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Quantum annealing (QA) has been proposed as a quantum enhanced optimization heuristic exploiting
tunneling. Here, we demonstrate how finite-range tunneling can provide considerable computational
advantage. For a crafted problem designed to have tall and narrow energy barriers separating local minima,
the D-Wave 2X quantum annealer achieves significant runtime advantages relative to simulated annealing
(SA). For instances with 945 variables, this results in a time-to-99%-success-probability that is ∼108 times
faster than SA running on a single processor core. We also compare physical QA with the quantum
Monte Carlo algorithm, an algorithm that emulates quantum tunneling on classical processors. We observe
a substantial constant overhead against physical QA: D-Wave 2X again runs up to ∼108 times faster than an
optimized implementation of the quantum Monte Carlo algorithm on a single core. We note that there exist
heuristic classical algorithms that can solve most instances of Chimera structured problems in a time scale
comparable to the D-Wave 2X. However, it is well known that such solvers will become ineffective for
sufficiently dense connectivity graphs. To investigate whether finite-range tunneling will also confer an
advantage for problems of practical interest, we conduct numerical studies on binary optimization problems
that cannot yet be represented on quantum hardware. For random instances of the number partitioning
problem, we find numerically that algorithms designed to simulate QA scale better than SA. We discuss
the implications of these findings for the design of next-generation quantum annealers.
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I. INTRODUCTION

Simulated annealing (SA) [1] is perhaps the most widely
used algorithm for global optimization of pseudo-Boolean
functions with little known structure. The objective function
for this general class of problems is

Hcl
PðsÞ ¼ −

XK
k¼1

XN
j1…jk¼1

Jj1…jksj1…sjk ; ð1Þ

whereN is the problem size, sj ¼ �1 are spin variables, and
the couplings Jj1…jk are real scalars. In the physics literature,
Hcl

PðsÞ is known as the Hamiltonian of aK-spinmodel. SA is
a Monte Carlo algorithm designed to mimic the thermal-
ization dynamics of a system in contactwith a slowly cooling
reservoir. When the temperature is high, SA induces thermal
excitations that can allow the system to escape from local

minima. As the temperature decreases, SA drives the system
towards nearby low-energy spin configurations.
Almost two decades ago, quantum annealing (QA) [2]

was proposed as a heuristic technique for quantum
enhanced optimization. Despite substantial academic and
industrial interest [3–34], a unified understanding of the
physics of quantum annealing and its potential as an
optimization algorithm remains elusive. The appeal of
QA relative to SA is due to the observation that quantum
mechanics allows for an additional escape route from
local minima. While SA must climb over energy barriers
to escape false traps, QA can penetrate these barriers
without any increase in energy. This effect is a hallmark
of quantum mechanics, known as quantum tunneling. The
standard time-dependent Hamiltonian used for QA is

HðtÞ ¼ −AðtÞ
XN
j¼1

σxj þ BðtÞHP; ð2Þ

whereHP is written as in Eq. (1) but with the spin variables
sj replaced with σzj Pauli matrices acting on qubit j, and
the functions AðtÞ and BðtÞ define the annealing schedule
parametrized in terms of time t ∈ ½0; TQA� (see Fig. 10).
These annealing schedules can be defined in many different
ways as long as the functions are smooth, Að0Þ ≫ Bð0Þ and
AðTQAÞ ≪ BðTQAÞ. At the beginning of the annealing, the
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transverse field magnitude AðtÞ is large, and the system
dynamics are dominated by quantum fluctuations due to
tunneling (as opposed to the thermal fluctuations used
in SA).
The question of whether D-Wave processors realize

computationally relevant quantum tunneling has been a
subject of substantial debate. This debate has now been
settled in the affirmative with a sequence of publications
[6,8,9,12,13,18,21] demonstrating that quantum resources
are present and functional in the processors. In particular,
Refs. [35,36] studied the performance of the D-Wave
device on problems where eight [37] qubit cotunneling
events were employed in a functional manner to reach low-
lying energy solutions.
In order to investigate the computational value of finite-

range tunneling in QA, we study the scaling of the
exponential dependence of annealing time with the size
of the tunneling domain D,

TQA ¼ BQAeαD; ð3Þ
where α ¼ amin=ℏ and amin is the rescaled instanton action
[see Eqs. (24) and (27)]. In SA, the system escapes from a
local minimum via thermal fluctuations over an energy
barrier ΔE separating the minima. The time required for
such events scales as

TSA ¼ BSAeΔE=kBT; ð4Þ

which is exponentially long with respect to ΔE. However,
for sufficiently tall and narrow barriers such that

ΔE
kBT

> αD; ð5Þ

QA can overcome barriers exponentially faster than SA.
This situation was studied in Ref. [38] and it also occurs in
the benchmark problems studied in this paper.
The path-integral quantum Monte Carlo (QMC) method

is used for sampling the quantum Boltzmann distribution of
a d-dimensional stoquastic Hamiltonian as a marginaliza-
tion of a classical Boltzmann distribution of an associated
dþ 1 dimensional Hamiltonian. For specific cases, it was
recently shown that the exponent α for physical tunneling is
identical to the corresponding quantity for the QMC
algorithm [39]. However, in the present work, we find a
very substantial computational overhead associated with
the prefactor BQMC in the expression for the runtime of the
QMC algorithm, TQMC ¼ BQMCeαD. In other words, BQMC

can exceed BQA by many orders of magnitude. The role of
this prefactor becomes essential in the situations where the
number of cotunneling qubits D is finite, i.e., is indepen-
dent of the problem size N (or depends on N very weakly).
Because tunneling is more advantageous when energy

barriers are tall and narrow, we expect this resource to be
most valuable in the upper part of the energy spectrum. For

instance, a random initial state is likely to have an energy
well above the ground-state energy for a difficult optimi-
zation problem such as the one in Eq. (1). However, the
closest lower energy local minimum will often be less than
a dozen spin flips away. Nevertheless, the energy barriers
separating these minima may still be high. In such
situations, if the transverse field is turned on to facilitate
tunneling transitions, the transition rate to lower energy
minima will often increase. By contrast, once the state
reaches the low part of the energy spectrum, the closest
lower local minimum is asymptotically N spin flips away
[2,40–42]. There, finite-range tunneling may assist by
effectively “chopping off” narrow energy ridges near the
barrier top, but the transition probability is still largely
given by the Boltzmann factor. This description illustrates
that finite-range tunneling can be useful to quickly reach an
approximate optimization, but will not necessarily signifi-
cantly outperform SA when the task is to find the ground
state (see Fig. 1).
The canonical QA protocol initializes the system in the

symmetric superposition state jþi⊗N , which is the ground
state at t ¼ 0. By a similar argument, we expect that finite-
range tunneling will drive the system adiabatically across
energy gaps associated with narrow barriers, preventing
transitions to higher energies. However, in general, finite-
range tunneling will not be able to prevent Landau-Zener
diabatic transitions for very small gaps resulting from
emerging minima in the energy landscape separated by a
wide barrier. This will often include the gap separating the
ground state from the first excited state [2,40–42].
This paper is organized as follows: In Sec. II, we present

our main results consisting of benchmarking the D-Wave
2X processor against SA and the QMC algorithm on a
crafted problem with a rugged energy landscape; Sec. III
introduces the theory of instantons in multispin systems,
discusses tunneling simulation in the QMC algorithm,
and presents numerical results from theoretical modeling
comparing QA and QMC calculations for the “weak-strong
cluster pair” problem; Sec. IV presents numerical studies
of generic problems with rugged energy landscapes that
can potentially benefit from QA and discusses the chal-
lenges associated with designing future annealers of prac-
tical relevance; Sec. V concludes with an overview and
discussion. Further technical details can be found in
Appendixes A and B [43].

II. BENCHMARKING PHYSICAL QUANTUM
ANNEALING ON A CRAFTED PROBLEM
WITH A RUGGED ENERGY LANDSCAPE

Here, we consider a problem designed so that finite
cotunneling transitions of multiple spins strongly impacts
the success probability. The previous section outlined
several reasons why QA has a chance to outperform SA
for problems with a rugged energy landscape.

VASIL S. DENCHEV et al. PHYS. REV. X 6, 031015 (2016)

031015-2



In previous work we proposed a problem consisting of
a pair of strongly connected spins (called clusters) to
study the presence of functional cotunneling in D-Wave
processors [35,36]. Each cluster coincides with a unit cell
of the native hardware graph, known as the Chimera
graph. The problem Hamiltonian HP in Eq. (2) is of Ising
form:

HP ¼ H1
P þH2

P þH1;2
P ; ð6Þ

Hk
P ¼ −J

X
hj;j0i∈ intra

σzk;jσ
z
k;j0 −

X8
j¼1

hkσ
z
k;j; ð7Þ

H1;2
P ¼ −J

X
j∈ inter

σz1;jσ
z
2;j: ð8Þ

All the couplings are ferromagnetic with J ¼ 1. The
index k ∈ f1; 2g indexes a unit cell of the Chimera graph,
the first sum in Eq. (7) goes over the intracell couplings
depicted in Fig. 2, the second sum goes over the intercell
couplings corresponding to j ¼ 5, 6, 7, 8 in Fig. 2, and hk
denotes the local fields within each cell.
The local fields 0 < h1 < 0.44 (weak cluster) and

h2 ¼ −1 (strong cluster) are equal for all the spins within
the cell. In this parameter regime, all spins of both clusters
will point along the direction of the strong local fields in the
ground state of the problem Hamiltonian HP. However, in
the initial phase of the annealing evolution, all spins in the
weak cluster orient themselves by following the local field
in the opposite direction. At a later stage of the annealing
evolution, the pairwise coupling between clusters becomes
dominant; however, in the mean-field picture, the state of
the weak cluster is driven into a local minimum. Using a
noise model with experimentally measured parameters for
the D-Wave 2X processor, we numerically verify that the
most likely mechanism by which all spins arrive at the
energetically more favorable configuration is multiqubit
cotunneling (see Ref. [35] and Appendix A [43]).
Using the weak-strong cluster pairs as building blocks,

larger problems are formed by connecting the strong
clusters to one another in a glassy fashion. That is, the
four connections between two neighboring strong clusters

h2 = -1h1

                                  1 = J

j=4

j=3

j=2

j=1

k=1 k=2

j=8

j=7

j=6

j=5

FIG. 2. A pair of weak-strong clusters, consisting of 16 qubits
in two unit cells of the Chimera graph. All qubits are ferromag-
netically coupled and evolve as part of two distinct qubit clusters.
At the end of the annealing evolution, the right cluster is strongly
pinned downwards due to strong local fields acting on all qubits
in that cell. However, the local magnetic field h1 in the left cluster
is weaker and serves as a bifurcation parameter. For h1 < 1=2, the
left cluster will reverse its orientation during the annealing sweep
and eventually align itself with the right cluster.

A

D

B C

A

B
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V
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(
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FIG. 1. Top: Quantum annealer dynamics are dominated by
paths through the mean-field energy landscape that have the
highest transition probabilities. Shown is a path that connects
local minimum A to local minimum D. Bottom: Mean-field energy
V(qðτÞ) along the path from A to D, as defined by Eqs. (12)
and (16). Finite-range, thermally assisted tunneling can be thought
of as a transition consisting of three steps: (i) the system picks up
thermal energy from the bath (red arrow up), (ii) the system
performs a tunneling transition between the entry and exit points
(blue arrow), and (iii) the system relaxes to a local minimum by
dissipating energy back into the thermal bath (red arrow down). In
transitions A → B or B → C, finite-range tunneling considerably
reduces the thermal activation energy needed to overcome the
barrier. For long distance transitions in the lower part of the energy
spectrum, such as C → D, the transition rate is still dominated by
the thermal activation energy, and the increase in transition rate
brought about by tunneling is negligible.
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are all set to either þ1 (ferromagnetic) or −1 (antiferro-
magnetic), at random. With this procedure, we define a
large class of instances having any size that we refer to as
the “weak-strong cluster networks” problem. We expect
that for large sizes beyond the current D-Wave 2X
processor the spin-glass backbone of this problem will
dominate the computational hardness and finite-range
tunneling will no longer be sufficient for reaching the
ground state. This is also consistent with numerical studies
of the energy landscape conducted in Ref. [44]. Even so, as
suggested by Fig. 1, under those circumstances it would be
interesting to study the role of finite-range tunneling in
achieving good approximate solutions. Figure 3 shows
several examples of the layout of instances that were used
in these benchmark tests [45]. Because of the fact that not
all of the qubits in the D-Wave 2X processor are properly
calibrated, and hence available for computation, the
instances become somewhat irregular.

A. D-Wave versus simulated annealing

We now compare the total annealing time of SA to the
total annealing time of the D-Wave 2X processor. Figure 4

shows the time to reach the ground state with 99% success
probability, as a function of problem size for different
quantiles.
For D-Wave, we fix the annealing time at 20 μs, the

shortest time available due to engineering compromises,
and estimate the probability pj of finding the ground state
for a given instance j [46]. Shorter times are optimal in
this benchmark, as explained in Appendix A and Ref. [35].
The total annealing time to achieve pj ¼ 0.99 is
20 μs½logð1–0.99Þ= logð1 − pjÞ�. See Appendix A [43] for
details of the physical QA parameters used in D-Wave
machines (see also Ref. [47]).
We measure the computational effort of SA in units of

runtime on a single core, which is natural when using server
centers and convenient in order to compare to other
classical approaches. Of course, the total runtime can be
shortened by parallelizing the overall computation. Part of
that process is embarrassingly parallel since SA finds its
best solutions not in a single run but by restarting from
random bit configurations. Every restart could be executed
on a different core. In fact, we use this strategy for our
numerical benchmark. We find that median-case instances

FIG. 3. Layout of several instances of the weak-strong cluster network problem on the D-Wave 2X processor. Shown are three
different sizes with 296, 489, and 945 qubits. Each cluster consists of an eight-qubit unit cell of the Chimera graph. Black dots depict
qubits subject to a strong local field hR ¼ −1 while the gray dots represent qubits with the weak field hL ¼ 0.44. Blue lines correspond
to strong ferromagnetic couplings (J ¼ 1) and red lines to strong antiferromagnetic couplings (J ¼ −1). Note that the graphs are
somewhat irregular due to the fact that not all 1152 qubits are operational.
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require 109 independent runs (with 945 × 5 × 104 spin
updates each) to find the optimal solution with 945
variables, on average.
We note that for instances with more qubits, more

quantum hardware resources are brought to bear and
therefore a fair comparison needs to take this into account
[12,15]. As an extreme example, one could contemplate
building special purpose classical hardware that would
update as many spins in parallel as possible at state-of-the-
art clock rates. The sets of spins that could be updated in
parallel depends on the connectivity graph. Though such
considerations are reasonable, we do not explore this
possibility here as it is well known that graphs with
sufficiently dense connectivity will severely limit the
usefulness of such parallelism.
When estimating runtimes for SA, we follow the pro-

tocol laid out by Refs. [12,15,48] and tune SA for every
problem size and quantile. Tuning means that the starting
and end temperature, as well as the number of spin updates
and the number of restarts, are optimized to achieve a
short overall runtime. We first measure the computational
effort in units of sweeps (one sweep attempts to update all
the spins). These times are plotted as nsweepsNTsu, where N

is the number of spins. We use a spin update time
Tsu ¼ 1=5 ns (see Ref. [12]).
Our key finding in this comparison is that SA performs

very poorly on the weak-strong cluster networks. The
D-Wave 2X processor is 1.8 × 108 faster at the largest
size instances we investigate, which consists of 945
variables. This problem is specifically engineered to cause
the failure of SA: as we explain above, the “weak-strong
cluster networks” problem is intended to showcase the
performance of annealers on a problem that benefits from
finite-range cotunneling. By contrast, the random Ising
instances studied in Refs. [12,15] have only low-energy
barriers, as explained in Ref. [49].

B. D-Wave versus quantum Monte Carlo method

Next, we compare the performance of the path-integral
quantum Monte Carlo method with that of D-Wave for
the same benchmark. The QMC method samples the
Boltzmann distribution of a classical Hamiltonian which
approximates the transverse field Ising model. In the case
of a 2-spin model, the discrete imaginary time QMC
classical Hamiltonian is

Hcl ¼ −
XM
τ¼1

�X
jk

Jjk
M

σjðτÞσkðτÞ

þ J⊥ðsÞ
X
j

σjðτÞσjðτ þ 1Þ
�
; ð9Þ

where σjðτÞ ¼ �1 are classical spins, j and k are site
indices, τ is a replica index, and M is the number of
replicas. The coupling between replicas is given by

J⊥ðsÞ ¼ −
1

2β
ln tanh

AðsÞβ
M

; ð10Þ

where β is the inverse temperature. The set of configura-
tions for a given spin j across all replicas τ is called the
worldline of spin j. Periodic boundary conditions are
imposed between σjðMÞ and σjð1Þ. We use the continuous
path-integral QMC method, which corresponds to the limit
Δτ → 0 [50], and, unlike the discrete path-integral QMC
method, does not suffer from discretization errors of
order 1=M.
We numerically compute the number of sweeps nsweeps

required for QMC calculations to find the ground state with
99% probability at different quantiles. In our case, a sweep
corresponds to two update attempts for each worldline.
The computational effort is nsweepsNTworldline, where N is
the number of qubits and Tworldline is the time to update a
worldline. We average Tworldline over all the steps in the
quantum annealing schedule; however, the value of
Tworldline depends on the particular schedule chosen. As
explained above for SA, we report the total computational
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FIG. 4. Time to find the optimal solution with 99% probability
for different problem sizes. We compare simulated annealing
(SA), the quantum Monte Carlo (QMC) method, and the D-Wave
2X. To assign a runtime for the classical algorithms we take the
number of spin updates (for SA) or worldline updates (for QMC
method) that are required to reach a 99% success probability and
multiply that with the time to perform one update on a single
state-of-the-art core. Shown are the 50th, 75th, and 85th per-
centiles over a set of 100 instances. The error bars represent
95% confidence intervals from bootstrapping. This experiment
occupied millions of processor cores for several days to tune and
run the classical algorithms for these benchmarks. The runtimes
for the higher quantiles for the larger problem sizes for the QMC
algorithm were not computed because the computational cost was
too high. For a similar comparison with the QMC method with
different parameters, please see Fig. 12.
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effort of the QMC algorithm in standard units of time per
single core. For the annealing schedule used in the current
D-Wave 2X processor, we find

Tworldline ¼ βð870 nsÞ; ð11Þ

using an Intel(R) Xeon(R) CPU E5-1650 @ 3.20 GHz. The
reason why Tworldline is approximately linear in β is because
the number of spin flips in a worldline grows as β increases
[see Eq. (10)], which affects the runtime of the continuous
path-integral QMC method [12].
This study is designed to explore the utility of the QMC

algorithm as a classical optimization routine. Accordingly,
we optimize the QMC algorithm by running at a low
temperature, 4.8 mK. We also observe that the QMC
algorithm with open boundary conditions (OBC) performs
better than the standard QMC algorithm with periodic
boundary conditions in this case [39]; therefore, OBC is
used in this comparison. We further optimize the number of
sweeps per run which, for a given quantile, results in the
lowest total computational effort. We find that the optimal
number of sweeps for the 50th percentile at the largest
problem size is 106. This enhances the ability of the QMC
algorithm to simulate quantum tunneling, and gives a very
high probability of success per run in the median
case, psuccess ¼ 0.16.
All the qubits in a cluster have approximately the same

orientation in each local minimum of the effective mean-
field potential. Neighboring local minima typically corre-
spond to different orientations of a single cluster. Here, the
tunneling time is dominated by a single purely imaginary
instanton and is described by Eq. (27) below. It was
recently demonstrated that, in this situation, the exponent
amin=ℏ for physical tunneling is identical to that of the
QMC method [39]. As seen in Fig. 4, we do not find a
substantial difference in the scaling of the QMC algorithm
and D-Wave. However, we find a very substantial computa-
tional overhead associated with the prefactor B in the
expression T ¼ BeDamin=ℏ for the runtime. In other words,
BQMC can exceed BQA by many orders of magnitude. The
role of the prefactor becomes essential in situations where
the number of cotunneling qubits D is finite, i.e., is
independent of the problem size N (or depends on N very
weakly). Between some quantiles and system sizes we
observe a prefactor advantage as high as 108.
We note that the QMC and D-Wave error bars are

consistently larger than SA’s error bars. This is due to
the sensitivity of the confidence interval bootstrapping
procedure to the fact that QMC and D-Wave’s mean
performance results are significantly more spread out
across quantiles than SA’s. The latter phenomenon is
explained by the presence of instances whose glassy
backbones necessitate long-range tunneling. The success
probabilities of the QMC method and D-Wave are signifi-
cantly lowered on such instances, while the success

probabilities of SA are already severely diminished by
the individual weak-strong cluster pairs. Similarly to
observations made in Ref. [30], this suggests that, for
the tails of the complexity distributions, the scalings might
be substantially different. As illustrated by Fig. 1 and
suggested in Ref. [51], in situations where long-range
tunneling is required for reaching the global minimum,
quantum annealing may still be advantageous for reaching
good approximate solutions.

C. D-Wave versus other classical solvers

Based on the results we present here, one cannot claim a
quantum speedup for D-Wave 2X, as this would require
that the quantum processor in question outperforms the
best known classical algorithm (see also Ref. [44], which
follows up on the study of this paper). This is not the case
for the weak-strong cluster networks. This is because a
variety of heuristic classical algorithms can solve most
instances of Chimera structured problems much faster than
SA, the QMC algorithm, and the D-Wave 2X [52–54] (for a
possible exception, see Refs. [25,51]) [55]. For instance,
the Hamze–de Freitas–Selby algorithm [52,53] performs a
greedy sequence of random large neighborhood optimiza-
tions. Each large neighborhood is defined by first replacing
each 4-qubit column in a cluster with a large spin, and then
expanding a tree of large spins which covers ∼77% of all
spins (and more than half of all 8-qubit clusters). In the
particular case of a weak-strong cluster pair, this algorithm
avoids the formation of the energy barrier.
However, it is well known that such solvers will become

ineffective for sufficiently dense connectivity graphs. In
such dense graphs, the largest tree-structured subgraphs
become too small to be useful for large neighborhood
search [52], and cluster moves become too costly or break
down altogether due to lowered percolation thresholds [56].
Unsurprisingly, these two failure modes affect the tailored
and nontailored algorithms studied in Ref. [44]. On the
contrary, multiqubit cotunneling is a general phenomenon
in spin glasses that is not limited to sparse graphs.
Nevertheless, the situation for advanced connectivity
graphs that can be engineered in practice remains an open
question and is presently subject to active research.
We have also learned from the Janus team, working with

special purpose FPGAs to thermalize Ising models on a 323

cube, that they found cluster finding not to be helpful [57].

1. A Remark on scaling

Certain quantum algorithms have asymptotically better
scaling than the best-known classical algorithms. While
such asymptotic behavior can be of tremendous value, this
is not always the case. Moreover, there can be substantial
value in quantum algorithms that do not show asymptoti-
cally better scaling than classical approaches. The first
reason for this is that current quantum hardware is restricted
to rather modest problem sizes of less than order 1000
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qubits. At the same time, when performing numerical
simulations of quantum dynamics, in particular when doing
open system calculations, we are often limited to problem
sizes smaller than 100 qubits. Extrapolating from such
finite size findings can be misleading, as it is often difficult
to determine whether a computational approach has
reached its asymptotic behavior.
When forecasting the future promise of a given hardware

design, there is a tendency to focus on the qubit dimension.
However, this perspective is not necessarily helpful. For
instance, when looking at runtime as a function of qubit
dimension, one may conclude that the measurements we
report here indicate that QMC calculations and physical
annealing have a comparable slope, scale similarly, and
that, therefore, the up side of physical annealing is
bounded. However, the large and practically important
prefactor depends on a number of factors such as temper-
ature. Furthermore, we expect future hardware to have
substantially richer connectivity graphs and dramatically
improved T1 and T2 times. With such changes, next-
generation annealers may drastically increase the constant
separation between algorithms, leading to very different
performance from generation to generation. To illustrate
how dramatic this effect can be, when we ran smaller
instances of the weak-strong cluster networks on the older
D-Wave Vesuvius chips we predicted that at 1000 variables
D-Wave would be 104 times faster than SA. In fact, we
observe a speedup of more than a factor of 108. This is
because certain noise parameters are improved and the
new dilution refrigerator operates at a lower temperature.
Similarly, we suspect that a number of previous attempts to
extrapolate the D-Wave runtimes for 1000 qubits will turn
out to be of limited use in forecasting the performance of
future devices. For this reason, the current study focuses on
runtime ratios that are actually measured on the largest
instances solvable using the current device, rather than on
extrapolations of asymptotic behavior which may not be
relevant once we have devices that can attempt larger
problems.

III. SPIN COTUNNELING IN QA
AND THE QMC ALGORITHM

A. Instantons in systems with multiple spins

Cotunneling consists of system state transitions in which
a group of spins simultaneously change their orientation
with energy well below the energy of the (mean-field)
potential barriers. Tunneling is a quintessential quantum
phenomenon; real-time dynamics of classical trajectories
cannot describe barrier penetration when the system wave
function extends to classically forbidden regions. In such
situations, the exponential decay of the wave function
under the barrier is often captured through the path-integral
formalism by computing the minimum action of the
trajectories in imaginary time [58,59]. This approach

was also extended to treat the tunneling of large magnetic
moments with conserved total spin [60].
Tunneling in mean-field spin models can be described

using the path integral over spin-coherent states in imagi-
nary time [61]. The tunneling path connects the minima of
the mean-field potential,

Vðm; tÞ ¼ hΨmjHðtÞjΨmi; ð12Þ

where HðtÞ is the time-dependent QA Hamiltonian from
Eq. (2) and jΨmi is a product state

jΨmi ¼ ⊗
j

�
cos

θj
2
j0i þ e−iϕj sin

θj
2
j1i

�
: ð13Þ

The coherent state of the jth spin is defined by a vector on
the Bloch sphere,

nj ¼ ðsin θj cosϕj; sin θj sinϕj; cos θjÞ: ð14Þ

and the corresponding state of the N-spin system is defined
by the vector m ¼ ðn1;n2;…;nNÞ.
Towards the beginning of a QA evolution, the system

remains near m0ðtÞ, the global minimum of the time-
dependent potential Vðm; tÞ, which connects to the global
minimum at the initial time. Later on, Vðm; tÞ undergoes a
bifurcation, which may cause the initial minimum to
become metastable. At that point, the system may be able
to tunnel to the new global minimum m1ðtÞ when
Vðm0Þ≃ Vðm1Þ. Here, we omit the argument t, whose
value corresponds approximately to the moment when the
minima exchange order. Such tunneling events are some-
times accompanied by thermal activation if QA is per-
formed at finite temperatures (i.e., thermally assisted
tunneling) [38]. The sequence of bifurcations and associ-
ated tunneling events can continue multiple times before
the global minimum of HP is reached.
Typically, the quasiequilibrium Gibbs distribution asso-

ciated with a given local minimum is formed on a time scale
much shorter than the time scale of the tunneling decay
of the metastable state. Therefore, the spin tunneling rate
W ¼ WðtÞ can be described in terms of the imaginary part
of the partition function [38,62]:

WQA ¼ −
2

β

ImðZÞ
ReðZÞ ; Z ¼ Tre−βH: ð15Þ

The partition function can be represented via path integral
over the spin-coherent states Eqs. (13) and (14). The
individual paths,

qðτÞ ¼ ½n1ðτÞ;n2ðτÞ;…;nNðτÞ�; τ ∈ ð0; βÞ; ð16Þ

are periodic in imaginary time, qðτÞ ¼ qðτ þ βÞ, where
β ¼ ℏ=kBT and T is the system temperature. The
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multiqubit tunneling transition is a “rare event,” corre-
sponding to a a large group of spins fnjg performing a
concerted motion that connects the domains of the different
minima of the effective potential V. Therefore, the tunnel-
ing can be described by a dominant path in the path integral
that determines ImðZÞ similarly to how it is done in the
tunneling problems in continuous space [63]. The details
of this analysis will be provided elsewhere [64]. Here, we
simply outline the main argument.
From the spin path integral, the action along the

instanton trajectory in imaginary time is

A ¼ iℏ
2

XN
i¼1

ω

�
njðτÞ� þ

Z
β

0

dτV½n1ðτÞ;…;nNðτÞ
�
; ð17Þ

where the first term corresponds to the sum over the Berry
phases of individual spins:

ω½nðτÞ� ¼
Z

∞

0

dτ½1 − cos θðτÞ� _ϕðτÞ:

The instanton trajectory corresponds to the extremum of the
action δA=δnjðτÞ ¼ 0. From here, the system of equations
for the instanton path components has the form

ℏ
2

dnjðτÞ
dτ

¼ njðτÞ
∂V

∂njðτÞ
; njðτÞ ¼ njðτ þ βÞ: ð18Þ

We note that the first (Berry phase) term in Eq. (17)
contains an additional factor i compared to the second term.
Therefore, at the instanton trajectory the vectors njðτÞ are
complex [cf. Eqs. (67) and (68) in the Supplemental
Material of Ref. [39] and also Ref. [62]]. They can be
written in the form

nj ¼ ðsin θj coshφj;−i sin θj sinhφj; cos θjÞ; ð19Þ

corresponding to a purely imaginary azimuthal angle
ϕjðτÞ ¼ −iφjðτÞ. This substitution makes the Berry phase
terms in Eq. (17) purely real along the instanton path. The
terms involving V are also real due to the fact that H is
Hermitian. One can easily see this for the Hamiltonian H
given in Eqs. (1) and (2) because in this case V depends
only on azimuthal angles via cosϕjðτÞ ¼ coshφjðτÞ.
Therefore, despite the presence of the imaginary Berry
phase in Eq. (17), after the substitution Eq. (19) the
instanton trajectory equations (18) involve only purely real
quantities similar to the instantons for the particle in the
potential. Similarly to this case, the initial point of the
instanton qð0Þ corresponds to the initial minimum of V
where the instanton starts. The midpoint of the trajectory
qðβ=2Þ typically corresponds to the exit point of the
potential barrier in the vicinity of the final minima:

qð0Þ ¼ qðβÞ≃m0; qðβ=2Þ≃m1: ð20Þ

Finally, the transition rate is determined with logarithmic
equivalence as

WQAB expð−A½qðτÞ�Þ; ð21Þ

where qðτÞ is an instanton trajectory and the prefactor B
can be, in principle, obtained in terms of the functional
determinant of the kernel δ2A½qðτÞ�.
To illustrate this concept, we consider the simplified

situation where the total spin of the tunneling domain is
conserved and all spins in the domain move identically
through the instanton trajectory, njðτÞ≡ nðτÞ for all
j ∈ ½1; D�, where D is the number of cotunelling spins.
Then, the mean-field potential for the instanton can be
rescaled as

V(qðτÞ) ¼ Dυ(nðτÞ): ð22Þ

In general, the environment can lead to thermally
assisted effects in multispin tunneling. Their role in the
analysis of spin instantons is discussed in Ref. [62]. For this
effect to become important the energy scale kBT corre-
sponding to the environmental temperature needs to be
comparable with the energy separation ΔE0 between the
levels of the initial potential well near its minimum.
However, in many situations typical for QA the tunneling
is of a Landau-Zener type where only the two lowest levels
are involved in the tunneling transition while the rest of the
levels are separated by the large energy gap that is much
bigger than the temperature. For example, in the case of
the weak-strong cluster network discussed in Sec. II, the
typical gap separating the tunneling doublet from the rest
of the levels is ΔE0=h≳ 3 GHz. This is about 10 times
greater then the thermal energy scale at the device temper-
ature of 15 mK.
In the limit of low temperatures β → ∞, the instanton

action takes the form S½nðτÞ� ¼ Da½nðτÞ�, with

a½nðτÞ� ¼ ℏ
2
ω½nðτÞ� þ

Z
∞

0

dτυ½nðτÞ�; ð23Þ

where ω describes a “Berry phase” type contribution. The
exponential dependence of the tunneling rate,

WQA ∼ e−Damin=ℏ; amin ¼ min
nðτÞ

a½nðτÞ�; ð24Þ

is given by the minimum of the rescaled action. We
consider the relevant case where the tunneling of the spin
domain is enabled by the transverse field and the
Hamiltonian is of the type in Eq. (2),
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H ¼ −A
XN
j¼1

σxj − BHcl
Pðσz1;…; σzDÞ; ð25Þ

where Hcl
Pðs1;…; sDÞ is a classical cost function of binary

variables sk ¼ �1. Assuming that Hcl
P ¼ Hcl

Pð
P

D
j¼1 σ

z
jÞ,

in the zero-temperature limit the system is in a state of
maximum total spin and all spins will tunnel together. Thus,

υ(nðτÞ) ¼ −A sin θðτÞ coshφðτÞ − Bg½cos θðτÞ�; ð26Þ

where the function gðxÞ ¼ D−1Hcl
PðDxÞ is the rescaled

mean-field potential energy of the spin system. Solving the
set of Eqs. (18) under the ansatz Eq. (22), one gets

amin

ℏ
¼

Z
θ1

θ0

arcsinh
�

vðθÞ
A sin θ

�
sin θdθ; ð27Þ

where vðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2½gðcos θÞ − gðcos θ0Þ�2 − A2 sin2 θ

p
is a

linear velocity along the instanton path and the angles θi
correspond to the minima of the potential υðnÞ (the values
of sinhφj ¼ 0 at the minima). This expression corresponds
to the familiar zero-temperature result that can be obtained
by other methods (cf. Supplemental Material in Ref. [39]
and also Ref. [65]). We note that, in the general case, the
action A in Eq. (21) also grows linearly with the number of
cotunneling spins D as in the simplified case of Eq. (24)
because the individual spin contributions to the action are
highly correlated at the instanton trajectory. The general
condition for the validity of the instanton calculus is a large
number of cotunelling spins, D ≫ 1.
Even in the limit of low temperatures, dissipative effects

of the environment can substantially affect both the
prefactor and the exponent in the expression for the
tunneling rate Eq. (21). Instantonic calculus allows us to
take these effects into account consistently in the calcu-
lation of the transition rates (as has been done, e.g., in the
case of tunneling with dissipation in SQUIDs [66]).
However, in the cases relevant to the present study and
discussed in Sec. II, the dissipative corrections in the
exponent of the transition rate will be relatively small.
This happens because the typical separation between the
intrawell energy levels (ΔE0=h≳ 3 GHz, see above) is
much greater than the characteristic level broadening due to
low frequency noise (∼0.5 GHz, see Appendix A [43]) and
than the decay rate due to Ohmic noise (≃ηΔE0 ∼ 0.3 GHz
with η≃ 0.12, Appendix A [43]).

B. Tunneling simulation in the QMC algorithm

In the path-integral QMC algorithm, one introduces an
extra dimension associated with the imaginary time axis in
order to simulate the multispin tunneling phenomenon on a
classical computer, as seen above. This is done by using a
Suzuki-Trotter decomposition and representing the parti-
tion function of the system Z in terms of the path integral

over the spin trajectories σðτÞ ¼ fσjðτÞgNj¼1; see Eq. (9).
These trajectories are periodic along the imaginary time
axis σjð0Þ ¼ σjðβÞ. For each spin j, the set of values
σjðτÞ ¼ �1 form a path component referred to as a
worldline. The time step along the worldline is
Δτ ¼ β=M, where M is the number of Trotter slices
(i.e., the number of spin replicas in the worldline).
Sampling the system states along this extra dimension
introduces an additional overhead in classical computation
that does not exist for the corresponding quantum
dynamics.
The runtime TQMC of the QMC algorithm can be thought

of as a product of three factors:

TQMC ¼ NnsweepsTworldline; ð28Þ

where N is the problem size that is equal to the number
of worldlines. The number of sweeps nsweeps, in general,
depends exponentially on the typical size D of the
cotunneling domain, nsweeps ∝ eαD, where α ¼ αðβÞ also
depends on the inverse temperature β. In cases where
D ¼ OðNÞ, the growth of this factor withN reflects a major
computational bottleneck of QMC and QA. As was shown
recently by some of us [39], the exponent in QMC
calculations and QA is the same for a broad class of
problems.
According to the findings we report in this paper, the

prefactor in nsweeps along with the factors N and Tworldline in
TQMC are significantly different for QMC calculations and
QA. The value of Tworldline we find in our simulations is
given in Eq. (B1). We also find that

nsweeps ≫ 1ns=TQA; ð29Þ

where TQA is the duration of QA and we use a normali-
zation factor of 1 ns, corresponding to the typical time
scale of superconducting QA devices. We expect that the
above relation will remain true even if the scaling of both
quantities with Damin=ℏ is the same.

C. Comparison of QA and QMC results for
the “weak-strong cluster pair” problem

We use the modeling considerations described above to
theoretically compare QA and QMC results in the system
corresponding to the weak-strong cluster pair problem [see
discussion in Sec. II, Fig. 2, and Eqs. (6)–(8)]. Tunneling
in this system corresponds to an avoided crossing between
the two lowest energy levels of the Hamiltonian, shown in
Fig. 5. All other levels lie high above the first two and are
never excited. During tunneling, the total spin of the left
cluster reverses orientation. The number of cotunneling
spins is D ¼ 8 in this case, while the total number of spins
is N ¼ 16.
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Proper analysis of the tunneling probabilities and related
QA success rates should also account for coupling to the
environment. We study the success probabilities in QA for
the 2-cluster problem using the theoretical model devel-
oped in Ref. [35]. The results are summarized in Fig. 6.
Decreasing the temperature of QA compared to the temper-
ature of the D-Wave device suppresses steeply the tran-
sition rates between the states because of the increase in
the reconfiguration energy [35,67,68] (see Fig. 7). This,
together with the suppression from the Boltzman factor in
the transition rates, leads to an increase of the final success
probability p0 to find the ground state. Once the temper-
ature reaches 5 mK, the success probability stays above
90%, even at QA schedules that are faster than TQA ¼
300 ns (cf. Fig. 6).

On the other hand, adiabatic transitions near the avoided
crossing are suppressed even at TQA ≃ 71 ns, as can be
seen from solutions to the time-dependent Schrödinger
equation, shown in Fig. 8.
In the previous studies involving D-Wave devices (see

Ref. [35] for references), it was inferred from the data that
the low-frequency noise components of the spectral den-
sity, providing a leading contribution to the qubit linewidth
W [Eqs. (A1) and (A2)], have effective frequency cutoffs

FIG. 5. Gap of the quantum Hamiltonian for h1 ¼ 0.44 as a
function of the annealing parameter. The solid line is the energy
difference between the ground state and the first excited state. The
avoided crossing at t=TQA ¼ 0.62 corresponds to a minimum gap
of 248 MHz. The next excited state is separated by a gap in excess
of 2 GHz.

FIG. 6. Success probability of QA p0 versus T, given by
theoretical modeling [Eq. (A2)]. Different colors correspond
to different durations of the QA process TQA. Plots corre-
spond to h1 ¼ 0.44.

FIG. 7. Logarithmic plots of the theoretically modeled tran-
sition rateW10ðsÞ versus s after the avoided crossing for different
temperatures. Red, green, mustard, and blue correspond to
T ¼ 12, 8, 6, and 4 mK, respectively. All plots correspond to
h1 ¼ 0.44 and TQA ¼ 20 μs.

FIG. 8. Plots show the results of the solution of the time-
dependent Schrödinger equation for the closed system QA.
Probabilities of occupation of ground state and first excited state
as a function of QA time are plotted with blue and red points,
respectively. The QA time to reach probability of success 0.95
equals 70.9 ns. All plots correspond to h1 ¼ 0.44.
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much below 314MHz (15 mK). In the current QA schedule
of 20 μs, the system spends only a small fraction of this
time in the vicinity of the avoided crossing where thermal
excitations from the ground state are possible. For a QA
schedule duration of ∼100 ns, we expect that the effective
noise strength will be weaker than at the current schedule.
This would lead to the suppression of the thermal excita-
tions from the ground state.
To compare simulations of QA at a temperature of 5 mK

with the QMC performance, we choose a duration of QA
such that the probability to reach the ground state at the
end of QA equals 0.95. As we discuss above, this can be
achieved at

TQA ¼ 71 ns: ð30Þ

In setting up the QMC simulations our objective is to
select the two parameters, number of sweeps per qubit
nsweeps and β, to minimize TQMC for a given probability of
success p0 to find the system at the end of the QA in the
ground state where all spins point down. Essentially, we
need to minimize the product of βnsweeps keeping p0 fixed.
In Fig. 9, we plot the success probability of QMC p0 ¼

p0ðβ; nsweepsÞ as a function of β (inverse temperature) for
different numbers of sweeps. We see that increasing β
increases p0; however, the success probability saturates at
some value

p0ðβ; nsweepsÞ ≤ psat
0 ðnsweepsÞ; ð31Þ

which itself depends on the number of sweeps. The
saturation probability psat

0 ðnsweepsÞ is plotted in the inset
of Fig. 9. By fixing the success probability p0 ¼ 0.95, we
select the optimal number of sweeps. Then, by looking
on the main plot we determine the value of βsat where
saturation occurs. The optimal values are

nsweeps ¼ 23000; β ¼ 32.5: ð32Þ

The total time to update one worldline with the D-Wave 2X
schedule is [see Eq. (11)]

Tworldline ¼ 28.3 μs; ð33Þ

and the total runtime of the QMC calculations per qubit,
according to Eq. (28), is

TQMC

N
¼ 0.65 s: ð34Þ

By comparing this with Eq. (30), we estimate that

TQMC=N
TQA

∼ 107 ðTQA ¼ 71 ns; T ¼ 5 mKÞ: ð35Þ

This ratio will need to be multiplied by the number of
qubits to obtain the overall speed-up factor (e.g., ∼1010 for
1000 qubits).
Implementing fast QA schedules or operating flux qubits

at 5 mK will require improvements in the control elec-
tronics and other elements of the design. Furthermore,
readout will need to be made much faster than in the current
D-Wave devices. However, the estimates we present above
serve to emphasize the significant promise of QA, as
compared to QMC results when the system adiabatic
evolution “under the gap” becomes coherent and thermal
excitations are suppressed.

IV. NUMERICAL STUDIES OF QUANTUM
ANNEALING FOR GENERIC PROBLEMS WITH

RUGGED ENERGY LANDSCAPES

Runtime advantages for the quantum processor we
describe above are only valuable if they extend to problems
of practical interest. While rather obvious, it may we
worth delineating criteria for problems that are suitable
for treatment with a quantum annealer:
(1) Solutions to the problem are valuable or interesting.
(2) The problem is representable on hardware that can

be built in the near future.
(3) Quantum annealing offers a runtime advantage.

A. Number partitioning

A valuable and interesting practical problem is the
number partitioning problem (NPP). The NPP is defined
as follows: Given a set of N positive numbers ða1;…; aNÞ

FIG. 9. Probability of success versus β for QMC with the
D-Wave 2X schedule. Different colors correspond to different
number of sweeps (see legend). The embedded plot shows the
probability of success at saturation for different number of
sweeps. We use periodic boundary conditions, which performed
better than open boundary conditions in this case.
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find a partition P of this set into two groups that minimizes
the partition residue E ¼ jPj∈Paj −

P
j∉Pajj. A partition

P can be encoded by Ising spin variables sj ¼ �1: sj ¼ þ1

if j ∈ P and sj ¼ −1 otherwise. Thus, the NPP cost
function is

EðsÞ ¼ jΩsj; Ωs ¼
XN
j¼1

ajsj; ð36Þ

where s ¼ ðs1;…; sNÞ is a spin configuration and Ωs is a
signed partition residue. Number partitioning is also one of
Garey and Johnson’s six basicNP-hard problems that lie at the
heart of the theory of NP completeness [69]. In studies of the
average-case computational complexity of NPP, one usually
assumes that fa1;…; aNg are independent, uniformly dis-
tributed random numbers in the interval [0, 1). The average-
case complexity of NPP is exponential inN when the number
of bits b used to represent the numbers aj satisfies the
condition b=N ≥ κc ≃ 1 − ð1=2NÞlog2N [70]. Our focus is
on hard instances of NPP, andwewill be studying the random
NPP ensemble with b ¼ N. NPP has many practical appli-
cations including multiprocessor scheduling and the mini-
mization of VLSI circuit size and delay, public key
cryptography, and others (see references in Ref. [71]).
Unfortunately, practically interestingNPP instances cannot

be represented on the current D-Wave 2Xmachine due to two
obstacles: (i) the Ising representation of NPP is fully con-
nected and (ii) the available bit precision of couplers on
D-Wave2X is insufficient for representinganynontrivialNPP
instances. While in principle there are techniques, such as
graph embedding [20], to address these problems, perfor-
mance is likely to be significantly impacted by their usage.
Nevertheless, NPP is attractive for numerical studies because,
for b=N > κc, the typical runtime of all known algorithms
for NPP scales exponentially with large coefficients in the
exponent and often the asymptotic behavior can already be
seen at sizes as low as 20 variables. For our purposes, NPP is a
useful problem to study in the context of quantum annealing
because it possesses extremely rugged energy landscapes
where a single bit flip can result in dramatic energy changes.
Its low-energy band resembles that of the random energy
model as there is almost no correlation between the state
and its energy [72]. The 2N signed partition residues Ω
can be thought of as drawn from the Gaussian distribution

pðΩÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πNha2i

p exp

�
−

Ω2

2Nha2i
�
; ð37Þ

where ha2i ¼ ð1=NÞPN
j¼1 a

2
j . The distribution of the cost

function values E ¼ jΩj is given by 2pðEÞ. By picking a bit
string at random, one gets an average value of the cost
function hEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ha2iN=π

p
. The minimum value of this

cost function is exponentially small, with median value
Emin ∼ hEi2−N [71].

An obvious heuristic algorithm for NPP starts by placing
the largest number in one of the two subsets. The next
largest number is then placed in the set whose elements sum
to the smallest value and this continues until all numbers
are assigned. The idea behind this greedy heuristic is to
keep the discrepancy small with every decision. This gives
the scaling of the resulting partition residue as Oð1=NÞ.
The differencing method of Karmarker and Karp [71], also
called the KK heuristic, is a polynomial time approxima-
tion algorithm. The key idea of this algorithm is to reduce
the size of the numbers by replacing the two largest
numbers by the absolute value of their difference. It has
been proven [73] that the differencing method gives a
minimum residue EKK

min such that

EKK
min ∼ N−α logN; α ¼ 0.72: ð38Þ

The time complexity of both greedy and KK heuristics
is N logN [71]. The residual energies reached by both
methods are much smaller than the average partition
residue hEi, but far greater than the minimum residue
Emin. The absence of efficient heuristics for these hard cases
is a particular feature of NPP. It is attributed to the
extremely rugged energy landscape in the low part of
the energy spectrum [71]. The statistics of the NPP energy
landscape was studied analytically in Ref. [74] and numeri-
cally in Ref. [75].
This type of landscape leads to the exponential complex-

ity of QA for NPP that was obtained in Ref. [74] via direct
solution of the time-dependent Schrödinger equation. We
observe that the particularly challenging instances of NPP
violate the second condition of our “suitability” criteria as
the numbers aj ∈ ð0;…; 2N − 1Þ should be drawn from a
set whose cardinality grows exponentially with N. This
translates to a requirement that the bit precision for the
coupling coefficients Jjk grows as 2N if one were to
express NPP as a quadratic binary optimization problem
with objective function

P
N
jk¼1 ajaksjsk corresponding to

the form Eq. (1) with K ¼ 2. However, for numerical
studies this is not a concern.
Table I shows the runtime behavior of annealing as well

as some more efficient algorithms that achieve asymptoti-
cally better performance by exploiting the existing problem
structure. The relative performance of annealing algorithms
applied to NPP is similar to their relative performance on
the weak-strong cluster networks problem: QA, simulated
using the Schrödinger equation [74], scales better than SA.
This is the case because both problems are characterized
by rugged energy landscapes for which tunneling transi-
tions are a more useful way to reach low-energy states than
thermal transitions.
To achieve such scaling behavior it will be necessary for

the size of the domains of cotunneling qubits to grow with
the problem size. However it is interesting to explore the
problem from a different perspective and ask the question,
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How much can the residual energy be lowered in QA until
the system reaches such a state where lowering the energy
further would require cotunneling of spin domains with
sizes greater than κ?
To answer this question, one can use an algorithm inwhich

one starts at a random initial state and, at each step, (i) looks at
all groupsof bits of size κ and (ii) flips thebits of thegroup that
results in the largest reduction of residual energy and then one
iterates.We call this procedure “algorithmic tunneling” (AT).
In other communities this would be referred to as κ-opt or
large neighborhood search. We emphasize that AT does not
provide any information about the actual system dynamics
during QA, nor the runtime of QA. We investigate AT as an
upper bound on the typical performance of QA. AT does not
consider the entropic component of tunneling events arising
from the statistics of different mechanisms for arriving in the
sameminima. Likewise, AT does not consider how the height
of energy barriers affects tunneling events. However, AT
allows us to develop our intuition about the value of an
optimal tunneling procedure that always finds the lower-
energy solution within a finite Hamming distance.
To investigate the lowest residual energies that AT can

reach, we focus on the conditional distribution of the
signed partition residues Ω0 [Eq. (36)] over all possible
spin configurations fs0g generated from a given (ancestor)
configuration s by simultaneously flipping a fixed number
of spins κ. This conditional distribution was studied in
Ref. [74] and has the form

PκðΩjΩ0Þ ¼ 1
N
κ PðΩÞ

Z
∞

−∞

Z
∞

−∞

dxdx0

8π2
ζðxþ x0Þ

× eiðΩ−Ω0Þx=2eiðΩþΩ0Þx0=2

×
X
J

Y
j∈J

cosðajxÞ
Y
j∉J

cosðajx0Þ; ð39Þ

where PðΩÞ is given in Eq. (37) and ζðsÞ ¼
sinðΔΩs=4Þ=ðΔΩs=4Þ. In the distribution PκðΩ;Ω0Þ, we
average over the residue of the ancestor configuration
within the interval Ωs∈ ½Ω−ΔΩ=2;ΩþΔΩ=2�, where
hEi=ðnκÞ ≪ ΔΩ ≪ Ω.
Near its maximum, the distribution PκðΩjΩ0Þ has the

form (cf. [74])

PκðΩ0jΩÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πNσ2ðqÞ

p exp

�
−
ðΩ0 − qΩÞ2
2Nσ2ðqÞ

�
; ð40Þ

where

σðqÞ ¼ ha2ið1 − q2Þ1=2; q ¼ 1 −
2κ

N
: ð41Þ

For small κ ≪ N, the width of the distribution is approx-
imately

ffiffiffiffiffiffiffiffiffiffiffi
κha2i

p
. After a single step of the AT algorithm,

the average partition residue is reduced by a factor of
1 − 2κ=N. Therefore, once the number of steps of AT far
exceeds N=κ, the algorithm reaches the residues jΩj ≪ffiffiffiffiffiffiffiffiffiffiffi
κha2i

p
. For those residues the distribution becomes

PκðΩ0jΩÞ≃ Pκð0j0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πκha2i
p : ð42Þ

We now apply the results obtained in Ref. [74] to
compare the minimum cost values reached in AT and
the KK heuristic. In total, we have ðNκ Þ samples of the
distribution [Eq. (42)] (spin configurations located on a
Hamming distance κ from the ancestor configuration).
Therefore, the minimum value is given by extreme order
statistics [79]. That is, within the set of bit configurations
fs0g generated from a given (ancestor) configuration s by
simultaneous flipping of a fixed number of spins κ, the
minimum partition energy E is a random variable drawn
from the exponential distribution

p0ðEÞ ¼
1

Eκ
e−E=Eκ ; Eκ ¼

��
N
κ

�
Pκð0j0Þ

�
−1
: ð43Þ

Therefore, average (and median) values of the minimum
partition residue achieved in the AT algorithm are
EAT
minðκÞ ¼ Eκ. For 1 ≪ κ ≪ N, we obtain

EAT
minðκÞ ¼ 4πκha2i

�
κ

N

�
κ

e−κ: ð44Þ

It is instructive to compare the minimum cost values
reached in AT and KK heuristics. Using Eqs. (38) and (44),
we get

EAT
min

EKK
min

∼ Nα logN−κκκe−κ; α ¼ 0.72: ð45Þ

TABLE I. Runtime scaling exponent for different methods to
solve the number partitioning problem. The scaling of simulated
annealing is very poor and is not shown here. This is because for
simulated annealing to work at all it has to be run at very high
temperatures to overcome the enormous energy barriers present
in this problem. However, at these high temperatures, SA behaves
almost like random sampling and, hence, its scaling is almost that
of exhaustive search. The value α ¼ 0.8 for the solution of the
time-dependent Schrödinger equation was initially obtained in
Ref. [74] and is significantly better than the nearly exhaustive-
search behavior of SA. This mirrors the situation we encounter
for the weak-strong cluster networks. We also give references for
the state-of-the-art classical and quantum algorithms.

Method α

Quantum adiabatic algorithm
(time-dependent Schrödinger equation [74]) 0.80
Moduliþ representations [76] 0.337
Moduliþ representationsþ overlap [77] 0.291
Quantumwalkþmoduliþ representations [78] 0.241
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One can see from here that tunneling over barriers of length
κ > α logN allows AT to reach cost values lower than that
of the KK heuristics as N increases.
Consider AT with values of κ that do not scale with N.

We observe that in the asymptotic limit,

N ≫ Nκ ¼
e
κ
expðκ=αÞ; ð46Þ

the KK heuristic produces smaller residues than AT. If we
consider tunneling with κ ¼ 8, corresponding to the case
of the weak-strong clusters we study in this paper, then
Nκ ≃ 22735. We observe that for the high-precision
(B ≥ N) instances, NPP becomes intractable already for
N > 100. Thus, these novel calculations show that for a
broad range of problem sizes AT reaches cost values much
smaller than conventional heuristics. This finding supports
recent claims [51,80] that QA might be advantageous in
achieving superior approximate solutions rather than global
minima.
Motivated by the above observation, we conclude that

asymptotic scaling behavior is not essential for this
analysis. For example, one can choose AT with the barrier
sizes κ ¼ α0 logN, where α0 − α ≫ 1= logN. In this case,
the ratio EAT

min=E
KK
min approaches 0 in the asymptotic limit

N → ∞. However, the length of the barriers remains
relatively small in a very broad range of N. For example,
consider α0 ¼ 1.16. Then, for N ¼ 1000, the barrier length
is κ ¼ 10 while EAT

min=E
KK
min ∼ 10−9.

In summary, a greedy search procedure with flipping at
most κ bits at a time (referred to above as algorithmic
tunneling) allows us to find cost values in NPP that are
much below those given by the KK heuristic for κ ∼ 10 at
all realistic values of N. However, while the KK heuristic
terminates in just OðN logNÞ time [71], the time complex-
ity of AT is exponential in κ. Nevertheless, it would be
interesting to compare the minimum residue obtained by
AT with the minimum residues obtained by the KK
heuristic and the algorithms in Table I when all of them
are constrained to terminate in polynomial time.

B. Designing future annealers of practical relevance

Our current best candidate for a problem class that
fulfills all three criteria consists of Kth-order binary
optimization problems with K > 2. Kth-order binary opti-
mization is NP hard and occurs naturally in many engineer-
ing disciplines and many computational tasks. In
unpublished work under way, we seek to establish that
for many K-local problems, QA indeed offers a runtime
advantage over SA. Currently we are focusing on
K ∈ f4; 5; 6g. As energy landscapes get more rugged with
higher K, our conjecture is that we will see larger subsets
of instances for which QA runs faster as K increases.
However, representing K-body terms in hardware becomes
more challenging as K grows.

Should numerical studies confirm that QA offers a
substantial runtime advantage, there is still one more hurdle
to overcome. We need to ensure that K-local problems can
be economically represented in hardware. We would like to
be able to tell a user “If you have a binary optimization
problem with N variables and L terms, and the many-body
order of the highest term is K, then you can send this
problem to the quantum annealing coprocessor.” However,
annealers built to date support only pairwise qubit cou-
plings, i.e., K ¼ 2. Two routes have been proposed to
increase the locality.
One route is to build physical K-body couplers. However,

it may prove difficult to lay out K-local couplers on a two-
dimensional chip or even in layered architectures. Of course,
the general case in which one aims to implement all possibleP

K
k¼1

N
k couplings will be infeasible. While many applica-

tions will necessitate only L ¼ OðNÞ coupling terms, this
could still prove challenging. Furthermore, economically
embedding problems in a fixed graph with only a limited
number of specific K-local terms may prove difficult.
Another possibility is that we could use logical embed-

dings that map K-local problems to 2-local problems. A
new proposal on how to accomplish such embeddings has
been put forth [81], which has reinvigorated interest in this
direction. Our main worry regarding any reduction to
quadratic problems is that this will involve ancillary qubits.
As we argue, it is crucial that the problem features tall and
narrow barriers for tunneling transitions to contribute,
and the introduction of additional variables may cause
these barriers to become wider. This makes purely thermal
annealing more competitive and may negate gains seen in
the numerics prior to embedding.

V. SUMMARY

It is often quipped that simulated annealing is only for
the “ignorant or desperate.” Yet, in our experience we find
that lean stochastic local search techniques such as SA are
often very competitive and they continue to be one of the
most widely used optimization schemes. This is because for
sufficiently complex optimization tasks with little structure
to exploit (such as instances of Kth-order binary optimi-
zation) it often takes considerable expert effort to devise a
faster method. Therefore, we regard SA as the generic
classical competition that quantum annealing needs to beat.
Here, we show that, for carefully crafted proof-of-

principle problems with rugged energy landscapes that
are dominated by large and tall barriers, QA can have a
significant runtime advantage over SA. We find that for
problem sizes involving nearly 1000 binary variables,
quantum annealing is more than 108 times faster than
SA running on a single core. We also compare the hardware
to the QMC method. While the scaling of runtimes with
size between these two methods is comparable, they are
again separated by a large factor sometimes as high as 108.
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For higher-order optimization problems, rugged energy
landscapes will become typical. As we see in our experi-
ments with the D-Wave 2X, problems with such landscapes
stand to benefit from quantum optimization because
quantum tunneling makes it easier to traverse tall and
narrow energy barriers. Therefore, we expect that quantum
annealing might also deliver runtime advantages for prob-
lems of practical interest such as Kth-order binary opti-
mization with larger K.
More work is needed to turn quantum enhanced opti-

mization into a practical technology. The design of next-
generation annealers must facilitate the embedding of
problems of practical relevance. For instance, we would
like to increase the density and control precision of the
connections between the qubits as well as their coherence.
Another enhancement we wish to engineer is to support the
representation not only of quadratic optimization but of
higher-order optimization as well. This necessitates that not
only pairs of qubits can interact directly but also larger sets
of qubits. Such improvements will also make it easier for
end users to input hard optimization problems.
The work we present here focuses on the computational

resource that is experimentally most accessible for quantum
annealers: finite-range tunneling. However, this analysis is
far from complete. A coherent annealer could accelerate
the transition through saddle points, an issue slowing down
the training of deep neural networks, for reasons similar
to those that make a quantum walk spread faster than a
classical random walker [82–84]. It could also dramatically
accelerate sampling from a probability distribution via the
mechanism of many-body delocalization [85]. The com-
putational value of such physics still needs to be properly
understood and modeled.
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APPENDIX A: QUANTUM ANNEALING
RESULTS FOR WEAK-STRONG CLUSTER

PROBLEM WITH 16 QUBITS

We developed a detailed modeling of the quantum
annealing process and incoherent multiqubit cotunneling
for the weak-strong cluster problem in Ref. [35]. Using a
noise model with experimentally measured parameters for
the D-Wave 2X processor, we numerically verified that the
spins arrive at the energetically more favorable configura-
tion via multiqubit tunneling. In the following, we refer to
the modeling in Ref. [35] for the details.
In the present study, we apply this detailed model for the

new schedule functions AðsÞ, BðsÞ (see Fig. 10) and for the

new values of the noise parameters, linewidth W, Ohmic
coefficient η, and temperature of the device T for the
D-Wave 2X processor. The noise parameters are measured
near the end of the quantum annealing schedule, s ¼ 1.
The values of the noise parameters at a point during the
annealing can be related to the measured ones (see
Appendix A 5 in Ref. [35]):

½WðsÞ=WMRT�2 ¼ η=ηmRT ¼ BðsÞ=Bð1Þ;
WMRT ≃ 661 MHz; ηMRT ≃ 0.12; T ≃ 12 mK:

ðA1Þ

The population p0ðtÞ of the ground state during the QA
process obeys the equations

dp0

dt
¼ −½W01ðsÞ þW10ðsÞ�p0ðsÞ þW10ðsÞ;

W01ðsÞ
W10ðsÞ

¼ e−Δ10ðsÞ=kBT; Δ10ðsÞ ¼ E1ðsÞ − E0ðsÞ;

ðA2Þ

whereWjkðsÞ is a transition rate from the state j to the state
k whose explicit form is given in Ref. [35]. The transition
rateW10ðsÞ decays very fast after the avoided crossing (see
Fig. 7) because the weak cluster (left cluster in Fig. 2)
becomes progressively more polarized along the z axis and
the effective size of the tunneling domainD ¼ DðsÞ grows.
This gives rise to the multiqubit “freezing phenomenon,”
where the system population gets partially trapped in the
excited state after a certain value of s in later stages of QA
[35]. Figure 11 shows the ground-state population given by
the solution of Eq. (A2). The success probability to be at the
ground state at the end of the annealing is p0 ¼ 0.85, which
is close to the experimentally observed mean value of 0.9. It
is seen that the equilibrium population of the ground state

FIG. 10. Schedule functions for D-Wave 2X chip. The
annealing parameter is s ¼ t=TQA for time t and total annealing
time TQA.
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exceeds the actual population for s≳ 0.64, corresponding
to the onset of freezing of the transition rates.
We note that if the effective temperature of the qubit

environment can be lowered, then the QA success rates
can be made sufficiently high using much faster annealing
durations, as shown in Fig. 6.

APPENDIX B: D-WAVE VERSUS QUANTUM
MONTE CARLO METHOD WITH

LINEAR SCHEDULE

There is ongoing work directed to optimize the QMC
parameters further. In preliminary results, we compare the
QMC method with a linear schedule against D-Wave [86].
The transverse field in this case is lower, resulting in a faster
time Tworldline to update a worldline (Tworldline scales linearly
with the transverse field). We measure this time to be

Tworldline ¼ βð115 nsÞ: ðB1Þ

This time is consistent with the one reported in Ref. [12].
We also take a different approach when optimizing β

and the number of sweeps per run to minimize the total
computational effort. In the case reported in Sec. II B, we
optimize the number of sweeps for each quantile at fixed
β ¼ 10. In the case of a linear schedule, we use our
knowledge of the structure of the weak-strong cluster
networks problem to optimize β and the number of sweeps

nsweeps concurrently. We first measure the probability of
success pðnsweeps; βÞ for a single weak-strong cluster pair.
Then we estimate the performance for the cluster network
problems taking into account the number of cluster pairs c
for each size. The estimate is

total time ∝ nsweepsβ⌈
logð1–0.99Þ

log½1 − pðnsweeps; βÞc�
⌉:

Here, we also run with OBC in imaginary time. We
estimate an optimal β ¼ 130 for all sizes. We then optimize
the number of sweeps for each quantile and size running
the actual benchmark. Finally, we modifiy the path-integral
QMC code to search for the minimum energy configuration
along all replicas at the end of the annealing.
The results, following the same methodology as in

Sec. II B, are plotted in Fig. 12. We obtain a prefactor
∼106 for the median and up to ∼108 for the 85th quantile.
When optimizing the QMC code to the extent performed

here, a methodological concern arises. Since the QMC code
has many parameters and modes of execution (e.g., temper-
ature, number of sweeps, annealing schedule, open versus
closed boundary conditions in imaginary time, discrete or
continuous time Monte Carlo method), overlearning can
become an issue when working with just 100 instances.
Moreover, optimizations over many parameters will

FIG. 11. Simulation of the probability of occupation of the
ground state during the theoretically modeled QA process is
shown with a solid black line. The red dashed line gives the
equilibrium population of the ground state. Results are given at
T ¼ 12 mK and h1 ¼ 0.44. The dashed red line gives the
equilibrium population of the ground state. The simulated
quantum annealing time is tQA ¼ 20 μs.
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FIG. 12. Time to find the optimal solution with 99% probability
for different problem sizes. We compare the QMC method with a
linear schedule and the D-Wave 2X. To assign a runtime for the
QMC code, we take the number of worldline updates that are
required to reach a 99% success probability and multiply that
with the time to perform one update on a single state-of-the-art
core. Shown are the 50th, 75th, and 85th percentiles over a set of
100 instances. The error bars represent 95% confidence intervals
from bootstrapping. The runtimes for the higher quantiles for the
larger problem sizes for the QMC method were not computed
because the computational cost was too high.

VASIL S. DENCHEV et al. PHYS. REV. X 6, 031015 (2016)

031015-16



become computationally prohibitive as the problem size
increases. By contrast, the current quantum hardware has
only a single parameter that can be tuned: the number of
annealing sweeps.
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