2ð ffiffiffi
λ

p Þ ¼ � � �.
Note that the x, y here are complex. Using the odd/even
symmetry of C, D, the rhs factorizes into a positive term
times (1 − λ) or λð1 − λÞ. This is negative ∀ λ ≥ 1 so
A2ð ffiffiffi

λ
p Þ þ B2ð ffiffiffi

λ
p Þ ≥ 1. Condition (3c) is similarly proven

by considering λ ≤ 0. The rhs factorizes into λð1 − λÞ
and a positive term. Condition (4b) is proven with the
substitution x¼ ffiffiffiffiffiffiffiffiffi

1−λ
p

, y ¼ ffiffiffi
λ

p
and by considering

λ ≥ 1. In the reverse direction, we need to show that
assuming these conditions enables the computation of
an achievable ðA;B;C;DÞ. We leave these steps to
Lemmas 2 and 3. ▪
Note that C, D are interchangeable in Theorem 2 as their

constraints in Theorem 1 are identical. We also characterize
all possible 3-partial tuples.
Theorem 3 (Achievable 3-partial tuples). Assuming

A, B, C, D satisfy conditions (1–3) of Theorem 1, the
following are achievable under their respective conditions:
(1) ðA; ·; ·; ·Þ iff ∀ θ ∈ R; AðxÞ2 ≤ 1.
(2) ð·; B; ·; ·Þ iff ∀ θ ∈ R; BðxÞ2 ≤ 1.

(3) ð·; ·; C; ·Þ iff ∀ θ ∈ R;

�
C2ðyÞ ≤ 1 L odd
x2C2ðyÞ ≤ 1 L even:

(4) ð·; ·; ·; DÞ iff ∀ θ ∈ R;

�
D2ðyÞ ≤ 1 L odd
x2D2ðyÞ ≤ 1 L even:

Proof.—The forward direction follows by definition and
from Eq. (7), where A, B, C, D are all real ∀ θ ∈ R; hence,
their squares are positive. The reverse direction is true
from setting the unspecified polynomial to 0 in one of the
2-partial tuples (1) and (2) in Theorem 2. ▪
These simple characterizations show how one can, in

principle, encode almost any arbitrary desired function into
quadratures of ÛðθÞ. Consider ðA; ·; ·; ·Þ, which aside from
symmetry and Að1Þ ¼ 1, only needs to satisfy ∀ jxj ≤ 1,
A2ðxÞ ≤ 1. The famous Stone-Weierstrass theorem [36]
assures us that AðxÞ of sufficiently large degree L can
approximate arbitrarily well any arbitrary continuous real
function that satisfies these constraints on the interval
jxj ≤ 1. This ability to create almost arbitrary quantum
response functions helps explain the applicability of
composite gates to many diverse problems.

B. Implementation of quantum response functions

Unleashing the potential of arbitrarily sophisticated
choices of achievable ðA;B;C;DÞ requires an efficient

computation of their implementation ~ϕ. It is clear that a
random search is wholly inadequate, as the degree of L
could be very large. Nevertheless, achievability leads to a
certain structure that resolves problem (P2). This is
encapsulated in the following lemma, which is proven
constructively and furnishes the reverse-direction proof of
Theorem 1.
Lemma 1 (Optimal quantum response compilation).

Exactly L phases ~ϕ ∈ RL are required to implement an
achievable ðA;B;C;DÞ of, at most, degree L, and these L
phases can be computed in time O½polyðLÞ�.
Proof.—A minimum of L phases ~ϕ are required

to implement a given ðA;B; C;DÞ of, at most, degree L,
as each application of R̂ϕk

ðθÞ only increases the degree of
ðA;B; C;DÞ by 1. We now show that ðA;B;C;DÞ can be

implemented with, at most, L phases ~ϕ. Because of the
even/odd symmetry of real A, B, C, D from Theorem 1,
conditions (1) and (3), we can compute its unique
phase sum representation in Eq. (2) via the invertible
transformation

ΦL;j ¼ ij
XL
n¼0

8<
:

ðicn − dnÞ
�
⌊ðL−nÞ=2⌋
ðj−nÞ=2

�
j odd

ðan þ ibnÞ
�
ðL−nÞ=2

j=2

�
j even:

ð8Þ

Let us take the ansatz ÛðθÞ ¼ R̂ϕL
ðθÞV̂ðθÞ, where V̂ðθÞ is

unitary and V̂ð0Þ ¼ 1, as ðA; B;C;DÞ represents a unitary
from Theorem 1, condition (4). Thus, V̂ðθÞ also has a phase
sum representation ΦL−1;j. These two phase sums are
related by the linear map of Eq. (3), with inverse
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ΦL−1;j ¼
Xj

k¼0

ΦL;k

�
−e−ð−1ÞjiϕL jþ k odd

1 jþ k even:
ð9Þ

By choosing

eiϕL ¼
P

L
k¼1 oddΦL;kP
L
k¼0 evenΦL;k

¼ c2⌈L=2⌉−1 þ id2⌈L=2⌉−1
ð−1Þ⌈L=2⌉ðaL þ ibLÞ

; ð10Þ

we satisfy the necessary condition ΦL−1;L ¼ 0 from
Eq. (3). In particular, ϕL is real, as Eq. (7) has the trailing
term ½ða2L þ b2LÞ − ðc22⌈L=2⌉−1 þ d22⌈L=2⌉−1Þ�sin2Lðθ=2Þ ¼ 0.
Hence, the rhs of Eq. (10) has absolute value 1. By
recursively reducing the degree of V̂ðθÞ, we obtain all L

phases ~ϕ. The terminal case at L ¼ 1 must be consistent
with Eq. (3), where Φ0;0 ¼ 1. When evaluated with Eqs. (8)
and (9), this is satisfied only if Að1Þ ¼ 1 [Theorem 1,
condition (2)], which is true for achievable ðA;B;C;DÞ.
All steps in this procedure can be computed in time
O½polyðLÞ�, and there are only L recursions, leading to
a runtime of O½polyðLÞ�. ▪

C. Computation of quantum response functions

A consequence of Lemma 1 is that designing a
composite gate is no more difficult than finding the
ðA;B; C;DÞ to describe the quantum response function
ÛðθÞ. Optimizing ðA; B;C;DÞ for some objective function
is far more intuitive than the prior art of a random search

over ~ϕ. However, this still is a difficult problem. The
unitary constraint Eq. (7) represents a system of quadratic
multinomial equations that would have to be solved at each
step of the optimization to obtain an achievable
ðA;B; C;DÞ. Solving such systems is, in general, a NP-
complete task. This is the essence of problem (P3): It would
be much easier to optimize a subset of ðA; B;C;DÞ, and
doing so is often the problem of practical interest anyway.
This subset optimization is illustrated by the response

functions FχðθÞ, pðθÞ of Eqs. (5) and (6), which depend on
only two polynomials. Optimizing just these for some
objective function offers more freedom as the unitary
constraint Eq. (7) is weakened to that of Theorem 2.
Ultimately, we must compute some achievable
ðA;B; C;DÞ from a partial specification in order to find

the phases ~ϕ.
Fortunately, the structure of achievable partial tuples can

be exploited to derive algorithms analogous to prior art [31]
based on polynomial sum-of-squares problems [37] but
specialized to the symmetries of Theorem 2. We present
results for ðA;B·; ·Þ, ðA; ·; C; ·Þ of odd degree and show how
they apply to all achievable 2-partial tuples. As these
primarily serve to show that the necessary conditions in
Theorems 1, 2, and 3 are also sufficient, the details of the
proofs for Lemmas 2 and 3, which also furnish constructive

algorithms for computing ðA;B;C;DÞ from partial tuples,
may be skipped by the casual reader.
Lemma 2 (Transition probability sum of squares). ∀ 2-

partial tuples ðA;B; ·; ·Þ of, at most, odd degree L that
satisfy conditions (1–3) of Theorem 1 and (3a, 3b) of
Theorem 2, ∃ achievable ðA;B; C;DÞ of, at most, degree L
that can be computed in time polyðLÞ.
Proof.—Consider the polynomial of, at most, degree L,

fðλÞ ¼ 1 − A2ð
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
Þ − B2ð

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
Þ; λ ∈ R; ð11Þ

with roots S ¼ fsjfðsÞ ¼ 0g ∈ CL (S contains duplicates if
a root is degenerate). Since A, B are odd polynomials, fðλÞ
is real for all real λ. Because fðλÞ is real, complex roots s; s�
occur in pairs. Thus, we can group subsets of Swithout loss
of generality as

S0 ¼ fs ∈ Sjs ¼ 0g; Sc ¼ fs ∈ SjIm½s� > 0g;
Sr ¼ fs ∈ SjRe½s� ≠ 0∧Im½s� ¼ 0g: ð12Þ

Observe that S0;r are real, and Sc is complex. Thus,

fðλÞ ¼ K2λjS0j
Y
s∈Sr

ðλ − sÞ
Y
s∈Sc

½ðλ − Re½s�Þ2 þ Im½s�2�; ð13Þ

with scale constant K ∈ R. Using (3b), fðλÞ ≤ 0, ∀ λ ≤ 0.
Hence, all negative roots in Sr occur with even multiplicity.
Using (3a), fðλÞ ∈ ½0; 1�, ∀ λ ∈ ½0; 1�. As fðλÞ changes
sign at λ ¼ 0, jS0j is odd. Using the oddness of A, B,
fðλÞ ≥ 1, ∀ λ ≥ 1. Since fðλÞ ≥ 0, ∀ λ ≥ 0, all positive
roots in Sr occur with even multiplicity. Thus, all real roots
excluding s ¼ 0 occur with even multiplicity. By repeated
application of the two-squares identity

ðr2 þ s2Þðt2 þ u2Þ ¼ ðrt� suÞ2 þ ðru ∓ stÞ2; ð14Þ

the complex factors can be simplified asY
s∈Sc

(ðλ − Re½s�Þ2 þ Im½s�2) ¼ g2ðλÞ þ h2ðλÞ; ð15Þ

where g, h are real polynomials in λ. Thus, fðλÞ ¼
C2ð ffiffiffi

λ
p Þ þD2ð ffiffiffi

λ
p Þ, where

�
CðyÞ
DðyÞ

�
¼

�
KyjS0j

Y
s∈Sr

ðy2 − sÞ12
��

gðy2Þ
hðy2Þ

�
; ð16Þ

and C, D are odd real polynomials of, at most, degree L.
Note that the choice of signs in Eq. (14), generates a finite
number of different valid solutions. Computing the roots of
fðλÞ is the most difficult step of this algorithm, but it can be
done in time O½polyðLÞ� [38]. ▪

The proof for even L and tuples ð·; ·; C;DÞ carries
through with minor modification. The stated conditions
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in Theorem 2 guarantee that the various factors of λ, (1 − λ)
necessary for the correct symmetry of the unspecified
polynomials occur with the right multiplicity and that all
other real roots occur with even multiplicity. Some addi-
tional processing for the ð·; ·; C;DÞ case is required, as the
output ðA;B; C;DÞ is not guaranteed to satisfy Að1Þ ¼ 1.
However, Að1Þ2 þ Bð1Þ2 ¼ 1 is still true, so by computing
γ ¼ arg½Að1Þ þ iBð1Þ�, we can form an achievable
ðA cos γ þ B sin γ; B cos γ − A sin γ; C;DÞ.
We now present the analogous algorithm for ðA; ·; C; ·Þ.
Lemma 3 (Fidelity response sum of squares). ∀ 2-

partial tuples ðA; ·; C; ·Þ of, at most, odd degree L that
satisfy conditions (1–3) of Theorem 1 and (1a) of
Theorem 2, ∃ achievable ðA; B;C;DÞ of, at most, degree
L that can be computed in time polyðLÞ.
Proof.—With the Weierstrass substitution ∀ t ∈ R,

x ¼ ð1 − t2Þ=ð1þ t2Þ, y ¼ 2t=ð1þ t2Þ define the real pol-
ynomials

( ~AðtÞ; ~BðtÞ; ~CðtÞ; ~DðtÞ) ¼ ð1þ t2ÞLðA; B;C;DÞ: ð17Þ

These polynomials have extremely useful symmetries,
which we indicate with angled brackets h·i. Note that h ~Ai ¼
h ~Bi ¼ hENi are even hEi antipalindromes hNiwhile h ~Ci ¼
h ~Di ¼ hOPi are odd hOi palindromes hPi. Antipalin-
dromes satisfy ~AðtÞ ¼ −t2L ~Aðt−1Þ, whereas palindromes
satisfy ~CðtÞ ¼ t2L ~Cðt−1Þ. Note that hEi, hOi and hPi, hNi
polynomials with multiplication form a group isomorphic
to Z2 × Z2. For example, hENihOPi ¼ hONi. Consider the
positive, palindromic polynomial

~fðtÞ ¼ ð1þ t2Þ2L − ~A2ðtÞ − ~C2ðtÞ ¼ K2
Y
s∈S

ðt − sÞ; ð18Þ

with scale constant K ∈ R, and roots S ¼ fsj ~fðsÞ ¼ 0g ∈
C4L−jS0j, where jS0j is the multiplicity of the zero roots.
Note that the degree of ~fðtÞ is 4L − jS0j, not 4L, because
the first jS0j coefficients being zero implies the last jS0j are
zero as well. Because of the hEPi symmetry of ~fðtÞ, ∀
roots s ≠ 0, ∃ roots s�,−s, and s−1. Thus, we group subsets
of these roots without any loss of information as follows:

S0 ¼ fs ∈ Sjs ¼ 0g; S1 ¼ fs ∈ Sjs ¼ 1g;
Sr ¼ fs ∈ SjRe½s� > 1∧Im½s� ¼ 0g;
Si ¼ fs ∈ SjRe½s� ¼ 0∧Im½s� ¼ 1g;
Sι ¼ fs ∈ SjRe½s� ¼ 0∧Im½s� > 1g;
Su ¼ fs ∈ Sjjsj ¼ 1∧0 < arg½s� < π=2g;
Sc ¼ fs ∈ Sjjsj > 1∧0 < arg½s� < π=2g: ð19Þ

Observe that S0;1;r are real, Si;ι are imaginary, and Su;c are
complex. From the real roots, we construct the factor

fr ¼ tðjS0j=2Þðt2 − 1ÞðjS1j=2Þ
Y
s∈Sr

ðt4 − t2ðs2 þ s−2Þ þ 1Þ12;

hfri ¼ hOPiðjS0j=2ÞhENiðjS1j=2ÞhEPiðjSrj=2Þ: ð20Þ

The positiveness of ~fðtÞ means that all real factors have
even multiplicity. Thus, fr is a polynomial. From the
complex roots, we form

fi ¼½ðt2 − 1Þ2 þ ð2tÞ2�jSi j2 ;
fι ¼

Y
s∈Sι

½ðt2 − 1Þ2 þ ðtðIm½s� þ Im½s�−1ÞÞ2�;

fu ¼
Y
s∈Su

½ðt2 − 1Þ2 þ ð2t sin ðarg½s�ÞÞ2�;

fc ¼
Y
s∈Sc

½ðt4 − t2ðjsj−2 − 4sin2ðarg½s�Þ þ jsj2Þ þ 1Þ2

þ ð2ðt3 þ tÞIm½s�ð1 − jsj−2ÞÞ2�: ð21Þ

The symmetry of terms under the squares is one of hEPi,
hENi, hOPi, hONi, and it occur in a combination that forms
a group under repeated application of the two-squares
identity of Eq. (14). Thus, we can construct

fifιfufc ¼ g2 þ h2;

hgi ¼ hENiðjSij=2ÞþjSujþjSιj;

hhi ¼ hOPiðjSij=2ÞþjSujþjSιj;

~fðtÞ ¼ ðKfrgÞ2 þ ðKfrhÞ2: ð22Þ
For some combinations of multiplicities, this decomposi-
tion will not produce polynomials with the symmetry hENi,
hOPi required by ~B, ~D. However, summing the multiplic-
ities of these roots shows that jSij is even and that such
combinations do not exist. From this decomposition, we
compute BðxÞ, DðyÞ using

bk ¼
1

2L

XL
n¼0

~b2n

"Xn
m¼0

ð−1Þm
�

n

m

��
L − n

k −m

�#
;

d2kþ1 ¼
ð−1Þk
2L

XL−1
n¼0

~d2nþ1

"Xn
m¼0

X⌊L=2⌋
p¼0

ð−1Þm
�
p

k

�

×

�
L − n − 1

2p −m

��
n

m

�#
: ð23Þ

As with Lemma 2, different choices of signs in the two-
squares identity lead to multiple valid solutions. Computing
the roots of ~fðtÞ is still the most difficult step, but it can be
done in time O½polyðLÞ�. ▪

The case of even L replaces Eq. (18) with ~fðtÞ ¼
ð1þ t2Þ2L − ~A2ðtÞ − ½ð1 − t2Þ=ð1þ t2Þ�2 ~C2ðtÞ, and we
find ~B with hEPi and ð1 − t2Þ ~D with hONi symmetry.
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A similar root-counting argument guarantees the existence
of such solutions. The coefficients of BðxÞ, DðyÞ are then
computed using Eq. (23) also. This procedure carries
through without modification for the other tuples (1), (2)
of Theorem 2.

D. Selection of quantum response functions

It should be clear that optimal composite gate design is a
systematic process no more difficult than choosing one or
two polynomials that are optimal for some objective
function. Nevertheless, problem (P4) is that computing
these optimal polynomials could still be a difficult task.
However, the constraints on achievable partial tuples in
Theorems 2, 3 seem fairly lax, which lends hope that this
could be done efficiently. In fact, these constraints are
consistent with textbook problems in approximation
theory [39].
It is at this point that a close connection with discrete-

time signal processing [26] is made. Efficient algorithms
[40–44] for designing polynomials optimal for arbitrary
objective functions under a variety of optimality criteria
have been extensively studied for finite-impulse response
filters [27]. We thus inherit much of this machinery, and
in many cases, existing polynomials consistent with
achievability have already been found and are directly
transferable.
A most common optimality criterion is the Chebyshev

norm: Let PoðxÞ be the objective function, with continuous
weight function WðxÞ > 0, to be approximated by a
polynomial PðxÞ of degree L on a bounded subset B
of the closed interval B ⊂ ½−1; 1Þ with the smallest
Chebyshev error norm

ϵ ¼ max
x∈B

jWðxÞ½PðxÞ − PoðxÞ�j: ð24Þ

The unique best approximation can be computed efficiently
by Remez-type exchange algorithms [45]. Many variants
exist, such as where PðxÞ is a trigonometric polynomial
[40] that is bounded [42], subject to other unary or linear
constraints [43], and even complex [41]. Linear program-
ming methods [43] provide an alternate solution. Efficient
algorithms for other optimality criteria such as least squares
are also available [46,47].
These algorithms efficiently solve the problem of opti-

mization over achievable quantum response functions ÛðθÞ,
where the objective functions are 2-partial or 3-partial tuples.
Optimization for a 3-partial objective function involves a
single quadrature from ðA;B; C;DÞ, together with a single
real objective function PoðθÞ. Thus, we optimize over PðθÞ
for PoðθÞ in Eq. (24), subject to the constraints of Theorem 3
for the corresponding quadrature. The slightly more com-
plicated 2-partial case instead specifies two quadratures
and real objective functions Po;1ðθÞ, Po;2ðθÞ. Thus, we
define PoðθÞ ¼ Po;1ðθÞ þ iPo;2ðθÞ and optimize over
PðθÞ ¼ P1ðθÞ þ iP2ðθÞ for PoðθÞ, subject to the constraints

of Theorem 2 for the corresponding quadratures. Note
that the unitarity inequality constraint poses no difficulty
as jPðθÞj2 ¼ P2

1ðθÞ þ P2
2ðθÞ.

E. Methodology of composite quantum gates

Our efforts lead us to a methodology for the design of
single-spin quantum response functions ÛðθÞ through
composite quantum gates built from a sequence of L
primitive gates all rotating by θ, but each with its own

phase ~ϕ ¼ ðϕ1;…;ϕLÞ. The procedure is systematic,
flexible, and most importantly, provably efficient:
Problem statement: Given L ≥ 1 and objective function

ÛoðθÞ for either 3-partial or 2-partial tuples, find the

composite quantum gate that implements through ~ϕ the
optimal ϵ approximation to Û0ðθÞ.
Solution procedure:

(S1) Check that ÛðθÞ is consistent with achievability.
Satisfies conditions of Theorems 2,3.

(S2) Choose an optimality criterion.
The Chebyshev norm is most common.

(S3) Execute a polynomial optimization algorithm over
achievable partial tuples.

Remez-type algorithms are efficient.
(S4) Compute an achievable tuple from a partial tuple.
This can be done efficiently by Lemmas 2, 3.

(S5) Compute phases ~ϕ.
This can be done efficiently by Lemma 1.

IV. EXAMPLES

Using the methodology in Sec. III E, composite quantum
gates with the response function ÛðθÞ that minimize the
error with respect to arbitrary objective functions ÛoðθÞ can
be efficiently designed. We illustrate this process with three
examples of independent scientific interest: compensated
population inversion gates, compensated broadband NOT
gates, and compensated narrow-band quantum gates.
Population inversion gates rotate states j0i to j1i and vice

versa, and come in two flavors. The broadband variant
implements this rotation with high probability across the
widest bandwidth of θ ∈ B, meaning that the transition
probability response function pðθÞ from Eq. (6) is close
to 1. The narrow-band variant instead implements this
rotation with low probability, so pðθÞ ≈ 0, except at a single
point pðπÞ ¼ 1. We discuss the optimal design of these
gates in Sec. IVA. As closed-form solutions for these gates
are already known and used extensively in NMR spectros-
copy, they help build familiarity with the methodology in
Sec. III E when it is used to solve open questions in the next
two examples.
Broadband compensated NOT gates implement the

rotation R̂0ðπÞ with high fidelity over the widest bandwidth
of θ parameters. Whereas population inversion gates only
succeed on initial states j0i to j1i, NOT gates apply a π
rotation with a known phase for all input states. Such gates
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have been extensively studied for applying uniform rota-
tions in the presence of drive-field inhomogeneities,
particularly in quantum computing applications, and our
methodology, presented in Sec. IV B, solves open ques-
tions regarding the scaling of bandwidth with sequence
length as well as their efficient synthesis.
A complementary design problem addressed in

Sec. IV C is that of narrow-band compensated quantum
gates. These instead apply a desired arbitrary rotation R̂0ðχÞ
at a single θ value and the identity rotation elsewhere over
the widest bandwidth of θ parameters. Such gates are
highly relevant to minimizing crosstalk in the selective
addressing of spins in arrays, particularly when spin-spin
distances are below the diffraction limit, as might be found
in scalable architectures of ion-trap quantum computation.

A. Composite population inversion gates

Population inversion gates maximize the bandwidth B
over which the transition probability response function
pðθÞ from Eq. (6) is close to 1 for the broadband variant or
close to 0 for the narrow-band variant. Note that in both
cases, perfect population inversion occurs at θ ¼ π for L
odd, owing to the fact that Að0Þ ¼ 0. Moreover, the optimal
polynomials and phases for both variants turn out to be
related by a simple transformation, so it suffices for us to
consider only the broadband case.
Composite gates with these properties have been studied

extensively for nuclear magnetic resonance and quantum
computing applications. One approach to obtaining broad-
band behavior is with the maximally flat ansatz pðθÞ ¼
1 −O½ðθ − πÞ2n� [9]. This exponentially suppresses errors
in the transition probability to order n; thus, pðθÞ ≈ 1 over a

wide range of θ. Remarkably, the ~ϕ that implement this
profile can be found in closed form [48] with optimal
sequence lengths L ¼ n. More recently, a second approach
has emerged [8], motivated by the following observation:
As the flat ansatz pðθÞ ¼ 1 −O½ðθ − πÞn� only increases
bandwidth indirectly through the suppression order n,
better results can be obtained by directly optimizing for
bandwidth while ensuring that the worst-case error I
remains bounded.
The procedure of Sec. III E for odd L formalizes this task

as a straightforward optimization problem:
(S1) Choose the objective function ∀ θ∈B¼

πþ½−jBj=2;jBj=2�;ÛoðθÞ¼0 for the ðA; 0; ·; ·Þ 2-
partial tuple. Since pðθÞ ¼ 1 − A2 is close to 1 over
B, the unitarity constraint C2 þD2 ¼ 1 − A2 im-
plies that a rotation RϕðπÞ is approximated over B,
with an unspecified phase ϕ ¼ arg½Cþ iD� that
varies with θ. As consistency with Theorem 1
requires that Að1Þ ¼ 1, this implies that identity is
applied at θ ¼ 0; thus, B must not contain θ ¼ 0.

(S2) Choose the Chebyshev optimality criterion, where
the best A solves the minimax optimization problem

ϵ ¼ min
A

max
θ∈B

jAðxÞj; ϵ2 ¼ I ; ð25Þ

where the worst-case transition probability over B
is 1 − I .

(S3) Find the function A that solves Eq. (25). For
consistency with Theorem 1, the optimization is
over real odd polynomials A bounded by
∀ jxj ≶ 1, jAðxÞj ≶ 1.

(S4) Using Lemma 2, compute the achievable tuple
ðA; 0; C;DÞ from the partial specification ðA; 0; ·; ·Þ.

(S5) Compute ~ϕ from ðA; 0; C;DÞ using Lemma 1.
The solution to (S3) is the Dolph-Chebyshev window

function [49,50] famous in discrete-time signal processing,

DCL;IðyÞ ¼
ffiffiffiffi
I

p
TLðβL;IxÞ; βL;I ¼ TL−1ðI−1=2Þ; ð26Þ

where TnðxÞ ¼ cos ½n arccosðxÞ� are Chebyshev polyno-
mials. Note the ripples of DC2

L;IðxÞ bounded by I in Fig. 1.
This is in contrast to a monotonic increase of the limiting
function, indicated by the subscript f,

DCL;fðxÞ ¼ lim
I→0

DCL;IðxÞ ¼ xL; ð27Þ

which is maximally flat at x ¼ 0 but has a significantly
narrower bandwidth. Using x ¼ cos ðθ=2Þ, the bandwidth
in θ coordinates is, to order OðI ð3=2LÞÞ,

jBj¼23−ð1=LÞI ð1=2LÞ; jBf j¼4I ð1=2LÞ
f ;

I
I f

¼41−L: ð28Þ

Given the same target bandwidth, the worst-case error of
DCL;I is exponentially smaller than DCL;f . Note also the
quadratic difference in the scaling with L of the bandwidth
over which DCL;I does not approximate FðxÞ ¼ 0.

FIG. 1. DCL;I (black lines) and ML;I (teal lines) polynomials
plotted for L ¼ 9 and target worst-case infidelity I ¼ 10−2 (solid
lines) and I → 0 (dashed lines), indexed by f. The observed
ripples are a generic feature of bandwidth-optimized polyno-
mials, unlike those optimized for maximal flatness DCf, Mf. The
inset plots their squares and defines the bandwidth B in x
coordinates.
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B̄ ¼ 4arcsech
ffiffiffiffi
I

p

L
þO

�
1

L3

�
; B̄f ¼ 4

ffiffiffiffiffiffiffiffiffiffi
log 1

I

L

s
þO

�
1

L
3
2

�
:

ð29Þ

The ripples in the amplitude are a generic feature of the
best polynomial approximations to functions in the
Chebyshev norm. By sacrificing flatness, much smaller
absolute variations in error ϵ can be achieved over some
specified bandwidth B. This is a common theme that will be
revisited in the subsequent example. Finding the phases
that implement ½DCL;IðxÞ; 0; ·; ·� is then a straightforward
computation through (S4), (S5), and the results can be
compared to the closed-form solutions from [8,22]:
ϕk ¼ ϕL−kþ1, an integer j co-prime to L, where ϕ1 ¼ 0 and

ϕkþ1 ¼ ϕk þ 2tan−1
	
tan

�
2jkπ
L

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β−2L;I

q 

: ð30Þ

The phases ~ψ for the narrow-band variant ½·; ·;DCL;IðxÞ; 0�
are obtained by a simple “toggling” transformation [13]
ψk ¼ −ð−1Þkϕk − 2

P
k−1
h¼1ð−1Þh ϕh.

B. Broadband compensated NOT gates

Broadband compensated NOT gates maximize the
bandwidth B over which the fidelity response function
with respect to the target gate R̂0ðπÞ is close to 1. One
option consistent with this goal is the choice of fidelity
response functions FπðθÞ ¼ 1 −Oððθ − πÞ2nþ2Þ that are
maximally flat with respect to (θ − π). When the correction
order n increases, deviations from θ ¼ π are exponentially
suppressed, resulting in improved approximations of the
target gate over wider ranges of θ ∈ B. The central

difficulty of this pursuit is finding the phases ~ϕ that
maximize n for any given L. Unlike the population
inversion gates of Sec. IVA, this appears to be significantly

more difficult; optimal length solutions for the ~ϕ have only
been found in closed form for small n ≤ 4 [19].
This problem has been attacked over the course of two

decades, starting with Wimperis [13] who found the ~ϕ in
closed form for BB1, an L ¼ 5 sequence with n ¼ 2. This
was extended by Brown et al. [15] with SKn for arbitrary
L ¼ Oðn3.09Þ through a recursive construction, and then by
Jones [18,51] with Fn to L ¼ Oðn1.59Þ in closed form
through sequence concatenation. The most recent effort
[19] proved a lower bound of L ¼ ΩðnÞ and conjectured
that the sequence BBn (Wn in Ref. [51]) with L ¼ 2nþ 1 is
optimal through brute force up to L ¼ 25. Using our
methodology, we can easily prove this conjecture and

efficiently compute its implementation ~ϕ.
Moreover, our methodology enables a second option.

Instead of optimizing for correction order, it is possible to
directly minimize the worst-case infidelity I, which is the
experimental quantity of interest, over a target bandwidth

B. We find that doing so leads to an improvement in I
that scales exponentially with L over the maximally flat
case. To prove these statements, we proceed with the
design outline of Sec. III E for odd L:
(S1) Choose the objective function ∀θ∈B¼πþ½−jBj=2;

jBj=2�, ÛoðθÞ ¼ R̂0ðπÞ ¼ −iσx for the ð·; ·; C; ·Þ 3-
partial tuple. Provided that B does not contain the
point θ ¼ 0, this is consistent with the constraints of
Theorem 3. This corresponds to finding a fidelity
response function FπðθÞ ¼ C2½sin ðθ=2Þ� that is
close to 1 across B.

(S2) The best fidelity response function for the maxi-
mally flat approach in prior art is obtained from the
function C that maximizes the correction order

n ¼ max
C

fnjCðyÞ ¼ 1 −O½ð1 − yÞnþ1�g;
I ¼ 1 −min

θ∈B
FπðθÞ; y≡ sin ðθ=2Þ; ð31Þ

where I is the worst-case infidelity over the band-
width B. It is easy to verify that any such C satisfies
FπðθÞ ¼ 1 −O½ðθ − πÞ2nþ2�. The more direct ap-
proach uses the Chebyshev optimality criterion,
where the best C solves the minimax optimization
problem

ϵ ¼ min
C

max
θ∈B

jCðyÞ − 1j; I ¼ 1 − ð1 − ϵÞ2:
ð32Þ

(S3) Find the function C that solves Eqs. (31) and (32).
For consistency with Theorem 1, the optimization is
over real, odd polynomials C bounded by
jCðyÞj ≤ 1, ∀ y ∈ ½−1; 1�.

(S4) Using Lemma 3, compute the achievable tuple
ðA; 0; C;DÞ from the partial specification ð·; 0; C; ·Þ.

(S5) Compute ~ϕ from ðA; 0; C;DÞ using Lemma 1.
We now present the solutions to (S3) of this procedure.

This is the most difficult step, as once C is provided,

the implementation ~ϕ is a straightforward calculation.
Equation (31) is solved by the odd polynomial that satisfies
the following nþ 1 independent linear constraints:

Cð1Þ ¼ 1;
dk

dyk
CðyÞ

����
y¼1

¼ 0; k ¼ 1; 2;…; n: ð33Þ

As a degree L odd polynomial has ðLþ 1Þ=2 free param-
eters, a degree L ¼ 2nþ 1 polynomial is necessary and
sufficient. This is solved by the polynomial

ML;fðyÞ ¼
XðL−1Þ=2
j¼0

�
L

j

��
1þ y
2

�
L−j

�
1 − y
2

�
j
; ð34Þ

with an example M9;f plotted in Fig. 1. The index L
indicates the degree, and the subscript f indicates that this is
a maximally flat polynomial. As ML;fðyÞ is monotonically
decreasing from y < 1, the relation between infidelity I
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and bandwidth B is obtained by solving I ¼ 1 −
M2

L;f ½cos ðjBj=4Þ� to leading order:

I ¼
�jBj

8

�
Lþ1 2Lþ5=2ffiffiffiffiffiffi

πL
p

	
1þO

��jBj
8

�
2

þ 1

L

�

: ð35Þ

Thus, given some target bandwidth B of high-fidelity
operation, the composite quantum gate represented by

BBn ¼ ½·; 0;M2nþ1;fðyÞ; ·� implements NOT with a worst-
case fidelity that decreases exponentially with sequence
length. This proves the L ¼ 2nþ 1 conjecture of Ref. [19].
The odd polynomials of degree L that satisfy the

Chebyshev error-norm optimality criterion in Eq. (32)
can also be found. We label these polynomials ML;I ,
where L indicates the degree, and I is the worst-case
infidelity, which is directly related to the bandwidth B. For
L ¼ 5, we have a complicated-looking expression,

M5;I ¼ ð2y1 þ 1Þy5 − ð4y31 þ 3y21 þ 2y1 þ 1Þy3 þ ð2y51 þ 4y41 þ 6y31 þ 3y21Þy
2y31ðy1 þ 1Þ2 ;

I ¼ ðy1 − 1Þ3ð1þ 3y1 þ y21Þ2ð1 − 2y1 − 4y21Þð3þ 9y1 þ 8y21Þ3
3125y61ð1þ y1Þ4ð1þ 2y1Þ3

; ð36Þ

parametrized implicitly through y1 ∈ ½0.3671; 1�. For larger
L, such as M9;10−2 in Fig. 1, the ML;I can always be
computed numerically through the famous Parks-
McClellan algorithm [40] for finite impulse-response
filters. Remarkably, the Chebyshev error of this approxi-
mation problem is known [52]:

ϵ ¼
�

1ffiffiffiffiffiffi
2π

p þ oð1Þ
�
8cos2ðjBj=8ÞtanLþ1ðjBj=8ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL − 1Þ cos ðjBj=4Þp ;

I ¼
�jBj

8

�
Lþ1 27=2ffiffiffiffiffiffi

πL
p

	
1þO

��jBj
8

�
2

þ 1

L

�

: ð37Þ

By comparing Eqs. (35) and (37) in Fig. 2, it can be seen
that for any target B and sequence length L, the composite
quantum gate OBn ¼ ½·; 0;M2nþ1;IðyÞ; ·� has a worst-case
infidelity that improves on BBn by an exponential factor
Oð21−LÞ. In contrast to the BBn sequences that are fixed for
each n, OBn allows for an optimal design trade-off between
bandwidth B and infidelity I. As seen in Fig. 1, this occurs
by introducing equiripples of equal amplitude bounded by
I , similar to the DCL;I polynomials for population inver-
sion gates. Thus, given the same performance targets, an
extremely short OBn gate can perform just as well as a
significantly longer BBn gate. In other words, maximizing
the correction order only improves the achieved bandwidth
indirectly, leading to a poor trade-off between I and B,
whereas better results are naturally achieved by optimizing
for polynomials that directly solve Eq. (32) by minimizing
infidelity over a target bandwidth.

C. Composite quantum gates with subwavelength
spatial selectivity

Narrow-band compensated gates maximize the band-
width B over which the fidelity response function with
respect to identity 1̂ is close to 1, except at a single point θ

where an arbitrary target rotation R̂0ðχÞ is applied.
Although the direct approach computes new polynomials
ðA; ·; C; ·Þ that satisfy these properties, we can reuse the
polynomials ML;I from Sec. IV B by making certain
assumptions on the physical system. In the following,
we also assume that jχj ≤ π.
Consider a Gaussian beam of fixed width λ. As a

function of position r, this beam has a spatially varying
Rabi frequency ΩðrÞ ¼ Ω0e−r

2=2λ2. Thus, when applied for
time t0, a primitive gate R̂ϕ½θðrÞ� that also varies as a

FIG. 2. Worst-case infidelity I of NOT gates OBn ¼
½·; 0;M2nþ1;I ðsin ðθ=2ÞÞ; ·� [solid line; Eq. (37)] optimized for
target bandwidth θ ∈ B compared to the flatness-optimized NOT
gate BBn ¼ ½·; 0;M2nþ1;f( sin ðθ=2Þ); ·� [dashed line; Eq. (35)],
plotted for L ¼ 2nþ 1 ¼ 5; 9;…; 25 (from top to bottom).
Observe that I for OBn is exponentially smaller by a factor
≈4n than BBn. Alternatively, an OBn gate can approximate NOT
with infidelity of, at most, I over a much wider bandwidth than

BBn. The table provides examples of ~ϕ for OBn rounded to three
decimal places.
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function of position is generated, where θðrÞ ¼ θ0e−r
2=2λ2

and θ0 ¼ Ω0t0. At r ¼ 0, one can choose t0, ϕ such that the
target rotation χ ¼ θ0 is implemented, and because of the
exponential decay of the Gaussian beam, moving away
from the beam center approximates the identity gate with
infidelity IðrÞ ¼ sin2ðθðrÞ=2Þ. Thus, at distance r=λ ≥
d=λ ¼ B̄1 ¼ log1=2ðπ2=4IÞ from the beam center, the
worst-case infidelity is I . As the minimum possible beam
width λ is the wavelength of light, selective addressing
below the diffraction limit appears impossible. However,
even this can be overcome with a carefully designed
composite quantum gate.
Narrow-band composite gates of length L applicable to

this scenario have been widely studied. For instance,
Refs. [10,13] report beam-width reductions by a factor
ðd=λÞ ≈ 0.7B̄1 [10,13]. Further reduction is possible with
longer composite gates [19] but with poor scaling,
ðd=λÞ ¼ OðL−1=4Þ.
A better narrow-band composite gate results from using

the broadband identity gate ID ¼ ½ML;IðxÞ; 0; ·; ·� designed
from the ML;I polynomial presented in Sec. IV B. Then,
the fidelity response function with respect to identity is
F0ðθÞ ¼ M2

L;IðxÞ, which, as we now show, corresponds to
a quadratic improvement of ðd=λÞ ¼ OðL−1=2Þ.
Let us compose ID with the Gaussian beam to produce

the spatially varying quantum response function

ÛspaceðrÞ ¼ IDðθ0e−r2=2λ2Þ ¼ IDðθ0Þ þOðr2Þ; ð38Þ

for some choice jθ0j ≤ π. Note that ÛspaceðrÞ is stable with
respect to beam-pointing errors in r because of the
vanishing first derivative. The degree of spatial selectivity
is computed from the bandwidth in Eq. (37) by substituting
jBj ¼ 2θ0e−B̄

2
space=2λ2 and solving for r=λ. Thus, identity is

implemented with infidelity of, at most, I at all r ≥ d ≥
λB̄space, as seen in Fig. 3, where to leading order OðL−1=2Þ,

B̄space

λ
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=IÞ þ 1

2
log ½27=ðLπÞ�

Lþ 1
− ln

4

θ0

s
: ð39Þ

Meanwhile at r ¼ 0, we obtain the gate

Ûspaceð0Þ ¼ Rγð2cos−1fML;I ½cos ðθ0=2Þ�gÞ; ð40Þ

where γ¼ arg½Cðsinðθ0=2ÞÞþ iDðsinðθ0=2ÞÞ�. The desired
rotation R0ðχÞ is thus obtained by choosing θ0 such
that cos ðχ=2Þ ¼ ML;I ½cos ðθ0=2Þ� and rotating all phases
ϕk ← ϕk þ γ, which follows from e−iðγ=2Þσz Ûspaceð0Þ×
eiðγ=2Þσz ¼ R0ðχÞ.
The optimality of these results follows from the

construction of ML;I as optimal bandwidth polynomials.
In particular, using the flat polynomial ML;fðxÞ leads

to the scaling B̄space ¼ OðL−1=4Þ found in prior art and
Fig. 3 (inset).

V. CONCLUSION

We have presented and applied a methodology, analo-
gous to the Shinnar–Le Roux algorithm but with different
controls, for the systematic design of resonant equiangular
composite quantum gates of length L on a single spin. In
particular, we show that all steps are efficient with time
complexity O½polyðLÞ� and provide an extremely rigorous
characterization of achievable quantum response functions.
Moreover, the elegant and practical connection made with
discrete-time signal processing allows us to inherit and
adapt many existing algorithms and polynomials used in
the design of classical response functions for this quantum
problem. Much potential remains untapped there, and
interdisciplinary exchange could spur the discovery of
further connections, leading to the development of pre-
viously intractable applications. Indeed, this relationship
has already proven fruitful in surprising directions, such as
recent work furnishing optimal algorithms for important
problems such as Hamiltonian simulation [53,54] on a
quantum computer.
In fact, our work bridges discrete-time signal processing

and quantum query algorithms for evaluating symmetric
Boolean functions. The idea here is that the SU(2) space of
a single qubit, as we study here, is isomorphic to the SU(2)
subspace spanned by a uniform superposition of marked

FIG. 3. Infidelity of spatially selective composite gates
ðML;10−4fcos ½ðθ0=2Þe−r2=2λ2 �g; 0; ·; ·Þ plotted for θ0 ¼ π and L ¼
1;…; 25 (solid lines, from right to left). The effective beam width
B̄space ¼ OðL−1=2Þ (inset) beyond which the identity gate is well
approximated is dramatically reduced over that of a single gate
B̄1. By varying θ0, arbitrary unitary gates can be applied at r ¼ 0

with high beam-pointing stability. Poorer scaling B̄space ¼
OðL−1=4Þ results from using the flat ðML;f ; 0; ·; ·Þ (dashed lines).

The table provides examples of ~ϕ to three decimal places.
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states and a uniform superposition of unmarked state in
such a query problem. Query algorithms can be built to
calculate a Boolean function f∶f0; 1gn → f0; 1g that
depends only on the number of marked states [i.e., fðxÞ ¼
~fðjxjÞ for some ~f∶f0; 1;…; ng → f0; 1g], and we do so
with a Grover-type algorithm of partial reflections (e.g.,
Refs. [21,55–57]). Thus, the same methods introduced here
also give a way to determine how many reflections
(analogous to our L) and what reflections (analogous to
our ϕj) are required to compute any particular symmetric
Boolean function, achieving the known lower bounds for
this problem, which (not) coincidentally are also derived
using polynomials [58]. As examples of this correspon-
dence, DCL;I is an optimal solution for the OR function
[22]; ML;I is optimal for the majority function.
Various thought-provoking extensions are also moti-

vated. The set of achievable quantum response functions
is changed by introducing elements such as additional
(possibly continuous) control parameters, disturbances,
coupled spins [10,59,60], or open systems [20,61].
These all enable their own unique applications, but they
also somehow appear difficult to solve systematically and
intuitively. Our success in the case of composite gates
contributes supporting evidence that a useful characteriza-
tion, as well as efficient methods for these more complex
design problems, could exist.
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