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We present a scalable architecture for the exploration of interacting topological phases of photons in
arrays of microwave cavities, using established techniques from cavity and circuit quantum electrody-
namics. A time-reversal symmetry-breaking (nonreciprocal) flux is induced by coupling the microwave
cavities to ferrites, allowing for the production of a variety of topological band structures including the
α ¼ 1=4 Hofstadter model. To induce photon-photon interactions, the cavities are coupled to super-
conducting qubits; we find these interactions are sufficient to stabilize a ν ¼ 1=2 bosonic Laughlin puddle.
Exact diagonalization studies demonstrate that this architecture is robust to experimentally achievable
levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit
for the exploration of strongly interacting topological materials.
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I. INTRODUCTION

Despite significant interest in topological physics, the
experimental success in realizing strongly correlated topo-
logical systems has thus far been limited to the fractional
quantum Hall (FQH) effect [1,2] in two-dimensional
electron gases. There has recently been significant theo-
retical explorations of alternative realizations of FQH
systems (and related fractional Chern insulators [3,4]) in
the field of quantum engineering. Here, a topologically
nontrivial Hamiltonian is built from the ground up, typi-
cally following a two-ingredient recipe [3,4]: (1) strong
interactions are added to a (2) topologically nontrivial
single-particle band structure. This recipe is well motivated
theoretically, and experimentally there has been success in
individual implementation of each ingredient. For example,
ultracold atomic systems have experimentally succeeded
in the study of both topologically novel band structures
[5–10] and strongly interacting but topologically trivial
systems [11,12]. However, the simultaneous implementa-
tion of both elements, as is necessary for creating strongly
correlated topological states, has thus far remained elusive.
Photons are a newly emerging platform for quantum

engineering. Photonic crystals have successfully simulated
noninteracting band structures in the regime of rf [13],
microwave [14], or optical [15,16] domains. In all cases,
the necessary addition of strong interactions to produce
strongly correlated states has remained challenging.
On the other hand, strong photon-photon interactions are

readily achieved in circuit QED experiments where the
exquisite control over few qubit states has allowed the
quantum simulation of, e.g., molecular energies [17].
Superconducting circuits have also been advanced as a
route to strongly correlated photonic lattices [18,19].
Implementing a time-reversal symmetry-breaking (TRSB)
single-particle band structure is still necessary to advance
towards FQH physics. Current proposals are experimen-
tally difficult to scale to larger system sizes within
necessary error bounds, since they require either a site-
dependent parametric modulation [20] or extreme suppres-
sion of gate-charge noise [19]. Breaking time-reversal
symmetry with passive and low-noise circuit elements
would therefore be a significant advance in engineering
of synthetic quantum materials.
Here, we propose a new photonic platform to engineer

two-dimensional tight-binding models with nontrival band
topology, using arrays of three-dimensional microwave
cavities. Such cavities can be easily machined from metal
to work in the few-to-tens of GHz regime, and have been
shown to provide exceptional coherence at cryogenic
temperatures with quality factors exceeding Q > 108 [21].
The cavities can be tunnel coupled evanescently by, e.g.,
directly milling a channel between two cavities, or using
capacitively coupled transmission lines. Modern machining
techniques allow the creation of scalable lattices with low
disorder in on-site energies and tunneling energies.
A key component of our scheme is a new technique used

to induce the requisite TRSB flux: this flux is induced by
the on-site mode structure [22] of the cavity, in contrast to
previous schemes [13,16,18,23] that induce a Peierl’s phase
in the tunnel coupler. The complex amplitude of the tunnel
coupler depends on the local electric field at the periphery
of the cavity. A nonreciprocal (TRSB) phase will require
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an electric field with on-site angular momentum, which is
coupled to the polarization of the magnetic field through
Faraday’s law [24]. Therefore, by coupling the magnetic
field to a magnetic dipole, say, through use of a ferrimag-
netic crystal with a biased magnetic field [25,26], a cavity
mode with definite angular momentum can be energetically
isolated. In this way, the ferrite transfers the TRSB bias
field to a TRSB flux of the photonic lattice. This technique
is experimentally advantageous compared to previous
schemes because (1) it allows for the passive creation of
topological band structures, and therefore avoids issues
with nonlinear mixing with pumping frequency in modu-
lated tunnel couplings schemes [20], (2) it does not require
gate-charge biasing and therefore avoids large charge noise
[19], and (3) the ferrite couples to a chiral “bright” mode,
shifting it in energy, leaving an unshifted chiral “dark”
mode. The frequency of the dark mode is first-order
insensitive to the ferrite coupling strength, loss, and
detuning from cavity resonance [27]; it is thus ideal for
engineering low-disorder time-reversal breaking lattice
models.
The final ingredient necessary for the study of FQH-like

physics is strong photon-photon interactions. These can be
incorporated by coupling the microwave cavities to super-
conducting qubits [18,28]. We consider adding such qubits
to each site of the square Hofstdater model constructed
from the linear circuit elements. The Hamiltonian describ-
ing the effective model can be simulated using exact
diagonalization techniques. We therefore numerically
explore our system at finite size and for few photons.
The numerical results demonstrate our architecture will
have a FQH eigenstate corresponding to a bosonic ν ¼ 1=2
Laughlin state on a lattice [9,29].
In the remainder of this paper, we present a scalable

architecture for the study of strongly correlated topological
materials. The organization of the paper is as follows. In
Sec. II, we discuss the general structure of the microwave
cavities needed for our architecture. We then introduce on-
site coupling elements (Sec. II A), which isolate a desired
eigenmode on each lattice site. Tunnel coupling the micro-
wave cavities (Sec. II B) results in an effective flux when
the system is probed in a certain frequency range. This
effective flux can be understood as an emergent gauge field
(Sec. II C) arising from band projection. Concluding the
discussion of the general noninteracting circuit elements,
we show this architecture is sufficient to simulate the
Hofstadter model (Sec. II D), and present proposals for
some other interesting lattice models (Sec. II E). In Sec. III,
we then consider the effects of adding Josephson junction
qubits to each site for the purpose of producing fractional
Chern insulating states in finite-size systems. We use a
numerical exact diagonalization technique to simulate our
system, and find that the properties of a ν ¼ 1=2 bosonic
“Laughlin puddle” emerge. Finally, in Sec. III B, we
consider the likely forms of disorder in the effective

tight-binding model description of our system. We find
that the system is insensitive to the largest sources of
disorder, whereas the most sensitive forms of disorder
can be controlled. We conclude that current experimental
techniques should be sufficient to simulate strongly corre-
lated topological systems.

II. SINGLE-PARTICLE BUILDING BLOCKS

We now describe the single-particle building blocks for
our microwave architecture. Our goal is to engineer an
effective tight-binding Hamiltonian Heff for photons with
energy near ℏω0. We use a unique cavity eigenmode at
this characteristic energy to represent the tight-binding
degree of freedom (and thus restrict our work to “spinless”
models). To model Heff , we therefore need an isolated
eigenmode on every site, whose frequency is ω0, with all
other on-site eigenmodes far detuned energetically.
There is significant freedom in the cavity mode structure.

We describe a particular implementation employing TM
modes of cylindrical cavities with nonzero transverse
magnetic field ðBx; By ≠ 0; Bz ¼ 0Þ and longitudinal elec-
tric field ðEx; Ey ¼ 0; Ez ≠ 0Þ. We first consider a funda-
mental cavity mode tuned to frequency ω0 (annihilated
by a0). The electric field of the fundamental mode, shown
in Fig. 1(a), is nodeless and has a spatially uniform phase
across the cavity. This is true regardless of the cavity
geometry. We also consider a different cavity where the
twofold degenerate set of first excited modes (for example,
TM210, TM120 in a Cartesian basis [30]) is tuned to a
frequency ω0. We define the annihilation operators of this
manifold as ax (ay), according to a node of the electric field
along the ŷ (x̂) axis [see Fig. 1(a)]. Using this notation, the
on-site Hamiltonian is Hð0Þ ¼ ω0a

†
0a0, for a fundamental

mode cavity, and Hð1Þ ¼ ω0ða†xax þ a†yayÞ for the excited
cavity manifold. Here, and in what follows, we drop any
constants resulting from zero point motion of the electro-
magnetic field and set ℏ ¼ 1.
While we write the Hamiltonian in terms of x̂=ŷ modes,

this choice is arbitrary. Analogous to linearly polarized light,
wemay rotate the basis by an angle θ: aθ ¼ ax cosθþay sinθ
and aθþπ=2 ¼ −ax sin θ þ ay cos θ. Alternatively, we can
construct a basis analogous to circularly polarized light:
a� ¼ ðax � iayÞ=

ffiffiffi
2

p
, where the phase changes continu-

ously by 2π going counterclockwise (clockwise) around the
cavity center in theaþ (a−)mode [see Fig. 1(a)]. In this basis,
themagnetic field has an amplitudemaximumat the center of
the cavity and a polarization that lies in plane and rotates
uniformly in time at frequency ω0.

A. On-site symmetry breaking

The on-site symmetry can be broken in a time-reversal
preserving or time-reversal breaking manner. The first type
takes the form of violations of cylindrical symmetry.
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For example, by placing a thin barrier (e.g., a rectangular
conductor or dielectric) along the nodal line of the ax mode,
one adds a perturbation Vð1Þ ¼ Δlina

†
yay to the Hamiltonian

Hð1Þ. The ax mode remains (nearly) unperturbed at fre-
quency ω0, while the orthogonal ay mode will be shifted to
higher energy (by an amount Δlin). This energetically
isolates the ax mode at an energy ω0, and uniquely defines
the relative phase between any two points on the edge of the
cavity. (An analogous procedure isolates aθ from aθþπ=2.)

This perturbation produces only a relative phase of 0 or π
between points on a cavity edge, and therefore cannot break
time-reversal symmetry. Manufacturing imprecision gives
rise to perturbations of this type.
For the study of quantum Hall physics, it is necessary to

break time-reversal symmetry; this does not occur naturally
for light. We consider achieving this by employing the
coherent magnon interaction between cavity photons and
the spins of a ferrimagnetic material [25,26]: a small ferrite
sphere placed at the center of the cavity with a dc bias field
B ¼ þB0ẑ. The ferrite acts as a collective spin that couples
to the magnetic field of the cavity mode and precesses at a
frequency ωF ¼ μ0B0. (Reversing the bias field results in
an identical analysis with aþ ↔ a−.) The magnetic field of
the a� modes has a maximum at the cavity center (at the
node of the electric field) and an in-plane polarization
that precesses about �ẑ at a frequency ω0. When the spin
precession frequency ωF is tuned near ω0, the polarization
of the magnetic field of the a� mode rotates synchronously
with the collective spin. The magnetic dipole interaction
results in a strong coupling between the aþ mode and the
ferrite mode (denoted aF). The magnetic field of the
a− mode, on the other hand, rotates against the collective
spin, and thus does not couple. This results in strong
hybridization of the aþ mode with the ferrite, producing
two bright magnon modes that are pushed away from the
dark a− mode at frequency ω0. Thus, when the system is
probed near ω0, the isolated dark mode a− sets a unique
magnetic field polarization vector, or, equivalently, a
unique quantum mechanical phase at the cavity periphery.
The coupling of the cavity-ferrite system is described by

theHamiltonianHðFÞ¼Hð1ÞþωFa
†
FaFþgFða†þaFþa†FaþÞ,

where gF is the coupling of the ferrite to the aþ mode (and
must overwhelm Δlin). A more suggestive notation is
HðFÞ ¼ ðaðFÞÞ†HðFÞaðFÞ, where we define a ferrite-cavity
mode vector aðFÞ ¼ ðax; ay; aFÞT and describe the cavity-
ferrite system with a coupling matrix:

HðFÞ ¼ ω0Î þ

0
B@

0 0 gF=
ffiffiffi
2

p

0 0 igF=
ffiffiffi
2

p

gF=
ffiffiffi
2

p
−igF=

ffiffiffi
2

p
2δF

1
CA; ð1Þ

where 2δF is the detuning of the ferrite from cavity resonance
(ωF ¼ ω0 þ 2δF) and Î is the identity matrix in the cavity-
ferrite space. This Hamiltonian has an uncoupled dark
eigenmode a− that remains at frequency ω0. There are also
two hybridized magnon modes B� ¼ ðaF � aþÞ=

ffiffiffi
2

p
that

are frequency shifted by ωB� − ω0 ¼ δF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2F þ g2F

p
.

We henceforth assume the experimentally relevant limit
where gF is large compared to δF, along with any energy
scales appearing inHeff .
Key features of this system are understood by examining

the cavity response using input-output formalism [25,31]:

(a)

(b)

arb. units

FIG. 1. (a) Structure of the electric field amplitude and phase
(with corresponding magnetic field polarization) of the modes
being considered. The fundamental mode has uniform phase
everywhere, with no nodes in the sole electric field component
Ez. The twofold degenerate first excited manifold may be
spanned by two modes with geometrically orthogonal linear
nodes in the Ez field (ax and ay), or, equivalently, by two modes
exhibiting a single point node and�2π phase winding around the
periphery (a�Þ. For the modes ax and aþ, the polarization of the
magnetic field at the cavity center is presented. The polarization
of the magnetic field points along the gradient of the phase of Ez.
For linear modes, the magnetic field is oriented perpendicular to
the nodal line, with direction oscillating in time. For the chiral
modes, this magnetic field polarization precesses in time
with frequency ω0. The size of the circles does not reflect the
physical dimension of the cavities, which is chosen such that
the desired mode is always at frequency ω0. (b) The geometric
phase acquired, for a photon of frequency ω0, when tunneling
through a cavity in which each type of mode has been isolated.
Left: A fundamental mode cavity will induce no tunneling phase
shift between any two contacts. Center: An isolated linear
mode (via a diagonal conductor or dielectric) will induce a
tunneling phase shift of either 0 or π. Right: An isolated circular
mode (via a ferrite in a magnetic field) will produce a phase shift
equal to the relative angle between the incoming and outgoing
tunnel contacts.
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We consider response at a small detuning δp ¼ ω − ω0, and
ferrite detuning 2δF, fromω0, and introduce a finite lifetime
of the cavity modes (κ) and ferrite mode ðκFÞ, with a
resulting cooperativity η ¼ 4g2F=κκF. The amplitude of the
response is shown in Fig. 2(a). Here, there are three maxima
in the response as δp is varied, corresponding to three
eigenmodes: the a− mode remains at ω0 for all ferrite
detunings, while the aþ mode mixes with the ferrite mode
aF and undergoes an avoided crossing as the ferrite
detuning is swept. When probed at frequencies near
ωB� , the bright magnon modes have a TRSB phase wind-
ing. Importantly, while only the bright modes couple to the
ferrite, both the bright and dark modes produce nonrecip-
rocal phase shifts. The dark mode is then advantageous
because it is insensitive to loss in the ferrite and is less
sensitive to detuning and linear disorder. When the ferrite is
exactly on resonance (δF ¼ 0), the dark mode has an exact
TRSB phase winding of 2π at the periphery of the cavity.
At probe frequencies different than ω0, the phase winding
ceases to be uniform. However, this nonuniformity is
quadratically insensitive in both the ferrite detuning and
the energy of the probe photon. This can be seen from the
saddle-point structure in Fig. 2(b). Here, the nonreciprocal
phase response of this system is calculated between
two cavity contacts separated by an angle of π=4 on the
cavity periphery [inset of Fig. 2(b)]; the difference between
forward and backwards phases is ϕnonrecip ≈ ð3π=2Þ−
2½δpðδp − 2δFÞ=g2F� − ð2=ηÞ. This quadratic insensitivity
of the eigenmode structure significantly decreases disorder
in Heff arising from disorder in the ferrite, cavity, or
bias field.
We now define our on-site Hamiltonian at a site j with

the notation HðαÞ
os;j ¼ ðaðαÞj Þ†HðαÞ

j aðαÞj , where α ¼ 0 corre-
sponds to a fundamental cavity, α ¼ θ defines a site
isolating a linear mode aθ, and α ¼ F corresponds to a
ferrite site. The form of the vector of annihilation operators

on site j depends on the type of site with að0Þj ¼ aj0,

aðθÞj ¼ ðajx; ajyÞT , and aðFÞj ¼ ðajx; ajy; ajFÞT for a funda-
mental, linear, and ferrite site, respectively. The on-site

coupling Hamiltonians are Hð0Þ
j ¼ ω0,

HðθÞ
j ¼

�
ω0 −Δlineiθ

−Δline−iθ ω0

�
;

and HðFÞ
j is given by Eq. (1). A system of uncoupled

cavities is then generically described by the on-site

Hamiltonian Hos ¼
P

j ¼
P

jðaðαÞj Þ†HðαÞ
j aðαÞj , where each

αj represents one of the distinct cavity types.

B. Tunnel coupling and nontrivial flux

Coupling of the cavities is realized by connecting their
edges with evanescent waveguides. The amplitude of such

(a)

(b)

FIG. 2. Response of a ferrite-cavity site described by HðFÞ in a
pump-probe experiment. Here, Sij is the response between a port
i ¼ 1 located at the x̂ axis and a second port j ¼ 2 measured 45°
away [inset of (b)]. In order to account for loss, we introduce a
linewidth κ and κF for the microwave cavity and ferrite, respec-
tively. For physically relevant values of κ=gF, κF=gF < 10−2, this
gives a corresponding cooperativity η ¼ 4g2F=κκF > 104. (a) Am-
plitude of the transmission response jS12j. The chirality of a ferrite
in a magnetic field allows it to couple only to the resonator mode
of the same handedness, producing an avoided crossing in the
transmission spectrum as the ferrite is tuned through resonance
with the resonator modes. This avoided crossing appears as two
modes that are bright to the ferrite, Bþ and B−. The dark mode
D ¼ a− does not couple to the ferrite, and is therefore unshifted and
insensitive to ferrite loss κF. (b) The nonreciprocal phase,
ϕnonrecip ¼ argðS21Þ − argðS12Þ, reflects the phase difference be-
tween going in the 0° port and out the 45° port, and the reverse
process. This is ideally ϕnonrecip ¼ 3π=2 for the dark mode. This
time-reversal break is robust to detuning in either the ferrite or the
probe, and also loss, with the lowest-order correction entering
as ϕnonrecip ≈ ð3π=2Þ − 2½δpðδp − 2δFÞ=g2F� − ð2=ηÞ. (c) A slice
through the nonreciprocal phase as a function of the probe
detuning, for the ferrite tuned to resonance. The nonreciprocal
phase of ϕnonrecip ≈ 3π=2 is apparent near the dark mode.
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a tunnel coupling is determined by the geometry (length
and cross section) of the channel. We emphasize that the
coupler is only virtually populated—the evanescent wave
“propagates” with a purely imaginary wave vector—so
the phase of the photon is spatially uniform throughout
the channel, and the channel has no dynamical degree of
freedom.
Now consider a site with an isolated eigenmode (such as

aθ or a�) at frequency ω0, that has a nonuniform phase
profile. Attached to this cavity are two or more tunnel
contacts to nearby cavities. The nonuniform phase of the
mode implies that a photon that tunnels in along one
channel will acquire a geometrical phase shift as it tunnels
out along a different channel; this is the origin of the
induced TRSB flux.
In a fundamental mode cavity, both the amplitude and

phase around the edge are uniform, and therefore no
geometric phase will be acquired for two tunneling con-
tacts, regardless of where they are attached. In contrast, a
ferrite-cavity site with two tunneling channels separated by
an angle ϕ on the cavity perimeter will experience a
geometrical phase shift of �ϕ for an isolated a� mode
[see Fig. 1(b)].
On the other hand, two tunnel contacts on a site with a

mode aθ will experience a relative phase shift only if the
photon crosses a node between the processes of tunneling
in and tunneling out [see Fig. 1(b)]. For an aθ mode, the
local amplitude at the cavity periphery will be nonuniform
and the tunneling magnitude will gain position dependence
[see Fig. 1(a)]. [An ideal point contact at an angle ϕ relative
to the x̂ axis will tunnel with amplitude t ∼ j cos ðθ − ϕÞj at
frequencies near ω0.] This is in contrast to a mode a0 or a�,
for which the mode magnitude, and thus the tunneling
magnitude, is uniform.
For an open 1D chain of tunnel-coupled cavities, the

geometric phase arising from on-site elements can be
eliminated through a gauge transformation. On the other
hand, closing the loop produces a net phase (flux) after
tunneling around a closed loop (plaquette). This flux is
analogous to a discrete version of Berry’s phase and cannot
be eliminated through a gauge transformation and it will
appear on the tunnel coupling terms in Heff . In this way, a
variety of lattice models can be realized that have nontrivial
Peierl’s phases.

C. Band projection and geometric phase

The arguments above suggest there is a nontrivial
Berry flux through a plaquette when energy scales are
restricted to a small window around ω0 (and on-site
perturbations are sufficiently large). At energies away from
ω0 the full degrees of freedom must be considered. The
Hamiltonian that describes this general system is given by

H0 ¼ HT þHos, where HT ¼ P
hijiðaðαiÞi Þ†Tija

ðαjÞ
j tunnel

couples the lattice of cavities defined byHos in the previous

section. The matrix Tij represents the tunneling between
two neighboring sites with on-site mode structure αi and αj.
The specific form depends on the type of tunneling, but
we note that an ideal point contact will have a nonzero
overlap for only a single bare cavity mode (not a coupled
eigenmode) at frequency ω0. For fundamental cavities
this is naturally a0, whereas in first excited cavities only
one linear combination of ax and ay will have a nonzero
contribution to Tij. All other tunneling terms will vanish.
The geometric flux can now be rigorously calculated

considering a unitary matrix UðαÞ
j at every site j that locally

diagonalizes HðαÞ
j : HðαÞ

j ¼ UðαÞ
j ΔðαÞ

j ðUðαÞ
j Þ†, where ΔðαÞ

j is a
diagonal matrix of on-site energy eigenvalues with a unique
mode at frequency ω0. Applying this unitary rotation to

every site then transforms the Hamiltonian to Hos ¼P
jð~aðαjÞj Þ†ΔðαjÞ

j ~a
ðαjÞ
j andHT ¼ P

hijið~aðαjÞi Þ† ~Tij ~a
ðαjÞ
j , where

~a
ðαjÞ
j ¼ U

ðαjÞ
j a

ðαjÞ
j and ~Tij ¼ UðαiÞ

i TijðUðαjÞ
j Þ†. This trans-

formation has the effect of locally diagonalizing each on-
site Hamiltonian at the cost of transforming the tunneling
matrix between sites.
The restriction to the unique mode at frequency ω0

will amount to a projection into the on-site modes âj0.
Applying a projection operatorPj0 to eliminate unoccupied
modes results in Heff;0≡P

jPj0H0Pj0¼
P

jω0â
†
j0âj0þP

hijit̂ijâ
†
i0âj0, where the effective tunneling matrix t̂ij

can contain a nontrivial phase. We emphasize that while
this tunneling phase is gauge dependent, the net flux
through a plaquette naturally remains gauge invariant.
We now discuss how the circuit elements described

above can result in interesting band structures for a
frequency range around ω0. For a plaquette consisting of
only fundamental mode cavities, a photon acquires no net
phase going around a plaquette (corresponding to zero
flux). An aθ mode cavity would contribute a net flux of π to
a plaquette if the tunneling contacts cross the nodal line,
and 0 otherwise.
For plaquettes with ferrite sites, the TRSB flux is directly

proportional to the angle between the two tunneling
channels attached to the ferrite cavity. Thus, a resonator
with N evenly spaced tunneling contacts will contribute a
flux of ϕ ¼ 2π=N to each adjacent plaquette connected by
tunnel couplers. This will allow for simulation of α ¼ 1=N
Hofstadter models in different lattice geometries, such as
α ¼ 1=4 in a square geometry and α ¼ 1=6 in a triangular
geometry. In general, using only the first excited modes we
are limited to a total flux of 2π per internal ferrite. However,
using higher-order modes allows for a net flux of any
integer multiple of 2π per plaquette.
The nontrivial effective flux is a discrete geometric

(Berry’s) phase; it is a direct lattice analogue to “synthetic
gauge fields” studied in ultracold atomic systems [7].
There, Raman fields are used to couple internal (spin)
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degrees of freedom. The Raman fields vary slowly in space,
but also provide a large energetic separation between
dressed states. After preparing the system in a single
dressed state, the dynamics respond analogously to a
system under the influence of a nontrivial external gauge
potential. Similar to the study of synthetic gauge fields in
ultracold atoms, the microwave lattice scheme can also be
extended to the regime of synthetic non-Abelian gauge
fields, such as spin-orbit coupling [7,32]; we leave such
systems to future work.

D. Realizing a Hofstadter model

Given the circuit elements described above, it is now
straightforward to construct an α ¼ 1=4 Hofstadter model.
Of the many equivalent configurations, we present one that
requires the minimum number of ferrites per unit cell.
Consider a square lattice of fundamental resonators, with

every fourth fundamental cavity replaced by ferrite cavity,
such that all plaquettes include one ferrite. This results in a
square four-site unit cell. [See shaded area in Fig. 3(a).]
This is consistent with the generic property that α ¼ p=q
Hofsdater models have q-site unit cells. When the system is
probed at frequencies near ω0, the time-reversal symmetry-
breaking mode will contribute a phase of π=2 into each of
the four neighboring plaquettes. Since each plaquette
touches only a single ferrite, the total flux will be uniform,
α ¼ ðπ=2Þ=2π ¼ 1=4.
We verify that this system provides the expected

Hofstadter physics in two ways. First, we explicitly
calculate the band projected model for the phase conven-
tion defined above. The net flux through a plaquette is
found to be π=2 as expected. Second, we numerically
diagonalize the Hamiltonian including all relevant degrees
of freedom. We choose the ferrite-cavity coupling to be 10
times the tunneling energy (gF ¼ 10t), and consider a strip
geometry. As seen in Fig. 4, the full model has six bands.
The top and bottom (black) bands are composed almost
entirely of the bright magnon modes. These bands are only

weakly dispersive, as tunneling between bright modes must
occur off resonantly through neighboring fundamental
cavities, and is therefore suppressed to ∼t2=gF.
In contrast, the middle four (gray) bands are composed

almost entirely of dark and fundamental cavity modes.
These states form the effective Hofstadter model, and have
all expected properties: The four bands are energetically

(a) (b) (c)

FIG. 3. Implementations of topological band structures described in the main text. (a) Hofstadter model with α ¼ 1=4: A square,
four-site, unit cell has one ferrite and three fundamental resonators. In the effective model near a frequency ω0, the ferrite induces a
quarter flux quantum for each of the four neighboring plaquettes. (b) Triangular Hofstadter model with α ¼ 1=6: A triangular lattice with
a three-site unit cell has a single ferrite. This ferrite touches each of six neighboring plaquettes. (c) Haldane model: A hexagonal lattice
has a ferrite on each lattice site. By staggering the handedness of the dark modes on A and B sublattices, the net flux vanishes. Addition
of next-nearest-neighbor tunneling terms breaks time-reversal symmetry by inducing a flux of α ¼ �π=3 in each sublattice.

FIG. 4. Band structure of the microwave cavity implementation
of the α ¼ 1=4Hofstdater model in a strip geometry. The unit cell
presented in Fig. 3(a) has three fundamental mode cavities, along
with a single ferrite site, resulting in a total of six bands. When the
ferrite energy is tuned large, two bright bands (black) are far
separated from the four bands (gray) near ω0. These four bands
have an edge state and Chern number structure consistent with the
α ¼ 1=4 Hofstadter model. Here, blue (orange) lines connecting
the bulk bands represent edge modes localized on the left (right)
edge. No edge states connect the dark bands to the bright bands.
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symmetric around the energy ω0; the top and bottom bands
are gapped relative to the two middle bands, which touch at
two distinct Dirac points; the band Chern numbers for the
continuum model are calculated to be (from top to bottom)
C ¼ 0; 1;−2, 1, 0, consistent with topologically trivial
bright bands sandwiching an α ¼ 1=4 Hofstadter model in
the dark sector. A finite-size calculation shows chiral edge
channels that emerge between the Hofstadter bands, but not
between the dark (Hofstadter) and bright bands.

E. Other lattice models

These circuit elements are powerful for implementing
a variety of topological band structures. In passing, we
present two additional examples. Figure 3(b) is an imple-
mentation of a triangular Hofstadter model with α ¼ 1=6,
where we use a triangular lattice with a single ferrite placed
in each three-site unit cell. Using arguments similar to
above, this introduces a net flux of α ¼ 1=6 per plaquette,
as desired.
Tunnel couplings may additionally cross by, e.g.,

machining channels on both the top and bottom of the
substrate supporting the cavity array. This allows for
implementation of an even larger class of topologically
nontrivial single-particle Hamiltonians. In Fig. 3(c), the
Haldane model is constructed from a hexagonal lattice with
next-neighbor tunnel couplings added, where a ferrite is
added to every site. By alternating the sign of the dc bias
field, and thereby the chirality of the ferrite dark modes,
between A and B sites, the net flux per plaquette vanishes,
while time-reversal symmetry is locally broken. This
geometry specifically produces the “ideal” flux configura-
tion that is gauge equivalent to a flux quantum per
plaquette [33].
In addition to the examples presented here, other

frequently studied Hamiltonians, such as the 2D chiral-π
[33], or 1D chiral models, such as the SSH model, may also
be directly implemented [34]. The circuit architecture
described above is useful for realization of a variety of
paradigmatic lattice models described in the literature. The
possibilities are extensive and we leave elucidation of these
to future works.

III. EXPLORING FRACTIONAL
QUANTUM HALL PHYSICS

The microwave architecture above is linear and should
be equally effective at simulating noninteracting topologi-
cal structures in both the classical and few-photon limits.
On the other hand, to create strongly correlated topological
states, strong photon-photon interactions are required.
It is well established that a nonlinear interaction between
photons arises through coupling the microwave cavities to
Josephson junction qubits [28,35]. The addition of a qubit
to each site of the synthetic α ¼ 1=4 Hofstadter model
proposed above should be sufficient to explore bosonic

fractional quantum Hall physics [9,29] for microwave
photons. We expect that the addition of interactions should
result in a FQH-like eigenstate lying at the edge of the dark
bands, and well separated from the bright bands.
We leave the details regarding the preparation of the

many-body eigenstates of our interacting topological
Hamiltonian to future work; this is an exciting area of
active research, at the interface of many-body physics,
dissipation, and nonequilibrium quantum statistical
mechanics [36–39]. Nonetheless, for relatively small sys-
tems with extremely low loss, it should be possible to
spectroscopically populate the (gapped) few-body eigen-
state [40]. Such an approach relies on the robustness of the
many-body gap to realistic experimental disorder; as will
be discussed below, current cavity and qubit technology
will allow for a many-body gap that is at least an order of
magnitude larger than the largest cavity linewidth, so the
FQH manifold should be able to be uniquely prepared and
isolated. Once prepared, the cavity can be probed through
either single-particle or two-particle correlation measure-
ments [40]. The presence of a Laughlin state can then be
verified through a combination of appropriate correlation
functions [18,41].

A. Numerical scheme

We now demonstrate the existence of bosonic FQH
eigenstates in our architecture by numerically exploring
the combined single-particle and interacting Hamiltonian
Heff;mb ¼ Heff;0 þHeff;I projected to describe energies
near ω0. Provided the strength of the interactions is
weak compared to the ferrite-cavity coupling, a projected
qubit-mediated interaction Hamiltonian can be used:
Heff;I ¼ 1

2

P
iUin̂i0ðn̂i0 − 1Þ, where Ui is the effective

photon-photon interaction for the photon number n̂i0 of
the unique mode near ω0 at site i.
We consider a finite-size geometry with N ¼ Nx × Ny

lattice sites and toroidal boundary conditions, producing a
degenerate ground state manifold (GSM). Such boundary
conditions need not be a purely theoretical construct:
They could be implemented explicitly by either machining
the cavities on a physical torus or connecting the opposite
boundaries with waveguides [13]. In order to maintain a
uniform effective flux, each plaquette must touch exactly
one ferrite. This geometric restriction forces N=4 to
be an integer, and thus that the projected model has
Nϕ ¼ αN ¼ N=4 total flux quanta.
In finite-size systems, the incompressibility of the FQH

states will manifest as eigenstates of definite photon
number that can be prepared using the spectroscopic
techniques discussed above. We therefore consider a
system of fixed particle number Np, where a FQH ground
state is expected to emerge when the filling factor
ν ¼ Np=Nϕ is expressible as a certain sequence of rational
numbers [9,10]. The most stable (largest many-body gap)
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filling is desirable; this occurs at a filling ν ¼ 1=2, which
further restricts Np ¼ N=8 particles (N divisible by eight).
It is experimentally advantageous to start with few-photon
states; we thus explore small geometries with Nx ¼ 4 and
Np ¼ 2, 3, 4 (and, therefore, Ny ¼ 2Np); all numerical
results we present below are for Np ¼ 3 and Ny ¼ 6.
(Interestingly, this geometry produces nondispersive bands
with Ny ¼ 4, which are only weakly dispersive when
Ny ¼ 6, 8 [42].)
As explored in previous works [3,4,42,43], many

properties of the FQH are expected to survive in few-
particle geometries. To demonstrate this for our system,
we start by exactly diagonalizing Heff;mb in the clean limit
with Ui ¼ U ≫ t. The geometries described above
result in a twofold degeneracy (exact to numerical pre-
cision) in the many-body ground state manifold, as
expected for a ν ¼ 1=2 Laughlin state [1,29]. We label
the states in the GSM as jΨ1i and jΨ2i; translational
invariance allows these states to be distinguished by their
center-of-mass momentum [4]. It is useful to impose a
twisted boundary condition:Ψmðxþ Nx; yÞ ¼ eiγxΨmðx; yÞ
and Ψmðx; yþ NyÞ ¼ eiγyΨmðx; yÞ for all eigenstates
Ψmðx; yÞ, both in the GSM (m ¼ 1, 2) and not in the
GSM (m ≥ 3). The phases γx × γy represent an Aharanov-
Bohm flux γx;y ∈ ½0; 2πÞ adiabatically inserted along
the x̂, ŷ axes of the torus (as could be implemented with
rf-modulated tunneling [20,23]).
Figure 5(a) shows the spectral flow of the lowest 30

eigenstates as a flux quantum is simultaneously inserted
along both axes of the torus. Throughout this process the
GSM remains gapped. (Here, we include disorder to
visually split the two ground states; in the clean limit,
the GSM is degenerate to numerical accuracy for all flux
values.) For each flux γ, we define the spectral gap to the
first set of excited states:

ΔmbðγÞ ¼ min
m∉GSMEmðγÞ − max

m∈GSM
EmðγÞ; ð2Þ

and we find that the spectral gap is approximately constant
for all flux γ ¼ ðγx; γyÞ ∈ MBZ, where MBZ is the many-
body Brillouin zone. Since the GSM remains gapped
through the full flux insertion process, we can define the
many-body Chern number [44]:

Cm ¼ 1

4π

Z
γ∈MBZ

d2γ½∇γ × hΨmðγÞj∇γjΨmðγÞi�; ð3Þ

for a state m ∈ GSM. In a FQH system, the total Chern
number in the GSM will evaluate to an integer and give a
quantized Hall conductance. For a clean system, both states
in the GSM can be identified by their center-of-mass
momentum and Cm calculated independently. In this case,
we find that they each carry a fractionalized many-body
Chern number of C1 ¼ C2 ¼ 1=2, consistent with the
thermodynamic limit. This result is also consistent

with prior numerical studies of FQH systems, and an
exact solution for a disorder-free finite-size Hofstadter
model [42].
In contrast, arbitrarily weak disorder will break transla-

tional invariance and remove the degeneracy of the GSM.
(This is a finite-size effect, as the degeneracy remains in the
thermodynamic limit.) The states in the GSM will remain
gapped at all flux values. The calculation of Cm is then
defined for the mth energy level. We numerically find that,
with weak disorder, one state in the GSM randomly obtains
C ¼ 1, while the other has C ¼ 0, depending on the
specific disorder configuration. As the disorder strength
is increased, the spectral gap may shrink until the GSM and
the first excited set of states are close enough to strongly
mix. In this case, the many-body Chern number may mix
with the excited state manifold and destroy the FQH state.
(Note that level repulsion will prevent the gap from ever
exactly vanishing.) In order to quantify the tolerance to
disorder, we define the minimum of the many-body gap as

Δmb ¼ min
γ∈MBZ

ΔmbðγÞ: ð4Þ

This quantity is used in the next section to study the
stability of our scheme.

B. Robustness to disorder

In any realistic implementation, disorder is present in
various forms. We now study the influence of spatial
disorder in (1) interaction strength, (2) tunneling energy,
(3) flux through each plaquette, and (4) on-site energy upon
the interacting Hofstadter model described above. For each
disorder type, we calculate the minimum many-body gap,
and then average over many disorder configurations. This
disorder-averaged many-body gap Δ̄mb will be used as a
heuristic for the disorder tolerance of the FQH state.
We expect the FQH state to be robust to disorder in the

interaction strength, provided that the average interaction
strength is large compared to the tunneling energy. In this
blockaded limit, the two-photon wave function overlap is
small on any given site, resulting in only a small energy
shift due to interaction disorder. (This argument also
applies to the continuum case, where the Laughlin wave
function has minimal overlap between photons, and, there-
fore, quenches interaction energy.) This expectation is
confirmed through exact diagonalization: The stability of
the many-body gap is calculated by taking the smallest gap
as a full 2π flux is inserted through the twisted boundary
conditions, as in Eq. (4). This calculation is performed for a
range of average interaction strengths up to Ūi ∼ 20t, with a
disorder strength δUi ¼ Ui − Ū uniformly distributed in
the different ranges of �Ūf1

4
; 1
2
; 3
4
; 1g. The results are

shown in Fig. 5(b), demonstrating that interaction disorder
does not significantly reduce the many-body gap. We
further numerically verify that, for all disorder configura-
tions, the many-body gap remains open throughout flux
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insertion, and the total many-body Chern number in the
ground state manifold remains C ¼ 1.
It is curious that even for the case of the strongest

interaction disorder (maxi jδUij ¼ Ū), when certain lattice
sites can be almost noninteracting, the topological state
survives with a many-body gap that does not seem to be
limited by the smallest Ui in the system. In our system, we
still expect only a small probability for the overlap of two
photons, and, therefore, a robustness to completely remov-
ing some number of qubits. Removing qubits may provide
additional flexibility to the proposed experimental realiza-
tion of the interacting lattice, as the ferrites require a large
bias dc magnetic field that is detrimental to the operation of
superconducting qubits. We therefore repeat the previous
calculation, now with interactions turned off entirely on all
ferrite sites [see Fig. 5(c)]. We find that the topological
ground state is preserved, although the disorder-averaged
many-body gap Δ̄mb is reduced by a factor of ∼4.
For interaction disorder, we consider a wide distribution

that will realistically arise due to fabrication variations in
qubits. By contrast, tunneling disorder is small due to a
combination of precision machining techniques and the
quadratic insensitivity of the dark state on ferrite sites. We
still consider small to moderate disorder in both amplitude
(jδtijj, uniformly distributed) and phase of the tunneling
rates; the disorder in phase translates to a (Gaussian
distributed) disordered flux in each plaquette of δα. The
resulting many-body gaps are plotted in Figs. 5(d) and 5(e)
when the photon-photon interactions are assumed to be
large. We find that the many-body gap decreases only
linearly for both tunneling disorder types in this regime,
suggesting that tunneling disorder will not be a significant
issue in experiment.
The system is more sensitive to on-site disorder, which

shifts the on-site mode frequency to ω0 → ω0 þ δωi. We
explore this physics in Fig. 5(f) by adding random on-site
(uniformly distributed) disorder in the exact diagonaliza-
tion calculation. The situation is similar to previous results
for disordered (fermionic) FQH systems [45,46]: The total
many-body Chern number of the ground state manifold is
probabilistically distributed between the lowest-lying states
for small disorder. At larger disorder, a collapse of a
mobility gap results in a transition to an insulating state.
We find that for weak disorder, the many-body gap persists,
but declines roughly linearly in the disorder strength. Using
3D microwave cavities, on-site disorder is given by
variations in the cavity resonances determined by the
cavity dimensions and can be precisely controlled with
modern machining techniques. Additionally, the on-site
resonance can be made tunable, over a range larger than the
tunneling t, by, e.g., using a tuning screw or piezostack to
perturb critical dimensions of the cavity [47]. Combined
with tomography techniques [48,49], which can map out a
tight-binding Hamiltonian, on-site disorder can be charac-
terized in the fully coupled lattice, and further reduced.

IV. DISCUSSION

We present a scalable 3D microwave circuit architecture
to explore bosonic FQH models of photons. Central to this
approach is a method for implementing the necessary
TRSB flux of the single-particle band structure: the

(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a) Spectral flow of a of the lowest 30 many-body
eigenstates as a flux γx ¼ γy ¼ γ, γ ∈ ½0; 2π� is inserted into
Heff;mb. Weak disorder is included that visually splits the numeri-
cally exact twofold degeneracy of the ground state manifold in
the clean limit. For all flux, the GSM (orange and blue lines)
remains gapped relative to the (shaded gray) excited states.
Provided this gap remains in the presence of disorder, a many-
body Chern number can be defined. The disorder-averaged
minimum value of this gap is denoted Δ̄mb. This is used as a
metric to test sensitivity to various types of disorder. (b) Δ̄mb as a
function of the average interaction strength Ū for various
strengths of interaction disorder δUi. The many-body gap is
not significantly suppressed at large interaction strengths.
(c) Same as (b), but all ferrite sites are made noninteracting.
This comes at the cost of a drop of Δ̄mb by a factor of about 4.
(d) Effect of disorder in the magnitude of the tunneling strength
jδtijj, in a strongly interacting case (Ui ¼ 20). (e) Effect of
disorder in the flux δα through each plaquette. (f) Effect of
disorder δωi in the frequency of the on-site eigenmode near ω0.
All error bars (shaded regions) are standard errors of the mean for
about 30 realizations of the disorder; the disorders δUi, jδtijj,
and δωi are uniformly distributed, whereas δα is the half width at
half maximum of a Gaussian distribution.
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on-site mode structure is used to induce this flux, rather
than the tunnel couplers themselves. Specifically, a ferrite is
used to couple a degenerate cavity manifold, resulting in an
isolated cavity eigenmode at frequency ω0 that has uniform
phase winding around the cavity periphery. As a photon
tunnels in and out, it will accumulate the phase difference
between the input and output tunnel contact. This phase is a
geometric (Berry’s) phase, and will contribute a nontrivial
flux to any connected plaquette. This allows for exploration
of, e.g., an α ¼ 1=4 Hofstadter model on a square lattice.
The circuit elements are entirely passive, providing a
distinct advantage from competing protocols that require
driving of the tunnel matrix elements.
In practice, 10-GHz microwave resonators may be

realized with ferrite time-reversal breaking of order
gF ∼ 1 GHz [26]; this allows a Hofstadter model band-
width of 600 MHz (see Fig. 4,) with tunneling energy of
t ¼ 100 MHz and resonator-to-resonator disorder of order
∼1 MHz. For standard transmon qubits, an interaction
strength of U ¼ 350 MHz is readily achieved [50],
providing a many-body gap of order (see above) of
Δmb ∼ 16 MHz. Resonator linewidths of κ ∼ 20 Hz for
superconducting coaxial resonators [21] have been
achieved in zero field. Realizing such small linewidths
in a magnetic field may be challenging, but recent works
have achieved Q ∼ 109 in microwave cavities with rf field
strengths just below Hc1 [51]. Since significant time-
reversal breaking can be achieved at fields below Hc1,
linewidths in the range of κ ∼ 10–100 kHz should be
achievable for our system. The large many-body gap and
narrow system linewidth will therefore allow the FQH
states to be spectroscopically populated [40], and then
verified by site-resolved spectroscopy [18,41]. For long-
lifetime preparation, the system can be coupled to a
dissipative bath which drives the system towards the
desired number of photons in the ground state [36–39].
This lattice architecture then forms the basis for the

investigation of topological many-body physics. Effective
photon-photon interactions are implemented through the
addition of superconducting qubits. Consistent with pre-
vious works, we predict the emergence of a ν ¼ 1=2
bosonic FQH eigenstate, even at a large flux per plaquette
of α ¼ 1=4. We further verify that this phase is relatively
robust to experimentally realistic disorder in on-site energy,
interactions, tunneling energy, and flux in a plaquette. In
conjunction with state-of-the-art proposals to implement
chemical potentials for photons [36–39], this work provides
a complete road map to photonic fractional quantum
Hall physics, and a path to spectroscopic creation and
manipulation of anyons [52,53].
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