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We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous
for applications in quantum memories, communication, and scalable computation. These “binomial
quantum codes” are formed from a finite superposition of Fock states weighted with binomial coefficients.
The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic
creation and annihilation operators, including amplitude damping and displacement noise as well as boson
addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform
approximate quantum error correction to any given order in the time step between error detection
measurements. We present an explicit approximate quantum error recovery operation based on projective
measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain
errors by means of measurements of the generalized number parity. We discuss optimization of the
binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable
error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer
the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to
correct other errors. Our codes are similar in spirit to “cat codes” based on superpositions of the coherent
states but offer several advantages such as smaller mean boson number, exact rather than approximate
orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic
mode. The binomial quantum codes are realizable with current superconducting circuit technology, and
they should prove useful in other quantum technologies, including bosonic quantum memories, photonic
quantum communication, and optical-to-microwave up- and down-conversion.
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I. INTRODUCTION

Continuous-variable quantum information processing
using bosonic modes [1–8] offers an attractive alternative
to two-level qubits. In practice, hybrid systems containing
fixed qubits, photons trapped in resonators, as well as
flying photon qubits will likely be essential to realistic
architectures for quantum computation and communication
[9–11]. There is current interest in novel schemes for
robustly encoding quantum information in bosonic modes
[12–22]. In particular, early work by Chuang et al. [12]
developed two-mode bosonic codes that can protect quan-
tum information against amplitude damping of the bosonic
field. This paper presents a new class of codes that are
similar but have two distinct advantages: They require only
a single bosonic mode (not two with identical decay rates),

and they can correct other errors, e.g., dephasing in addition
to amplitude damping. Our codes are also similar in spirit
to the “cat codes” [16–19] and indeed asymptotically
approach them in certain parameter limits. However, our
codes require a smaller mean boson number to achieve a
given fidelity and are defined in a finite Hilbert space,
making explicit construction of the required unitary oper-
ations more straightforward.
Besides extending the lifetimes of bosonic qubits or

quantum memories, we describe how such codes could be
useful in increasing the fidelity of quantum communica-
tion and remote entanglement between hardware modules
through photon “pitch and catch” protocols [23–25] as
well as in improving the fidelity of communication based
on reversible microwave-to-optical state conversion [26].
In general, a bosonic mode can refer to an electromag-
netic, magnetic, or mechanical mode. However, the most
likely implementations in the short term are photonic, so
throughout this paper, we use the term photon rather than
the more general boson, for simplicity. These codes are
of general interest for quantum information processing,
but we place particular emphasis on the possibility of
realizing them and the Chuang et al. code [12] using
superconducting qubits dispersively coupled to micro-
wave resonators. Given the remarkable experimental
progress in circuit QED in the last decade [9,10], such
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codes are ideally suited for this architecture and should be
feasible with current technology.
Superconducting qubit phase coherence times have risen

some 5 orders of magnitude and can now reach about
100 μs in 3D cavity geometries [27,28] and up to about
40 μs in planar geometries [29–31]. Superconducting
microwave resonators are simpler than Josephson-
junction-based qubits and can readily be constructed to
have lifetimes even longer than the best qubits [10,32–35].
It is therefore interesting to consider the possibility of using
microwave resonators as qubits or as quantum memories.
Experimental capabilities to arbitrarily control the quantum
state of a hybrid cavity-qubit system are now so advanced
[36–44] that it is time to take the next step and develop
optimal quantum error-correction (QEC) codes that
further extend the lifetimes of photonic quantum bits and
memories.
Because a resonator mode is a simple harmonic oscillator

with equidistant level spacing, the only quantum states that
can be accessed via classical linear drives are simple
coherent states. To create more useful quantum super-
positions of photon Fock states which can store quantum
information, it is necessary to couple the bosonic mode
to a nonlinear element, e.g., a superconducting qubit
[41,42], a trapped ion [45–48], or a Rydberg atom
[32,33]. Experiments have demonstrated coherent mapping
of a superconducting qubit state onto the corresponding
coherent superposition of 0 and 1 photons in a resonator
[36] and the creation of more complex superpositions [37].
Later experiments with superconducting qubits and cavities
demonstrated the ability to transfer the qubit state into
the cavity for a period of about 750 μs, much longer than
the qubit lifetime, and then return it to the qubit prior to
verification via process tomography [35]. Remarkably, it is
also now possible to make quantum nondemolition mea-
surements of photon number parity [39], which can be used
to greatly simplify the measurement of Wigner functions
[32,38,39]. Such parity measurements are utilized as the
error syndrome measurement in cat codes [17,18,39] and
will be used in some of the codes presented here. More
generally, by employing optimal control pulses [49,50] for
engineering the driving terms of both a harmonic oscillator
and a coupled nonlinear element, one can realize arbitrary
unitary operations for the full system with high experi-
mental fidelity [41–44]. The practicality of the codes
presented here relies on recent experimental progress in
realizing this arbitrary unitary control.
Rudimentary QEC protocols have been successfully

carried out in ion traps [45,47,48], with nuclear magnetic
resonance [51–53], nitrogen-vacancy centers in diamond
[54,55], Rydberg atoms [33], and superconducting qubits
[56–59]. However, it is difficult to reach the “break-even
point,” where the coherence time of the logical qubit
exceeds the lifetime of the constituent physical qubits.
This has recently been achieved in cavity photonic logical

qubits [44] against photon loss errors and in nitrogen-
vacancy centers in diamond [60] against dephasing errors.
For qubit-based technologies, reaching the break-even
point is challenging because it takes N ¼ 5 physical qubits
for the smallest possible code [61–64], N ¼ 7 qubits for the
Steane code [65], and N ¼ 9 qubits for the Shor code [66].
If the errors are uncorrelated single-qubit errors, the bare
error rate is N times faster than for a single qubit. Thus, the
quantum error-correction protocol must overcome this
factor of N in order to reach the break-even point. If the
errors are highly correlated, e.g., in the case of uniform
magnetic field fluctuations in an ion trap, there may exist a
decoherence-free-subspace encoding which will be advan-
tageous [47,64,67–69]. To date, there is no evidence that
correlated errors are a significant problem for well-shielded
superconducting qubits.
Another potential advantage of resonators is that the

error model appears to be very simple. The dominant
source of decoherence is the energy loss of the cavity as it
slowly emits photons into its output and input ports. The
cavity energy ring-down rate κ is the analog of 1=T1 for a
qubit. To date, there is no evidence of dephasing errors
associated with frequency fluctuations of 3D metallic
superconducting cavities, though dephasing has been seen
in coplanar waveguide resonators by the Zmuidzinas group
[70] and attributed to two-level systems in the dielectric
substrate. However, dispersive coupling of a qubit to a
resonator will introduce random fluctuations of the cavity
frequency associated with T1-state-change events in the
qubit [35]. Additionally, there can be, for example, energy
leakage from the driven ancillary qubit to the resonator
that can be the result in photon gain errors. We focus on
correcting cavity photon loss errors, but the constructed
codes can also be protected against dephasing and photon
gain errors as well.
The paper is organized as follows. In Sec. II, we

introduce quantum error correction against discrete photon
loss, photon gain, and dephasing errors through simple
bosonic single-mode codes. These are generalized to
binomial quantum codes in Sec. III. Next, we consider
realistic continuous-time dissipative evolution under these
errors. Since the continuous-time evolution introduces an
infinite set of errors even during a finite time step, exact
quantum error correction is impossible. In Sec. IV, we
prove our main result—the binomial quantum codes can
perform approximate quantum error correction to any given
order in time step for realistic continuous-time dissipative
evolution. We introduce an explicit and experimentally
relevant recovery process. In the remainder of the paper, we
analyze the performance of the codes, present comparisons
to related preexisting codes, and discuss applications in
quantum communication and as logical qubits, respec-
tively, in Secs. V–VIII. Further improvements and an
overall discussion of the binomial codes are presented in
Sec. IX before the summary and conclusion of Sec. X.
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II. QUANTUM ERROR CORRECTION AGAINST
PHOTON LOSS, GAIN, AND DEPHASING ERRORS

The generic task of quantum error correction is to find
two logical code words—a qubit—embedded in a large
Hilbert space. The code words are required to be robust
such that if any one of the single, independent errors
Êk ∈ Ē occurs, no quantum information is lost and any
quantum superposition of the logical code words can be
faithfully recovered. This is equivalent to finding two
logical code words jWσi, where σ ¼ ↑;↓, which satisfy
the quantum error-correction criteria [64,71], known also as
the Knill-Laflamme conditions [62,72],

hWσjÊ†
lÊkjWσ0 i ¼ αlkδσσ0 ; ð1Þ

for all Êl;k ∈ Ē such that αlk are entries of a Hermitian
matrix and independent of the logical words. The inde-
pendence of entries αlk from the logical code words and the
structure of the nondiagonal entries guarantee that the
different errors are distinguishable and correctable.
We consider a damped harmonic oscillator suffering

from photon losses. Our intention is to design logical code
words which are embedded in the Hilbert space of the
harmonic oscillator and protected up to L photon loss
events occurring in the time interval δt between two
consecutive quantum correction stages. The set of discrete
errors is ĒL ¼ fÎ; â; â2;…âLg [73]. We will see that
satisfying the conditions (1) for these errors is sufficient
to produce a code that is systematically correctable up to a
given order in κδt under the full amplitude damping
operators. Here, our primary focus is on photon loss errors.
Later, we will discuss correcting photon gain â† and
dephasing errors n̂.
Suppose we restrict our attention to the lowest 2M Fock

states of a single mode of a resonator. This Hilbert space is
the same size as that for M qubits, and if one had complete
control over it, one could imagine having a kind of
hardware shortcut in which a single resonator mode
replaces a complex of M physical qubits to form one or
more logical qubits [10]. Notice that increasing the size of
the Hilbert space does not increase the number of error
channels or the minimal number of error syndromes.
Consider the following simple encoding of M qubits into
the state of the resonator. The 2M Fock states cover photon
numbers 0; 1;…; ð2M − 1Þ. Let photon Fock state jni
be represented by jni ¼ jbnM−1b

n
M−2…bn1b

n
0i, where

bnM−1b
n
M−2…bn1b

n
0 is the binary representation of the num-

ber n. The jth binary digit represents the eigenvalue
ð1þ σ̂zjÞ=2 for the corresponding “physical qubit.” This
appears to be a very simple and satisfactory encoding, but
consider what happens when the n ¼ 8 state (say) loses a
single photon âj1000i ¼ ffiffiffi

8
p j0111i. What seems to be a

simple error model in terms of photon loss actually
becomes a model with correlated multiqubit errors.

Hence, typical quantum error-correction schemes based
on models of independent single qubit errors cannot be
easily transferred to this problem [63,64]. Because the
mean photon loss rate κhâ†âi scales exponentially with
M, we focus here on representing a single logical qubit
using a small number of states in the cavity to permit error
correction.
An example of a code protecting against Ē1 ¼ fÎ; âg is

jW↑i ¼
j0i þ j4iffiffiffi

2
p ; jW↓i ¼ j2i: ð2Þ

A photon loss error brings the logical code words to a
subspace with odd photon numbers that is clearly disjoint
from the even-parity subspace of the logical code words.
Therefore, the off-diagonal parts of the quantum error-
correction matrix (1) α are identically zero. The remaining
diagonal part of α requires that the mean photon number is
identical for both of the states, here n̄ ¼ hWσjn̂jWσi ¼ 2.
This means that the probability of a photon jump to
occur (or not to occur) is the same for both of the states,
implying that the quantum state is not deformed under an
error. Explicitly, if a quantum state jψi ¼ ujW↑i þ vjW↓i
suffers a photon jump, it is transformed to jψ1i ¼
âjψi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jâ†âjψi

p
¼ ujĒ1

↑i þ vjĒ1
↓i, where jĒ1

↑i ¼ j3i
and jĒ1

↓i ¼ j1i denote the error words. The quantum
information (the complex coefficients u and v) is not
deformed.
In the optical regime, the photon loss error can be

detected by an external photodetector. This is not yet
practical in the microwave regime, but fortunately, we
have the capability of very high fidelity quantum non-
demolition measurements of the photon number parity
[39]. The original state is recovered by a unitary operation
Û1 that performs the state transfer jĒ1

σi ↔ jWσi; see
Appendix A for details. Correcting a nonunitary error with
a unitary operation works only because it is conditioned on
the detection outcome of the particular error. Notice that the
code (2) is similar to a code developed in Ref. [12] by
Chuang et al. for a multimode system. Our code has the
important advantages of requiring only a single bosonic
mode and having a rate for uncorrectable errors that is
smaller by a factor of 3 (see Sec. VI).
Generalizations of the code (2) are possible, for example,

jW↑i¼
j0iþ ffiffiffi

3
p j6i
2

; jW↓i¼
ffiffiffi
3

p j3iþj9i
2

: ð3Þ

In addition to the logical words having the same mean
photon number, the error words jĒ1

σi ¼ âjWσi=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hWσjâ†âjWσi

p
, jĒ1

↑i ¼ j5i and jĒ1
↓i ¼ ðj2i þ j8iÞ= ffiffiffi

2
p

also have the same mean photon number. Thus, the code
can tolerate another photon loss error, and the protected
error set is Ē2 ¼ fÎ; â; â2g. The photon loss errors are
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detected by measuring photon number mod 3; see
Appendix A. The error recovery procedure is similar to
that above: An error detection is followed by a unitary
operation performing a state transfer jWσi ↔ jĒk

σi. The
error-correction matrix α for the code (3) is diagonal
because of the sufficiently large spacing of the occupied
Fock states in the logical words such that photon loss errors
âl, l ≤ 2, cannot lead to overlap of the error words.
Frequency fluctuations of the cavity [i.e., noise ξðtÞ

coupling to the photon number, ξðtÞn̂, for example, by
transitions of a dispersively coupled ancilla qubit [35]]
cause dephasing of the quantum memory. In the limit of
fast Markovian noise, the effect of fluctuations is well
approximated by a Lindblad dissipator with a jump
operator

ffiffiffi
γ

p
n̂, where γ is the dephasing rate. Even in the

case of non-Markovian noise, the errors take the form
ÛðδtÞ ¼ exp (− i

R
δt
0 ξðτÞdτn̂). For small enough time steps

δt, this error can be expanded as a superposition of n̂k

operators. Thus, in both cases, protection can be achieved
by considering the operator n̂ and its higher powers. In
what follows, we refer to these operators as dephasing
errors.
Because of the spacing of the Fock states and the

properties of bosonic operators, the code (3) also protects
against a dephasing error n̂; thus, the full error set is
Ē2 ¼ fÎ; â; â2; n̂g. Since the dephasing error does not
change the photon number, it leads to an error state
jψni ¼ n̂jψi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jn̂2jψi

p
,

jψni¼u

ffiffiffi
3

p jW↑i− jĒn
↑i

2
þv

ffiffiffi
3

p jW↓i− jĒn
↓i

2
; ð4Þ

which is a superposition of the original words and the error
words related to the dephasing jĒn

↑i ¼ ð ffiffiffi
3

p j0i − j6iÞ=2
and jĒn

↓i ¼ ðj3i − ffiffiffi
3

p j9iÞ=2. The only way to detect the
dephasing error is to make projective measurements into
the logical word basis P̂W ¼ P

σjWσihWσj, and if the
answer is negative and no photon loss errors were detected,
the original state is recovered by making a unitary operation
performing a state transfer jĒn

σi ↔ jWσi. Remarkably, such
complex operations applied to a cavity-ancilla qubit system
are now technically feasible [41–44].
The code (3) can instead be chosen to be protected

against errors Ē0
2 ¼ fÎ; â; â†; n̂g since a photon gain error

and two-photon loss errors have the same change in the
photon number mod 3 and the logical code words already
obey the quantum error-correction condition for the
photon gain error: hWσjââ†jWσ0 i ¼ ðn̄þ 1Þδσσ0 . As a
special case, one can choose to protect only against Ē0

1 ¼
fÎ; â; n̂g achieved by the same Fock-state coefficients as
with the code (3) but with spacing of the code (2):

jW↑i ¼
j0i þ ffiffiffi

3
p j4i
2

; jW↓i ¼
ffiffiffi
3

p j2i þ j6i
2

: ð5Þ

The relationship between codes (3) and (5) arises from
a general structure, which we exploit in the next
section.

III. BINOMIAL QUANTUM CODES

We now generalize the above codes to protect against the
error set,

Ē ¼ fÎ; â; â2;…; âL; â†;…; ðâ†ÞG; n̂; n̂2;…; n̂Dg; ð6Þ

which includes up to L photon losses, up to G photon
gain errors, and up toD dephasing events. We have found a
simple class of codes which can correct such an error set,

jW↑=↓i ¼
1ffiffiffiffiffiffi
2N

p
X½0;Nþ1�

p even=odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N þ 1

p

�s
jpðSþ 1Þi; ð7Þ

where the spacing is S ¼ Lþ G, maximum order
N ¼ max fL;G; 2Dg, and the range of the index p is from
0 to N þ 1. The two-parameter ðN; SÞ code space is shown
in Fig. 1. Because the Fock-state coefficients involve
binomial coefficients, we refer to this class as the binomial
codes.
The spacing between the occupied Fock states is Sþ 1

such that the correctable L photon loss and G gain errors
can be uniquely distinguished by measuring photon
number modulo Sþ 1, which we call “generalized parity”
here. The quantum error-correction conditions (1) require
that hWσjðâ†ÞlâljWσi, for all l ≤ maxfL;Gg, is equal for
the two logical code words. Satisfaction of Eq. (1)
guarantees that the quantum state is not deformed under
an error and also implies the existence of a recovery
process—the detectable errors can be recovered using
unitary operations. By using commutation relations,
it is equivalent to require that hWσjn̂ljWσi, for all
l ≤ maxfL;Gg, be equal for the two logical code words,
just as the mean photon numbers of the logical code
words (2) were required to be equal. A straightforward
way of seeing that expectation values for moments of the
photon number are equal is to recall the binomial formula
and consider the difference

Δl ¼ hW↑jn̂ljW↑i − hW↓jn̂ljW↓i

¼ ðSþ 1Þl
2N

XNþ1

p¼0

�
N þ 1

p

�
plð−1Þp

¼ ðSþ 1Þl
2N

�
x
d
dx

�
l
ð1þ xÞNþ1

����
x¼−1

: ð8Þ
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The derivative on the last line preserves at least one
(1þ x) in each of the terms of the above polynomial such
that Δl ¼ 0 for all l ≤ N ¼ maxfL;Gg; see Appendix B.
It should be noted that the coefficients of the Fock states
in the code words (7) are independent of the spacing
Sþ 1. The spacing between occupied Fock states enables
the detection of photon loss errors. The values of the Fock
state coefficients are determined by balancing the
moments of the photon number distribution so that the
rate of errors is the same for all logical states.
The basis of the two logical code words can be

generalized to d logical code words, a so-called “qudit,”

by utilizing extended binomial coefficients

�
N þ 1

p

�
d

[74,75] (defined in Appendix C; these are also called
polynomial coefficients [76]),

jWii¼
1ffiffiffiffiffiffi
dN

p
X½0;pm�

p¼imod d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Nþ1

p

�
d

s
jpðSþ1Þi; ð9Þ

where i ¼ 0; 1;…; d − 1 and pm ¼ ðd − 1ÞðN þ 1Þ. By
using a similar argument as with the binomial qubit codes
in Eq. (8), one can show that the photon number moments

are equal for all of the d code words; see details in
Appendix C. In what follows we, for simplicity, concen-
trate on the binomial qubit codes, but all the results can be
extended to the binomial qudit codes as well.
For measuring photon number mod Sþ 1, the mode

needs to be coupled to an ancillary system, either a
superconducting qubit [41,42], a trapped ion [45–48],
or a Rydberg atom [32,33]. With superconducting circuits,
the parity could be measured by utilizing the strong
dispersive coupling between the cavity and the ancillary
qubit and by using number selective coherent drives
similar to the demonstrated quantum nondemolition parity
measurement [38,39,41,42]; see Appendix A. Encoding
the different outcomes of a multivalued measurement,
such as S ≥ 2, in the higher excited states of the ancillary
qubit would allow single-shot measurements. An alter-
native is to do S sequential measurements with a two-
level qubit.
Dephasing errors result in mutually nonorthogonal error

states, for which the quantum error-correction matrix is
nondiagonal but Hermitian. For that reason, to detect and
recover those errors, one needs to make projective mea-
surements in an orthonormalized basis, as with the code (3).
After the detection of an error, the original state is
recovered by a unitary operation performing a state
transfer between the subspaces of the error and logical
code words.

A. Errors correctable by binomial codes

The binomial code coefficients were derived using the
requirement of being able to correct the photon loss or
gain errors. Considering only photon loss errors, the
parameter Lþ 1 can be interpreted as the distance of
the binomial quantum codes since it is the minimum
number of â operators needed for mixing the two code
words. Inclusion of dephasing errors makes the quantum
error-correction matrix (1) nondiagonal, but it automati-
cally follows from the binomial coefficients that dephas-
ing errors up to order ⌊maxfL;Gg=2⌋ are also corrected
by these codes. The highest degree of dephasing protec-
tion n̂D does not need to be limited to the value set by
the photon loss or gain protection. By increasing the
length N of the binomial code words, D can be increased
without a limit. This gives the maximum order as
N ¼ maxfL;G; 2Dg. Note also that since the binomial
codes are protected against any one of the errors from
the error set (6), they are also protected against any errors
that are superpositions of these. Such errors include, for
instance, displacement “unitary” errors

D̂ðβÞ ¼ exp ðβâ† − β�âÞ ð10Þ

for small unknown β. More precisely, a binomial code
with given values of N, L, and G satisfies

FIG. 1. Two-parameter ðN; SÞ space of the binomial codes (7).
The largest blue circle denotes the code (2) protected against a
photon loss error L ¼ 1, the blue square is the code (3) protected
against Ē2 ¼ fÎ; â; â2; n̂g or Ē0

2 ¼ fÎ; â; â†; n̂g, and the green
diamond denotes the code (5) protected against Ē0

1 ¼ fÎ; â; n̂g.
The parameter S ¼ LþG sets the total number of detectable
photon loss L and gain G errors. The parameter N sets the
maximum order the code is protected against photon loss, gain,
and dephasing errors, N ¼ max fL;G; 2Dg. The codes denoted
with blue have protection against photon loss and gain errors set
by S ¼ LþG, and in addition, they are protected against
dephasing up to n̂⌊maxfL;Gg=2⌋. The codes denoted with red allow,
in addition, heralding of S − 2N uncorrectable photon loss or
gain errors. The codes denoted with green are protected against a
total of S photon loss and gain errors, as well as against up to n̂N=2

dephasing errors. In the limit N → ∞, the binomial codes
asymptotically approach the 2ðLþ 1Þ-legged cat codes [17–
19] protected against L photon loss errors.
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hWσjðâ†Þnþ ân− jWσ0 i ¼
�
0 if nþ ≠ n−;

αnþδσσ0 if nþ ¼ n− ≤ N;
ð11Þ

where jnþ − n−j ≤ Gþ L, with nþ; n− ≥ 0, and the αnþ
are constants. In particular, if the condition is satisfied for
some values of nþ and n−, it is satisfied for all smaller
values. This property means, for example, that the code
can correct all errors of the form

Âi ¼
X
jk

ξðiÞjk ðâ†Þjâk; ð12Þ

if all nonzero ξðiÞjk satisfy 0 ≤ j − k ≤ G, 0 ≤ k − j ≤ L,
and jþ k ≤ N. When choosing a code, the minimum
value of N is determined by the term with the largest total
number of â and â† operators. The parameter L (G) is
given by the error term that causes the largest overall
decrease (increase) in excitation number. For example, to
correct Â ¼ â† þ n̂2 requires G ≥ 1 from the first term,
N ≥ 2 from the second term, and L ≥ 0, as there are no
number-decreasing terms.

IV. APPROXIMATE QUANTUM ERROR
CORRECTION UNDER CONTINUOUS-TIME

DISSIPATIVE EVOLUTION

Up to now, we have assumed that the cavity is subject to
a finite set of discrete errors. In fact, the cavity evolves
continuously in time. For example, the standard Lindblad
time evolution of a density matrix ρ̂ of a cavity coupled
to a zero-temperature bath with a cavity energy decay
rate κ (represented in the frame rotating at the cavity
frequency), is

dρ̂ ¼ κdt

�
â ρ̂ â† −

â†â
2

ρ̂ − ρ̂
â†â
2

�
: ð13Þ

In a finite time interval δt, continuous-time evolution
results in an infinite set of possible errors. Exact quantum
error correction of the full set of errors is not possible.
However, the probabilities of the errors scale with powers
of κδt, and we can choose to correct only the most
important errors in κδt. Formally, we exploit the notion
and theory of approximate quantum error correction
[21,77–84]. We expand each error operator in powers of
κδt and choose to correct up to a given highest order. It is
then enough to satisfy the quantum error-correction criteria
(1) only approximately such that the original state can be
recovered with an accuracy given by the same highest order
in κδt.
Initially, we consider only photon loss errors due to

cavity damping and extend the discussion for photon gain
and dephasing processes later. One can “unravel” the
Lindblad equation (13) for photon loss errors by consid-
ering the conditional quantum evolution of the system

based on the measurement record of a photomultiplier that
clicks whenever a photon leaks out of the cavity. In this
quantum trajectory picture [85], one views the first term in
Eq. (13) representing the photon loss jump of the system
when the detector clicks ρ̂ → â ρ̂ â†. This is not normalized
because it includes the fact that the click probability is
proportional to Trðâ ρ̂ â†Þ ¼ n̄. The last two terms inside
the brackets represent time evolution of the system under
the non-Hermitian Hamiltonian V̂=ℏ ¼ −iðκ=2Þâ†â when
no photons are detected. We have previously omitted this
no-jump evolution for simplicity, but we now examine this
crucial part of the physical error process.
Much like a Feynman path integral, we can express the

evolution of the density matrix from time 0 to δt in terms of
a sum over all possible trajectories with photon loss jumps
occurring at all possible times during the finite time interval
δt. We express this time evolution as a completely positive
and trace-preserving (CPTP) process E ¼ fÊ0; Ê1; Ê2;…g:

ρ̂ðδtÞ ¼ Eðρ̂ð0ÞÞ≡X∞
l¼0

Êlρ̂ð0ÞÊ†
l; ð14Þ

where Êl are Kraus operators encapsulating the time
evolution generated by exactly l photon losses and the
no-jump evolution. Remarkably, by integrating over all
the possible jump times of exactly l photon jumps during
the time interval δt, we can derive an exact analytic
expression for Êl [12,86,87],

Êl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e−κδtÞl

l!

r
e−ðκδt=2Þn̂âl: ð15Þ

See Appendix D for more details of the derivation. An
important feature of the damped simple harmonic
oscillator is that the precise timing of the photon jumps
plays no role. This can also be seen in the interchange-
ability of the order of the operators in Eq. (15):
expð−κδtn̂Þâl ¼ expðκδtlÞâl expð−κδtn̂Þ. Taken together,
when correcting against photon loss errors up to order
ðκδtÞL, the correct set of errors the codes should be
protected against is (the Taylor series expansion of) EL ¼
fÊ0; Ê1;…; ÊLg [88]. This set includes contributions of
both the jump and no-jump parts of the nonunitary time
evolution.
The measurement backaction of observing no photon

jumps is nontrivial. It reduces the relative probability of
the higher occupied Fock states with respect to the lower
ones, formally expressed with the factor exp ð− 1

2
n̂κδtÞ in

the error operators (15). Others have addressed this by
constructing multimode codes [12,21,89,90]. These codes
avoid no-jump evolution by combining two or more
physical elements with identical decay rates and construct-
ing the logical code words such that they are superpositions
of states with the same combined total excitation number.
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They are essentially entangled versions of codes (2)–(5);
see Sec. VI.
One of our key results is that certain single-mode codes,

such as the binomial codes (7), can correct the no-jump
evolution to the same accuracy as photon loss errors. First,
we illustrate this to an accuracy of OðκδtÞ before giving a
general description to an arbitrary accuracy in powers
of κδt.

A. Approximate quantum error correction
to first order in κδt

Let us consider the code (2). When no photon loss is
detected, the quantum state jψi ¼ ujW↑i þ vjW↓i trans-
forms under the no-jump evolution given by Ê0 ¼
exp ð− 1

2
κδtn̂Þ. Code (2) is protected against a photon loss

error occurring with a probability to first order in κδt:
P1 ¼ hÊ†

1Ê1i ¼ κδtn̄þO½ðκδtÞ2�. Thus, it is reasonable to
consider the no-jump evolution to the same accuracy.
Taking into account Ê0 and the normalization in the
denominator of jψ0i ¼ Ê0jψi=hψ jÊ†

0Ê0jψi1=2 to first order
in κδt, we obtain

jψ0i ¼
�
1þ κδt

2
ðn̄ − n̂Þ

�
jψi þO½ðκδtÞ2�

¼ uðjW↑i þ κδtjE0
↑iÞ þ vjW↓i þO½ðκδtÞ2�: ð16Þ

Here, jE0
↑i ¼ ðj0i − j4iÞ= ffiffiffi

2
p

is the error word associated
with the no-jump evolution. Notice that the logical code
word jW↓i ¼ j2i is unaffected by the no-jump evolution
as its excitation number is equal to the mean photon
number.
The no-jump error causes deterministic evolution inside

the subspace fjW↑i; jE0
↑ig, which can be inverted to the

desired accuracy by applying a unitary operator,

Û0 ¼ sin κδtðjW↑ihE0
↑j − jE0

↑ihW↑jÞ
þ cos κδtðjW↑ihW↑j þ jE0

↑ihE0
↑jÞ

þ jW↓ihW↓j þ Ûres: ð17Þ

Here, Ûres is an arbitrary unitary operator on the subspace
complementary to the logical and error subspaces in order
to complete Û0 to a unitary operator in the entire Hilbert
space. It can be taken to be the identity of the comple-
mentary subspace. By combining detection correction of
both the errors, the total recovery process isR ¼ fR̂0; R̂1g.
The Kraus operators are R̂k ¼ ÛkΠ̂kmod 2, where Π̂kmod 2 is
a projection into the photon number subspace kmod 2 and
the correction unitary Û1 is introduced in the text after
Eq. (2). The recovery process results in the original state to
first order in κδt as desired:

RðEðρ̂ÞÞ ¼
X1
k¼0

R̂k

�X∞
l¼0

Êlρ̂Ê
†
l

�
R̂†
k

¼
X1
k¼0

X1
l¼0

R̂kÊlρ̂Ê
†
lR̂

†
k þO½ðκδtÞ2�

¼
X1
l¼0

R̂lÊlρ̂Ê
†
lR̂

†
l þO½ðκδtÞ2�

¼ ρ̂þO½ðκδtÞ2�: ð18Þ

Here, we have first ignored all the parts Êl≥2 of the error
processwhose effect isO½ðκδtÞ2�. On the next line, we use the
knowledge that the initial state has even parity and the photon
loss error process Êl shifts photon number by l, formally
R̂kÊlΠ̂0 mod 2 ¼ ÛkΠ̂k mod 2ÊlΠ̂0 mod 2 ¼ δklR̂lÊlΠ̂0 mod 2,
for k;l ∈ f0; 1g.
Alternatively, the recovery can be done by a measure-

ment projecting to the subspace of logical code words
[91] such that Rm ¼ fP̂W; Û1ðÎ − P̂WÞg. Here, P̂W ¼P

σjWσihWσj is the projection to logical subspace. If the
measurement projects out of the code space, then it is
interpreted as the occurrence of a photon loss error, and it is
corrected with the unitary Û1 performing the state transfer
from the error subspace of a photon loss to the logical code
words. If the measurement projects into the code space, this
means that the state underwent no-jump evolution of
Eq. (16) and has been projected back to its original form
by the measurement backaction P̂W. With a probability
scaling with ðκδtÞ2, the state jE0

↑i, belonging to the
complement of the logical subspace, is interpreted as a
photon loss error. However, this causes no interference with
the approximate recovery process as it occurs with a
probability beyond the accuracy limit of the code.
Recovery by measurement is reminiscent of the quantum
Zeno effect: If the time evolution of a quantum state is
linear (or faster) in δt, it can be slowed to order δt2 by
frequent measurements projecting to the nonevolved basis
[85]. The no-jump evolution scales linearly in κδt and
therefore can be corrected by frequent projective measure-
ments. Although the recovery process Rm is conceptually
simpler, sophisticated measurements such as P̂W are
presumably harder to realize at high fidelity than parity
measurements [39] (at least with the current technological
capabilities).

B. Approximate quantum error correction
to Lth order in κδt

Here, we construct an explicit recovery process in terms
of projective measurements and unitary operations, which
generalizes the above discussion to multiple photon losses
and shows that the binomial codes can protect against the
continuous-time dissipative evolution of Eqs. (14) and (15)
to an accuracy of ðκδtÞL. Let us take the binomial code
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words jWσi protected against L photon loss errors and
choose G ¼ 0 and S ¼ L in Eq. (7). Here, we show that
they are protected against the no-jump evolution to the
desired accuracy as well. Our derivation is similar to
Ref. [21]. However, we arrive at a result that is not obvious
from Ref. [21] since we exploit the explicit structure of the
error operators Êl in (15).
The Kraus operators Êl>L can be ignored as they have

an effect of O½ðκδtÞLþ1�. We also ignore the parts of
the remaining Kraus operators that are irrelevant to the
desired accuracy and split the rest into two parts for
convenience,

Êl ¼ B̂l þ Ĉl þO½ðκδtÞLþ1
2�; ð19Þ

for 0 < l ≤ L. We denote B̂l as the important leading-
order part and Ĉl the relevant subleading part,

B̂l ¼ âl
XL
μ¼l

Êμ;lðκδtÞðμ=2Þ; ð20aÞ

Ĉl ¼ âl
X2L−l

μ¼Lþ1

Êμ;lðκδtÞðμ=2Þ; ð20bÞ

where, for clarity, we have separated the common photon
loss term. The pure no-jump evolution is handled differ-
ently [81], and we write Ê0 ¼ expð−κδtn̂=2Þ ¼
B̂0 þO½ðκδtÞLþ1�. The term Êμ;l denotes the μth entry

of the expansion of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e−κδtÞl=l!

p
expð−κδtn̂=2Þ in

powers of ðκδtÞ12. They are polynomials of n̂ with highest
degree ≤ μ=2.
With these preliminaries, the resulting error process is

Eðρ̂Þ ¼
XL
l¼0

Êlρ̂Ê
†
l þO½ðκδtÞLþ1�

¼
XL
l¼0

ðB̂lρ̂B̂
†
l þ B̂lρ̂Ĉ

†
l þ Ĉlρ̂B̂

†
lÞ þO½ðκδtÞLþ1�:

ð21Þ

Here, we see that the part B̂lρ̂B̂
†
l needs to be corrected

exactly since it always has an effect larger than
O½ðκδtÞLþ1�. It is not necessary to exactly correct the entire
interference part B̂lρC

†
l since its contribution is partly

beyond the accuracy limit. Hence, one can ignore the
negligible O½ðκδtÞLþ1� part of the interference terms and
verify only that the effect of the remaining important part is
independent of the logical code words. Together, if the error
operators B̂l and Ĉl for all 0 ≤ l ≤ L satisfy the two
following conditions,

hWσjB̂†
lB̂ljWσ0 i ¼ βlδσσ0 ; ð22aÞ

hWσjB̂†
lĈljWσ0 i ¼ νlδσσ0 þO½ðκδtÞLþ1�; ð22bÞ

the original state can be recovered to an accuracy of
ðκδtÞL. The first condition guarantees that the errors B̂k
can be recovered exactly [see Eq. (1)]. The second
condition shows that the effect of the interference is
tolerable.
Both B̂†

lB̂l and B̂
†
lĈl up to an accuracy of ðκδtÞL can be

written as a polynomial of n̂ with the highest degree of L.
The binomial code words protected against L photon losses
have an equal expectation value of n̂l, for all l ≤ L and for
both of the code words, which implies that the conditions
(22) are satisfied for them.
Now we show that the recovery process R ¼

fR̂0; R̂1;…; R̂Lg with the Kraus operators R̂k ¼
ÛkΠ̂kmodLþ1 results in the original state to the desired
accuracy. The photon number modulo Lþ 1 is measured,
and the measurement result k has a backaction in the form
of the projection Π̂kmodLþ1. For k ≠ 0, the error words are
jBk

σi ¼ B̂kjWσi=
ffiffiffiffiffi
βk

p
, where βk is defined in Eq. (22a).

Conditioned on the measurement outcome, one applies a
correction unitary Ûk, performing a state transfer between
the logical code words and the error words jBk

σi,

Ûk ¼
X
σ

ðjWσihBk
σj − jBk

σihWσjÞ þ Ûres: ð23Þ

Again, Ûk is completed to a unitary operator in the entire
Hilbert space by Ûres, which is an arbitrary unitary operator
on the subspace complementary to the logical and error
subspaces (and different for each k). For k ¼ 0, the
error word needs to be orthogonalized with respect to

jWσi: jB0
σi¼ð1−jWσihWσjÞB̂0jWσi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0−jhB̂0ij2

q
, where

hB̂0i ¼ hWσjB̂0jWσi. The correction unitary is

Û0 ¼
X
σ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jhB̂0ij2
β0

s
ðjWσihB0

σj − jB0
σihWσjÞ

þ hB̂0iffiffiffiffiffi
β0

p ðjWσihWσj þ jB0
σihB0

σjÞ
#
þ Ûres: ð24Þ

These unitary operations Ûk correct both the photon loss
âk and the no-jump evolution by the rest of B̂k in Eq. (20a).
As in the L ¼ 1 case, the error Êl shifts the photon
number by l, and the initial state has a known generalized
parity, meaning that R̂kÊlΠ̂0modLþ1 ¼ δklR̂lÊlΠ̂0modLþ1,
for k;l ¼ f0; 1;…; Lg. Finally, we arrive at the approxi-
mate quantum error-correction recovery process with
accuracy O½ðκδtÞL�:
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RðEðρ̂ÞÞ ¼
XL
l¼0

R̂lB̂lρ̂B̂
†
lR̂

†
l þ

XL
l¼0

R̂lðB̂lρ̂Ĉ
†
l þ H:c:ÞR̂†

l

þO½ðκδtÞLþ1�

¼ ρ̂
XL
l¼0

ðβl þ ν�l þ νlÞ þO½ðκδtÞLþ1�

¼ ρ̂þO½ðκδtÞLþ1�: ð25Þ

We have used the form (21) of the error process, the
conditions (22), and the form of the correction unitaries
(23) and (24). The last summation is the resolution of the
identity,

P∞
l¼0 Ê

†
lÊl ¼ Î, by using Eq. (19) and ignoring

terms that are O½ðκδtÞLþ1�. The residual error terms in
Eq. (25) depend on the binomial code parameters S and N.
We analyze the effects of this dependence on the code’s
performance in Sec. V.
In summary, we have shown that the single-mode codes

protected against L photon loss errors are approximate
quantum error-correction codes protected against the con-
tinuous-time dissipative photon loss channel to an accuracy
of ðκδtÞL. Physically, if observation of photon loss errors up
to a maximum of L times yields no information on
population and relative phases between the logical code
words, then the observation of no-jump errors ≤ L times
also yields no information, and the measurement back-
action does not deform the encoded quantum information
of the state. This is one of our main results, as it gives
an explicit construction recipe for approximate error-
correction codes to arbitrary order in κδt for a damped
bosonic mode.
As discussed in Sec. III, the binomial codes may also be

used to protect against more complicated error operators,
such as n̂. An analysis of the code parameters required to
achieve such protection in the case of dissipative Lindblad
time evolution under these errors is given in Appendix E.
As in the case of dephasing errors in Sec. II, the recovery
process for more general errors will be more complicated
than that for photon losses alone.

V. BINOMIAL CODE PERFORMANCE

Ignoring possible experimental infidelities of the recov-
ery process, the performance of a binomial code is defined
by the rate of uncorrectable errors. When including several
error channels—that is, photon loss, photon gain, and
dephasing errors with rates κ, κþ, and γ—the exact
expression for the dominant uncorrectable error depends
on the relative ratio of these rates. For simplicity, here we
consider just a single error channel, the photon loss
channel.
Let us consider the binomial code words with S ¼ N ¼

L and study first the mean photon number n̄ ¼ 1
2
ðLþ 1Þ2.

It scales quadratically with the number of protected photon
loss errors L. This implies faster decay of the code words of

higher-order protection and that, to achieve the advantage
of higher-order protection, the time step δt must be made
appropriately smaller. More precisely, the rate of uncor-
rectable errors is dominated by the leading uncorrectable
photon loss error rate, that is, the rate of losing Lþ 1
photons during the time step δt:

PLþ1

δt
¼ hÊ†

Lþ1ÊLþ1i
δt

∼ κðκδtÞL hðâ
†ÞLþ1âLþ1i
ðLþ 1Þ! ∼ κðκδtÞLLLþ1: ð26Þ

This scaling result implies that for a fixed time step δt, there
exists an optimal binomial code with finite L that mini-
mizes the uncorrectable error rate among different binomial
codes. In Fig. 2, we demonstrated the performance of the
binomial codes for S ¼ N ¼ L ¼ 0;…; 5 via the rate of the
entanglement infidelity which, in the absence of infidelities
in the recovery process and at small time steps δt, is well
approximated by the leading uncorrectable error rate. As is
clearly visible in Fig. 2, for a given δt, there exists an
optimal code, and larger codes are preferable for smaller
time steps.

FIG. 2. The rate of entanglement infidelity ~Fe=δt for a fully
mixed logical qubit state plotted as a function of the time step δt
(notice the logarithmic scale of both axes) for the binomial codes
(7) with S ¼ N ¼ L ¼ 1 (black), 2 (gray), 3 (brown), 4 (red), and
5 (orange). Here, we have assumed a perfectly faithful recovery
process. The dashed line shows the performance of the naive
encoding L ¼ 0, jWi

↑=↓i ¼ j0=1i, whose rate of entanglement
infidelity at small δt approaches κ=2 corresponding to the rate
of a photon loss with n̄ ¼ 1=2. Entanglement infidelity [92] is
calculated as ~Fe ¼ 1 − Fe ¼ 1 −

P
L
k¼0

P∞
l¼0 jTrðR̂kÊlρ̂cÞj2,

where ρ̂c ¼ 1
2

P
σ jWσihWσ j is the fully mixed state of the logical

code words. The entanglement infidelity for a fully mixed state is
equal to the process infidelity 1 − χII of a quantum memory. For
an ideal quantum memory, χII ¼ 1 and the full quantum process
is just an identity operation [64]. At a small time step δt, the
slopes of ~Fe=δt agree well with the slopes for the rate of the
leading uncorrectable error PLþ1=δt. The binomial code with
L ¼ 1 outperforms the naive encoding for time steps δt ≲ 0.4κ−1,
and the codes with L > 1 become favorable when δt ≲ 0.2κ−1.
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An experimental infidelity η related to a single recovery
stage increases the error rates by η=δt, favoring low-order
binomial codes with longer optimal time steps; see
Appendix F. The optimality of a code also depends on
the detailed structure of the experimental recovery process
since some of the infidelities can be correctable errors
suppressed by the next round of the recovery process. In
addition, parity measurements often have higher fidelity
[39] than the unitary operations. The overall fidelity of the
error recovery could be improved by making several
measurements and using Bayesian estimation to increase
the confidence of the error detection step [93].
If a self-Kerr nonlinearity term ∝ n̂2 is present in the

cavity Hamiltonian, then it no longer commutes with the
dissipative evolution. Such terms are difficult to avoid,
either as a result of intrinsic higher-order behavior of the
resonator or because of hybridization with other non-
linear degrees of freedom, such as superconducting
qubits. During time steps with only no-jump evolution,
a nonlinearity just introduces an additional unitary
evolution that can be taken into account by defining a
frame of rotating code words. In this frame, the Fock-state
coefficients in Eq. (7) acquire time-dependent complex
phase factors but still obey the quantum error-correction
conditions (1). Another possibility is to apply a gate that
inverts the unitary evolution as recently demonstrated
experimentally with superconducting qubit-cavity tech-
nology [42].
During time steps with photon jumps, the noncommu-

tation of the Hamiltonian and â means that precise timing
of the photon jumps matters. Different Fock states acquire
different, jump-time–dependent phase factors. After aver-
aging over possible jump times, this generates additional
dephasing errors, of size ∝ δt. However, the probability of a
time step with a photon jump is only about κδt. As a result,
the net effect is about δt2, which is higher order than the
corresponding photon loss error. Thus, as long as the
nonlinearity is not much larger than κ, it does not break
the approximate quantum error-correction arguments of
Sec. IV. Furthermore, the binomial codes can protect
against additional dephasing errors by increasing the
parameter N in Eq. (7). The cost of the higher degree of
protection is an increase in the error probabilities, which
can be compensated by decreasing the error-correction time
step correspondingly, cf. Fig. 2. The Kerr effect becomes a
limiting factor for codes with large number variance
hðn̂ − n̄Þ2i. Here, n̄ only describes the “mean-field”
Stark shift, which does not contribute to the dephasing
of Fock states relative to each other.

VI. COMPARISON TO OTHER CODES

A. Two-mode codes

As we have discussed above, even in the event of no
photons being lost, the Kraus operator Ê0 ¼ expð− 1

2
n̂κδtÞ

has a nontrivial effect on the single-mode codewords, and so
it must be corrected. This can be avoided if the words are
superpositions of states with the same excitation number by
combining multiple physical elements [12,89,90]. In par-
ticular, some of the multimode bosonic codes in Ref. [12]
have the same structure as the binomial single-mode codes
presented here but are entangled across multiple photon
modes,

jW↑=↓i ¼
X½0;Nþ1�

p even=odd

cpjpðSþ 1Þ; Ntot − pðSþ 1Þi; ð27Þ

where Ntot ¼ ðN þ 1ÞðSþ 1Þ is the excitation number,

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N þ 1

p

�
=2N

s
, and jn;mi is a state with n photons

in one mode and m in the other. This code consists of two
copies of the one-mode binomial code of Eq. (7) with the
words entangled between the two modes.
Let us consider the simplest example, the two-mode

version of the single-mode code of Eq. (2),

jW↑i ¼
j0; 4i þ j4; 0iffiffiffi

2
p ; jW↓i ¼ j2; 2i: ð28Þ

Assuming identical photon decay rates κ for both modes,
the Kraus evolution operator in the absence of photon
losses from either mode is Ê00 ¼ expð− 1

2
ðn̂1 þ n̂2ÞκδtÞ, so

Ê00jWσi ¼ expð−2κδtÞjWσi and the code words are
unchanged. The correctable errors are still single-photon
losses, which can occur from either of the two modes,
giving rise to different error words:

jW↑i → jE11
↑ i ¼ j3; 0i or jE21

↑ i ¼ j0; 3i; ð29aÞ

jW↓i → jE11
↓ i ¼ j1; 2i or jE21

↓ i ¼ j2; 1i; ð29bÞ

where jEi1
σ i is the error word after a photon loss from mode

i. A parity measurement on each mode can distinguish from
which mode the photon was lost and thus be used to
determine whether to correct the error words jE11

σ i or jE21
σ i.

The unitary operations required for error correction are
swaps jEi1

σ i ↔ jWσi, that is, unitary operations

Ûi1 ¼
X
σ

ðjEi1
σ ihWσj − jWσihEi1

σ jÞ þ Ûres; ð30Þ

where Ûres denotes an arbitrary unitary operation that
completes Ûi1 to a unitary operation in the entire Hilbert
space. These are similar to the one-mode corrections, except
that they involve creating states that are entangled between
the two modes. This is realizable using an experimental
setup where one can generate entanglement between the
modes and has sufficient separate unitary control on the
individual modes. However, they are likely to have lower
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fidelity than the equivalent one-mode operations. See
Appendix G for a specific hardware proposal where two
cavities (or cavity modes) are dispersively coupled to a
common transmon qubit with Ĥdisp=ℏ ¼ P

2
j¼1 χjâ

†
j âjσ̂z,

where âj is the annihilation operator for the jth mode. If the
dispersive couplings are fine-tuned to be equal, χ1 ¼ χ2,
then the codes of Eq. (27) form a decoherence-free-subspace
[67,68] with respect to qubit-excitation-induced dephasing
errors exp (− χðn̂1 þ n̂2Þτ), where τ is unknown. In practice
high-precision fine-tuning of χj is hard to achieve, and one
needs to correct dephasing errors with higher-order codes
similar to the single-mode binomial codes.
As in the single-mode code, the fidelity of the error

correction is determined by the rate of uncorrectable errors
[77], and for small κδt, this is dominated by two-photon
losses. There are three paths for two-photon loss from the
states of the two-mode code, Eq. (28), compared to one
path for the one-mode code, Eq. (2). Assuming equal κ, the
rate of two-photon losses via each path is the same, so the
rate of uncorrectable errors for the two-mode code is 3
times larger than the one-mode code. Which code is
preferable will depend on the fidelity of the no-jump
correction for the one-mode code, as the need for this
operation is eliminated in the two-mode case. More
generally, for unequal κ, there will be a no-jump evolution
of the form exp (− 1

2
ðκ1n̂1 þ κ2n̂2Þδt), which one would

have to deal with using a similar no-jump correction
procedure as described for the binomial codes.

B. Cat codes

The binomial codes are similar to existing cat codes
[16–19]. Cat codes are also approximate quantum error-
correction codes for a damped bosonic mode and consist of
superpositions of well-separated coherent states, “legs,”
evenly distributed in a circle in phase space. Cat codes with
2ðLþ 1Þ legs protect against L photon losses and are related
to the binomial codes with spacing S ¼ L. In both cases, the
diagnosis of errors is performed by measuring the photon
numbermoduloSþ 1. The four-legged cat code [18] protects
against single-photon losses and thus is similar to the class of
binomial codes with L ¼ 1, of which the simplest case is
Eq. (2). The two logical cat code words are superpositions of
coherent states j� βi and j� iβi,

jCβ
↑=↓i ¼

1ffiffiffiffiffiffiffiffiffiffi
Z↑=↓

p ðjβi � jiβi þ j− βi � j− iβiÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
Z↑=↓

p X½0;∞Þ

p even=odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−jβj2

β4p

2p!

s
j2pi: ð31Þ

The normalization factorsZ↑=↓ become equal as jβj → ∞. In

this limit, the cat codes satisfy hCβ
↓jn̂pjCβ

↓i ¼ hCβ
↑jn̂pjCβ

↑i for
all p, so in the notation of Eq. (7), cat codes have N → ∞,

giving potential protection against dephasing errors to
unlimited order; see Fig. 1. The difference in normalization
constants for different cat states means that the approximate
quantum error-correction conditions, Eq. (22), are not exactly
satisfied for generic values of jβj2:

hCβ
↓jÊ†

1Ê1jCβ
↓i − hCβ

↑jÊ†
1Ê1jCβ

↑i
≃ κδtðhCβ

↓jn̂jCβ
↓i − hCβ

↑jn̂jCβ
↑iÞ

≃ 4κδtjβj2e−jβj2ðsin jβj2 þ cos jβj2Þ; ð32Þ

where the second approximation neglects terms Oðe−2jβj2Þ.
Similar expressions, with different trigonometric functions,
can be found for the higher order Kraus operators. When the
right-hand side of Eq. (32) is nonzero, the cat code is subject
to uncorrectable errors OðκδtÞ, which are suppressed by
increasing the separation parameter β, at the cost of increasing
the average photon number and hence the error rate. Notice,
in comparison, that the binomial codes with S ¼ 1 exactly
suppress all photon loss errors to first order in κδt.
The Fock-state distributions of the binomial and cat

codes are binomial and Poissonian, respectively. As the
average number of photons is increased (larger N), both of
these distributions approach a normal distribution, so the
binomial and cat codes asymptotically approach each
other for fixed spacing and large N. Similarly, the qudit
binomial codes approach qudit cat encoding [19] since the
extended binomial coefficients also approach the normal
distribution [75].
By construction, a photon jump event transforms one

cat state into another cat state. To the order that the
approximate quantum error conditions (22) are satisfied,
the quantum information is preserved and, as long as
photon jumps are detected and recorded, there is no further
correction needed. Since no-jump evolution damps coher-
ent states, e−κδtn̂jβi ¼ je−κδtβi, the only necessary correc-
tion is a “repumping” of the cat states. This can be achieved
using a discrete unitary correction operation (analogous to
the binomial codes) or continuous nonlinear amplification
coming from an engineered reservoir [17,18] (analogous to
similar passive or autonomous error-correction schemes
[94,95]). The basic principle of passive schemes is stabi-
lization of a manifold of code words as an attractive (stable)
fixed point of drives and dissipation so that the only
remaining task is to track generalized parity for photon
jumps [18]. The cat codes based on equal amplitude
coherent-state superpositions, cf. Eq. (31), are “natural”
candidates for these purposes since they require only
gradual continuous inversion of the damping of the
coherent-state amplitude without active discrete correction
stages. The two-leg cat has already been stabilized by
reservoir engineering to achieve dominant two-photon
drive and two-photon dissipation [96].
The single-mode binomial codes require an explicit

correction gate at every time step whether or not a photon
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jump has occurred. However, binomial codes satisfy the
approximate quantum error-correction conditions to order
δt with a smaller average photon number: n̄ ¼ 2 for the
code of Eq. (2), rather than n̄ ≈ 2.3 for the cat code that
minimizes Eq. (32). Furthermore, the binomial codes
operate in a restricted Hilbert space, which could be
beneficial for the practical construction of the unitary
operators required for error diagnosis and recovery. This
particularly applies to errors involving â† operators, whose
operation on cat codes is less straightforward than â
operators alone.

C. Permutation-invariant codes

The definition of our codes, Eq. (7), has the same
structure as the permutation-invariant codes, defined for
M qubits [83,84]:

jPI↑=↓i ¼
1ffiffiffiffiffiffi
2N

p
X½0;Nþ1�

p even=odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N þ 1

p

�s
jDM

ðSþ1Þpi; ð33Þ

where the Dicke state jDM
n i is a symmetric superposition of

all permutations of n up spins and M − n down spins, e.g.,
jD3

1i ∝ j100i þ j010i þ j001i in the notation of Sec. II.
Note that the similarity in structure is the same only for
qubit code words; the qudit extension of the permutation-
invariant codes [84] is different from ours.
Although the definitions of these codes in terms of

excitation number take the same form, the physical and
mathematical distinctions between the single-mode bosonic
oscillator and the many-qubit system distinguishes the
goals and behavior of the two codes. The connection with
the bosonic system can be identified by taking theM → ∞
limit of permutation-invariant codes. Then, by the Holstein-
Primakoff transformation [97], the collective “giant-spin”
subspace of Dicke states with total spin M=2 → ∞
becomes equivalent to a bosonic system. Using this
mapping, we can identify several important differences
between the bosonic and qubit code constructions. First,
while in the spin system it is important to consider errors
acting on the individual qubits [83], the errors in the
bosonic system map to only the giant-spin operators,
symmetric superpositions across all the qubit operators,
e.g.,

â ∼ lim
M→∞

1ffiffiffiffiffi
M

p Σ̂− ¼ lim
M→∞

1ffiffiffiffiffi
M

p
XM
i¼1

σ̂−i ; ð34Þ

where σ̂−i is the spin lowering operator for the ith spin. In
addition to the restriction to symmetric errors, the physical
asymmetry between bosonic errors, e.g., â and â†, makes it
reasonable to consider a smaller set of errors, e.g.,
Ē ¼ fÎ; âg, than the qubit case, where being able to correct
any qubit error, i.e., E ¼ fÎq; σ̂−; σ̂þ; σ̂zg, is more natural.

Finally, taking theM → ∞ limit significantly simplifies the
action of the error operators:

1ffiffiffiffiffi
M

p Σ̂−jDM
n i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðM − nþ 1Þ

M

r
jDM

n−1i;

⟶
M→∞ ffiffiffi

n
p jDM

n−1i: ð35Þ

The suppression of the n2 term in the large M limit
significantly simplifies the satisfaction of the QEC con-
ditions. As a result, the bosonic system has considerable
additional flexibility in the construction of QEC codes,
with concomitant performance gains. For example, for
finiteM, there is no equivalent of our smallest code, Eq. (2),
in the permutation-invariant codes. In general, the average
excitation number in a code that corrects L excitation losses
scales as L2=2 for bosonic binomial codes compared with
3L2=2 in the permutation-invariant codes [83].

D. GKP codes

While all codes discussed so far are defined using a
discrete (i.e., countable) basis, the Gottesman, Kitaev, and
Preskill (GKP) codes [13] are defined using the continuous
basis of non-normalizable eigenstates of the position
operator x̂. A unique resulting feature of GKP codes is
that the correctable errors themselves form a continuous
set. The simplest ideal qubit GKP words are

jGKP↑=↓i ∝
Xð−∞;∞Þ

p even=odd

D̂

�
p

ffiffiffi
π

2

r �
jx̂ ¼ 0i; ð36Þ

where D̂ is the displacement operator from Eq. (10) and
jx̂ ¼ 0i is the starting position eigenstate. In position space,
such states are infinite combs of position eigenstates spaced
2

ffiffiffi
π

p
apart, so the effective spacing between the two logical

states is S ¼ ffiffiffi
π

p
. The same result holds in momentum (p̂)

space via Fourier transform of Eq. (36). Naturally, all
position and momentum shifts e−iup̂eivx̂ with juj, jvj ≤ffiffiffi
π

p
=2 are correctable. However, the GKP codes can also

correct any error operators expandable in the basis of
correctable shifts. Careful expansion of photon loss â and
other errors [20] has confirmed that GKP codes can, in
principle (i.e., for small enough κδt), correct photon loss,
gain, and dephasing errors.
The ideal GKP code words (36) contain both an infinite

number of photons and states that are perfectly squeezed in
the x̂ quadrature. To make the codes experimentally
realizable, the superposition in Eq. (10) has to be filtered
(to keep the photon number finite), and a distribution of
states has to be substituted for the sharp jx̂ ¼ 0i state (to
account for imperfect squeezing). In the traditional form of
the approximate codes, a p-dependent Gaussian filter is put
into the sum in Eq. (36) and a Gaussian wave packet is
substituted for jx̂ ¼ 0i. However, the choice of filter and
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starting state can be arbitrary. There are a handful of
theoretical proposals [98–100] (see also Ref. [101] for an
error analysis of GKP states), including one based on a
clever use of phase estimation [20], to realize such
approximate GKP states. GKP states are also useful in
designing highly precise gates for other quantum comput-
ing architectures [102].
The approximate code words are not perfectly orthogo-

nal, so one must take into account the error coming from
the nonorthogonality. Since the ideal GKP states have
infinite photon number, the approximate GKP states must
contain a sufficiently high number of photons in order to
manage such imperfections. An optimistic [20] estimate for
this photon number is n̄ ¼ 4, which uses the traditional
form of the approximate code words and bounds the error
probability coming from the nonorthogonality at about 1%
[Eq. (38) of Ref. [13]]. Using the same approximate code
words, a photon number of 2 implies a 9% error bound. As
a result, the traditional form of the approximate code words
is expected to contain more photons than, e.g., the smallest
(n̄ ¼ 2) binomial code (2). However, the GKP code words
can protect against a larger set of errors than the minimal
binomial code. Because of the various choices of starting
state and filter, as well as the difficulty of comparing
continuous correctable error sets to discrete ones, a detailed
comparison of the relative capabilities of the GKP and
binomial or cat classes of codes remains to be done.

VII. APPLICATIONS IN QUANTUM
COMMUNICATION

Aside from improving lifetimes of quantum memories
and quantum bits, bosonic mode quantum error correction
is also useful for quantum teleportation [103,104] and
quantum communication, which consists of quantum-state
transfer and generation of high-fidelity entangled pairs of
quantum bits between two distant nodes in a quantum
network. We consider here a primitive task, namely the
“pitch-and-catch” scenario [24,25,105] for quantum-state
transfer, which can be used for quantum repeaters
[106,107]. The scenario consists of (see Fig. 3) initializa-
tion of qubit A into a superposition of the ground and
excited states, encoding this superposition into the logical
code words of the send cavity via a unitary swap operation,
and letting the cavity state leak in a time-reversal symmetric
manner (“pitch”) into a transmission line or to other kinds
of flying oscillator modes such that the inverse process into
the receiving cavity (“catch”) is most efficient [105,108].
The transfer is finalized by decoding the received cavity
state via a unitary swap operation to qubit B. The full
process corresponds to a quantum-state transfer between
the qubits through the modes. The remote physical qubits
can be entangled by using the same protocol, with the first
swap operation being replaced with a CNOT-gate between
the physical qubit A and the logical qubit of the cavity.

The overall process is vulnerable to various errors and
infidelities at the different stages of the transfer process
[109]. The most obvious imperfection is the attenuation of
the state of the flying oscillator mode caused by the photon
loss processes, similar to Eqs. (13)–(15), during the trans-
mission. A crucial part of the pitch-and-catch process is the
engineering of the temporal and spatial modes of the flying
oscillator [24,25,110–112] so that the catch by the receiv-
ing cavity is as reflectionless as possible, but this is unlikely
to be perfect. The pitching process can also include a
conversion from microwave to optical domain or between
different microwave frequencies [26,113]. The fidelity of
the conversion itself can be improved by using quantum
error correction. In addition, there can be errors in the
encoding and decoding processes between the qubits and
cavities, and the cavities and the flying oscillator mode can
suffer the same loss processes we have already discussed
for applications to quantum memories in Secs. II–IV. If
one uses the naive encoding jWi

↑=↓i, all these error sources
lead to unfaithful quantum-state transfer. When using the
binomial code words or other quantum codes [114] as the
logical code words in the cavities and in the transmission,
the fidelity can be increased by performing a recovery
process on the received cavity state before decoding it to
the receiving qubit B. This way, one can improve the
fidelity of the process by removing the effect of the
correctable errors (6) from the full process. The perfor-
mance of the different binomial codes can be estimated
similarly as in Sec. V and Fig. 2 but considering, e.g.,

FIG. 3. (a) Sketch of a circuit QED hardware proposal and
(b) schematic of a quantum-state transfer scenario utilizing
quantum error correction for the binomial quantum code words.
First, the state of qubit A is encoded in the send cavity S using
code words jWS

↑;↓i. The state in S is allowed to leak into the flying
oscillator mode F (pitch). By controlling the cavity decay rate,
one can precisely tune a time-reversal symmetric temporal mode
such that the quantum information is fully absorbed in the
receiving cavity R (catch). Before decoding the received cavity
state to the qubit B, the fidelity of the transfer process can be
improved by a round of QEC in the received cavity state.
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transmission infidelity instead of the photon loss proba-
bility κδt during a time step.

VIII. CONTROLLING A LOGICAL QUBIT
IN A CAVITY

In addition to their use for quantum memories and
communication, it would be beneficial if the encoded qubit
state could be unitarily controlled to perform quantum
computation. A naive way to realize single-qubit rotations
would be to decode the cavity state back into an ancilla
qubit, rotate the qubit, and then re-encode the state into the
cavity. This is not optimal since the decoherence rate of the
ancilla is higher than that of the cavity [35,44].
Using optimal control pulses [43,44,49,50], it should be

possible to directly realize an arbitrary unitary on the cavity
while minimizing the effects of the short ancilla lifetime.
For example, for the binomial code with S ¼ N ¼ 1 [see
Eq. (2)], the unitary corresponding to a Z gate is

Ẑ ¼ jW↑ihW↑j − jW↓ihW↓j þ Ûres

¼ j0ih0j − j2ih2j þ j4ih4j þ Û0
res: ð37Þ

On the last line, we have explicitly written a particular
choice of the action of Ûres on the non-code-word state
jE0

↑i. Û0
res completes the remainder of the unitary operation.

The phase gate inherits the diagonal nature of the Z gate of
Eq. (37):

θ̂ ¼ e−iθðẐ=2Þ

¼ j0ih0j þ eiθj2ih2j þ j4ih4j þ Ûres: ð38Þ

The structure of the X gate is

X̂ ¼ jW↓ihW↑j þ jW↑ihW↓j þ Ûres

¼ 1ffiffiffi
2

p ðj2ih0j þ j2ih4j þ H:c:Þ þ Ûres; ð39Þ

where the functional part is an addition of 2 mod 4 photons
in the even photon number manifold of max 4 photons. The
difficulty of achieving such unitaries is on the same scale as
the gates needed to perform the encoding of the initial state.
Consequently, the universal control of a binomial logical
qubit is achieved with the same resources as the quantum
error correction itself.
Joint conditional and entangling operations on two logical

qubits would additionally require an entangling gate between
the logical qubits. In Appendix G, we analyze a hardware
proposal where this would be possible. Progress is already
underway in this direction with the recent experimental
demonstration of “a cat in two boxes” [43], which used
complex entangling operations between two cavities.

IX. DISCUSSION

So far, we have considered code words constructed from
Fock-state superpositions with a definite generalized pho-
ton number parity, resulting in the code-word spacing S.
This spacing readily implies a diagonal quantum error-
correction matrix for photon loss and gain errors. By
relaxing the parity structure, we can find codes with even
lower rates for uncorrectable and correctable errors.
However, the recovery process for these optimized codes
involves more complicated measurements whose experi-
mental fidelity is expected to be lower than that of the
relatively straightforward parity measurements. We have
searched for optimized codes by minimizing the largest
uncorrectable error rate, the rate PLþ1=δt of losing Lþ 1

photons. Using this method, we have found numerical
codes with reduced rates for correctable errors, some of
which we were then able to transcribe analytically. As with
the binomial codes, these optimized codes are exactly
protected against L photon losses, implying that they are
approximate quantum error-correction codes for the photon
loss channel with an accuracy of ðκδtÞL; see Appendix H
for details.
The recovery that is presented in Sec. IV for the binomial

codes is not the optimal recovery; it is merely an example of
a recovery process to the desired accuracy. Adjustments of
the recovery process cannot beat the overall accuracy limit
set by the code itself, but the prefactors of the higher-order
terms in the infidelity can be made considerably smaller. A
simple way of making an improvement in the subleading
terms of the infidelity is to add to the recovery operations a
unitary “echo” operation Ûx that performs state transfer
jW↑i ↔ jW↓i: R̂0

l ¼ ÛxR̂l. The effect of this is a partial
recovery of classical information from uncorrectable,
higher-order errors. In general, the optimal code can be
found by simultaneously improving both the code and the
recovery process—a procedure that may require numerical
optimization [79,92].
The binomial and the optimized codes have several

appealing features compared to the two-mode codes [12]
and the cat codes [16–19], including smaller rates for
correctable and uncorrectable errors, protection against
photon gain, and dephasing errors. It is noteworthy that
our codes operate in a restricted Hilbert space, and this may
be a practical advantage in designing unitary controls (in
contrast to, for instance, the cat codes made out of coherent
states). To achieve the full performance advantage provided
by the features of the binomial codes, one needs to perform
sophisticated high-fidelity unitary control at a high rate.
Low-fidelity unitary control favors codes with less-frequent
measurements and unitary operations that favor cat codes
and two-mode codes. The binomial and the optimized
codes outperform the cat codes and two-mode codes when
the performance benefit is larger than the difference in the
total infidelity of the unitary control between the codes.
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Current superconducting technology [42–44] is on the
verge of this transition.

X. CONCLUSIONS

We have presented a new class of “binomial” quantum
error-correction codes for a bosonic mode. By constructing
an explicit recovery process, we demonstrated that the
binomial codes are protected to given order in the time step
against continuous dissipative evolution under loss, gain,
and dephasing errors. Therefore, any errors that can be
expanded in terms of the creation or destruction operators
of the bosonic mode can be corrected to arbitrary order. The
performance of the codes is characterized by the largest rate
of uncorrectable errors (e.g., the rate of losing Lþ 1
photons for a code protecting against L photon losses).
Ignoring the infidelity of the recovery process, our analysis
showed that with time step δt≲ 0.4=κ, where κ is the
photon loss rate, the naive encoding in Fock states j0i and
j1i is outperformed by the smallest binomial code. For even
smaller time steps, higher-order binomial codes become
preferable. Infidelities in the recovery process favor lower-
order binomial codes.
The binomial code words consist of superpositions of

equally spaced number eigenstates and are therefore
eigenstates of a generalized parity. As a result, detection
of loss and gain errors can be performed by measuring this
generalized parity. More generally, the binomial codes, cat
codes [16–19], and GKP codes [13] share this type of
structure. Namely, the logical state pairs of all three codes
can be thought of as interleaved combs of eigenstates of
some operator (the photon number operator for binomial or
cat codes and the oscillator position operator for GKP
codes) whose coefficients are related to a distribution
(the binomial, Poisson, and Gaussian in the case of the
binomial, cat, and GKP codes, respectively). Comparison
with GKP codes suggests that it would be useful to identify
commuting operators (stabilizers) for detecting errors for
the binomial codes [115]. We leave this for a future work.
The generalized parity structure is a rather strong restric-

tion on the code words, and we show in Appendix H that, for
codes built out of number operator eigenstates, better ideal
performance is achieved by relaxing this structure. In future
work, it would be very interesting to find more examples of
such codes and understand the structure of these optimized
bosonic codes. Taken together, we foresee that the binomial
codes and their relatives will improve the fidelity of quantum
memories, communication, and scalable computation based
on bosonic modes.
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APPENDIX A: CONDITIONAL UNITARY
CONTROL OF THE BINOMIAL CODE

RECOVERY PROCESS

We summarize here the required conditional unitary
control for the recovery of the binomial codes under the
photon loss channel. As described in Secs. II–IV, the
binomial codes are tailored so that the photon loss errors
are detected by measuring changes in the generalized
photon number parity that serves as a proxy for the number
of lost photons in a short time step δt. With superconduct-
ing circuit QED technology, the ability to straightforwardly
measure photon number parity stems from the strong
dispersive coupling of an ancillary qubit to the cavity
Ĥdisp=ℏ ¼ χσ̂zâ†â. In the strong-dispersive limit, where
the strength of the dispersive coupling χ is greater than
the decay rates of the qubit and the cavity, one can drive the
qubit conditioned on given photon number states of the
cavity [116,117]. This can then be used for photon-number
conditioned qubit operations, such as flipping the qubit
state conditioned on the generalized photon parity

Π̂kmodLþ1 ¼
P½0;∞Þ

l¼kmodLþ1 jlihlj:

ÛkmodLþ1 ¼ σ̂xΠ̂kmodLþ1 þ ÎqðÎ − Π̂kmodLþ1Þ; ðA1Þ

where σ̂x is a Pauli matrix and Îq the identity operator
for the qubit. After this operation ÛkmodLþ1, the measure-
ment of the qubit state realizes measurement of the
generalized photon parity and projection of the cavity state
by Π̂kmodLþ1.
Error detection is followed by a correction unitary Ûk,

Eqs. (23) and (24), that performs a state transfer between
the error words jBk

σi and the logical code words jWσi. The
exact form of the correction unitary Ûk depends on the
parameters of the binomial code, Eq. (20). In the strong
dispersive limit, individual qubit and cavity drives are
enough for implementing any unitary on the cavity
[41–44]; see also Appendix G. The unitary correction
applied to the cavity state can be combined with the initial
conditioned unitary (A1),

Û0
kmodLþ1 ¼ σ̂xÛkΠ̂kmodLþ1 þ ÎqðÎ − Π̂kmodLþ1Þ; ðA2Þ

which, followed by a qubit measurement, implements
the Kraus operator R̂k ¼ ÛkΠ̂kmodLþ1 of the recovery in
Eq. (25). Repetition for all of the values of k realizes the full
recovery process R ¼ fÛkΠ̂kmodLþ1g.
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APPENDIX B: MOMENTS OF n̂ FOR THE
BINOMIAL CODES

Here, we show from Eq. (7) that the expectation value of
certain moments of the photon number operator n̂ are
identical for both code words jW↑=↓i. In other words, we
show that

hWσjn̂ljWσi ¼ αl; for 0 ≤ l ≤ maxfL;Gg ðB1Þ

and for some real σ-independent αl. The l ¼ 0 case
conveniently takes care of orthonormality between the
code words, while the l ≠ 0 conditions guarantee that
the words can be corrected from various errors (up to the
relevant order). In Appendix C, we extend the definition (7)
to qudits and perform a similar proof for moments of the
qudit code words.
To prove Eq. (B1), we show that the difference of the

moments of jW↑i and jW↓i,

Δl ≡ hW↑jn̂ljW↑i − hW↓jn̂ljW↓i; ðB2Þ

is zero. Using definition (7), the difference between the
even and odd populated words is

Δl ¼ ðSþ 1Þl
2N

XNþ1

p¼0

�
N þ 1

p

�
plð−1Þp: ðB3Þ

For l ¼ 0, the sum is equivalent to a binomial expansion
of ð1þ xÞNþ1 with x ¼ −1 (which is clearly zero). The
nonzero l case is equivalent to taking derivatives of the
binomial expansion and multiplying by x (before substitut-
ing x ¼ −1). This is because each action of the derivative
brings down a power of p, while multiplication by x brings
xp−1 back to xp. In total,

Δl ¼ ðSþ 1Þl
2N

�
x
d
dx

�
l
ð1þ xÞNþ1

����
x¼−1

: ðB4Þ

Each action of the derivative acting on ð1þ xÞNþ1 subtracts
one from the power N þ 1. Since l ≤ maxfL;Gg, the
largest subtracted power is maxfL;Gg. However, since
N ¼ maxfL;G; 2Dg (where D accounts for dephasing
errors and is not relevant here), there will always be a
nonzero power of 1þ x after the action of the derivative.
Therefore, the expression (B4) is a polynomial in x
and 1þ x containing only nonzero powers of 1þ x.
Substituting x ¼ −1 into that polynomial yields Δl ¼ 0.
An alternative basis for the binomial codes of Eq. (7) can

be achieved by taking a normalized sum and difference of
the code words jWσi:

j ~W↑=↓i≡
XNþ1

p¼0

ð�1Þpffiffiffiffiffiffiffiffiffiffi
2Nþ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N þ 1

p

�s
jðSþ 1Þpi: ðB5Þ

In this basis, it is obvious that the moments of n̂ are equal
since the number distributions are identical. What is not
obvious is the fact that h ~W↑jn̂lj ~W↓i ¼ 0. The proof is
similar to the equal moments in the above case.

APPENDIX C: EXTENDED BINOMIAL
QUDIT CODES

We extend the above qubit states to the qudit case using
extended binomial coefficients (see Refs. [74,75] and
references therein; these are also called polynomial coef-
ficients [76]). Letting d ≥ 1 be the dimension of the
logical qudit space, we define extended binomial coeffi-
cients recursively, starting from the ordinary binomial

coefficients. Defining

�
n
m

�
1

≡ 1 and

�
n
m

�
2

≡
�

n
m

�
for non-negative integers n and m, the extended binomial
coefficients are

�
n

m

�
d
≡Xn

k¼0

�
n

k

��
k

m − k

�
d−1

: ðC1Þ

These are the coefficients of powers of x in the expansion
[76]

ð1þ xþ � � � þ xd−1Þn ¼
Xðd−1Þn
k¼0

�
n

k

�
d
xk: ðC2Þ

Notice that the largest power of x in such an expansion is
ðd − 1Þn, which reduces to n for the well-known binomial
case. The last ingredient necessary to generalize to qudits is
the generalization of ð1þ xÞnjx¼−1 ¼ 0 used in the proof
above. For this, we introduce the dth root of unity w≡
exp½ið2π=dÞ� and recall that adding all powers of w from
zero to d − 1 gives zero. This reveals a set of identities that
are useful in defining and proving the error-correction
properties of the qudit states:

0 ¼ ð1þ wþ � � � þ wd−1Þn ¼
Xðd−1Þn
k¼0

�
n

k

�
d
wk: ðC3Þ

This sum is also zero for any nonzero power of w, i.e.,
w → wl for nonzero integer l. For the zeroth power, the sum
gives dn.
We now generalize the binomial code words of

Eq. (B5) to

j ~Wμi≡
Xðd−1ÞðNþ1Þ

p¼0

wμpffiffiffiffiffiffiffiffiffiffi
dNþ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N þ 1

p

�
d

s
jðSþ 1Þpi; ðC4Þ

where the indices μ; ν ∈ f0; 1;…; d − 1g are, from now on,
evaluated modulo d and d ≥ 2. Similar to the qubit case,
S ¼ LþG and N ¼ max fL;G; 2Dg. We call these codes
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“extended binomial codes,” not to be confused with
quantum polynomial codes [118].

1. Moments of n̂ for the extended binomial codes

Similar to the qubit case, it should be clear that the
spacing Sþ 1 between the nonzero Fock-state populations
of j ~Wμi guarantees that h ~Wμjðâ†Þlâl0 j ~Wνi ¼ 0 for all
jl − l0j < Sþ 1. Therefore, to satisfy the error-correction
criteria, we are once again left with determining the powers
of n̂ that can be used to construct any diagonal (in Fock
space) products of error operators. Here, we show that

hn̂li≡ h ~Wμjn̂lj ~Wμþνi ¼ αlδν0; ðC5Þ

where αl are real and μ independent. Using definition (C4),
we notice that

hn̂li ¼ ðSþ 1Þl
dNþ1

Xðd−1ÞðNþ1Þ

p¼0

�
N þ 1

p

�
d
plwνp; ðC6Þ

and the μ dependence is immediately canceled. We now
relate this sum to Eq. (C2).
For l ¼ 0, the sum is equivalent to the expansion of

ð1þ xþ � � � þ xd−1ÞNþ1 with x ¼ wν. Equation (C3)
reveals that this sum is zero unless ν ¼ 0, proving that
fj ~Wμigdμ¼0 are orthogonal. For the ν ¼ 0 case, wν ¼ 1 and

Eq. (C2) yields dNþ1, proving that fj ~Wμigdμ¼0 are properly
normalized.
The nonzero l case is equivalent to taking derivatives of

the expansion (C2) and multiplying by x (before substitut-
ing x ¼ wν). In total,

hn̂li ¼ ðSþ 1Þl
dNþ1

�
x
d
dx

�
l
ð1þ xþ � � � þ xd−1ÞNþ1j

x¼wν

:

ðC7Þ

Similar to the ordinary binomial case, each action of the
derivative acting on ð1þ xþ � � � þ xd−1ÞNþ1 subtracts one
from the power N þ 1, but N is large enough so that there
will always be a nonzero power of 1þ xþ � � � þ xd−1

remaining after the action of all derivatives. Therefore,
each term in Eq. (C7) contains at least one nonzero power
of 1þ xþ � � � þ xd−1. Substituting x ¼ wν into each term
yields zero unless ν ¼ 0 and so Eq. (C5) holds.
The coefficients αl of Eq. (C5) for the first few l can be

easily determined from this method [76]:

α1 ¼
ðSþ 1Þ

2
ðd − 1ÞðN þ 1Þ; ðC8aÞ

α2 ¼ α1
ðSþ 1Þ

6
½ðd − 1Þð3N þ 4Þ þ 2�: ðC8bÞ

The coefficient α1 is the mean photon number of the code
words, which we see scales linearly with the spacing S, the
qudit dimension d, and the maximum number of correct-
able errors of one type, N.

APPENDIX D: DERIVATION OF THE
KRAUS OPERATORS Êl

Here, we derive the Kraus operator representation

ρ̂ðtÞ ¼
X∞
l¼0

ρ̂lðtÞ ¼
X∞
l¼0

Êlρ̂ð0ÞÊ†
l ðD1Þ

of the time evolution generated by the standard Lindblad
master equation

dρ̂ ¼ κdt

�
âρ̂â† −

â†â
2

ρ̂ − ρ̂
â†â
2

�
: ðD2Þ

The zero-jump contribution consists of only the no-
jump evolution under the non-Hermitian Hamiltonian
V̂=ℏ ¼ −iðκ=2Þâ†â,

ρ̂0ðtÞ ¼ e−ðκt=2Þn̂ρ̂ð0Þe−ðκt=2Þn̂: ðD3Þ

The single jump contribution ρ̂1ðtÞ consists of the no-jump
evolution interrupted by a jump and averaged over all
possible jump times,

ρ̂1ðtÞ ¼
Z

t

0

κdτe−½κðt−τÞ=2�n̂âe−ðκτ=2Þn̂ρ̂ð0Þ

× e−ðκτ=2Þn̂â†e−½κðt−τÞ=2�n̂

¼ ð1 − e−κtÞe−ðκt=2Þn̂â ρ̂ð0Þâ†e−ðκt=2Þn̂; ðD4Þ

where κdτ is the probability for a jump during dτ. We have
used the identity

expðκδtn̂Þâ expð−κδtn̂Þ ¼ â expð−κδtÞ: ðD5Þ

Similarly, the double-jump contribution is

ρ̂2ðtÞ ¼
ð1 − e−κtÞ2

2!
e−ðκt=2Þn̂â2ρ̂ð0Þðâ†Þ2e−ðκt=2Þn̂; ðD6Þ

and the general term for l jumps is

ρ̂lðtÞ ¼
ð1 − e−κtÞl

l!
e−ðκt=2Þn̂âlρ̂ð0Þðâ†Þle−ðκt=2Þn̂; ðD7Þ

where we gather the analytic expression for the Kraus
operators

NEW CLASS OF QUANTUM ERROR-CORRECTING CODES … PHYS. REV. X 6, 031006 (2016)

031006-17



Êl ¼ ffiffiffiffiffi
γl

p
e−ðκt=2Þn̂âl ¼ ffiffiffiffiffi

γl
p

Ê0âl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γlelκt

q
âle−ðκt=2Þn̂:

ðD8Þ

Here, γl ¼ ð1 − e−κtÞl=l! is related to the probability of
the process ρ̂ → Êlρ̂Êl. When considering a small time
interval δt and expanding Êl to the lowest order in κδt, we
see that, roughly speaking, a photon loss error occurs with a
probability amplitude proportional to

ffiffiffiffiffiffi
κδt

p
.

If this is a proper Kraus representation, it must obey the
identity relation

P∞
l¼0 Ê

†
lÊl ¼ Î. From Eq. (15), we have

Ξ̂ ¼
X∞
l¼0

Ê†
lÊl ¼

X∞
l¼0

ð1 − e−κtÞl
l!

ðâ†Þle−κtn̂âl: ðD9Þ

To see if this is the identity, we apply it to an arbitrary
Fock state jmi and recognize that the resulting binomial
expansion yields

Ξ̂jmi ¼
�Xm
l¼0

ð1 − e−κtÞlðe−κtÞm−l

l!
m!

ðm − lÞ!
�
jmi

¼
�Xm
l¼0

ð1 − e−κtÞlðe−κtÞm−l
�
m

l

��
jmi

¼ jmi: ðD10Þ

Since this is true for every m, the identity relation Ξ̂ ¼ Î is
indeed satisfied.
The Kraus operator expansion is not unique. This

particular form organizes the errors according to how
many photons are lost. Because of the no-jump evolution
in between the jumps, the error operator for l photon losses
is Êl and not simply âl.

APPENDIX E: LINDBLAD EVOLUTION
CORRECTABLE BY BINOMIAL CODES

Here, we show how to find binomial codes that may be
used to correct nonunitary Lindbladian evolution generated
by operators Âi of the form

Âi ¼
X
jk

ξðiÞjk ðâ†Þjâk ðE1Þ

occurring with respective error rates κi. Some of this
discussion is similar to that given for a different bosonic
encoding in Ref. [20]. For a sufficiently small time interval
δt, the errors introduced by the dissipative evolution,

dρ̂ ¼
X
i

Dð ffiffiffiffi
κi

p
ÂiÞρ̂dt; ðE2Þ

where DðĉÞρ ¼ ĉρ̂ĉ† − 1
2
fĉ†ĉ; ρ̂g, can be expanded in the

parameters ϵi ¼ κiδt. For each operator Âi, we can specify

that we wish to suppress all errors induced up to Oðϵxii Þ,
where xi can be interpreted as the maximum number of Âi
error events in the time interval δt.
The values of ϵxii may differ between Ai and, in

general, the time evolution involves mixtures of these
operators. To represent the different combinations of ϵi
that occur as part of the correctable errors, we introduce
the shorthand

OðγÞ ¼ O
�Y

i

ϵyi=2i

�
; ðE3Þ

where yi are any integers satisfying

X
i

yi
2xi

≤ 1: ðE4Þ

To achieve this accuracy, the code words must satisfy the
QEC conditions under application of the time evolution
Kraus operators E ¼ fÊkg to the appropriate order [21]:

hWσjÊ†
lÊkjWσ0 i ¼ αlkδσσ0 þOð ffiffiffiffi

ϵi
p

γÞ; ðE5Þ

where ϵi may be any of the expansion parameters.
In general, it is not possible to obtain a closed form for

the Kraus operators as in Appendix D. However, the
evolution during a time interval δt can be unraveled into
different quantum trajectories [85]. Then, for a given
trajectory, the system dynamics consists of continuous
no-jump evolution described by the operator,

Ê0ðtÞ ¼ exp

�
−
t
2

X
i

κiÂ
†
i Âi

�
; ðE6Þ

and a sequence of jumps taken from the set of opera-
tors

ffiffiffiffi
κi

p
Âi.

1. Jumps alone

Without the no-jump evolution, the sum over trajectories
would produce sums over all possible products of the jump
operators

ffiffiffiffi
κi

p
Âi, integrated over all possible jump times in

the interval δt, to give Kraus operators

Êk ∼
Y
i

Ôi; where Ôi ∈ f ffiffiffiffi
ϵi

p
Âig: ðE7Þ

Here, we only need to consider Kraus operators that are
possible up to Oð ffiffiffi

γ
p Þ, as any terms that are higher order

will produce errors that are beyond the desired accuracy.
Putting these operators into the approximate QEC con-
dition results in conditions of the form

hWσj½ ffiffiffiffi
ϵi

p
Â†
i

ffiffiffiffi
ϵj

p
Â†
j…�½ ffiffiffiffi

ϵk
p

Âk
ffiffiffiffi
ϵl

p
Âl…�jWσ0 i ∝ δσσ0 ; ðE8Þ
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where the operator combinations in each square bracket
can be any combination possible up to Oð ffiffiffi

γ
p Þ. By normal

ordering, these conditions can be expressed as sums of terms
like the left-hand side of Eq. (11). The normal ordering
procedure may produce operators that cannot be expressed
as powers of Âi. However, following the discussion beneath
Eq. (11), we only need to find a binomial code that satisfies
Eq. (E8) for the terms with the worst-case (i.e., largest)
values of either nþ ¼ n− or jnþ − n−j. All other terms,
including those that may be generated by normal ordering,
then also satisfy Eq. (E8) as a result of Eq. (11).
A binomial code that satisfies the worst-case instances of

Eq. (E8) can be found by choosing one that can correct the
highest order error operators:

Âi
0 ¼ ð ffiffiffiffi

ϵi
p

ÂiÞxi ¼ ϵxi=2i

X
jk

ζðiÞjk ðâ†Þjâk: ðE9Þ

The combinations Â0†
i Âj

0 contain all the worst-case oper-
ators that appear in the conditions of Eq. (E8). We then find
a binomial code that can correct this error following the
rationale below Eq. (12).
For example, consider the following (contrived) choices

of Ai and xi:ffiffiffiffiffi
ϵ1

p
Â1 ¼

ffiffiffiffiffi
ϵ1

p ðn̂ âþâ†Þ; x1 ¼ 1; ðE10aÞ
ffiffiffiffiffi
ϵ2

p
Â2 ¼

ffiffiffiffiffi
ϵ2

p
â; x2 ¼ 2; ðE10bÞ

In this case, from Eq. (E3),OðγÞ ¼ Oðϵ1; ϵ22;
ffiffiffiffiffi
ϵ1

p
ϵ2Þ. Now,

Â0
1 ¼ Â1 and

Â0
2 ¼ ϵ2Â

2
2 ¼ ϵ2â â : ðE11Þ

To correct Eq. (E11), we need L ≥ 2, N ≥ 2, and
Eq. (E10a) requires L ≥ 1, G ≥ 1, and N ≥ 3. These
conditions give minimal choices of L ¼ 2, G ¼ 1, and
N ¼ 3 for a binomial code that can correct the errors (E10).

2. Including no-jump evolution

Including the no-jump evolution introduces instances
of the no-jump operator, Eq. (E6), between the individual
jump operators to give the behavior between jump times.
Since all these intervals are about δt, the no-jump operator
can be expanded in terms that are about ϵi, so that the Kraus
operators become

Êk ∼
Y
i

Ôi; where Ôi ∈ f ffiffiffiffi
ϵi

p
Âi; ϵiÂ

†
i Âig: ðE12Þ

Since each instance of Âi or Â
†
i still appears with a factor

of
ffiffiffiffi
ϵi

p
, the largest combined total of â and â† operators

appearing in the Êk to OðγÞ is unchanged by inclusion of
the no-jump evolution, and so the appropriate N can be
determined as in the previous subsection.

However, since the no-jump evolution introduces
instances of the operator conjugates Â†

i into the Kraus
operators, it can lead to new terms that change the number
of excitations differently to evolution under jump events
alone. This will alter the required values of L and G.
For example, consider the choice

Â ¼ âþ ââ; x ¼ 2; ðE13Þ
where the error rate κ ¼ ϵ=δt, so the desired order of
correction is Oðϵ2Þ. In the presence of no-jump evolution,
the set of Kraus operators includes

Ê0 ≈ 1 −
1

2
ϵðâ†Þ2âþ ðother termsÞ; ðE14aÞ

Ê2 ≈ ϵÂ2 ¼ ϵðâ4 þ 2â3 þ âÞ; ðE14bÞ

where we have omitted some terms that are OðεÞ or Oðε2Þ
because such terms will automatically satisfy the QEC
conditions once we perform the analysis below. From the
analysis of the previous subsection, we would consider
only Â2 and conclude that we should use a code with
Lþ G ¼ 4. However, putting the Kraus operators into
Eq. (E5), we find

hWσjÊ†
0Ê2jWσ0 i ¼ −

1

2
ϵ2hWσjâ†â6jWσ0 i þ ðother termsÞ:

ðE15Þ
A binomial code satisfying Eq. (11) for such a term requires
Lþ G ¼ 5. The no-jump evolution introduces new terms
in the expansion of the QEC conditions that must be
included.
As in the above example, the worst-case instances are

introduced from terms of the form ðϵiÂ†
i ÂiÞ⌊xi=2⌋. We can

then include them with the worst-case error set of Eq. (E9):

fÂ0
ig ¼ fð ffiffiffiffi

ϵi
p

ÂiÞxig ∪ fðϵÂ†
i ÂiÞ⌊xi=2⌋g: ðE16Þ

One can now find a binomial code that corrects these errors,
and as a result, the nonunitary evolution to the desired
order, by expressing these operators in the form of Eq. (12)
and satisfying the binomial code conditions for N, L,
and G.
For the example of Eq. (E13), we obtain

fÂ0
ig ¼ fϵðâ4 þ 2â3 þ â2Þg ∪ fϵðâ†n̂þ n̂ âþn̂2Þg;

ðE17Þ
which yields the parameters L ¼ 4, G ¼ 1, and N ¼ 4,
consistent with the above discussion.
We note that in many physical circumstances, either

Â†
i Âi ¼ fðn̂Þ, in which case the no-jump evolution does not

change the number of excitations, or the error is Hermitian,
in which case including no-jump evolution gives
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expressions that are the same as Eq. (E8). In these
situations, only the error set of Eq. (E9) need be considered.
For example, taking the operators from Eqs. (E10), we
obtain for Eq. (E16),

fÂ0
ig ¼ f ffiffiffiffiffi

ϵ1
p ðn̂ âþâ†Þ; ϵ2â âg ∪ fϵ2â†âg: ðE18Þ

Using this error set results in the same conditions as found
without the no-jump evolution, Eqs. (E10) and (E11).

APPENDIX F: PERFORMANCE OF THE
BINOMIAL CODES UNDER AN UNFAITHFUL

RECOVERY PROCESS

In Sec. V, we showed that the performance of a binomial
code protected against L photon loss errors (7) is well
captured by the largest rate of the unrecoverable errors, i.e.,
the rate of losing Lþ 1 photons during a time step δt,

PLþ1

δt
¼ hÊ†

Lþ1ÊLþ1i
δt

∼ κðκδtÞLLLþ1; ðF1Þ

where, for simplicity, we have assumed that S ¼ L.
Practically, the recovery process is always associated with
an infidelity related to unfaithful gates and imprecise
measurements. The total error rate PT can be approximated
by the sum of the largest unrecoverable error and the
infidelity η of the recovery process:

PT

δt
≃ NκðκδtÞLLLþ1 þ η

δt
; ðF2Þ

where N is the prefactor of the PLþ1 scaling. The optimal
time step is δtopt ¼ κ−1ðη=NLLþ2Þð1=Lþ1Þ, which balances
between minimizing the rate of unrecoverable errors and
the infidelity of the recovery process itself. With this
optimal time step, the best performance of an unfaithfully
recovered binomial code scales as a function of η as

Popt
T

δt
≃ κηðL=Lþ1Þð1þ LÞðNLÞð1=Lþ1Þ ∼ κηL: ðF3Þ

The performance benefit of higher-order codes is achieved
only with small η.

APPENDIX G: HARDWARE PROPOSAL FOR
THE TWO-MODE CODES

The two-mode codes [12] or the universal control of two
binomial logical qubits encoded in different individual
modes could be realized using two separate modes in the
same cavity or using a recently constructed system [43] of
two cavities dispersively coupled to a common transmon
qubit that is used to perform unitary operations on the
combined cavity system (see also a related hardware
proposal in Ref. [18]). Implementation requires the ability
to perform the necessary measurement and error-correction

operations on the two-cavity modes, âj, j ¼ 1, 2. Here,
we show that the single-qubit, two-cavity experimental
configuration, Fig. 4, is, in principle, sufficient to realize
universal control of the two modes.
The dispersive coupling Hamiltonian is of the form

Ĥdisp=ℏ ¼ P
2
j¼1 χjâ

†
j âjσ̂z, where âj is the annihilation

operator for the jth mode. Additional Hamiltonian terms
come from drives on the cavities, Ĥj;d=ℏ ¼ ε�j âþ εjâ†,

and the qubit ĤQ=ℏ ¼ ~n · ~σ, where the εj and ~n are
externally controlled. The existing Hamiltonian terms
can generate a more complex effective Hamiltonian using
the approximate identities [3]

eiÂδteiB̂δteiB̂δteiÂδt ¼ e2iðÂþB̂Þδt þOðδt3Þ; ðG1aÞ

e−iÂδte−iB̂δteiÂδteiB̂δt ¼ e½Â;B̂�δt2 þOðδt3Þ: ðG1bÞ

These identities can be applied and combined multiple
times to produce superpositions of higher order commu-
tators, e.g., ½Â; ½Â; B̂�� [3].
To establish universal control of the multimode system, it

is sufficient to show that each mode can be universally
controlled and that it is possible to generate a beam-splitter
interaction x̂jp̂k − x̂kp̂j (equivalent to âjâ

†
k þ â†j âk)

between different modes j ≠ k [119]. Using the identity
Eq. (G1b), the cavity drives, along with the dispersive
interaction, generate effective, qubit-dependent drives on
an individual cavity:

iĤj;eff ¼
�
εjâj − ε�j â

†
j ; i

X2
k¼1

χkâ
†
kâkσ̂z

�

¼ iχjσ̂zðεjâj þ ε�j â
†
jÞ: ðG2Þ

Choosing εj to be real or imaginary results in effective
operators ∝ p̂jσ̂z or x̂jσ̂z. Combining these with prerota-
tions and postrotations of the qubit yields, e.g., x̂jσ̂y.
Applying Eq. (G1b) again enables the construction of
products of the mode operators [120], for example,

½ix̂jσ̂y; ix̂kσ̂z� ¼ ix̂jx̂kσ̂x; ðG3aÞ

FIG. 4. Sketch of a two-cavity configuration with a dispersively
coupled common transmon qubit [43], which is sufficient for
realizing the two-mode codes. Each of the elements has a separate
drive, denoted by εj and ~n, respectively. Alternatively, one could
use two distinct modes of the same cavity.
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½ip̂jσ̂y; ip̂kσ̂z� ¼ ip̂jp̂kσ̂x; ðG3bÞ

½ix̂jσ̂y; ip̂kσ̂z� ¼ iðx̂jp̂k þ p̂kx̂jÞσ̂x: ðG3cÞ

Using Eq. (G1a) to sum Eqs. (G3a) and (G3b) with j ¼ k
gives a single-mode dispersive interaction, which in com-
bination with external cavity drives is enough to produce
single-mode universal control [41]. Superposing Eq. (G3c)
with the same term with the opposite sign and j ↔ k
produces the beam-splitter interactions that are sufficient to
give universal control of the multimode system [119]. For
practical applications, having additional, separately con-
trolled qubits inside each cavity may simplify the control
pulses, but as this proof demonstrates, in principle, they are
not necessary.

APPENDIX H: OPTIMIZED BOSONIC CODES

The performance of a binomial code protected against
loss of L photons is dominated by the rate of losing Lþ 1
photons, that is, the largest rate of uncorrectable errors.
As noted in Sec. V, this rate scales quite unfavorably.
This is the cost of the sparse and tidy structure of the
binomial codes; the occupied Fock states of the code
words have definite generalized photon number parity
fjkijk ¼ 0modLþ 1g. It is expected that by relaxing this
Fock-state structure, we can improve the intrinsic perfor-
mance of the code and pay a price in fidelity of the recovery
process, as the error detection and recovery will need more
sophisticated unitary control.
Here, we follow the construction that we used for the

binomial codes: We first find exact satisfaction of the
quantum error-correction criteria for the discrete photon
loss errors ≤ L times and then demonstrate that we can find
a recovery process for the continuous-time photon loss
channel to accuracy ðκδtÞL. In practice, we find code words
jWσi that simultaneously minimize the dominating term of
the rate for losing Lþ 1 photons,

PLþ1

κδt
¼ Tr½âLþ1ρ̂cðâ†ÞLþ1�

ðLþ 1Þ! ðκδtÞL; ðH1Þ

where ρ̂c is the fully mixed state of the code words jWσi,
and satisfy the constraints of the quantum error-correction
criteria (1) for the discrete error set ĒL ¼ fÎ; â; â2;…; âLg,

hWσjÊ†
lÊkjWσ0 i ¼ αlkδσσ0 ; ðH2Þ

for all Êl;k ∈ ĒL such that αlk are entries of a Hermitian
matrix. Most of the solutions we have found to this
optimization problem are numerical, and their detailed
exploration and classification is left for future work.
For the simplest error set Ē1 ¼ fÎ; âg, we have found an

analytic code

jW↑i ¼
1ffiffiffi
6

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7 −
ffiffiffiffiffi
17

pq
j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

p
− 1

q
j3i

�
; ðH3aÞ

jW↓i ¼
1ffiffiffi
6

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 −
ffiffiffiffiffi
17

pq
j1i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

p
− 3

q
j4i

�
; ðH3bÞ

with a remarkably low rate for the correctable error
P1=κδt ¼ n̄ ¼ ð ffiffiffiffiffi

17
p

− 1Þ=2 ≈ 1.56 and a rate for the
uncorrectable errors P2=κδt¼ κδtð3 ffiffiffiffiffi

17
p

−7Þ=4≈1.34κδt.
The comparison with values Pbin

1 =κδt ¼ n̄bin ¼ 2 and
Pbin
2 =κδt ¼ 2κδt of the corresponding binomial code (2)

shows a performance advantage both in the rate of
correctable and uncorrectable errors. Because of the lack
of definite parity structure with the code words (H3), one
has to use general projective measurements to detect loss of
a photon instead of the straightforward parity measure-
ments for the binomial codes (Appendix A). These general
projections may be realizable using current superconduct-
ing circuit technology [41–44] but most likely with
lower fidelity than parity measurements [39]. By extending
this code to be protected against a photon gain error,
Ē0
1 ¼ fÎ; â; â†g, we get

jW↑i ¼
1ffiffiffi
8

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 −
ffiffiffiffiffi
21

pq
j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21

p
− 1

q
j4i

�
; ðH4aÞ

jW↓i ¼
1ffiffiffi
8

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 −
ffiffiffiffiffi
21

pq
j1i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21

p
− 3

q
j5i

�
: ðH4bÞ

Here, we observe an even more dramatic relative and
absolute improvement in P1=κδt ¼ ð ffiffiffiffiffi

21
p

− 1Þ=2 ≈ 1.79
and P2=κδt ¼ κδtð4 ffiffiffiffiffi

21
p

− 9Þ=4 ≈ 2.33κδt in comparison
with the values Pbin

1 =κδt ¼ 3 and Pbin
2 =κδt ¼ 5.25κδt of the

corresponding binomial code ðjW↑i ¼ ðj0i þ j6iÞ= ffiffiffi
2

p
and jW↓i ¼ 3Þ.

1. Approximate quantum error correction under
continuous-time dissipative evolution

Here, we construct a recovery operation for the opti-
mized code (H3) that achieves an accuracy of OðκδtÞ in
protecting against the photon loss channel that includes
both the photon loss jump and no-jump errors, as we did
for the binomial code in Sec. IVA. The optimized code
(H3) has a diagonal QEC matrix for the discrete errors
Ē1 ¼ fÎ; âg. But for the errors (15) that include the no-
jump evolution, E1 ¼ fÊ0; Ê1g, there are nondiagonal
elements that do not identically vanish and violate the
structure of the QEC matrix because of the mixing caused
by the no-jump evolution:
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hWσjÊ†
0Ê1jWσ0 i ¼ ðκδtÞ32hWσjn̂ â jWσ0 i þO½ðκδtÞ2�

¼ −δ↑↓2ðκδtÞ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 −

ffiffiffiffiffi
17

pq
þO½ðκδtÞ2�:

ðH5Þ

Notice that the diagonal approximate quantum error-
correction criteria (22) were a result of the strict generalized
parity structure of the binomial codes. Here, we have
deliberately broken this structure and may wonder
whether the highest uncorrectable error for E1 is of the
order of ðκδtÞ2 or ðκδtÞ32 as there is a nonvanishing term
ðκδtÞ32hW↑jn̂ â jW↓i in the QEC matrix.
Their effect is most easily seen by explicitly going

through the error and recovery processes. Remembering
that a quantum state jψi ¼ ujW↑i þ vjW↓i transforms to

jψli≡ Êljψi=hψ jÊ†
lÊljψi12 under the action of a Kraus

operator Êl, the respective error states under no-jump
evolution and a photon loss error are

jψ0i ¼ jψi þ κδtðΓ0ujE0
↑i þ γ0vjE0

↓iÞ; ðH6aÞ

jψ1i ¼ u

�
1 −

1

2
Γ2
0jvj2κδt

�
jE1

↑i þ vð1 − juj2γ1κδtÞjE1
↓i

þ vΓ0κδtjW↑i; ðH6bÞ

to first order in κδt. The coefficients Γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffi

17
p

− 3Þ=2
q

,

γ0 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffiffiffi
17

p
− 11

p
, and γ1 ¼ 2=ð3þ ffiffiffiffiffi

17
p Þ are indepen-

dent on u and v. The normalized error words for the no-
jump errors are

jE0
↑i ¼

1ffiffiffi
6

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

17
p

− 1

q
j0i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 −

ffiffiffiffiffi
17

pq
j3i

�
; ðH7aÞ

jE0
↓i ¼

1ffiffiffi
6

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

17
p

− 3

q
j1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

ffiffiffiffiffi
17

pq
j4i

�
; ðH7bÞ

and, respectively, for the photon loss errors,

jE1
↑i ¼ j2i; jE1

↓i ¼ jE0
↑i; ðH8Þ

where one notices that the error words overlap between
the two errors jE1

↓i ¼ jE0
↑i, captured by the nonvanishing

nondiagonal term ðκδtÞ32hW↑jn̂ â jW↓i.
Wenowadopt the recoveryprocess ofEq. (18).Becausewe

cannot use parity to detect a photon loss error, we replace it
with a measurement that asks whether the system is in the
subspace of words after a photon loss error fjE1

σig. This
measurement performs the projection P̂1 ¼

P
σjE1

σihE1
σj.

The recovery process is R ¼ fÛ0ðÎ − P̂1Þ; Û1P̂1g, where
the unitary operation Û1 performs state transfer jWσi ↔ jE1

σi
and the unitary operation Û0 performs the state transfer

jW↓i ↔ jW↓i þ κδtγ0jE0
↓i, similarly as with the code (2).

Thus, we get the recovery processes

RðEðρ̂ÞÞ ¼
X1
k¼0

R̂k

�X1
l¼0

Êlρ̂Ê
†
l

�
R̂†
k þO½ðκδtÞ2�

¼
X1
k¼0

R̂k½ð1 − n̄κδtÞjψ0ihψ0j þ n̄κδtjψ1ihψ1j�R̂†
k

þO½ðκδtÞ2�
¼ ρ̂þ Û1½ðκδtÞ2Γ2

0juj2jE0
↑ihE0

↑j�Û†
1 þO½ðκδtÞ2�

¼ ρ̂þO½ðκδtÞ2�; ðH9Þ
wherewe have written the time evolution with the help of the
probabilities of the Kraus operator TrðÊ†

0Ê0ρ̂Þ ¼ 1 − n̄κδtþ
O½ðκδtÞ2� andTrðÊ†

1Ê1ρ̂Þ ¼ n̄κδtþO½ðκδtÞ2� and the result-
ing states jψ iihψ ij from Eq. (H6). From this expression, we
see that many terms that are first order in jψ ii, together with
the correspondingprobability, actually produce a higher order
term. The second term in the second line comes from the
overlap between the two errors, indicating a misidentification
of the errors with a probability of about ðκδtÞ2. The recovery
process fails to order ðκδtÞ2 because part of the no-jump
evolution is corrected as a photon loss error.However, this can
be ignored as we are protecting to order κδt. Notice that the
same result within the accuracy κδt can also be achieved by
the recovery Rm ¼ fP̂W; Û1ð1 − P̂WÞg. Here, the recovery
error of about ðκδtÞ2 comes from incorrectly identifying part
of the photon loss error.
For L ¼ 1, the approximate QEC conditions of the

continuous-time dissipative evolution under photon loss
are equivalent to the QEC conditions of Eq. (1). Hence, the
code of Eq. (H3) can correct the continuous-time error
process to order κδt as was shown above. However, in
general, for L > 1, the optimized code words protecting
against the continuous-time error process to order ðκδtÞL
will be time-step dependent. The error operators can be
written as Êl ∼ âlÊ0. Then, by writing the optimized code
words jW0

σi as jW0
σi ¼ Ê−1

0 jWσi=
ffiffiffiffiffiffi
Zσ

p
, we have effectively

reduced the problem to finding code words jWσi that
satisfy QEC conditions of Eq. (1) for the bare photon loss
errors ĒL ¼ fÎ; â; â2;…; âLg. With the normalization fac-
tors Z ¼ Zσ ¼ hWσjE−2

0 jWσi, the operation Ê−1
0 =

ffiffiffiffi
Z

p
is

unitary for the states jWσi to order ðκδtÞL as a consequence
of QEC conditions.
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