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Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to
describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly
already resulted in the prediction and subsequent observation of the pronounced negative magnetoresist-
ance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral
anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E
and B are replaced by strain-induced pseudo-electromagnetic fields e and b. For example, a uniform
pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance
with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to
the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially
segregated to the bulk and surface of the wire forming a “topological coaxial cable.” This produces
hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic
attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing
pseudoelectric field e. These novel manifestations of the chiral anomaly are most striking in the
semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd3As2 and
Na3Bi and Weyl semimetals with unbroken time-reversal symmetry.
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I. INTRODUCTION

Mechanical strain that varies smoothly on the inter-
atomic scale is known to affect the low-energy Dirac
fermions in graphene in a way that is similar to the
externally applied magnetic field. More precisely, strain
acts in graphene as a “chiral” vector potential that couples
to Dirac fermions oppositely in the two valleys K and K0
[1]. The pseudomagnetic field that arises from this effect in
a curved graphene sheet can be larger than 300 T and has
been observed through the spectroscopic measurement of
the Landau levels in the seminal experiment on graphene
nanobubbles [2]. In terms of their low-energy physics,
Weyl and Dirac semimetals [3–5] can be thought of as a
three-dimensional generalization of graphene. The question
thus immediately arises whether strain in these materials
gives rise to similar effects. Recent theoretical work [6]
showed that this is indeed the case at least in a simple toy
model of a Weyl semimetal with broken time-reversal
symmetry T . The authors predicted that the electron-
phonon coupling in such a system will lead to nonzero
phonon Hall viscosity, an interesting but notoriously

difficult quantity to measure. We consider here the effect
of strain in more realistic models relevant to Dirac
semimetals Cd3As2 [7–12] and Na3Bi [13–15] and the
related Weyl semimetals [16–20]. We describe situations
where the strain-induced pseudoelectromagnetic fields
e and b give rise to new and unusual manifestations of
the chiral anomaly [21–23], which can be observed by
conventional experimental probes such as electrical trans-
port, ultrasonic attenuation, and electromagnetic (EM)-field
emission.
One reason why strain can generate pseudomagnetic

fields as large as 300 T in graphene [2] lies in its mechanical
flexibility: Substantial curvature can be achieved without
breaking the graphene sheet. This suggests that to probe
strain-induced effects in Dirac and Weyl semimetals, one
should focus on films or wires as these will be much
more flexible than bulk crystals. In this work, we thus
concentrate on these geometries and show that strain leads
to phenomena that are both striking and experimentally
measurable. We note that high-quality nanowires of Dirac
semimetal Cd3As2 have been grown and shown to exhibit
giant negative magnetoresistance due to the chiral anomaly
[24], as well as Aharonov-Bohm oscillations indicative of
the protected surface states [25]. These wires bend easily
and show mechanical flexibility that is required to study
strain-related phenomena. We also discuss consequences of
lattice distortions caused by sound waves (phonons). These
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can be used to study the above phenomena in crystalline
flakes and films, which are readily available for nearly all
known Dirac and Weyl materials.
Our results can be most easily understood by thinking

about the simplest Weyl semimetal with a single pair
of Weyl points [26], although many aspects translate to
more complicated Weyl and Dirac semimetals. The low-
energy effective theory is then defined by the Hamiltonian
H ¼ R

d3rΨ†
rhðrÞΨr, where Ψ†

r ¼ ðψ†
r;R;ψ

†
r;LÞ and

h ¼ vχzσ · ðp − eA − χzeaÞ − μ: ð1:1Þ

Here, ψ†
r;R=L represent two-component right- and left-

handed Weyl fermion creation operators, χz ¼ �1 labels
the chirality of the two Weyl nodes, σ is a vector of
Pauli matrices in the pseudospin space, and p ¼ −iℏ∇.
A and a denote gauge potentials of the ordinary EM and the
chiral field, respectively. We explain below the origin of
the chiral fields by considering the effect of the elastic
strain in the full lattice model that underlies the low-energy
theory (1.1). Specifically, using the method developed in
Refs. [6,27], we find that (i) a uniform pseudomagnetic
field b ¼ ∇ × a directed along the axis of the wire ẑ
is generated by applying static torsion as indicated in
Fig. 1(b), while (ii) a pseudoelectric field e ¼ −ð1=cÞ∂ta,
also along ẑ, is obtained by dynamically stretching and
compressing the sample.
Consequences of the strain-induced gauge fields can be

most easily deduced from the chiral anomaly equations
[21–23], which take the following form when both ordinary
and chiral EM fields are present [28]:

∂tρ5 þ∇ · j5 ¼
e2

2π2ℏ2c
ðE · Bþ e · bÞ; ð1:2Þ

∂tρþ∇ · j ¼ e2

2π2ℏ2c
ðE · bþ e · BÞ: ð1:3Þ

Here, ρ and ρ5 are the total electron and chiral density,
respectively, and j and j5 are the corresponding current
densities. Chiral density ρ5 ¼ ρR − ρL refers to the

difference between the charge densities associated with
the right- and left-handed Weyl points.
The first equation (1.2) is most commonly associated

with the chiral anomaly, and it expresses nonconservation
of the chiral charge in the presence of aligned EM or
pseudo-EM fields. Physically, this can be understood as
pumping of charge from one Weyl point to the other—the
chiral magnetic effect [23]. It is this phenomenon that
underlies the anomalous negative magnetoresistance
[29–31] that has been recently observed in a variety of
Weyl and Dirac semimetals [32–36].
The second anomaly equation (1.3) only occurs when

both ordinary and pseudo-EM fields are present. It
expresses an apparent charge-density nonconservation,
which is the focus of the present work. In a real solid,
charge density is of course strictly conserved, and Eq. (1.3)
therefore must be interpreted with caution. We will show
that Eq. (1.3) can be understood as pumping of charge
between the bulk and the boundary of the system. Such
pumping only occurs when either b or e fields are present,
and it furnishes a novel manifestation of the chiral anomaly
in a strained crystal.
To develop some intuition for the chiral anomaly, let

us consider the Hamiltonian (1.1) in the presence of a
static uniform (pseudo)magnetic field. We begin with the
ordinary magnetic field B ¼ Bẑ. The solution of the
corresponding Schrödinger equation hΦ ¼ ϵΦ is well
known and consists of the set of Dirac Landau levels with
energies [23]

ϵnðkÞ¼�ℏv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ2n

ejBj
ℏc

r
; n¼1;2;…; ð1:4Þ

for each Weyl fermion. There is also one chiral n ¼ 0 level
per valley with ϵ0ðkÞ ¼ χzsgnðBÞℏvk. If a parallel electric
field E ¼ Eẑ is now applied to the system, then the electron
momenta begin to evolve according to the semiclassical
equation of motion kðtÞ ¼ kð0Þ − eEt=ℏ. Because of the
existence of the two chiral branches in the spectrum, this
leads to charge pumping between the two Weyl points, as
illustrated in Fig. 1(a), at a rate consistent with the chiral
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FIG. 1. Electron excitation spectra in a Weyl semimetal in the presence of (a) magnetic field B and (b) pseudomagnetic field b
generated by a torsional deformation. Parallel electric field E produces a charge-density imbalance in case (a), while it appears to
produce excess total charge density in case (b). Panel (c) illustrates the displacement field u in the presence of torsion. Consecutive
layers of the crystal are rotated by relative angle φ0 ¼ ΩðL=aÞ.
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anomaly equation (1.2). The key point here is that in a real
solid where the Hamiltonian is defined on the lattice, the
two chiral branches are connected away from the Weyl
points, and the chiral anomaly equation simply describes
the semiclassical evolution of the electron states through
the Brillouin zone [23]. In the presence of relaxation
processes, a steady-state nonequilibrium distribution of
electrons with nonzero chiral density ρ5 is obtained, which
is responsible for the anomalous ∼B2 contribution to the
magnetoresistance.
Now consider the effect of the chiral magnetic field

b ¼ bẑ. The solution consists of the same Dirac Landau
levels, Eq. (1.4), but the n ¼ 0 levels now disperse in
the same direction for the two Weyl points, ϵ0ðkÞ ¼
sgnðbÞℏvk, as illustrated in Fig. 1(b). If a parallel electric
field E ¼ Eẑ is applied to the system, we see that the charge
density seemingly begins to change. Since the total charge
is conserved, this extra charge density must come from
somewhere. We demonstrate below that it comes from the
edge of the system. Indeed, this is plausible if we note
that the energy spectrum sketched in Fig. 1(b) does not
represent a legitimate dispersion of a lattice system which,
because of the periodicity of the energy bands in momen-
tum space, must exhibit the same number of left- and right-
moving modes. Since the Landau levels are the correct
eigenstates in the bulk, we conclude that the missing left-
moving modes must exist at the boundary. Our numerical
simulations of a lattice model below indeed confirm this
conclusion. Thus, in the presence of b and E, the chiral
anomaly can be understood as pumping of charge between
the bulk and the edge of the system. The effects of nonzero
e · B and e · b terms are more subtle, as they involve
relaxational dynamics, but can be understood from similar
arguments. Indeed, the difference between the effects lies in
the directions of magnetic and electric fields as applied to
the two Weyl cones. These effects and their experimental
consequences constitute the main result of the paper.
Several interesting observations follow from the above

discussion. First, we conclude that electric transport in a
twisted Weyl semimetal wire is highly unusual because the
right-moving modes occur in the bulk whereas the left-
moving modes are localized near the boundary. (More
precisely, we may say that there is a net imbalance between
the number of left- and right-moving modes in the bulk and
at the boundary.) Since the left- and right-moving modes
are spatially segregated, one expects backscattering to be
suppressed in such wires, giving rise to anomalously long
mean-free paths. In addition, transport will sensitively
depend on the applied torsion, giving rise to the new chiral
torsional effect (CTE) that we describe in detail below.
Second, we see that charge transfer between the bulk and
the boundary leads to interesting effects when a time-
dependent e field is generated, e.g., by driving a longi-
tudinal sound wave through the crystal when a B field is
also present. Such a sound wave will experience an

anomalous attenuation that can be attributed to the chiral
anomaly. It will also produce charge-density oscillations
in the crystal that can be observed through electric-field
measurement outside the sample. Third, the chiral anomaly
can be observed even in the complete absence of real EM
fields when the crystal is put simultaneously under torsion
and time-periodic uniaxial strain. Then, a nonzero e · b term
is generated, and according to Eq. (1.2), the chiral charge
fails to be conserved. We argue that this has observable
consequences for sound attenuation in the crystal.
Finally, we note the similarity of the second chiral

anomaly equation (1.3) to the equation of parity anomaly
in rotating liquid He [37]. Though the anomaly equations
are similar in the two systems (missing the e · B term in
the helium case), the suggested experimental systems and
manifestations are very different—we propose torsion not
rotation, and transport not force measurement.

II. GAUGE FIELDS FROM STRAIN IN THE
LATTICE MODEL OF Cd3As2 AND Na3Bi

We now proceed to justify the above claims by detailed
model calculations. For simplicity and concreteness, we
adopt a specific model describing the low-energy degrees
of freedom in the Dirac semimetal Cd3As2. The model
captures the band inversion of the atomic Cd-5s and As-4p
levels near the Γ point. In the basis of the relevant spin-orbit
coupled states jP3

2
; 3
2
i, jS1

2
; 1
2
i, jS1

2
;− 1

2
i, and jP3

2
;− 3

2
i, it is

defined by a 4 × 4 matrix Hamiltonian [7]

HðkÞ ¼ ϵ0ðkÞ þ

0
BBB@

MðkÞ Ak− 0 0

Akþ −MðkÞ 0 0

0 0 −MðkÞ −Ak−
0 0 −Akþ MðkÞ

1
CCCA:

ð2:1Þ

Here, ϵ0ðkÞ ¼ C0 þ C1k2z þ C2ðk2x þ k2yÞ, k� ¼ kx � iky,
and MðkÞ ¼ M0 þM1k2z þM2ðk2x þ k2yÞ. Parameters Cj,
A, and Mj follow from the k · p expansion of the first-
principles calculation [7] and are summarized in
Appendix A. We note thatHðkÞ (with different parameters)
also describes Dirac semimetal Na3Bi [13].
The low-energy spectrum of the model (2.1) consists

of a pair of Dirac points located at

Kη ¼ ð0; 0; ηQÞ; Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M0=M1

p
; ð2:2Þ

where η ¼ � is the valley index. The model respects time-
reversal symmetry T ¼ iσyτxK, where K denotes complex
conjugation and σ, τ are Pauli matrices in spin and orbital
space, respectively. T maps the upper diagonal (spin-up)
block hðkÞ of HðkÞ onto the lower diagonal (spin-down)
block −hðkÞ and vice versa.
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Since spin-up and spin-down blocks are effectively
decoupled in the model Hamiltonian (2.1), we can analyze
them separately. It is easy to see that each diagonal block
taken in isolation can be regarded as describing a minimal
T -breaking Weyl semimetal with one pair of Weyl nodes
located at K�. In the following, we often focus our
discussion on the spin-up block of Hamiltonian (2.1)
and refer to it as the “1

2
-Cd3As2” model. Once we under-

stand the physics of this 1
2
-Cd3As2 model, it will be

straightforward to deduce the behavior of the actual
Cd3As2 by simply adding a time-reversal conjugate set
of states to the results obtained for 1

2
-Cd3As2. We empha-

size that although the 1
2
-Cd3As2 model taken on its own

does not describe any specific real material, the results we
report for this model are relevant to a broad class of Weyl
semimetals with broken T such as the Burkov-Balents
layered heterostructure [26] and more recently proposed
magnetic Weyl materials [38,39]. We will explain in detail
how these results apply to T -preserving Weyl and Dirac
semimetals.
For many considerations and for numerical calculations,

it will be useful to regularize the model defined by Eq. (2.1)
on a lattice. Although real Cd3As2 crystal has a complex
structure with 40 atoms per unit cell, Ref. [7] showed that
its low-energy physics can be well described by an effective
tight-binding model with s and p orbitals on vertices of the
tetragonal lattice and lattice constants ax, ay ¼ 3.0 Å and
az ¼ 5.0 Å. Here, we simplify the model one step further
and assume a simple cubic lattice with a lattice constant a.
We checked that this leads to only minor deviations from
the tetragonal model of Ref. [7]. We construct the tight-
binding model for Cd3As2, as further explained in
Appendix A, such that in the vicinity of the Γ point, it
matches the k · p Hamiltonian (2.1) to the leading order in
the expansion in small ak. For quantitative estimates, we
use a ¼ 4 Å, while in the numerics we use larger values of
a as this will allow us to simulate systems of sufficient size
with the available computational resources. This does not
affect the qualitative features of the physics we wish to
describe. The Cd3As2 Hamiltonian regularized on the
lattice thus becomes

Hlatt ¼ ϵk þ
�
hlatt 0

0 −hlatt

�
; ð2:3Þ

where ϵk is the lattice version of ϵ0ðkÞ given in Appendix A,
while

hlattðkÞ ¼ mkτ
z þ Λðτx sin akx þ τy sin akyÞ: ð2:4Þ

Here, mk¼ t0þ t1cosakzþ t2ðcosakxþcosakyÞ and t0 ¼
M0 þ 2ðM1 þ 2M2Þ=a2, t1=2 ¼ −2M1=2=a2, Λ ¼ A=a.
The Hamiltonian (2.4) exhibits a single pair of

Weyl nodes at Kη ¼ ð0; 0; ηQÞ and Q given by

cosðaQÞ¼−ðt0þ2t2Þ=t1, which coincides with Eq. (2.2)
in the limit aQ ≪ 1. In the vicinity of the nodes, we can
expand hlattðK� þ qÞ in q to obtain the Weyl Hamiltonian

hηðqÞ ¼ ℏvjητjqj; ð2:5Þ

with the velocity vector

vη ¼ ℏ−1aðΛ;Λ;−ηt1 sin aQÞ: ð2:6Þ

For Cd2As3 parameters and a physical lattice constant
a ¼ 4 Å, this gives ℏvη¼ð0.89;0.89;−1.24ηÞ eVÅ. From
Eq. (2.6), we can read off the chiral charge of theWeyl node
located at valley η,

χη ¼ sgnðvxηvyηvzηÞ ¼ −η: ð2:7Þ

The effect of strain on the lattice Hamiltonian (2.4) is
implemented using the method developed in Refs. [6,27].
The key observation is that certain tunneling amplitudes
that are prohibited by symmetry in the unstrained crystal
become allowed when the strain is applied because of the
displacement and rotation of the relevant orbitals in the
neighboring atoms. For our purposes, the most important
modification of the Hamiltonian (2.4) comes from the
replacement of the hopping amplitude along the ẑ
direction [6,27],

t1τz → t1ð1 − u33Þτz þ iΛ
X
j≠3

u3jτj; ð2:8Þ

where uij ¼ 1
2
ð∂iuj þ ∂juiÞ is the symmetrized strain

tensor and u ¼ ðu1; u2; u3Þ represents the displacement
vector. The physics of Eq. (2.8) has been discussed at
length in Ref. [27] and is easy to understand intuitively by
inspecting the two examples of strain configurations given
in Fig. 2. The first term in Eq. (2.8) reflects the change
in the hopping amplitude t1 between two like orbitals
[Fig. 2(a)] when the distance d between the neighboring
atoms changes because of strain. The amplitude depends
exponentially on d, but for small strain, it can be expanded
to leading order in the atomic displacements, which leads to
a correction proportional to u33. The second term describes
generation of hopping processes along the ẑ direction
between different orbitals [Fig. 2(b)] which are prohibited
in the unstrained crystal because of their s and p symmetry.
The underlying mechanism is outlined in the caption
of Fig. 2.
As a simple example, consider stretching the crystal

along the ẑ direction. This is represented by a displacement
field u ¼ ð0; 0; αzÞ, where α ¼ ΔL=L measures the elon-
gation of the crystal. The only nonzero component of
the strain tensor is u33 ¼ α, and Eq. (2.8) thus gives
t1 → t1ð1 − αÞ. It is easy to deduce that for small α, this
changes the value ofQ → Q − αQ=ðaQÞ2, thus moving the
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Weyl nodes closer together or farther apart depending on
the sign of α. We see that stretching the crystal has the same
effect on theWeyl fermions as the z component of the chiral
gauge field a.
More generally, elastic distortion expressed through

Eq. (2.8) generates additional terms in the lattice
Hamiltonian (2.4) of the form

δhlattðkÞ ¼ −t1u33τz cos akz þ Λðu13τx − u23τyÞ sin akz:
ð2:9Þ

Expanding again in the vicinity of K�, we obtain the
linearized Hamiltonian of the distorted crystal

hηðqÞ ¼ vjητj
�
ℏqj − η

e
c
aj

�
; ð2:10Þ

where the gauge potential is given by

a ¼ −
ℏc
ea

ðu13 sin aQ; u23 sin aQ; u33 cot aQÞ: ð2:11Þ

For aQ ≪ 1, we may approximate sin aQ≃ aQ≃
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M0=M1

p
and cot aQ≃ 1=aQ.

We thus conclude that in a Weyl semimetal with nodes
located on the kz axis, components uj3 of the strain field
act on the low-energy fermions as a gauge potential. Note
that a represents a chiral gauge field because it couples
with the opposite sign to the Weyl fermions with different
chirality χ.
We saw above that a3 ∼ u33 can be generated by

stretching or compressing the crystal along its ẑ axis.

Time-dependent distortion of this type will thus produce a
pseudoelectric field e ¼ −ð1=cÞ∂ta directed along ẑ. In
combination with an applied magnetic field B∥ẑ, this will
generate a nonzero e · B term and, as we discuss below,
allow us to test the second chiral anomaly equation (1.3).
It is also possible to generate the pseudomagnetic field by
applying torsion to the crystal prepared in a wire geometry.
To see this, consider the displacement field u that results
from twisting a wire-shaped crystal of length L by angle Ω.
As illustrated in Fig. 1(c), we have

u ¼ Ω
z
L
ðr × ẑÞ; ð2:12Þ

where r denotes the position relative to the origin located on
the axis of the wire. Nonzero components of the strain field
are u13 ¼ ðΩ=2LÞy and u23 ¼ −ðΩ=2LÞx. Via Eq. (2.11),
we then get the pseudomagnetic field

b ¼ ∇ × a ¼ b0ẑ; b0 ¼ Ω
ℏc

2Lae
sin aQ: ð2:13Þ

To close this section, we estimate the magnitude of the
strain-induced field b that can be achieved in a typical
Cd3As2 nanowire described in Ref. [24]. We consider a
cylindrical wire with a diameter d ¼ 100 nm, length
L ¼ 1 μm, and lattice parameter a ¼ 4 Å. Equation (2.2)
gives Q ¼ 0.033 Å−1; thus, the condition aQ ≪ 1 is
satisfied, and we may expand the sine in Eq. (2.13).
Recalling further that Φ0 ¼ hc=e≃ 4.12 × 105 TÅ2, we
find b0 ≈ 1.8 × 10−3 T per angular degree of twist. The
maximum attainable field strength in a given wire will
depend on how much torsion the wire can sustain before
breaking. While we were unable to find any data on the
mechanical properties of Cd3As2, we note that Ref. [24]
characterized the nanowires as “greatly flexible.” We take
this to imply that they can withstand substantial torsion.
Based on this, a twist angle Ω≃ 180° would appear
sustainable and will produce b0 ≈ 0.3 T. For the wire
under consideration, such a twist translates to a maximum
displacement at the outer radius of the wire of about 0.3 Å
between the neighboring atoms, or about 8% of the unit
cell. Because the maximum twist angle is limited by the
maximum distortion, higher effective fields can be achieved
in thinner wires.

III. LATTICE MODEL RESULTS

To further confirm the validity of the analytical results
presented in the previous sections, we carried out extensive
numerical simulations of the lattice Hamiltonian (2.4) in
the presence of magnetic field B, as well as torsional and
unidirectional strain implemented via Eq. (2.9). The mag-
netic field was implemented through the usual Peierls
substitution. Our results below indeed validate the general

x

z

y

(a) (b)

FIG. 2. The effect of strain on the hopping amplitudes in the
tight-binding model. (a) Unidirectional strain along the z axis
simply changes the distance between the neighboring orbitals
leading to the modification of the hopping amplitude t1 that is
linear in u33 to leading order in small displacement. (b) Torsional
strain changes the relative orientation of the orbitals and brings
about hopping amplitudes that are disallowed by symmetry in the
unstrained crystal, such as tsp. The corresponding mathematical
expression encodes the expectation that tsp would become equal
to Λ if the p orbital were displaced all the way to the horizontal
position. In the real material, one of course expects Eq. (2.8) to be
valid only for displacements that are small compared to the lattice
parameter a.
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concepts discussed above and illustrate them in a concrete
setting of a lattice model relevant to Cd3As2 and Na3Bi.

A. Pseudomagnetic field b from torsion

We start by studying a wire grown along the crystallo-
graphic z axis in the presence of magnetic field B ¼ ẑB and
torsion. Representative results are displayed in Fig. 3. For
simplicity and ease of interpretation, here we used param-
eters appropriate for Cd3As2 (summarized in Appendix A),
neglecting terms in ϵk. We have verified that substantially
similar results are obtained when ϵk is retained, as well as
for parameters appropriate for Na3Bi. These results are
given in Appendix A.

Column (a) in Fig. 3 shows the spectrum of an unstrained
wire in the zero field. Gapless Weyl points are apparent at
k ¼ �Q and are connected by surface states that originate
from the Fermi arcs, which are expected to occur in the
surface of a Weyl semimetal. Spectral functions computed
in the bulk, Abulkðk;ωÞ, and at the surface, Asurfðk;ωÞ,
confirm this identification of bulk and surface electron
states. Column (b) exhibits our results for an unstrained
wire in magnetic field B ¼ 3.2 T along the axis of the wire.
As expected on the basis of arguments that led to Fig. 1(a),
we observe, at low energies, a pair of left- and right-moving
chiral modes. These originate from the n ¼ 0 Landau level
and occur in the bulk of the sample. We also observe that
the surface states remain largely unaffected by the field.
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FIG. 3. Tight-binding model simulations of a Weyl semimetal wire under torsional strain and applied magnetic field B ¼ ẑB. The top
row of figures shows the band structure of the lattice Hamiltonian defined by Eqs. (2.4) and (2.9) computed for 1

2
-Cd3As2 model

parameters, for a wire with a rectangular cross section of 30 × 30 sites and a lattice constant a ¼ 40 Å. (We use a larger lattice constant
here and in subsequent simulations than in real Cd3As2 in order to be able to model nanowires and films of realistic cross sections with
available computational resources. Note that this does not affect the physics at low energies because the lattice Hamiltonian is designed
to reproduce the relevant k · p theory independent of a.) Open boundary conditions are imposed along x and y, periodic along z.
Parameters appropriate for Cd3As2 are used. The middle and bottom rows show spectral functions Abulkðk;ωÞ and Asurfðk;ωÞ. The
former is obtained by averaging the full spectral function Ajðk;ωÞ over sites j in the central 10 × 10 portion of the wire, while the latter
averages over the sites located at the perimeter of the wire. The torsion applied in columns c and d corresponds to the maximum
displacement at the perimeter of 0.5a, or φ0 ≃ 2o between consecutive layers.
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Our main finding is illustrated in column (c). Torsional
strain applied to the wire produces two right-moving
chiral modes that are localized in the bulk of the sample
as evidenced by Abulkðk;ωÞ. The bulk spectrum has the
structure depicted in Fig. 1(b) that is expected to occur
in the presence of the chiral magnetic field b. We are thus
led to identify the torsional strain with the chiral vector
potential a. Surface states discernible in the corresponding
Asurfðk;ωÞ are seen to compensate for the bulk band
structure by providing the required left-moving chiral
modes.
Column (d) shows the spectrum for the case when the

strength of B is chosen to exactly equal b. As a result,
vector potentials A and a add in one Weyl point but cancel
in the other. The resulting spectrum exhibits a set of right-
moving bulk chiral modes present in only one of the two
Weyl points. This establishes the complete equivalence of
the real magnetic field B and the strain-induced pseudo-
magnetic field b insofar as their action on the low-energy
Weyl fermions is concerned.
We note that the pseudomagnetic field b≃ 3.2 T indi-

cated in Fig. 1 is larger than the maximum achievable field
in the realistic Cd3As2 wire estimated in the previous
section. This is because, for clarity, we employed larger
torsion here (resulting in the maximum displacement of
about half the lattice spacing) than can likely be sustained
in a real wire. For weaker torsion strengths, the effect
remains qualitatively unchanged but becomes less clearly

visible in the numerical data for system sizes that are
accessible to our simulations.
Results presented in Fig. 3 pertain to a Weyl semimetal

described by Hamiltonian (2.4) but are easily extended to
Cd3As2 as long as we continue neglecting the particle-
hole symmetry-breaking term ϵk. In this limit, spectra
for Cd3As2 are obtained by simply superimposing bands
Ek and −Ek shown in Fig. 3 or by forming spectral
functions Aðk;ωÞ þ Aðk;−ωÞ. Full spectra, including the
p-h–breaking terms, are more complicated but show the
same qualitative features. Some relevant examples are
given in Appendix A.

B. Pseudoelectric field e from unidirectional strain

According to our previous discussion, pseudoelectric
field e should emerge when the u33 component of the strain
tensor becomes time dependent. This can be achieved
through dynamically stretching and compressing the crystal
along its z axis, e.g., by driving longitudinal sound waves
through the crystal. To see how the lattice model realizes
the chiral anomaly under these conditions, we first consider
an infinite bulk crystal in the presence of a uniform
magnetic field B ¼ ẑB and investigate the effect of the
static u33 strain. The spectrum of an unstrained crystal in
the field B ¼ 10 T is displayed in Fig. 4(a) (we use, once
again, Cd3As2 parameters and also include ϵk this time).
At low energies, the spectrum exhibits the expected chiral
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FIG. 4. Tight-binding model simulations of a Weyl semimetal under applied magnetic field B ¼ ẑB and unidirectional strain. Parameters
for Cd3As2 listed in Appendix A are used in all panels. Only the spin-up sector of the model is considered with B ¼ 10 T. (a) Band
structure of the system with periodic boundary conditions in all directions (no surfaces) projected onto the z axis (k denotes the crystal
momentum along the z direction). Solid (dashed) lines show occupied (empty) states. Occupation of the strained system is determined by
adiabatically evolving the single-electron states of the unstrained system. (b) Band structure of a slab with thickness d ¼ 1000 Å (50 lattice
sites). Only positive values of k are displayed, but the band structure is symmetric about k ¼ 0. Red (black) lines show occupied (empty)
states. The central panel indicates the nonequilibrium occupancy of the strained system obtained by adiabatically evolving the single-
electron states of the unstrained system. The right panel shows the occupancy of the strained system once the electrons relax back to
equilibrium. All three panels correspond to the same total number of electrons N. (c) Change in the electron density in response to the
applied strain as a function of coordinate y perpendicular to the slab surfaces. Here, δρ refers to the nonequilibrium distribution, while δρeq
refers to the relaxed state. Note that density oscillations near the edges apparent in δρ average to zero: There is no net charge transfer
between the bulk and the surface in the nonequilibrium state, as can also be deduced from the vanishing δρ in the bulk.
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branches that result from the n ¼ 0 Dirac Landau level. We
assume the system is initially in its ground state with
all energy levels below the chemical potential μ0 occupied
and all levels above μ0 empty. We now implement
unidirectional strain through Eq. (2.9), which amounts to
rescaling the hopping amplitudes t1 → t1ð1 − αÞ and
c1 → c1ð1 − αÞ. Here, c1 is the hopping amplitude along
the z direction in ϵk defined below Eq. (A1). We imagine
doing this sufficiently slowly so that the ground state
evolves adiabatically in response to the increasing strain.
The new ground state for α ¼ 0.03 is depicted in Fig. 4(a).
It exhibits a slightly modified band structure with the
chemical potential shifted to a new value μ0. The shift
in μ occurs because, under adiabatic evolution, an electron
initially in the quantum state with momentum k in the nth
band remains in that state as the band energy EnðkÞ evolves
in response to strain.
From the point of view of the low-energy theory, the

lateral shift of the chiral branches is consistent with the
effect of the uniform chiral gauge potential az, which
according to our discussion below Eq. (2.8), moves the
Weyl points closer together for α > 0. From Eqs. (2.10)
and (2.11), we can estimate the amount of this shift to be
δQ≃ ðe=ℏcÞaz ¼ −u33 cot aQ=a. This result in turn gives
an estimate for the required change in the chemical
potential δμ ¼ μ0 − μ0 ¼ −ℏvδQ, or

δμ ¼ −
v
c
eaz ¼ α

ℏv
a
cot aQ: ð3:1Þ

For Cd3As2 parameters including the particle-hole symmetry-
breaking terms in ϵk, we have ℏv≃ 1.94 eVÅ, which
implies δμ ¼ 3.75 meV for α ¼ 0.03. This estimate
compares favorably with the value δμnum ¼ 3.46 meV
obtained from our lattice model simulation presented in
Fig. 4(a).
If we continue focusing solely on the low-energy degrees

of freedom, we would conclude that a change δμ in the
chemical potential in a linearly dispersing band with
degeneracy ðB=Φ0Þ brings about a change in the electron
density

δρ ¼ 2
δμ

2πℏv

�
B
Φ0

�
; ð3:2Þ

where the factor of 2 accounts for two chiral branches.
Using Eq. (3.1), it is easy to verify that Eq. (3.2) coincides
exactly with the prediction of the second chiral anomaly
equation (1.3) for a uniform static magnetic field and a
time-dependent pseudoelectric field e ¼ −ð1=cÞ∂ta.
If, on the other hand, we espouse a band theory point

of view, then we see that, in reality, the charge density
remains unchanged. This is because precisely the same
number of single-electron states are filled before and after
the deformation. The chemical potential changes in order to

accommodate the fixed number of electrons in the modified
band structure. We may thus conclude that, in an infinite
crystal, the pseudoelectric field induced by strain does
not bring about any change in charge density. The chiral
anomaly equation (1.3), however, correctly predicts the
strain-induced change in the chemical potential δμ.
A change in the chemical potential, even if time

dependent (as would be the case when strain is induced
by a sound wave), is not easily measurable when not
accompanied by a density change. So it would seem
that this effect does not have observable consequences.
Consider, however, a finite system with boundaries. The
key point is that topologically protected surface states that
are present in a Weyl semimetal will generally not respond
to strain in the same way as the bulk states. To a good
approximation, one may consider the surface state to
remain basically unaffected by a small unidirectional strain.
This is verified by our numerical simulations summarized
in Fig. 4(b). In that case, application of strain will bring
about a nonequilibrium distribution of electrons (μ changes
in the bulk but remains unchanged at the surface). This is
illustrated in Fig. 4(b), where we simulate the effect of a 3%
strain in a slab of thickness d with surfaces perpendicular
to the y direction and magnetic field along z. We observe
that strain shifts the chemical potential for the bulk states by
the same amount as in the infinite system but leaves it
essentially unchanged for the surface states.
Several interesting consequences follow from the above

observation. First, we may expect the charge density to
remain essentially unchanged in the strained crystal with a
nonequilibrium distribution of electrons. This is because
the bulk density remains unchanged (as per our discussion
above), and since the total charge is conserved, there can be
no charge transfer to the surface. Second, in a real material,
the nonequilibrium electron distribution brought about by
strain will relax towards equilibrium, causing dissipation in
the system, which is, in principle, observable. When the
strain is induced by a sound wave, this dissipation will
provide a new mechanism for sound attenuation related to
the chiral anomaly. Third, the relaxed charge density ρ0ðyÞ
in the strained crystal will differ from the original charge
density ρ0ðyÞ of the unstrained crystal because relaxation
necessarily involves transfer of charge between the bulk
and the surface of the sample. This is illustrated in Fig. 4(c),
which shows the numerically calculated change in the
charge density δρðyÞ ¼ ρ0ðyÞ − ρ0ðyÞ in both the non-
equilibrium and the equilibrium state following the appli-
cation of a 3% strain. We note that modulo some local
fluctuations near the edge, the charge density indeed
behaves as expected on the basis of the above arguments.
We conclude by elaborating on this last effect. If the

sound frequency ω is small compared to the electron
relaxation rate τ−1, as it will be the case in the typical
experimental situation, the electron distribution will always
remain close to an equilibrium characterized by a global
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chemical potential μ0eq. The corresponding charge density
should then exhibit significant variations as the chemical
potential oscillates. Such a time-dependent variation in the
charge density will produce EM fields outside the sample
which are measurable and can provide direct experimental
evidence for the strain-induced chiral anomaly. We estimate
the distribution and the amplitude of these fields in the next
section.
To this end, it will be useful to estimate the chemical

potential μ0eq of the equilibrated strained system [see also
Fig. 4(b)]. A straightforward calculation for a slab of
thickness d (summarized in Appendix B) gives

μ0eq ¼ μ0 þ
δμ

1þ ξB=d
; ð3:3Þ

where ξB ¼ 2Ql2
B is the characteristic length scale and δμ

is the chemical potential change in the system without
surfaces given by Eq. (3.1). The physics of Eq. (3.3) is quite
simple: It reflects the fact that a surface can accommodate
only a limited amount of charge from the bulk. For a thick
slab d ≫ ξB, we recover the bulk result μ0eq ≈ μ0 þ δμ
because the effect of the surface becomes negligible.
From Eq. (3.3), it is easy to obtain an estimate for the

corresponding change in the bulk charge density

δρbulk ¼ −
α

πa

�
B
Φ0

�
cot aQ

1þ d=ξB
: ð3:4Þ

In the limit of a thin slab, d ≪ ξB, this result approaches
the charge-density change (3.2) derived based on the naive
application of the chiral anomaly equation, except for the
opposite overall sign. In this limit, physically, almost all of
the nonequilibrium charge density produced in the bulk can
be absorbed by the surface. The bulk charge density thus
goes down by the amount close to that predicted by the
chiral anomaly.
Figure 5 shows the bulk charge density δρbulk in response

to the unidirectional strain α ¼ 0.03 as a function of the
applied field B in a relaxed system, numerically calculated
from the lattice model. A good agreement with Eq. (3.4) is
seen both in the magnitude of the effect and its functional
form. The lattice model shows a somewhat stronger
response than expected, which we attribute to the p-h
anisotropy that was not included in the analytical calcu-
lation. That this is indeed the case is confirmed by the same
calculation performed for the p-h symmetric version of the
1
2
-Cd3As2 model, which shows closer agreement with

Eq. (3.4), modulo finite-size-effect induced fluctuations
(solid black symbols in Fig. 5). However, we note that,
in this case, the contribution from the spin-down sector
exactly cancels that from spin up, so p-h asymmetry is
required to obtain a nonzero result.
We note that Eqs. (3.3) and (3.4) were derived assuming

the quantum limit, i.e., chemical potential in the n ¼ 0

Landau level. The corresponding results that are valid away
from the quantum limit are given in Appendix B.
We close this subsection by considering Dirac semimet-

als. Naively, one could think that the effects discussed
above will cancel once we include both spin sectors. This
would indeed be the case in a perfectly particle-hole
symmetric system. However, the band structures of both
Cd3As2 and Na3Bi exhibit strong particle-hole asymmetry
which prevents such cancellations. To elucidate this, we
show in Fig. 6 the band structure of the spin-down sector of
Cd3As2 in the field of 10 T. Compared to the spin-up sector
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[Fig. 4(a)], it indicates a spectral gap at low energies. It is
clear that when μ lies inside this gap, all the physics comes
exclusively from the spin-up sector. Specifically, there is
nothing here to cancel or even weaken the effects discussed
above. We find that this remains true more generally.
Even when μ is outside the gap, the contributions to
various effects discussed above generically do not cancel
but remain of a similar magnitude as they would be in a
Weyl semimetal with a single pair of Weyl points. This is
illustrated in Fig. 5, where the chemical potential is chosen
to lie outside the band gap; the effect is only slightly
reduced when contributions from both sectors are added up.
Thus, we expect the effects discussed above to generically
remain present in Dirac semimetals such as Cd3As2
and Na3Bi.

IV. EXPERIMENTAL MANIFESTATIONS OF THE
STRAIN-INDUCED CHIRAL ANOMALY

A. Persistent currents in a twisted Weyl semimetal
with broken T : Topological coaxial cable

The phenomena discussed above have several observable
consequences which we now discuss. According to
Fig. 3(c), Weyl semimetal wire under torsion exhibits
spatial separation between left- and right-moving modes
at low energies: The former are localized near the boundary,
while the latter occur in the bulk. At a generic chemical
potential, we thus expect persistent equilibrium currents to
flow in such a wire as indicated in Fig. 7(a). This can be
argued as follows. Suppose the current density jzðrÞ is
uniformly zero at some reference chemical potential μ0. If
we now change the chemical potential to μ ¼ μ0 þ δμ, we
are populating additional right-moving modes in the bulk
and left-moving modes at the surface of the wire. Although
the total current carried by the wire remains zero, as it must

be in any normal metal in equilibrium [40], there is now a
nonvanishing positive current density flowing in the bulk
compensated by the negative current density flowing along
the surface. We have verified numerically that this is indeed
the case in the lattice model, Eqs. (2.4) and (2.9): For any
chemical potential μ ≠ 0, a ground-state current density
develops as illustrated in Fig. 7(b).
Such a current flow generates magnetic fields outside

the wire which are, at least in principle, measurable, e.g., by
scanning SQUID microscopy. In practice, however, we
expect this to be a challenging experiment. The currents
occur only in a Weyl semimetal with broken T , which is
most likely to be realized in a magnetic material. It might be
difficult to distinguish the fields produced by torsion-
induced persistent currents from the sample magnetization.
We note that in Dirac semimetals, like Cd3As2 or Na3Bi,
the total current density will vanish upon including the
contribution from the lower diagonal block in the
Hamiltonian (2.1). This has to be the case because nonzero
j would violate the T symmetry of the material, which
should remain unbroken under strain. The current density
can be nonzero, however, when both torsion and magnetic
field are applied. This is demonstrated in Fig. 10 of
Appendix A.

B. Chiral torsional effect

The physics described above, however, has a simple
manifestation observable in transport measurements in both
Weyl and Dirac semimetals. Consider a measurement of
longitudinal resistivity in a twisted wire. Once again, we
start by discussing a Weyl semimetal. When electric field E
is applied to the twisted wire, it begins to produce charge
density δρ ¼ ρ − ρ0 in the bulk at the rate given by the
anomaly equation (1.3). In view of our discussion above,
we interpret δρ as a charge-density imbalance between the
bulk and the surface of the wire. Such an imbalance can
relax back to equilibrium only through processes that
induce backscattering between the bulk right-moving
modes and the surface left-moving modes. If we denote
the relevant scattering time by τ, we get an equation

d
dt

δρ ¼ e2

2π2ℏ2c
E · b −

δρ

τ
: ð4:1Þ

At long times t ≫ τ, the steady-state solution reads

δρ ¼ e2τ
2π2ℏ2c

E · b: ð4:2Þ

The wire clearly carries nonzero electrical current. The
expression for the current depends on the relative position
of the chemical potential μ and the bottom of the first
Landau level ϵ1ð0Þ ¼ ℏv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eb=ℏc

p
. In the quantum limit,

jμj < ϵ1ð0Þ, only the chiral modes in the n ¼ 0 Landau
level are populated. These all move at the same velocity
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FIG. 7. Equilibrium current density in the Weyl semimetal wire
under torsion. (a) Schematic depiction of the bulk or surface
current flow. (b) Ground-state current density computed from
the lattice model, Eqs. (2.4) and (2.9), at chemical potential
μ ¼ 5 meV. Warm (cold) colors represent positive (negative)
current density j. The ring-shaped inhomogeneity in j apparent in
the bulk of the wire reflects Friedel-like oscillations in electron
wave functions caused by the presence of the surface.
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vsgnðbÞ, and the nonequilibrium charge density δρ thus
gives the electrical current

JCTE ¼ −evsgnðbÞδρ ¼ e3vτ
2π2ℏ2c

E · bsgnðbÞ: ð4:3Þ

For a constant relaxation time τ, we thus have a
chiral torsional contribution to the conductivity
σCTE ∼ jbj, similar to the ordinary chiral magnetic effect
σCME ∼ jBj in the quantum limit [23]. However, if the
wire radius R significantly exceeds the magnetic length
lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eb

p ≃ 256 Å
ffiffiffiffiffiffiffiffiffiffiffi
1T=b

p
, then we find that the

appropriate relaxation time becomes field dependent,
namely,

τ≃ τ0
R2

l2
b

∼ jbj; ð4:4Þ

where τ0 is the microscopic scattering time. This is because
the bulk electron wave functions have spatial extent lb in
the direction transverse to the axis of the wire. Deep in the
bulk, impurities cause scattering between the individual
bulk modes, but since these are all right moving, such
processes cannot relax the current. Only those electrons
that have diffused all the way to the boundary through
repeated scattering processes can backscatter into left-
moving surface modes. Electrons thus experience hydro-
dynamic flow whereby dissipation occurs only at the
boundary. Equation (4.4) is derived in Appendix C, and
it expresses the fact that an electron that is produced
near the center of the wire has to travel distance R to the
boundary; this process takes, on average, ðR=lbÞ2 scatter-
ing events. We conclude that σCTE ∼ b2 in the quantum
limit when lb ≪ R.
In the semiclassical limit, jμj ≫ ϵ1ð0Þ, we must take

into account the additional equilibration that occurs
between the individual Landau levels within a given
Weyl point. We assume that the relaxation time for this
process is very short and essentially instantaneous com-
pared to τ. In this case, electron density produced through
Eq. (4.2) gets distributed among all the bulk states and
leads to a shift in the chemical potential μ → μþ δμ. In
the semiclassical limit, we can approximate the density of
states by the expression valid in the zero field, DðϵÞ ¼
ϵ2=π2ℏ3v3, where, for simplicity, we also assume iso-
tropic velocities. In the limit of interest, δμ ≪ kBT ≪ μ,
it is easy to find the shift in the chemical potential caused
by a small change in density,

δμ≃ 2π2ℏ3v3

μ2 þ 2π2

3
k2BT

2
δρ: ð4:5Þ

We can now calculate the current by noting that,
once again, only the chiral branches contribute. We thus
obtain

JCTE ¼ −ev
�

δμ

2πℏv

��
b
Φ0

�
; ð4:6Þ

where the first set of parentheses represents the number
of extra modes δn that have been populated on the
chiral branch and the second reflects their degeneracy.
Combining this with Eqs. (4.5) and (4.2), we find

JCTE ¼ e4v3

8π3ℏc2
τ

μ2 þ 2π2

3
k2BT

2
ðE · bÞb: ð4:7Þ

In view of Eq. (4.4) in a Weyl semimetal under torsion
(parametrized here by b ∝ Ω), we thus predict a positive
contribution to the conductivity,

σCTE ∝

8>><
>>:

b2; μ < ℏv
ffiffiffiffiffiffi
2eb
ℏc

q
quantum limit;

jbj3; μ ≫ ℏv
ffiffiffiffiffiffi
2eb
ℏc

q
semiclassical limit:

ð4:8Þ

The predicted field dependence is different from the
analogous effect encountered in the presence of the real
magnetic field B (where σCME behaves as ∼B and ∼B2 in
the two limits). This reflects the hydrodynamic nature of
the electron flow that occurs when R ≫ lb. The right- and
left-moving modes are then segregated to the bulk and the
boundary, respectively, which leads to an extra power of b
due to the b-dependent transport scattering rate (4.4). We
also note that when R ≫ lb, Eq. (4.4) implies significant
enhancement of the transport lifetime and thus leads us to
expect a strong effect. In the opposite limit, R≲ lb, the
transport scattering rate becomes field independent, and
the more conventional behavior with σCTE ∝ bðb2Þ in the
quantum (semiclassical) limit is restored.
The effect will persist in a Dirac semimetal such as

Cd3As2 and Na3Bi, which can be thought of as two T -
conjugate copies of theWeyl semimetal discussed above. In
the presence of a twist, the spectrum will consist of that
indicated in Fig. 3(c) for the spin-up sector plus a time-
reversed copy (obtained by reversing k → −k) for the spin-
down sector. The same analysis we just performed applies
unchanged for each spin sector if one can ignore spin-flip
scattering events. In this case, Eq. (4.8) continues to hold in
a Dirac semimetal. Spin-flip processes, if present, open an
additional channel for relaxation by scattering between left-
and right-moving bulk modes. In the limit when the spin-
flip relaxation rate τ−1sf exceeds τ−1, the hydrodynamic flow
will cease and the behavior will cross over to the regular
chiral anomaly with σCTE ∝ bðb2Þ in the quantum (semi-
classical) limit. In clean samples of T -preserving Cd3As2
and Na3Bi, we expect the hydrodynamic behavior to
prevail because ordinary nonmagnetic impurities cannot
cause spin-flip scattering. Time-reversal symmetry permits
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spin-orbit scattering terms of the form ẑ · ðσ × kÞ. These
do contribute to τ−1sf , but we expect such contributions to
be small.

C. Ultrasonic attenuation and EM-field emission

We now consider the experimental manifestations of the
e · B term in the second chiral anomaly equation (1.3). For
concreteness, we again start with a Weyl semimetal and
consider a sample in the shape of a slab with thickness d
and surfaces perpendicular to the y axis. Magnetic field
B is applied along the z-direction. The requisite e field is
generated by a longitudinal sound wave with frequency ω
that is driven along the z direction. This produces a time-
dependent displacement field

u ¼ u0ẑ sin ðqz − ωtÞ; ð4:9Þ

where q ¼ ω=cs is the wave number and cs the sound
velocity. The nonzero component of the strain tensor is
u33 ¼ u0q cos ðqz − ωtÞ, which through Eq. (3.1) yields an
oscillating component of the bulk chemical potential,

δμðtÞ ¼ u0q

�
ℏv
a
cot aQ

�
cos ðqz − ωtÞ: ð4:10Þ

As mentioned in Sec. III. B, electron relaxation dissi-
pates energy, which will be manifested by the attenuation
of the sound wave as it propagates through the medium.
Specifically, as explained, e.g., in Ref. [41], the energy flux
I carried by the sound wave obeys IðzÞ ¼ I0e−2Γz, where Γ
is the sound attenuation coefficient. We now proceed to
estimate Γ, which is given by Γ ¼ Q=2I, where Q denotes
the amount of energy dissipated in a unit volume per unit
time. To provide a crude estimate of Q, we assume for a
moment that the electron relaxation rate τ−1 is comparable
to the driving frequency, ωτ ≈ 1. In this case, relaxational
dynamics is maximally out of phase with the sound wave,
and we can estimate Q simply by calculating the energy
difference between the nonequilibrium distribution of
electrons [see Fig. 4(b)] reached at the crest of the wave
(assuming no dissipation has occurred until then) and the
corresponding equilibrium distribution with the chemical
potential μ0eq. For this estimate, consider a slice of the
system perpendicular to z of length l such that l ≪ λs.
Inside the slice, the strain can be considered uniform,
implying a uniform chemical potential δμðtÞ ∝ cosωt. We
may thus estimate the total dissipated electron energy per
cycle as

Edis ¼ lwd
Z

μ0

μ0eq
ϵDbðϵÞdϵ − lw

Z
μ0eq

μ0

ϵDsðϵÞdϵ; ð4:11Þ

where w is the width of the slab along the x direction and
Db=sðϵÞ is the bulk/surface density of states given in

Appendix B. It is easy to evaluate the requisite integrals.
After some algebra and with help of Eq. (3.3), one obtains,
assuming the quantum limit,

Edis ≈
lwd
2πℏv

�
B
Φ0

�
1

1þ d=ξB
δμ̄2; ð4:12Þ

where δμ̄ is the amplitude of δμðtÞ given in Eq. (4.10).
A more complete treatment of the relaxational dynamics,

which we omit here for the sake of brevity, gives a result for
the energy dissipated per cycle valid for any frequency,

Edis ¼
lwd
2πℏv

�
B
Φ0

�
ωτ

ð1þ d=ξBÞ2 þ ðωτÞ2 δμ̄
2: ð4:13Þ

The energy density of the sound wave, averaged over one
cycle, is ρE ¼ 1

2
ρc2su20q

2, where ρ denotes the mass density
of the crystal. Noting that the corresponding energy flux is
I ¼ csρE, one obtains the sound attenuation coefficient

Γ ¼ ðωEdis=lwdÞ
2csρE

: ð4:14Þ

To estimate its magnitude, we assume the limit of a thin
slab d ≪ ξB and fast relaxation ωτ ≪ 1 in Eq. (4.13). In
this limit, Γ becomes independent of d:

Γ≃
�

ω

2πcs

�
ℏv
a2

�
B
Φ0

�
2 cot2 aQ

ρc2s
ðωτÞ: ð4:15Þ

For our estimate, we take f ¼ ω=2π ¼ 200 MHz, the mass
density of Cd3As2 is ρ ¼ 7.0 × 103 kg=m3, while the speed
of sound is cs ¼ 2.3 × 103 m=s [42], which gives λs ≃
11 μm at this frequency. For these parameters, we obtain

Γ≃ 3.6 × 103 m−1
�
B
1T

�
ðωτÞ: ð4:16Þ

We see that, depending on the magnitude of the electron
scattering rate, the sound attenuation can be substantial.
There are of course many conventional sources of ultra-
sonic attenuation in metals [41]. Given the specific
dependence of Γ on frequency, magnetic field, and the
fact that it depends only on the component of B parallel to
q, it should be possible to separate the contribution of the
chiral anomaly from the more conventional contributions.
At B ¼ 1 T, for material parameters relevant to Cd3As2,

we have ξB ≃ 430 nm so the above estimate applies to thin
films or wires. For thicker films, one must include the
additional suppression factor ð1þ d=ξBÞ−2 from Eq. (4.13)
that we neglected so far. This factor reflects the fact that the
relaxation mechanism involves charge transfer from the
bulk to the surface of the sample. For the same reason,
however, we expect, in this limit, to obtain an enhanced
relaxation time τ≃ τ0ðd=lBÞ2, where τ0 is the microscopic
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relaxation time as in Eq. (4.4). This is because to relax the
nonequilibrium distribution brought about by the chiral
anomaly, bulk electrons must diffuse to the surface, and this
takes, on average, ðd=lBÞ2 scattering events. In the end, we
expect only a weak dependence of Γ on the sample
thickness d, although a detailed treatment of the combined
spatial and temporal distribution of electrons during the
relaxation process is an interesting topic for future research.
The oscillating charge density that occurs in the system

in response to the sound wave will generate EM fields
that can be detected outside the sample. We show below
that, in a typical situation, the electric field close to the
surface can be substantial and thus detectable. The field
decays as ∼e−r=λs away from the surface, but since λs is tens
or hundreds of microns at typical ultrasonic frequencies,
the detection of such fields should not be difficult [43].
To estimate the amplitude of the electric field, we

assume once again that electron relaxation is fast com-
pared to the driving frequency, ωτ ≪ 1. This means that
electrons will locally always be close to equilibrium
characterized by the charge density ρ̄þ δρbulkðz; tÞ, where
ρ̄ is the bulk charge density of the unstrained crystal and
δρbulkðz; tÞ is given by Eq. (3.4), with α now describing the
local strain field at ðz; tÞ. In a slab of thickness d ¼ 2d0
illustrated in Fig. 8, the oscillating component of the
charge density therefore reads

ρbulk ¼ ρ0 cos ðqz − ωtÞ; ð4:17Þ

with

ρ0 ¼ −
u0q
πa

�
B
Φ0

�
cot aQ

ð1þ d=ξBÞ
: ð4:18Þ

From our previous discussion, we know that the charge
generated in the bulk comes from the boundary. The total

charge density that reflects the overall charge conservation
in each constant-z slice of the sample can thus be written as

ρ ¼ ρ0½θðd0 − jyjÞ − d0δðy� d0Þ� cosðqz − ωtÞ; ð4:19Þ

where ρ0 is given by Eq. (4.18). In the near-field (static)
region, we may neglect the magnetic effects and
determine the electric field E ¼ −∇Φ by solving the
Poisson equation ∇2Φ ¼ −4πρ. Adopting the ansatz
Φðr; tÞ ¼ fðyÞ cosðqz − ωtÞ, we are led to a 1D equation
for fðyÞ of the form

ð∂2
y − q2Þf ¼ −4πρ0½θðd0 − jyjÞ − d0δðy� d0Þ�: ð4:20Þ

This has a solution

fðyÞ ¼
8<
:

4πρ0
q2 þ B cosh qy jyj < d0

Ae−qjyj jyj > d0:
ð4:21Þ

The function fðyÞ must be continuous at y ¼ �d0, and the
discontinuity in its first derivative must match the surface
charge in Eq. (4.20), f0ðd0 þ ϵÞ − f0ðd0 − ϵÞ ¼ 8πρ0d0.
This determines the constants A and B. The full solution
for the potential outside the sample reads

Φðr; tÞ ¼ 4πρ0
Ae−qjyj

q2
cosðqz − ωtÞ; ð4:22Þ

with A ¼ sinh qd0 − 2qd cosh qd0 ≈ −qd0eqd0 . The electric
field that follows from this potential is depicted in
Fig. 8(b). For d ¼ 1 mm and u0 ¼ 0.01 a, all the other
parameters, as before, the maximum electric field (that
occurs right at the sample surface) can be estimated as
jEj ≃ 4πρ0ed≃ 2.4 × 104 V=m. This is a large field that
should be easily detectable.
In a realistic semimetal, we should include screening

effects that can substantially reduce the electric-field
amplitude estimated above. A crude estimate of the
screened field can be obtained by replacing ΦðqÞ →
ΦðqÞ=ϵðqÞ, where ϵðqÞ ¼ 1þ k2TF=q

2 is the dielectric
function in the Thomas-Fermi approximation and
k2TF ¼ 4πe2DðμÞ. It is physically more transparent to write
ðkTF=qÞ2 ¼ ðλs=λTFÞ2, where λTF ¼ 1=kTF is the Thomas-
Fermi screening length. Using the experimentally deter-
mined electron velocity v≃ 1.5 × 106 m=s [9] to obtain
density of states DðϵÞ ¼ ϵ2=π2ℏ3v3, we find that
λTF ≃ 32 μm½1 meV=μ�. Thus, depending on the chemical
potential, the screening length can be quite long. For
instance, if μ ¼ 10 meV, the screening length λTF ≃
3.2 μm is comparable to λs ¼ 11 μm and the electric
potential will be suppressed only modestly. Even for the
experimentally observed μ ≈ 200 meV [9], the suppression
is about a factor of 1.6 × 104, which still leaves a

(b)(a)

yx

z

B q

y/ s

z/
s

FIG. 8. Proposed geometry for the EM-field emission meas-
urement in the limit when all the dimensions of the crystal are
much larger than the sound wavelength λs. (a) A slab of thickness
d ¼ 2d0 is subjected to magnetic field B and a longitudinal
acoustic sound wave propagating along the z direction. (b) A
snapshot of the electric-field distribution near the surface calcu-
lated from Eq. (4.22). As a function of time, the entire pattern
moves in the z direction at the speed of sound cs.
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significant field strength of several V/m at the surface. We
conclude that the effect remains measurable even in the
presence of realistic levels of screening that can be expected
in a Dirac semimetal with the chemical potential not too far
from the neutrality point.

D. e · b term and the chiral anomaly
in the absence of EM fields

We finally mention an attractive possibility of testing the
chiral anomaly using purely strain-induced gauge fields
and no real EM fields. According to our previous dis-
cussion, a simultaneous application of torsion and time-
dependent unidirectional strain in a wire geometry
generates both b and e pointed along the z direction of
the crystal. In this situation, the right-hand side of the first
anomaly equation (1.2) becomes nonzero even in the
complete absence of E and B, and pumping of charge
between the Weyl nodes occurs. The nonequilibrium
electron distribution thus created will relax via internodal
scattering and produce dissipation of energy. This dissipa-
tion is, in principle, measurable. For instance, when the
pseudoelectric field e is generated by a longitudinal sound
wave, its amplitude will be attenuated by this effect, and the
attenuation coefficient will be proportional to the amount of
torsion on the wire. This can be demonstrated by consid-
erations that are similar to those that lead to Eq. (4.15). We
shall not repeat this analysis here but simply note that a
substantial contribution to the attenuation can be achieved
by this effect.

V. CONCLUSIONS AND OUTLOOK

We studied the chiral anomaly in Weyl semimetals in a
new context, when the sign of the anomaly is the same in
the two Weyl cones. This takes place when a chiral gauge
field is present in addition to the ordinary EM gauge field.
Specifically, this type of chiral anomaly occurs when
pseudomagnetic field b, produced by torsion in the
material, is present together with the real electric field
E. Alternatively, pseudoelectric field e produced by uni-
directional strain combined with a real magnetic field B
gives rise to the anomaly. Contrary to the usually discussed
chiral anomaly, the electron density grows in both Weyl
cones when the fields are applied, thus making the bulk
theory of the material truly anomalous. The apparent
contradiction with charge conservation is resolved when
one takes into account the surface of the material—
fermions are taken from the surface into the bulk.
In the presence of the b · E term, the transfer of charge

from the surface to the bulk occurs through the ordinary
semiclassical evolution of the electron states in the
Brillouin zone. This is facilitated by the phenomenon of
spatial segregation of the right- and left-moving modes
between the surface and the bulk of the wire under torsion
as discussed in Sec. III A. In the presence of the e · B term,

the situation is different: Here, the charge transfer occurs
through relaxation of the nonequilibrium state, which is
generated by the chiral anomaly. This disparity in the action
of the two types of terms has a very simple physical reason.
A uniform b field can only exist in a finite system with
boundaries because it requires an increasing strain field
in some spatial directions (just like the uniform B field
requires increasing vector potential A). However, in a
realistic crystal, strain can only increase to a certain point,
after which the crystal breaks. We thus see that a uniform b
necessarily implies the existence of surfaces. A conse-
quence of this is that the band structure of the relevant
system will have an equal number of left- and right-moving
modes, which are, however, unbalanced between the sur-
face and the bulk. Semiclassical evolution in the presence
of E∥bwill thus transfer charge from the bulk to the surface
(or vice versa). By contrast, the e field can be created by a
time-dependent unidirectional strain that does not require
spatial boundaries. We have seen that, in a system without
boundaries, the e · B term simply changes the chemical
potential in accordance with the chiral anomaly equa-
tion (1.3). If, however, surfaces exist, this creates a non-
equilibrium distribution that can relax by transferring
charge to the surface. Furthermore, if a sufficient number
of surface states are available, then the bulk charge-
density change can be close to that predicted by the chiral
anomaly.
When both torsion and unidirectional strain are applied,

a new form of the chiral anomaly can be created via the
e · b term in Eq. (1.2). In this case, charge is transferred
between the two Weyl points with opposite chirality, but
remarkably, no physical EM fields are required.
Based on these general concepts, we make several

specific predictions for the experimentally observable
signatures of the anomaly. In the case of the b · E term,
we predict a negative contribution to the resistance that has
a square or cubic dependence on the torsion strength,
depending on the regime. In the case of the e · B term, we
predict bulk-boundary charge transfer, resulting in EM-
field emission and ultrasonic attenuation. Similarly, we
predict that the e · b term will contribute to ultrasonic
attenuation. These predictions are most clear cut in a
semimetal with a single pair of Weyl points. We showed,
however, that substantial observable consequences also
occur in Dirac semimetals Cd3As2 and Na3Bi, whose
electronic structure can be viewed as two time-reversed
copies of such an elemental Weyl semimetal. On general
grounds, we also expect these phenomena to be manifested
in more complex Weyl semimetals such as TaAs, or WTe2,
which host several pairs of Weyl points. Because their
electronic structures are complex, detailed quantitative
modeling of strain effects will require delving into the
details of the band structures, and we leave this for
future study. We nevertheless anticipate that, in these
materials, each pair of Weyl points will contribute to
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various chiral-anomaly-related effects discussed in this
paper. The contributions will have different magnitudes
and signs depending on the relative positions and Fermi
velocities of the Weyl cones. Partial cancellations can
occur, but it appears unlikely that the effect would vanish
completely, except perhaps for very specific strain patterns
with high symmetry. Pronounced transport signatures of
the ordinary chiral anomaly have already been detected in
several materials [32–36], including some with multiple
Weyl points. This strongly suggests that the novel strain-
induced effects predicted in this work should also be
observable in these materials.
Our work draws upon several previous studies. Some of

our results regarding the physical consequences of the
second anomaly equation (1.3) have been foreshadowed in
Ref. [28], which considered Weyl fermions in magnetically
doped topological insulators. Here, the chiral gauge field
can arise from magnetic fluctuations in the system and was
predicted to produce one-dimensional chiral modes in a
ferromagnetic vortex line and a novel plasmon-magnon
coupling. As far as we know, Weyl fermions have not yet
been observed in magnetically doped topological insula-
tors. Also, it may be challenging to create and control the
magnetic textures envisioned in Ref. [28]. By contrast, the
phenomena predicted in our work only require existing
materials, such as Cd3As2 or Na3Bi. Also, producing the
chiral gauge field from strain is not expected to pose an
exceptional experimental challenge. Our work also draws
upon the results of Refs. [1,6,27], which established the
equivalence between strain and chiral gauge field in various
materials ranging from graphene and topological insulators
to a simple model of a Weyl semimetal. However, our study
goes far beyond the scope of Ref. [6] by considering the
effect of strain in specific materials and geometries and by
providing concrete quantitative predictions for experimen-
tally measurable quantities related to the chiral anomaly.
Given both the fundamental nature of the new anomaly

discussed here and its obvious potential for future appli-
cations, we envision numerous possible extensions of this
work. On the theory side, there are multiple questions that
one can ask: Which of the EM effects in solids translate to
the pseudo-EM fields discussed here? What are the best
materials to study the effects? Do the chiral states predicted
by our work have prospects for designing more exotic
many-body states in the presence of interactions? We also
expect experimental activity to be stimulated since our
predictions made for real materials yield effects that should
be both unusual and eminently observable by conventional
experimental probes such as charge transport, ultrasonic
attenuation, and EM-field emission.
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Note added.—When our work was substantially completed,
we became aware of Ref. [45], which discusses a fictitious
magnetic field in a Weyl semimetal created by crystal
dislocations. This effect is closely related to our b field but
is different in that, unlike externally applied strain, dis-
locations in a crystal cannot be easily controlled. Therefore,
experimental detection of this effect may prove challeng-
ing. Very recently, Schuster et al. [46] discussed the
concept of a topological coaxial cable in a gapped Weyl
semimetal with a vortex in the Higgs field that is respon-
sible for the gap. In this situation, the vortex line is
predicted to carry protected fermionic modes and contrib-
ute exactly quantized conductance. This effect is very
interesting but also very different from our concept of
topological coaxial cable that occurs in an ungapped Dirac
or Weyl semimetal and does not, in general, produce
quantized conductance.

APPENDIX A: TIGHT-BINDING MODEL,
DISPERSION RELATIONS, AND PARAMETERS

FOR Cd3As2 AND Na3Bi

From the low-energy k · p Hamiltonian (2.1), we con-
struct the requisite lattice model by making the
replacement Ak� → ðA=aÞðsin akx � i sin akyÞ, C1k2z →
ð2C1=a2Þð1 − cos akzÞ, etc. For example, ϵ0ðkÞ defined
below Eq. (2.1) becomes

ϵk ¼ c0 þ c1 cos akz þ c2ðcos akx þ cos akyÞ; ðA1Þ

with c0 ¼ C0 þ 2ðC1 þ 2C2Þ=a2, c1 ¼ −2C1=a2, and
c2 ¼ −2C2=a2. The constants cj are chosen such that ϵk
matches ϵ0ðkÞ for small ak independent of the chosen value
of the lattice constant a. Treating all other terms in the
Hamiltonian (2.1) in a similar fashion leads to the lattice
Hamiltonian given by Eqs. (2.3) and (2.4).
In addition to the results presented in the main text, we

performed detailed band-structure simulations for Dirac
semimetals Cd3As2 and Na3Bi. Parameters for the model
Hamiltonian (2.1) are taken from Refs. [7,47] and [13],
correspondingly, and are summarized in Table I. In the
main text, we only presented results for the parameters of
Cd3As2, with the asymmetry parameters Ci set to zero. In
Fig. 9, we present the dispersion relation computation for
the models of 1

2
-Cd3As2 and 1

2
-Na3Bi with all the asym-

metry terms taken into account. The effects discussed in
the main text are present even in this more general case,
although to see them clearly now requires more effort
because of the more complicated structure of the energy
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bands. For instance, here the equivalence of the torsional
strain and magnetic field, pointed out in the main text, can
only be identified by a trained eye. One needs to notice
that the right Weyl point is at E ¼ 0 in the rightmost graph
of the first column of Fig. 9. Results between the two
parameter sets are similar, but notice the larger gaps in
Na3Bi, which may make the experimental realization
easier.

To further confirm the validity of our ideas relating the
torsional strain to the pseudomagnetic field, we computed
the equilibrium currents flowing along the wire using the
full Hamiltonian, including the p-h–symmetry breaking
terms. The results are as follows: (i) For both Cd3As2 and
Na3Bi, we find equilibrium currents with a pattern similar
to the one displayed in Fig. 7 in each spin sector when
nonzero torsion is present. The total current density
(summing up contributions from both spin-up and spin-
down sectors) vanishes, as must be the case in a T -invariant
system. (ii) When only magnetic field B is present and no
torsion, the current densities are zero in both sectors
separately, in accordance with the expectation. (In this
case, the band structure in each spin sector shows the same
number of left- and right-moving modes in the bulk of the
system). (iii) When both torsion and magnetic field are
present, then we find nonzero persistent current density in
both spin sectors. In this case, T is absent, and the currents
from the two sectors generically do not cancel. This is
illustrated in Fig. 10. We observe an asymmetric band
structure that supports a different number of bulk left- and
right-moving modes at various energies, leading to a net
imbalance in the current flow between the bulk and the

(a) (b) (c) (d)

FIG. 9. Dispersion relations for the spin-up sector of the lattice Hamiltonian (2.3) describing Cd3As2 (top row) and Na3Bi (bottom
row). The parameters used in the simulations include the particle-hole symmetry-breaking terms and are summarized in Table I. We used
a lattice with 40 × 40 sites and the magnetic fields shown in the green boxes for each of the materials. Notice the different magnitude of
effective magnetic fields for different compounds—this is due to the different lattice constants and a different sign of the physical
magnetic field between the two rows. A different sign of magnetic fields shows that the physical magnetic field compensates the
torsional one in opposite Weyl points for opposite directions of the magnetic field in accordance with the interpretation in the main text.

TABLE I. Material parameters taken from Refs. [13] and [47]
used for our simulations. The last row represents the effective
lattice constant used for simulations in Fig. 9.

Cd3As2 Na3Bi

C0 [eV] −0.0145 −0.0638
C1 [eVÅ2] 10.59 8.75

C2 [eVÅ2] 11.5 −8.4
M0 [eV] 0.0205 0.869
M1 [eVÅ2] −18.77 −10.64
M2 [eVÅ2] −13.5 −10.36
A [eV Å] 0.889 2.46
a [Å] 20 7.5
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surface. The total current carried by the wire, however, still
vanishes.

APPENDIX B: NONEQUILIBRIUM
DISTRIBUTION IN A STRETCHED SYSTEM

In this appendix, we derive a quantitative estimate for the
chemical potential denoted by μ0eq in Fig. 4 as well as the
corresponding bulk electron density. As discussed in
Sec. III B, upon introducing strain, the chemical potential
in the bulk of the system rises from μ0 to μ0, while that at the
surfaces remains unchanged. In the process, the charge
density also remains unchanged (except possibly for
perturbations near the surface that average to zero and
do not affect the bulk). This creates a nonequilibrium
distribution of electrons illustrated in Fig. 4(b), which then
relaxes to a new equilibrium characterized by a global
chemical potential μ0eq. The latter can be calculated by
demanding that the total electron number N is conserved.
In the unstrained system, we have N ¼ Ns þ Nb, where

the subscripts refer to the surface and the bulk, respectively.
In the nonequilibrium strained system, Ns and Nb remain
the same as per our discussion above. In the new equilib-
rium, they change to N0

s=b¼Ns=bþδNs=b, where δNs=b≃
κs=bδμs=b. Here, κs=b ¼ dNs=b=dμ is the compressibility,
and δμs=b denotes the change in the chemical potential that
is responsible for the change in Ns=b. Number conservation
dictates that δNs ¼ −δNb, which implies

κsðμ0eq − μ0Þ ¼ −κbðμ0eq − μ0Þ: ðB1Þ

We can solve for μ0eq to obtain

μ0eq ¼ μ0 þ
δμ

1þ κs=κb
; ðB2Þ

where δμ ¼ μ0 − μ0. The corresponding change in the
bulk number is δNb ¼ κbðμ0eq − μ0Þ, which, together with
Eq. (B2), gives the change in the bulk density

δρbulk ¼ −
1

Sd
κb

1þ κb=κs
δμ; ðB3Þ

where S is the area of the slab.
To complete the calculation, we require the surface and

bulk electron compressibilities. For the surface, we assume
that we have a single linearly dispersing band ϵsk ¼ ℏvkx on
each surface that extends between the surface projections
of the two Weyl points, jkzj < Q. Furthermore, we assume
that the surface state is essentially unaffected by the
magnetic field, in accordance with the results of our lattice
simulations. This gives

κs ¼ SDsðμÞ ¼
SQ
π2ℏv

; ðB4Þ

where DsðϵÞ ¼ Q=π2ℏv is the surface density of states
(counting both surfaces).
For the bulk, we similarly have κb ¼ SdDbðμÞ. We now

must distinguish between the quantum and the semiclass-
ical limits, as defined in Sec. IV B. In the quantum limit,
we have a pair of linearly dispersing n ¼ 0 Dirac Landau
levels with degeneracy ðB=Φ0Þ, whereas in the semiclass-
ical limit, many Landau levels are populated so it is
permissible to approximate the density of states by that
of a zero-field system. We thus obtain

κb ¼
8<
:

Sd
πℏv ð BΦ0

Þ quantum limit

Sdμ2

π2ℏ3v3 semiclassical limit:
ðB5Þ

Substituting these results into Eqs. (B2) and (B3), we
obtain results for μ0eq and δρbulk quoted in the main text
[Eqs. (3.3) and (3.4)] for the quantum limit. In the semi-
classical limit, we similarly obtain

μ0eq ¼ μ0 þ
δμ

1þ λQ=d
ðB6Þ

and

δρbulk ¼ −
α

πa

�
B
Φ0

�
cot aQ

1þ d=λQ
; ðB7Þ

where λQ ¼ Qðℏv=μÞ2=2 is the characteristic length.

APPENDIX C: HYDRODYNAMIC FLOW
IN A TWISTED WEYL NANOWIRE

Consider a cylindrical nanowire of radius R made of a
Weyl semimetal. Both torsion and electric field E are
applied along the axis of the wire (taken here along the ẑ
direction), giving a nonzero right-hand side ∝ b · E in the
second anomaly equation (1.3). Denoting the right-hand
side by gðrÞ, we may write
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FIG. 10. Persistent currents in a Cd3As2 nanowire under torsion
and magnetic field. (a) Band-structure detail for spin-up (blue) and
spin-down (green) sectors in a 30 × 30 lattice with B ¼ b ¼ 3.2 T
and other parameters as in Fig. 9. (b) Calculated current density jz
for μ ¼ 0, including contributions from both spin sectors.

CHIRAL ANOMALY FROM STRAIN-INDUCED GAUGE … PHYS. REV. X 6, 041021 (2016)

041021-17



∂tρþ∇ · j ¼ gðrÞ; ðC1Þ

where

gðrÞ ¼ g0

�
θðR − rÞ − 1

2
Rδðr − RÞ

�
; ðC2Þ

with g0 ¼ ðe2=2π2ℏ2cÞbE. The first term in gðrÞ describes
uniform production of electrons in the bulk of the wire at a
rate given by the chiral anomaly. The second term reflects
the fact that those electrons are removed from the surface,
in accordance with our discussion in Sec. III. The total
production in the wire is zero,

R
Rþ
0 rdrgðrÞ ¼ 0, and the

charge is conserved.
We now assume that the dominant relaxation mechanism

for the nonequilibrium electrons produced in the bulk of
the wire is diffusion towards the boundary. Electrons move
ballistically along the ẑ direction and undergo occasional
collisions that scatter them into neighboring Landau-level
states. Near the boundary, bulk electrons can finally
backscatter into the surface modes, which are moving in
the opposite direction. Under this assumption, the diffusion
current is

j ¼ −D∇ρ; ðC3Þ

where D ¼ l2
b=τ0 is the diffusion constant (lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eb

p
is the magnetic length and τ−10 the microscopic scattering
rate). The form of the diffusion constant reflects the fact
that electron wave functions have Landau-level character
with the spatial extent lb in the direction perpendicular to ẑ,
and scattering occurs predominantly between neighboring
Landau-level orbitals.
Substituting Eq. (C3) into Eq. (C1) and specializing to a

long-time steady state with ∂tρ ¼ 0, we obtain

−D∇2ρ ¼ gðrÞ: ðC4Þ

Writing the Laplacian in the polar coordinates and assum-
ing a radially symmetric solution, we find

ρðrÞ ¼ g0
D

�
R2 − r2

4

�
θðR − rÞ: ðC5Þ

The corresponding radial diffusion current density is
jrðrÞ ¼ −D∂rρ ¼ 1

2
g0r. The total nonequilibrium charge

in the bulk modes is

δQ ¼ −e
Z

R

0

dr2πrρðrÞ ¼ −e
π

8

g0
D
R4: ðC6Þ

Since all these modes move in the same direction with
velocity v, this gives the total current along the ẑ direction
in the wire,

JCTE ¼ 2vδQ ¼ −ev
π

4

�
e2

2π2ℏ2c

�
τ

l2
b

R4bE: ðC7Þ

The factor 2 in the first equality reflects the fact that
nonequilibrium charge −δQ must exist in the surface
left-moving modes to maintain overall charge neutrality.
We assume, for simplicity, that these modes move at the
same speed v.
As mentioned, the transport current along the wire

exhibits all the characteristics of the hydrodynamic flow:
It is largest at the center and vanishes at the boundary. This
is because momentum can only be relaxed by electrons
that have reached the boundary and can scatter into surface
modes. The amount of current through the wire scales with
R4, just like fluid flowing through a pipe.
From Eq. (C7), one can read off the chiral torsional

conductivity σCTE, which can be written suggestively in the
following way:

σCTE ¼ e2v
4πh

τN ; ðC8Þ

where N ¼ πR2=l2
b is the number of chiral bulk modes in

the wire and τ ¼ τ0R2=l2
b is the effective transport scatter-

ing time. The form of the latter reflects the fact that, under
diffusion, the electron produced near the center of the wire
must scatter, on average, ðR=lbÞ2 times before it reaches
the boundary.
To illustrate this point, we have performed simulation of

conductance in a disordered symmetric 1
2
-Cd3As2 model.

The Hamiltonian parameters are the same as used in
Fig. 3. We have performed the conductance simulations
for μ ¼ 5 meV and for the system of W ×W × 20 sites.
We have added on-site disorder δμi taken from normal

FIG. 11. Ratio of conductance of a disordered W ×W × 20
system to the conductance of the clean system averaged over 100
disorder realizations. The green line is the best fit to the data—
parabolic; grey curves show the failure of the linear [with non-
negative Gð0Þ] and cubic fits.
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distribution of width 10 meV to simulate the hydrodynamic
flow described above. The ratio of conductance of the
disordered system to the conductance of the clean system is
plotted in Fig. 11. The best fit to the data is in accordance
with Eq. (C8), where τ ∝ R2.
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