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We propose examples of a hybrid quantum-classical simulation where a classical computer assisted
by a small quantum processor can efficiently simulate a larger quantum system. First, we consider sparse
quantum circuits such that each qubit participates in Oð1Þ two-qubit gates. It is shown that any sparse
circuit on nþ k qubits can be simulated by sparse circuits on n qubits and a classical processing that
takes time 2OðkÞpolyðnÞ. Second, we study Pauli-based computation (PBC), where allowed operations are
nondestructive eigenvalue measurements of n-qubit Pauli operators. The computation begins by initializing
each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum
computer. We show that any PBC on nþ k qubits can be simulated by PBCs on n qubits and a classical
processing that takes time 2OðkÞpolyðnÞ. Finally, we propose a purely classical algorithm that can simulate a
PBC on n qubits in a time 2αnpolyðnÞ, where α ≈ 0.94. This improves upon the brute-force simulation
method, which takes time 2npolyðnÞ. Our algorithm exploits the fact that n-fold tensor products of magic
states admit a low-rank decomposition into n-qubit stabilizer states.
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I. INTRODUCTION

Quantum computers promise a substantial speed-up over
classical ones for certain number-theoretic problems and
the simulation of quantum systems [1–3]. Experimental
efforts to build a quantum computer remain in their infancy
though, limited to proof-of-principle experiments on a
handful of qubits. In contrast, the design of classical
computers is a mature field offering billions of operations
per second in off-the-shelf machines and petaflops in
leading supercomputers. To prove their worth, quantum
computers will have to offer computational solutions
that rival the performance of classical supercomputers, a
daunting task to be sure.
Here, we study hybrid quantum-classical computation,

wherein a small quantum processor is combined with a
large-scale classical computer to jointly solve a computa-
tional task. To motivate this problem, imagine that a client
can access a quantum computer with 100 qubits and
essentially perfect quantum gates. Such a computer lies
in the regime where it is likely to outperform any classical
machine (since it would be nearly impossible to emulate
classically). Imagine further that the client wants to
implement a quantum algorithm on 101 qubits, but it is
impossible to expand the hardware to accommodate one
extra qubit. Does the client have any advantage at all from
the access to a quantum computer in this scenario? Can one
divide a quantum algorithm into subroutines that require

less qubits than the entire algorithm? Can one implement
each subroutine separately and combine their outputs on a
classical computer? These are the main questions addressed
in this paper. Put differently, we ask how to add one virtual
qubit to an existing quantum machine at the cost of
increased classical and quantum running times, but without
modifying the machine hardware. More generally, one may
ask what is the cost of adding k virtual qubits to an existing
quantum computer of n qubits and how to characterize the
trade-off between quantum and classical resources in these
settings.
As one may expect, the cost of adding virtual qubits

varies for different computational models. Although the
circuit-based model of a quantum computer is the most
natural and well studied, several alternative models have
been proposed, such as the measurement-based [4] and
the adiabatic [5] quantum computing models, as well as the
model DQC1, where most of the qubits are initialized in the
maximally mixed state [6]. Our goal is to identify quantum
computing models that enable efficient addition of virtual
qubits. Below we describe two examples of such models.
We begin with the model based on sparse quantum

circuits. Recall that a quantum circuit on n qubits is a
collection of gates, drawn from some fixed (usually
universal) gate set, with n input qubits and n output qubits.
Below we assume that the gate set includes only one-qubit
and two-qubit gates. Let us say that a circuit is d sparse if
each qubit participates in at most d two-qubit gates. We are
interested in the regime when d is a constant independent
of n or when d grows very slowly, say, d ∼ logðnÞ. This
regime covers interesting quantum algorithms that can
be described by low-depth circuits [7] since any depth-d
quantum circuit must be d sparse (although the converse is
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generally not true). It is believed that a constant-depth
quantum computation cannot be efficiently simulated by
classical means only [8,9]. It is also likely that early
applications of quantum computers will be based on
relatively low-depth circuits because they impose less
stringent requirements on the qubit coherence times.
Define a d-sparse quantum computation (d-SQC) as a

sequence of the following steps: (i) initialization of n qubits
in the j0i state, (ii) action of a d-sparse quantum circuit,
(iii) measurement of each qubit in the 0,1 basis, and
(iv) classical processing of the measurement outcomes that
returns a single output bit bout. We require that the final
classical processing takes time at most polyðnÞ. A classical
or quantum algorithm is said to simulate a d-SQC if it
computes probability of the output bout ¼ 1 with a small
additive error. Our first result is the following theorem,
which quantifies the cost of adding k virtual qubits to a
d-SQC on n qubits.
Theorem 1.—Suppose n ≥ kdþ 1. Then any d-sparse

quantum computation on nþ k qubits can be simulated by
a (dþ 3)-sparse quantum computation on n qubits repeated
2OðkdÞ times and a classical processing which takes time
2OðkdÞpolyðnÞ.
In the special case when all two-qubit gates in the

d-sparse quantum computation on nþ k qubits are CNOTs,
we show that the number of repeated n-qubit computations
in Theorem 1 scales as 22kðdþ1Þ. The above result is most
useful when both k and d are small; for example, k ¼ Oð1Þ
and d ¼ Oðlog nÞ. In this case, both the quantum and
classical running time of the simulation scale as polyðnÞ.
On the other hand, we expect that a direct simulation of a
d-SQC on a classical computer takes a superpolynomial
time (see the discussion above). Hence, the theorem pro-
vides an example when a hybrid quantum-classical simu-
lation is more efficient than a classical simulation alone.
The proof of the theorem exploits the fact that any

d-sparse quantum circuit U acting on a bipartite system AB
with jAj ≈ k and jBj ≈ n can be decomposed into a linear
combination of 2OðkdÞ tensor product terms Vα ⊗ Wα,
where Vα and Wα are d-sparse circuits acting on A and
B, respectively. We show that the task of simulating U can
be reduced to simulating the smaller circuitsWα, as well as
computing certain interference terms that involve pairs of
circuitsWα,Wβ. We show that the interference terms can be
estimated by a simple SWAP test, which can be realized by a
(dþ 3)-sparse computation on n qubits.
One may ask whether some analogue of Theorem 1

holds for general quantum circuits. Arguably, the most
favorable scaling of the hybrid quantum-classical simula-
tion cost would be 2OðkÞpolyðnÞ. Indeed, a subexponential
scaling with k for a fixed n would imply a possibility of a
purely classical simulator with a subexponential running
time, which is considered unlikely. Whether or not the
scaling 2OðkÞpolyðnÞ can be achieved for general quantum
circuits is an interesting open question.

Our second model is called Pauli-based computation
(PBC). We begin with a formal definition of the model. Let
Pn be the set of all Hermitian Pauli operators on n qubits,
that is, n-fold tensor products of single-qubit Pauli
operators I, X, Y, Z with the overall phase factor �1.
A PBC on n qubits is defined as a sequence of elementary
steps labeled by integers t ¼ 1;…; n, where at each step t
one performs a nondestructive eigenvalue measurement of
some Pauli operator Pt ∈ Pn. Let σt be the measured
eigenvalue of Pt. Note that σt ¼ �1, since any element of
Pn squares to one. We allow the choice of Pt to be adaptive;
that is, Pt may depend on all previously measured
eigenvalues σ1;…; σt−1. The latter have to be stored in a
classical memory. The computation begins by initializing
each qubit in the so-called magic state:

jHi ¼ cos ðπ=8Þj0i þ sin ðπ=8Þj1i:
Once all Pauli operators P1;…; Pn have been measured, the
final quantum state is discarded and one is left with a list of
measured eigenvalues, σ1;…; σn. The outcome of a PBC is a
single classical bit bout obtained by performing a classical
processing of the measured eigenvalues. All classical
processing must take time at most polyðnÞ. We prove that
the computational power of a PBC does not change if one
additionally requires that all Pauli operators P1;…; Pn
pairwise commute (for all measurement outcomes).
A classical or quantum algorithm is said to simulate a
PBC if it computes the probability of the output bout ¼ 1
with a small additive error. An example of a PBC is shown
at Fig. 1.

FIG. 1. Example of a PBC on n ¼ 3 qubits. Each step t involves
an eigenvalue measurement of a Pauli operator Pt on n qubits
with an outcome σt ¼ �1. A choice of Pt may depend on the
outcomes of all previous measurements. A PBC on n qubits can
be described by a binary tree T of height n such that internal
nodes of T are labeled by n-qubit Pauli operators and leaves of T
are labeled by 0 and 1. The latter represent the final output bit
bout. We require that the label of any leaf node can be computed in
time polyðnÞ on a classical computer.
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The PBC model naturally appears in fault-tolerant
quantum computing schemes based on error correcting
codes of stabilizer type [10]. Such codes enable a simple
fault-tolerant implementation of nondestructive Pauli mea-
surements on encoded qubits, for example, using the Steane
method [11]. Furthermore, topological quantum codes,
such as the surface code, enable a direct measurement of
certain logical Pauli operators by measuring a properly
chosen subset of physical qubits [12]. Several fault-tolerant
protocols for preparing encoded magic states such as jHi
have been developed [13–17]. PBCs implicitly appeared in
the previous work on quantum fault tolerance. Our analysis
closely follows the work by Campbell and Brown [18],
who showed that a certain class of magic state distillation
protocols can be implemented by PBCs.
We now state our results. First, we claim that a PBC has

the same computational power as the standard circuit-based
quantum computing model.
Theorem 2.—Any quantum computation in the circuit-

based model with n qubits and polyðnÞ gates drawn from
the Cliffordþ T set can be simulated by a PBC on m
qubits, where m is the number of T gates, and polyðnÞ
classical processing.
Recall that the Cliffordþ T gate set consists of single-

qubit gates,

H¼ 1ffiffiffi
2

p
�
1 1

1 −1
�
; S¼

�
1 0

0 i

�
; T¼

�
1 0

0 eiπ=4

�
;

and the two-qubit CNOT gate. This gate set is known to be
universal for quantum computing. Second, we show that
PBCs enable efficient addition of virtual qubits.
Theorem 3.—A PBC on nþ k qubits can be simulated

by a PBC on n qubits repeated 2OðkÞ times and a classical
processing that takes time 2OðkÞpolyðnÞ.
Both theorems follow from the fact that a generalized

PBC that incorporates unitary Clifford gates, ancillary
stabilizer states (such as j0i or jþi), and has polyðnÞ
measurements can be efficiently simulated by the standard
PBC defined above. To prove Theorem 2 we convert a
given quantum circuit on n qubits with m T gates into a
generalized PBC on nþm qubits initialized in the j0⊗ni ⊗
jH⊗mi state. Each T gate of the circuit is converted into a
simple gadget that includes adaptive Pauli measurements
and consumes one copy of the jHi state. Simulating such
generalized PBCs by the standard PBC on m qubits proves
Theorem 2.
To prove Theorem 3 we represent k copies of the magic

state jHi as a linear combination of k-qubit stabilizer states
ϕα such that jHihHj⊗k ¼ P

αcαjϕαihϕαj for some real
coefficients cα. The number of terms in this sum is 2OðkÞ.
We carry out the simulation independently for each α using
a generalized PBC on kþ n qubits initialized in the state
jϕαi ⊗ jH⊗ni and combine the outcomes on a classical

computer. Finally, we simulate the generalized PBCs by the
standard PBCs on n qubits.
Perhaps more surprisingly, we prove that PBCs can be

simulated on a classical computer alone more efficiently
than one could expect naively. Let us first describe a
brute-force simulation method based on the matrix-vector
multiplication. Let ϕt be the n-qubit state obtained after
measuring the Pauli operators P1;…; Pt. One can store ϕt
in a classical memory as a complex vector of size 2n. Each
step of a PBC involves a transformation ϕt → ϕtþ1 where
ϕtþ1 ¼ ð1=2ÞðI þ σtPtÞϕt. Since Pt is a Pauli operator, the
matrix of Pt in the standard basis is a permutation matrix
modulo phase factors. Thus, for a fixed vector ϕt, one can
compute ϕtþ1 for both choices of σt in time Oð2nÞ.
Furthermore, one can compute the norm of ϕtþ1 in time
Oð2nÞ and thus determine the probability of each meas-
urement outcome σt. By flipping a classical coin one can
generate a random variable σt ¼ �1 with the desired
probability distribution. Since any PBC has at most n
steps, the overall cost of the classical simulation is Oðn2nÞ.
Below we show that this brute-force simulation method is
not optimal.
Theorem 4.—Any PBC on n qubits can be simulated

classically in time 2αnpolyðnÞ, where α ≈ 0.94.
Our simulation algorithm exploits the fact that tensor

products of magic states admit a low-rank decomposition
into stabilizer states. Recall that an n-qubit state ϕ is called a
stabilizer state if jϕi ¼ Uj0⊗ni for some n-qubit Clifford
operator U—a product of the elementary gates H, S, and
the CNOT.
Suppose ψ is an arbitrary n-qubit state. Define a

stabilizer rank of ψ as the smallest integer χ such that ψ
can be written as jψi ¼ Pχ

α¼1 cαjϕαi, where cα are com-
plex coefficients and ϕα are n-qubit stabilizer states. The
stabilizer rank of ψ will be denoted χðψÞ. By definition,
1 ≤ χðψÞ ≤ 2n for any n-qubit state ψ and χðψÞ ¼ 1
if and only if ψ is a stabilizer state. For example, the
magic state jHi has stabilizer rank χðHÞ ¼ 2, since jHi is
not a stabilizer state itself, but it can be written as a
linear combination of two stabilizer states j0i and j1i.
Furthermore, using the identity

jH⊗2i ¼ 1

2
ðj00iþ j11iÞþ 1

2
ffiffiffi
2

p ðj00iþ j01iþ j10i− j11iÞ;

one can easily check that χðH⊗2Þ ¼ 2. More generally, let
χn be the stabilizer rank of jH⊗ni. Note that χnþm ≤ χnχm,
since a tensor product of two stabilizer states is a stabilizer
state. In particular, χn ≤ ðχ2Þn=2 ¼ 2n=2.
The probability to observe measurement outcomes

σ1;…; σt in a PBC implemented up to a step t can be
written as

hH⊗njΠjH⊗ni ¼
Xχn
α;β¼1

c̄αcβhϕαjΠjϕβi;
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where ϕα are n-qubit stabilizer states, cα are complex
coefficients, and Π ¼ Q

t
a¼1ðI þ σaPaÞ=2 is the projector

describing the partially implemented PBC. W use a version
of the Gottesman-Knill theorem [19] to show that each term
hϕαjΠjϕβi can be computed on a classical computer in
time n3. Since the number of terms is χ2n and the number of
steps is at most n, we would be able to simulate a PBC on
n qubits classically in time ðχnÞ2n4. Improving upon the
brute-force simulation method thus requires an upper bound
χn ≤ 2βn for some β < 1=2. We establish such an upper
bound with β ¼ log2ð7Þ=6 ≈ 0.468 by showing that χ6 ≤ 7,
which implies χn ≤ ðχ6Þn=6 ≤ 7n=6. We expect that the
scaling in Theorem 4 can be improved by computing χn
for larger values of n. In Appendix B, we describe a heuristic
algorithm for computing low-rank decompositions of jH⊗ni
into stabilizer stateswhich yields the following upper bounds:

n 2 3 4 5 6

χn ≤ 2 3 4 6 7

We believe that these upper bounds are tight. A lower
bound χn ≥ Ωðn1=2Þ is proved in Appendix C.

II. DISCUSSION AND PREVIOUS WORK

Classical algorithms for simulation of quantum circuits
based on the stabilizer formalism have a long history.
Notably, Aaronson and Gottesman [19] studied adaptive
quantum circuits that contain only a few non-Clifford gates.
Assuming that a circuit contains at most m non-Clifford
gates and that all n qubits are initially prepared in some
stabilizer state, Ref. [19] showed how to simulate such a
circuit classically in time 24mpolyðnÞ. To enable a com-
parison with our results, assume that all unitary gates
belong to the Cliffordþ T set. By Theorem 2, a quantum
circuit as above can be transformed into a PBC onm qubits,
where m is the number of T gates. Thus, Theorems 2 and 4
provide a classical simulation algorithm with a running
time 20.94mpolyðnÞ which improves upon Ref. [19]. In
addition, Ref. [19] studied adaptive quantum circuits
composed only of Clifford gates and Pauli measurements
with more general initial states. Assuming that the initial
n-qubit state can be written as a tensor product of some
b-qubit states, a quantum circuit as above can be simulated
classically in time 22bþ2dpolyðnÞ, where d is the total
number of measurements [19].
Methods for decomposing arbitrary states into a linear

combination of stabilizer states aimed at simulation of
quantum circuits were pioneered by Garcia, Markov, and
Cross [20,21], who studied decompositions into pairwise
orthogonal stabilizer states (named stabilizer frames). The
latter are more restrictive than the general decompositions
analyzed in this paper. Furthermore, Refs. [20,21] have not
studied stabilizer decompositions of magic states.

Efficient classical algorithms for simulation of quantum
circuits in which the initial state can be described by a
discrete Wigner function taking non-negative values were
investigated by Veitch et al. [22] and by Howard et al.
[23]. As was pointed out by Pashayan, Wallman, and
Bartlett [24], such methods can be combined with
Monte Carlo sampling techniques to enable classical
simulation of general quantum circuits with the running
time scaling exponentially with the quantity related to the
negativity of the Wigner function. To enable a comparison
between Theorem 4 and the results of Ref. [24], one
can employ a discrete Wigner function representation of
stabilizer states and Clifford operations on qubits devel-
oped by Delfosse et al. [25]. The latter is applicable only
to states with real amplitudes and to Clifford operations
that do not mix X-type and Z-type Pauli operators
(CSS-preserving operations). A preliminary analysis
shows that combining the results of Refs. [24,25] yields
a classical algorithm for simulating a restricted class of
PBC on n qubits in time M2npolyðnÞ≈20.543npolyðnÞ,
where M¼2−1þ2−1=2≈1.207 is the so-called mana of
the magic state jHihHj; see Refs. [24,25] for details. The
restriction is that all Pauli operators to be measured are
either X type or Z type, and the measurements cannot be
adaptive. Such restricted PBCs are not known to be
universal for quantum computation.
Our method of simulating sparse quantum circuits has

connections to ideas of tensor network representations of
quantum circuits developed by Markov and Shi [26].
Indeed, our proof of Theorem 1 can be interpreted as a
particular method of expressing the acceptance proba-
bility of a quantum computation in terms of a contraction
of tensors associated with the quantum circuit. The
individual entries of the tensors are then estimated
separately with a smaller quantum computer and then
added together.
Let us now discuss some open problems and possible

generalizations of our work. A natural question is whether
the scaling in Theorem 4 can be improved if jHi is replaced
by some other magic state. By definition, any magic state is
Clifford equivalent to one of the states jHi and jRi, where
jRi is the þ1 eigenvector of an operator ðX þ Y þ ZÞ= ffiffiffi

3
p

;
see Ref. [13] for details. The numerics suggests that jH⊗ni
and jR⊗ni have the same stabilizer rank for n ≤ 6. We
conjecture that this remains true for all n. Moreover, we
pose the following conjecture, which, if true, highlights a
new optimality property of magic states in terms of their
stabilizer rank.
Conjecture 1.—Let χn be the stabilizer rank of jH⊗ni

and ϕ an arbitrary single-qubit state. Then,

χðϕ⊗nÞ ¼ 1; if ϕ is a stabilizer state;

χðϕ⊗nÞ ¼ χn; if ϕ is a magic state;

χðϕ⊗nÞ > χn; otherwise:
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Less formally, the conjecture says that magic states have
the smallest possible stabilizer rank among all nonstabilizer
single-qubit states.
It is also of great interest to understand the asymptotic

scaling of the stabilizer rank χn. Assuming that a universal
quantum computation cannot be simulated classically in
polynomial time, one infers that χn must grow super-
polynomially in the limit n → ∞. However, we were
unable to derive such a lower bound directly without using
any assumptions. The fact that amplitudes of any stabilizer
state in the standard basis take only Oð1Þ different
values implies a weaker lower bound χn ≥ Ωðn1=2Þ; see
Appendix C. We conjecture that, in fact, χn ≥ 2ΩðnÞ. Note
that if this conjecture is false, that is, χn ≤ 2oðnÞ, then
constant-depth circuits in the Cliffordþ T basis can be
simulated classically in a subexponential time, which
appears unlikely. Indeed, since such a circuit contains at
most m ¼ OðnÞ T gates, where n is the number of qubits,
Theorems 2 and 4 would provide a simulation algorithm
with a running time χ2m polyðnÞ ¼ 2oðnÞpolyðnÞ. (Here, we
ignore the complexity of finding the optimal stabilizer
decomposition since it has to be done only once for each n.)
Finally, one may explore generalizations of the stabilizer

rank to approximate decompositions into stabilizer states.
Some progress in this direction has been achieved in a
follow-up paper [27] that proposed more advanced algo-
rithms for computing low-rank stabilizer decompositions of
magic states and showed how to use approximate stabilizer
decompositions for classical simulation of quantum circuits
dominated by Clifford gates. (We note that the present work
is based on our work Ref. [28], which appeared prior
to Ref. [27].)
In the remainder of this paper, we prove the theorems

stated in the Introduction. From the technical perspective,
Theorems 1, 2, and 3 follow easily from the definitions
and from the previously known results. On the other hand,
Theorem 4 and the notion of a stabilizer rank appear
to be new. We analyze sparse quantum circuits in Sec. III.
A classical algorithm for simulation of PBCs and the
stabilizer rank of magic states are discussed in Sec. IV.
Theorems 2 and 3 are proved in Sec. V. Appendix A proves
a technical lemma needed to compute inner products
between stabilizer states. Appendix B describes a numeri-
cal method of computing low-rank stabilizer decomposi-
tions. Appendix C proves a lower bound on the stabilizer
rank of magic states.

III. SPARSE QUANTUM CIRCUITS

In this section, we prove Theorem 1. All quantum
circuits considered below are defined with respect to some
fixed basis of gates G. We assume that any gate in G acts on
at most two qubits. Furthermore, we assume that G contains
all single-qubit Pauli gates X, Y, Z, their controlled
versions, the Hadamard gate, and the π=2 phase shift

S ¼ j0ih0þ ij1ih1j. For example, G could be the Cliffordþ
T basis. Let Σn ≡ f0; 1gn be the set of n-bit binary strings.
Lemma 1.—Let U be a d-sparse quantum circuit on

kþ n qubits. Partition the set of qubits as AB, where
jAj ¼ k and jBj ¼ n. Then,

U ¼
Xχ
α¼1

cαVα ⊗ Wα; χ ≡ 24kd; ð1Þ

where Vα andWα are d-sparse quantum circuit acting on A
and B, respectively, and cα are some complex coefficients
such that

Pχ
α¼1 jcαj2 ¼ 1.

Proof.—Since U is a d-sparse circuit, it contains at most
kd two-qubit gates that couple some qubit of A and some
qubit of B. Let G1;…; Gm be the list of all such gates,
where m ≤ kd. Any two-qubit gate G½i; j� acting on qubits
i ∈ A and j ∈ B can be expanded in the Pauli basis as
G½i; j� ¼ P

16
α¼1 cαPα½i� ⊗ Pα½j�, where Pα ∈ fI; X; Y; Zg

are Pauli operators and cα are some complex coefficients
such that

P
αjcαj2 ¼ 1. Applying the above decomposition

to each gate G1;…; Gm and, if necessary, appending
dummy identity gates to make m ¼ kd, one arrives at
Eq. (1). Note that replacing a two-qubit gate in U by a
tensor product of two single-qubit Pauli gates cannot
increase the sparsity of the circuit. Thus, each term Vα ⊗
Wα is a tensor product of two d-sparse circuits. ▪
Remark.—If the only allowed two-qubit gate is the CNOT,

the scaling of χ in Eq. (1) can be improved to χ ¼ 2kd.
Indeed, a simple algebra shows that

CNOT ¼ eiπ=4e−iðπ=4ÞZ1e−iðπ=4ÞX2eiðπ=4ÞZ1X2 ;

where 1 and 2 are the control and the target qubits,
respectively. The two-qubit gate eiðπ=4ÞZ1X2 can be
expanded in the Pauli basis as ðI þ iZ1X2Þ=

ffiffiffi
2

p
. Thus,

we can reduce the number of Pauli terms in the expansion
of two-qubit gates from 16 to 2. The same arguments as
above then yield χ ¼ 2kd.
The classical postprocessing step can be described by a

polyðnÞ classical circuit f: Σnþk → f0; 1g. By definition of
the SQCmodel, the final output of a computation is a single
random bit bout ¼ fðxÞ, where x ∈ Σnþk is the bit string
obtained by measuring each qubit of a state Uj0nþki in
the 0,1 basis. Let πðUÞ be the probability of the output
bout ¼ 1; that is,

πðUÞ ¼ h0nþkjU†ΠUj0nþki;

Π ¼
X

x∶fðxÞ¼1

jxihxj: ð2Þ

Let us first show how to estimate the quantity πðUÞ with a
small additive error using dk-sparse circuits on nþ 1
qubits. Substituting Eq. (1) into the definition of πðUÞ,
one gets
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πðUÞ ¼
X
y∈Σk

Xχ
α;β¼1

cαðyÞcβðyÞhϕαjΠðyÞjϕβi; ð3Þ

where

cαðyÞ ¼ cαhyjVαj0ki; jϕαi ¼ Wαj0ni;

and

ΠðyÞ ¼
X
z∈Σn

fðyzÞ¼1

jzihzj:

We claim that each coefficient cαðyÞ can be computed
exactly in time Oðkd · 2kÞ. Indeed, we can merge consecu-
tive single-qubit gates of Vα such that each qubit is acted
upon by at most d two-qubit gates and at most dþ 1 single-
qubit gates. Thus, we can assume that the total number
of gates in Vα is OðkdÞ. One can compute the quantity
hyjVαj0ki classically in time Oðkd · 2kÞ by performing
matrix-vector multiplication for each gate of Vα.
Furthermore, it is clear from the proof of Lemma 1 that
each coefficient cα can be computed in time OðkdÞ.
Consider some fixed triple ðy; α; βÞ that appears in the

sum Eq. (3). Define a controlled-W operator

ΛðWÞ ¼ j0ih0j ⊗ Wα þ j1ih1j ⊗ Wβ:

Define a quantum circuit R acting on nþ 1 qubits that
consists of the following steps: (i) initialize nþ 1 qubits in
the j0i state, (ii) apply H gate to the first qubit, (iii) apply
ΛðWÞ with the first qubit acting as the control one,
(iv) apply H gate to the first qubit, (v) measure each qubit
in the 0,1 basis. The construction of R, illustrated in Fig. 2,
is very similar to the standard SWAP test, except that we
finally measure each qubit. Let b, z be the measurement
outcomes, where b ¼ 0, 1 and z ∈ Σn; see Fig. 2. Define a
random variable σ0y;α;β taking values�1 such that σ0y;α;β ¼ 1

if and only if b ¼ 0 and fðyzÞ ¼ 1. Otherwise, σ0y;α;β ¼ −1.
A simple algebra shows that

Re½hϕαjΠðyÞjϕβi� ¼ Eðσ0y;α;βÞ; ð4Þ

that is, σ0y;α;β is an unbiased estimator of the real part of
hϕαjΠðyÞjϕβi. We claim that one can get a sample of σ0y;α;β
by executing a single instance of a dk-sparse quantum
computation on nþ 1 qubits (with certain special proper-
ties). Indeed, by construction, the circuits Wα and Wβ can
be obtained from each other by changing some subset of at
most kd single-qubit Pauli gates. Thus, the controlled
circuit ΛðWÞ only needs control for at most kd single-
qubit Pauli gates. This shows that the control qubit
participates in at most kd two-qubit gates. Furthermore,
since all locations whereWα andWβ differ from each other
originate from two-qubit gates in the initial d-sparse circuit
U, we conclude that the circuit R has a special property that
all qubits except for the control one participate in at most d
two-qubit gates. One can similarly define a random variable
σ00y;α;β such that

Im½hϕαjΠðyÞjϕβi� ¼ Eðσ00y;α;βÞ:

The only difference is that the H gate in the circuit R must
be replaced by an HS gate. We conclude that

hϕαjΠðyÞjϕβi ¼ Eðσ0y;α;βÞ þ iEðσ00y;α;βÞ:

Thus, the quantity πðUÞ has an unbiased estimator

ξ≡ X
y∈Σk

Xχ
α;β¼1

cαðyÞcβðyÞðσ0y;α;β þ iσ00y;α;βÞ;

that is, πðUÞ ¼ EðξÞ. Let us compute the variance of ξ.
Using the bounds jcαðyÞj ≤ jcαj,

Pχ
α¼1 jcαj2 ¼ 1, and

noting that all variables σ0y;α;β, σ00y;α;β are independent
and have variance at most one, the variance of ξ can be
bounded as

VarðξÞ ≤ 2
X
y∈Σk

Xχ
α;β¼1

jcαðyÞcβðyÞj2

¼ 2
X
y∈Σk

�Xχ
α¼1

jcαðyÞj2
�2

≤ 2kþ1:

By Hoeffding’s inequality, one can estimate EðξÞ with a
small additive error by generating c2k samples of ξ for
some constant c ¼ Oð1Þ. Generating each sample of ξ
requires 2kχ2 samples of the σ variables. Thus, one can
estimate πðUÞ by repeated applications of dk-sparse circuits
on nþ 1 qubits with the number of repetitions scaling as
c22kχ2 ¼ c28kdþ2k ¼ 2OðkdÞ. If the only allowed two-qubit

FIG. 2. Quantum circuit R used to estimate the real part of
hϕαjΠðyÞjϕβi in Eq. (3). The final output of the circuit is a
random variable σ0y;α;β ¼ �1 such that σ0y;α;β ¼ 1 if and only if

b ¼ 0 and fðyzÞ ¼ 1, where f: f0; 1gnþk → f0; 1g is the
Boolean function describing the postprocessing step in the
original circuit U on nþ k qubits. We construct a circuit R
as above for each triple ðy; α; βÞ, with y ∈ f0; 1gk and
α; β ¼ 1;…; χ. A simple algebra shows that σ0y;α;β is an unbiased
estimator of Re½hϕαjΠðyÞjϕβi�.
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gates are CNOTs, the required number of repetitions scales
as c22kχ2 ¼ c22ðdþ1Þk; see the remark below Lemma 1.
Recall that the dk-sparse circuits R constructed above

have a very special pattern of sparsity. Namely, all qubits
except for one participate in at most d two-qubit gates,
whereas one remaining qubit participates in at most kd two-
qubit gates. We can distribute the sparsity more evenly
among all nþ 1 qubits by performing a SWAP gate that
changes position of the control qubit after each application
of a control gate (this is possible only if n is sufficiently
large, specifically, if n ≥ kdþ 1). After this modification,
one obtains an equivalent circuit that is (dþ 3) sparse.
Finally, we can apply exactly the same arguments as

above if the subsets A and B in Lemma 1 have size
jAj ¼ kþ 1 and jBj ¼ n − 1. This frees up one extra qubit
that can play the role of the control one in the above
construction. Now we can estimate πðUÞ by repeated
applications of (dþ 3)-sparse circuits on n qubits with the
number of repetitions scaling as c216ðkþ1Þdþ3ðkþ1Þ ¼ 2OðkdÞ.
This completes the proof of Theorem 1.

IV. STABILIZER RANK AND CLASSICAL
SIMULATION OF PBC

In this section, we prove Theorem 4. We begin with an
algorithm for computing a quantity hψ jΠjϕi, where ψ ;ϕ
are n-qubit stabilizer states and Π is a projector onto the
code space of some stabilizer code. We note that several
previous works addressed the problem of computing the
inner product hψ jϕi between stabilizer states ψ ;ϕ.
In particular, Aaronson and Gottesman [19] showed that
the magnitude jhψ jϕij can be computed in time Oðn3Þ.
Furthermore, García, Markov, and Cross [21] used the
canonical form of Clifford circuits to compute both the
magnitude and the phase of hψ jϕi in timeOðn3Þ. Below we
describe a technically different (and somewhat simpler)
algorithm that is more suited for computing the quantity
hψ jΠjϕi as above.
Let Zm ≡ f0; 1;…; m − 1g be the cyclic group of

order m. A function f: Fn
2 → Z8 is called a degree-two

polynomial if

fðx1;…; xnÞ ¼ f∅ þ 2
Xn
a¼1

faxa þ 4
X

1≤a<b≤n
fa;bxaxb;

where f∅ ∈ Z8, fa ∈ Z4, and fa;b ∈ Z2 are some constant
coefficients. Define

hfi ¼
X
x∈Fn

2

ωfðxÞ; ω≡ eiπ=4:

Lemma 2.—Let f: Fn
2 → Z8 be a degree-two polynomial.

Then either hfi ¼ 0 or hfi ¼ 2p=2ωm for some integer
n ≤ p ≤ 2n and some m ∈ Z8. Furthermore, one can
compute hfi in time Oðn3Þ.

Since the proof is rather straightforward, we postpone it
until Appendix A. It was shown by Dehaene and De Moor
[29] and by Van den Nest [30] that any stabilizer state ψ
of n qubit can be written (up to a global phase and a
normalization) as

jψi ¼
X
u∈Fk

2

ωfðuÞjzþ uΨi; ð5Þ

for some degree-two polynomial f: F k
2 → Z8, some k × n

binary matrix Ψ, and some vector z ∈ Fn
2. Here, we treat u

and z as row vectors. In the rest of this section, we take
Eq. (5) as our definition of a stabilizer state.
Let G ⊂ Pn be an Abelian group with t independent

generators P1; P2;…; Pt ∈ G. Define a projectorΠ onto the
G-invariant subspace:

Π ¼ 2−t
X
P∈G

P:

Lemma 3.—The action of Π in the computational basis
can be represented as

Πjxi ¼ 2−t
X
y∈F t

2

ωgðyÞð−1ÞyBxT jxþ yAi

for some degree-two polynomial g∶F t
2 → Z8 and some

binary matrices A, B of size t × n.
Proof.—Given a binary vector f ∈ Fn

2, let XðfÞ ∈ Pn be
the Pauli operator that applies X to each qubit in the support
of f. Define ZðfÞ in a similar fashion. Let ek ∈ F t

2 be the
basis vector which has a single “1” at the position k. The
kth generator of G can be written as Pk ¼ ickXðekAÞZðekBÞ
for some ck ∈ Z4 and some binary matrices A, B of size
t × n. In other words, the kth row of A (B) specifies the X
part (Z part) of Pk. Choose any vector y ∈ F t

2. Then,

PðyÞ≡ Y
k∶yk¼1

Pk ¼ ωgðyÞXðyAÞZðyBÞ;

where

ωgðyÞ ¼ iΣ
t
k¼1

ckykð−1ÞΣ1≤k<l≤tðBAT Þk;lykyl :

Clearly, g: F t
2 → Z8 is a degree-two polynomial. Thus,

2tΠjxi ¼
X
y∈F t

2

PðyÞjxi ¼
X
y∈F t

2

ωgðyÞð−1ÞyBxT jxþ yAi:

▪
Consider now a pair of n-qubit stabilizer states ψ , ϕ,

where ψ is defined in Eq. (5) and

jϕi ¼
X
v∈Fm

2

ωhðvÞjz0 þ vΦi: ð6Þ

Here, h: Fm
2 → Z8 is a degree-two polynomial,Φ is a binary

matrix of size m × n, and z0 ∈ Fn
2 is some vector. Using

Lemma 3 and Eqs. (5) and (6), one gets
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hψ jΠjϕi ¼ 2−t
X
u;v;y

ωhðvÞ−fðuÞþgðyÞ

× ð−1ÞyBðz0þvΦÞT hzþ uΨjz0 þ vΦþ yAi:

Clearly, the nonzero terms are those with zþ uΨ ¼ z0þ
vΦþ yA. We can enforce this equality by introducing an
extra variable x ∈ Fn

2 such that

hzþ uΨjz0 þ vΦþ yAi ¼ 2−n
X
x∈Fn

2

ð−1ÞxðzþuΨþz0þvΦþyAÞ:

Then,

hψ jΠjϕi ¼ 2−nþt
X
u;v;x;y

ωFðu;v;x;yÞ ¼ 2−nþthFi; ð7Þ

with

Fðu; v; x; yÞ ¼ hðvÞ − fðuÞ þ gðyÞ þ 4yBðz0 þ vΦÞT
þ 4xðzþ uΨþ z0 þ vΦþ yAÞ:

Note that Fðu; v; x; yÞ is a degree-two polynomial in
kþmþ nþ t variables. By Lemma 2, one can compute
the sum hFi in time Oðkþmþ tþ nÞ3 ¼ Oðn3Þ. Also,
Lemma 2 and Eq. (7) imply that hψ jΠjϕi takes values
2q=2ωj for some integer q and j ∈ Z8.
Consider now a PBC on n qubits as defined in Sec. V.

Let t be some fixed time step. Recall that a sequence of
measurement outcomes σ1;…; σt is observed with the
probability

Prðσ1;…; σtÞ ¼ hH⊗nj
Yt
k¼1

ð1=2ÞðI þ σkPkÞjH⊗ni:

Below we construct an algorithm that takes as input a
step t, a sequence of outcomes σ1;…; σt, and returns
Prðσ1;…; σtÞ. It allows us to compute Prðσ1Þ and get a
sample of σ1 by flipping a coin with a properly chosen bias.
By calling the algorithm twice, one can also compute
conditional probabilities:

Prðσtjσ1;…; σt−1Þ ¼
Prðσ1;…; σtÞ
Prðσ1;…; σt−1Þ

:

Thus, for fixed variables σ1;…; σt−1, one can get a
sample of σt by computing the conditional probability
Prðσtjσ1;…; σt−1Þ and flipping a coin with a properly
chosen bias. The ability to sample the outcomes σ1;…; σn
from the distribution Prðσ1;…; σnÞ is equivalent to simu-
lating the PBC classically. Hence, it suffices to construct
an algorithm that computes Prðσ1;…; σtÞ.
Suppose we are given some integers k; χ ¼ Oð1Þ and a

decomposition

jH⊗ki ¼
Xχ
α¼1

cαjϕαi; ð8Þ

where ϕa are k-qubit stabilizer states and ca are complex
coefficients. Suppose also that n ¼ mk for some integer m.
Taking the m-fold tensor power of Eq. (8), one gets

jH⊗ni ¼
Xχm
a¼1

cajϕai; ð9Þ

where a ¼ ðα1;…; αmÞ, ca ¼ cα1…cαm , and
ϕa ¼ ϕα1 ⊗ � � � ⊗ ϕαm . Note that ϕa are stabilizer states,
and for a given index a, one can compute the standard form
of ϕa as defined in Eq. (5) in time OðnÞ. Denoting

Π ¼ 2−t
Yt
k¼1

ðI þ σkPkÞ;

we get

Prðσ1;…; σtÞ ¼
Xχm
a;b¼1

ca cbhϕajΠjϕbi: ð10Þ

The discussion above implies that each term hϕajΠjϕbi can
be computed exactly in time Oðn3Þ. Assuming that arith-
metic operations with complex numbers have a unit cost
(see Remark 1 below), the probability Prðσ1;…; σtÞ can be
computed in time Oðχ2mn3Þ ¼ Oðχ2n=kn3Þ.
Let us now show an explicit decomposition Eq. (8) with

k ¼ 6 and χ ¼ 7. This gives an algorithm for computing
Prðσ1;…; σtÞ with a running time Oð7n=3n3Þ, which is
enough to prove Theorem 4. It will be more convenient to
normalize the magic state such that

jHi ¼ j0i þ tj1i; t ¼ tan ðπ=8Þ ¼
ffiffiffi
2

p
− 1:

Let Bn ¼ Fn
2 be the set of all n-bit strings and Bn;k ⊂ Bn be

the subset of strings with the Hamming weight exactly k.
Let Bn ¼ En∪On, where En andOn are the subsets of even-
weight and odd-weight strings, respectively. Given a set of
bit strings S, we write jSi ¼ P

x∈Sjxi for the uniform
superposition of all strings in S. For example,
jBn;0i ¼ j0⊗ni, jBn;ni¼ j1⊗ni, and jH⊗ni¼P

n
k¼0t

kjBn;ki.
Define also a state

jKni ¼
X
x∈Bn

ð−1Þjxjðjxj−1Þ=2jxi ¼
Y
i<j

ΛðZÞi;jjBni:

Note that jBn;0i, jBn;ni, jEni, jOni, and jKni are stabilizer
states as defined by Eq. (5). Define also a pair of graphs
G0 ¼ ðV 0; E0Þ and G00 ¼ ðV 00; E00Þ with six vertices shown
on Fig. 3. The desired stabilizer decomposition of jH⊗6i is

BRAVYI, SMITH, and SMOLIN PHYS. REV. X 6, 021043 (2016)

021043-8



jH⊗6i ¼ ð−16þ 12
ffiffiffi
2

p
ÞjB6;0i þ ð96 − 68

ffiffiffi
2

p
ÞjB6;6i

þ ð10 − 7
ffiffiffi
2

p
ÞjE6i þ ð−14þ 10

ffiffiffi
2

p
ÞjO6i

þ ð7 − 5
ffiffiffi
2

p
ÞZ⊗6jK6i þ ð10 − 7

ffiffiffi
2

p
Þjϕ0i

þ ð10 − 7
ffiffiffi
2

p
Þjϕ00i; ð11Þ

where

jϕ0i ¼
Y

ði;jÞ∈E0
ΛðZÞi;jjO6i and jϕ00i ¼

Y
ði;jÞ∈E00

ΛðZÞi;jjO6i:

This completes the proof of Theorem 4. The numerical
method used to find the above decomposition is discussed
in Appendix B. We conjecture that k ¼ 6 is the smallest
integer such that χ2k < 2k; see Sec. I. Accordingly, k ¼ 6 is
likely to be the smallest integer for which the above
simulation strategy outperforms the brute-force simulation
algorithm.
Remark 1.—Let us point out that all coefficients in

Eq. (11) belong to the ring Z½ ffiffiffi
2

p �¼fpþ ffiffiffi
2

p
q∶p;q∈Zg,

known as the ring of quadratic integers with a base 2.
Hence, the coefficients ca in Eq. (9) also belong to Z½ ffiffiffi

2
p �.

Using Eq. (7) and Lemma 2, we conclude that each term in
Eq. (10) has a form 2−qηωj for some integer 0 ≤ q ≤ n,
some η ∈ Z½ ffiffiffi

2
p �, and some j ∈ Z8. Multiplying Eq. (10)

by a suitable power of 2, we can assume that each term in
Eq. (10) has a form αþ iβ, where α; β ∈ Z½ ffiffiffi

2
p � [of course

we can ignore the imaginary part iβ since Prðσ1;…; σtÞ is a
real number]. Thus, computing the sum in Eq. (10) requires
only arithmetic operations in the ring Z½ ffiffiffi

2
p �.

Remark 2.—One can notice that the first five terms in
Eq. (11) are stabilizer states symmetric under all permu-
tations of qubits. On the other hand, the states ϕ0 and ϕ00
break the permutation symmetry. Interestingly, we find that
the state jH⊗6i does not belong to the subspace spanned
by symmetric stabilizer states of six qubits. Thus, any
stabilizer decomposition of jH⊗6i must use at least two
nonsymmetric states. On the other hand, one can check that
jH⊗ni belongs to the subspace spanned by symmetric
stabilizer states for n ≤ 5. The best decompositions that
we are able to find for n ≤ 5 are formed by symmetric
stabilizer states; see Appendix B.

V. ADDING VIRTUAL QUBITS TO A PBC

In this section, we prove Theorems 2 and 3. We begin
with Theorem 2. Recall that we consider a quantum circuit
U on n qubits in the Cliffordþ T basis which containsm T
gates. We assume that all qubits are initialized in the j0i
state. Each qubit is finally measured in the 0,1 basis. Let us
first define a more general version of PBC called PBC*,
where some subset of qubits can be initialized in the j0i
state. Apart from that, definitions of PBC and PBC* are
the same. First, we show that U can be efficiently
simulated by PBC* on nþm qubits with the initial state
j0⊗ni ⊗ jH⊗mi. Indeed, replace each T gate of U by the
gadget shown in Fig. 4. This gadget uses one ancillary
qubit prepared in the magic state jTi ∼ j0i þ eiπ=4j1i.
The latter is equivalent to jHi modulo Clifford gates,
jTi ¼ eiπ=8HS†jHi. Let jψi ¼ αj0i þ βj1i be the input
state for the gadget. Let σ1 and σ2 be the measured
eigenvalues of ZZ and IX operators; see Fig. 4. One can
check that the gadget outputs a state ψσ1;σ2 , where

jψþþi ∼ Tjψi;
jψþ−i ∼ ZTjψi;
jψ−þi ∼ T−1jψi;
jψ−−i ∼ ZT−1jψi:

Furthermore, all four measurement outcomes are equally
likely. Applying a correcting Clifford operator I, Z, S, ZS
for the measurement outcomes þþ, þ−, −þ, −−, respec-
tively, one gets the desired T gate. Let U0 be the circuit
obtained from U by replacing each T gate with the gadget
as above. The final measurement of n qubits in the 0,1 basis
is equivalent to a nondestructive eigenvalue measurement
of Z1;…; Zn after which the final state is discarded. This
allows one to commute all Clifford gates of U0 towards the
end of the circuit by properly updating which Pauli operator
one has to measure at each step. Once a Clifford gate
reaches the end of the circuit, it serves no purpose and can
be discarded. We conclude that U can be simulated by a
PBC* on nþm qubits. Let P1;…; Pr ∈ Pnþm be the Pauli
operators that have to be measured. We can assume that all

FIG. 3. Graphs G0 and G00 used in the definition of stabilizer
states ϕ0 and ϕ00; see Eq. (11).

FIG. 4. Implementation of the T gate.
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Pauli operators P1;…; Pr pairwise commute. Indeed,
suppose this is not the case and let t be the first time step
when Pt anticommutes with Ps for some s < t. Let ϕ be the
state reached just before the measurement of Pt. Note that
Psϕ ¼ �ϕ and thus ðI þ σtPtÞϕ ¼ ðσtPt � PsÞϕ. One
can easily check that an operator V ≡ ðσtPt � PsÞ=

ffiffiffi
2

p
is

a Clifford unitary operator whenever Pt and Ps anticom-
mute. This shows that both outcomes σt have the same
probability and the measurement of Pt has the same effect
as drawing σt from the uniform distribution and applying
the Clifford unitary V defined above. Such a unitary V can
be commuted towards the end of the circuit and discarded.
Hence, we can assume that all operators P1;…; Pr pairwise
commute. Furthermore, one can append the sequence
P1;…; Pr at the beginning with dummy Pauli measure-
ments of Zi for all qubits i initialized in the j0i state.
Applying the above argument again one can modify the
sequence P1;…; Pr such that all Pt commute with the
dummy measurements; that is, any operator Pt acts trivially
on the qubits initialized in the j0i state. Therefore, such
qubits serve no purpose and can be discarded. We have
shown that the original circuit U can be simulated by a
PBC on m qubits with r steps and pairwise commuting
Pauli operators P1;…; Pr. Furthermore, since the number
of independent pairwise commuting Pauli operators on m
qubits is at most m, we can assume that r ≤ m; that is, the
PBC has the standard form. This completes the proof of
Theorem 2.
Let us now prove Theorem 3. Let Q be a fixed PBC on

nþ k qubits and let pðQÞ be the probability that the final
outcome ofQ is bout ¼ 1. Our goal is to approximate pðQÞ
on a classical computer assisted by a PBC on n qubits.
Suppose one can find a decomposition

jHihHj⊗k ¼
Xχ
i¼1

αijϕiihϕij ð12Þ

for some k-qubit stabilizer states ϕi and some real coef-
ficients αi. By linearity, one has

pðQÞ ¼
Xχ
i¼1

αipðQiÞ; ð13Þ

where Qi is a PBC-type computation obtained from Q by
initializing the first k qubits in the state ϕi rather than
jHi⊗k. We note that any stabilizer state ϕi can be
represented as jϕii ¼ Uij0i⊗k for some Clifford unitary
Ui. Commuting Ui towards the end of Qi and properly
updating which Pauli operator has to be measured at each
step, we can assume that jϕii ¼ j0i⊗k for all i. As we
showed above, such computationQi is equivalent to a PBC
on n qubits. Let bi be the output bit of Qi such that
EðbiÞ ¼ pðQiÞ. Define a random variable

ξ ¼
Xχ
i¼1

αibi:

The above shows that ξ is an unbiased estimator of pðQÞ
and one can generate a sample of ξ by repeating a PBC on n
qubits χ times. Since all variables bi are independent, the
variance of ξ is bounded as

σ2 ≡ Eðξ2Þ − EðξÞ2 ≤
Xχ
i¼1

α2i : ð14Þ

Using the Monte Carlo method, one can estimate pðQÞ
with a constant precision by generatingM¼minf1;Oðσ2Þg
independent samples of ξ. Thus, the overall cost of adding k
virtual qubits is

C ∼ χmax

�
1;
Xχ
i¼1

α2i

�
:

It remains to choose a decomposition in Eq. (12). One can
decompose each copy of jHihHj as a linear combination of
stabilizer states using the identity

jHihHj ¼ α1j0ih0j þ α2j1ih1j þ α3jþihþj; ð15Þ

where

α1 ¼
1

2
; α2 ¼

1 −
ffiffiffi
2

p

2
; α3 ¼

1ffiffiffi
2

p ;

and then take the tensor product decomposition. Thus,
χ ¼ 3k and C ∼ χ ¼ 2OðkÞ. This completes the proof of
Theorem 3.
We note that all additional classical processing involved

in the simulation algorithms of Theorems 2 and 3 is
associated with commuting Clifford gates towards the
end of the circuit and properly updating Pauli operators
to be measured. The conjugated action of Clifford gates
on Pauli operators can be computed using the standard
stabilizer formalism [10,19] in time OðncÞ, where c is the
number of Clifford gates.
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APPENDIX A: PROOF OF LEMMA 2

In this appendix, we prove Lemma 2. Since the constant
term f∅ contributes a multiplicative factor ωm to hfi, we
can assume without loss of generality that f∅ ¼ 0. Define
coefficients g1;…; gn ∈ Z2 such that

ga ¼

8>><
>>:

0 if fa ¼ 1 ðmod4Þ
1 if fa ¼ 3 ðmod4Þ
fa=2 if fa ¼ 0; 2 ðmod4Þ:
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Let S ⊆ ½n� be the set of indexes a such that fa ¼ 1, 3
(mod 4). A simple algebra shows that

ωfðxÞ ¼ iΣa∈Sxað−1ÞgðxÞ;

where

gðxÞ ¼
Xn
a¼1

gaxa þ
X

1≤a<b≤n
fa;bxaxb:

Let us first assume that S ≠ ∅. Without loss of generality
S∋n (otherwise permute the variables). Define a
new summation variable y ∈ Fn

2 such that ya ¼ xa for
a ¼ 1;…; n − 1 and yn ¼

P
a∈Sxa. Note that

xa ¼
� ya if a ¼ 1;…; n − 1

yn þ
P

a∈Snn ya if a ¼ n:

Using the identity

iΣa∈Sxa ¼ iΣa∈Sxa ðmod2Þð−1ÞΣa<b∈Sxaxb ;

one arrives at

hfi ¼
X
y∈Fn

2

iynð−1ÞhðyÞ;

with

hðyÞ ¼
X
a∉S

gaya þ
X
a∈Snn

ðga þ gnÞya þ gnyn

þ
X

1≤a<b≤n−1
fa;byayb þ

Xn−1
a¼1

fa;nyayn

þ
Xn−1
a¼1

X
b∈Snn

fa;nyayb:

Let us split the sum over y into two terms corresponding to
yn ¼ 0, 1. We get

hfi ¼ S0 þ iS1;

where

Sϵ ¼
X
z∈Fn−1

2

ð−1Þhðz;ϵÞ; ϵ ¼ 0; 1:

Using the definition of hðyÞ, one gets

hðz; ϵÞ ¼
X

1≤a<b≤n−1
Ha;bzazb þ LϵðzÞ;

where LϵðzÞ is a linear Boolean function and H is a
symmetric binary matrix with zero diagonal. Importantly,
the matrix H does not depend on ϵ. It is well known that
any matrix H as above can be transformed into a

block-diagonal form with all nonzero blocks beingh
0 1

1 0

i
by a transformation H → VTHV, where V is an

invertible binary matrix [31]. The number of nonzero
blocks in VTHV is r, where 2r is the rank of H (which
is always even). Moreover, the matrix V can be computed
in time Oðn3Þ using the standard linear algebra methods
[31]. Performing a change of variable z → Vz and defining
new linear functions L0

ϵðzÞ ¼ LϵðVzÞ, one gets

Sϵ ¼
X
z∈Fn−1

2

ð−1ÞΣr
a¼1

z2a−1z2aþL0
ϵðzÞ:

Obviously, Sϵ ¼ 0 if L0
ϵðzÞ includes at least one of the

variables za with 2r < a ≤ n − 1. Otherwise, one gets

Sϵ ¼ 2n−1−2r
Yr
a¼1

Sϵ;a;

where

Sϵ;a ¼
X

z2a−1;z2a¼0;1

ð−1Þz2a−1z2aþuðϵ;aÞz2a−1þvðϵ;aÞz2a

for some coefficients uðϵ; aÞ ¼ 0, 1 and vðϵ; aÞ ¼ 0, 1
determined by L0

ϵ. A direct inspection shows that Sϵ;a takes
values 0 and �2. We conclude that Sϵ takes values 0 and
�2n−1−r. This leaves only nine possible combinations for
hfi ¼ S0 þ iS1, Namely, hfi ¼ 0 (if both S0 and S1 are
zero), or hfi ¼ 2n−1−rω2m for some m ∈ Z4 (if exactly one
of S0 and S1 is nonzero), or hfi ¼ 2n−1−rþ1=2ω2mþ1 for
some m ∈ Z4 (if both S0 and S1 are nonzero). This is
equivalent to the statement of Lemma 2. The case when
S ¼ ∅ is completely analogous.

APPENDIX B: STABILIZER DECOMPOSITIONS

In this appendix, we describe a numerical method for
computing a low-rank decomposition of a given target state
ϕ into stabilizer states. We are mostly interested in the
case jϕi ¼ jH⊗ni.
Let Sn be the set of pure n-qubit stabilizer states. Given a

target n-qubit state ϕ and an integer χ, we check whether ϕ
admits a decomposition

jϕi ¼
Xχ
a¼1

cajϕai ðB1Þ

for someϕ1;…;ϕχ ∈ Sn. It is known [19] that the size of Sn

grows asymptotically as 2½1=2þoð1Þ�n2 . Thus, performing an
exhaustive search over all χ-tuples of n-qubit stabilizer states
becomes impractical even for small values of n. Instead, we
used a Monte Carlo algorithm that performs a random walk
on the set of χ-tuples ðϕ1;…;ϕχÞ ∈ Sχ

n and tries tomaximize
a suitable objective function Fðϕ1;…;ϕχÞ. Specifically,
we choose Fðϕ1;…;ϕχÞ¼∥Πϕ∥, where Π is the projector
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onto the linear subspace spanned by ϕ1;…;ϕχ. Assuming
that ∥ϕ∥ ¼ 1, the decomposition Eq. (B1) is possible if
and only if maxFðϕ1;…;ϕχÞ ¼ 1.
We define the random walk on Sχ

n using the Glauber
dynamics. Let β > 0 be some fixed parameter that has a
meaning of the inverse temperature. At each step of the
walk we randomly choose a state label a ∈ f1; 2;…; χg
and a Pauli operator P ∈ Pn. All choices are made with
respect to the uniform distribution. We perform a tentative
move ϕa → ϕ0

a ¼ cðI þ PÞϕa, where c is a normalizing
coefficient. One can easily check that this move maps
stabilizer states to stabilizer states. If the move increases the
value of the objective function F, we accept the new state
ϕ0
a; that is, ϕa is replaced by ϕ0

a. Otherwise, the new state
ϕ0
a is accepted with a probability pacc ¼ exp ½−βðF − F0Þ�,

where F and F0 are the values of the objective function
before and after the move. If ðI þ PÞϕa ¼ 0, the move is
rejected right away. The walk is stopped as long as we
observe a tuple of states with F ¼ 1. We start with
relatively small values β ¼ βin and gradually increase β
using the geometric sequence until it reaches the final value

β ¼ βf. This corresponds to the simulated annealing
method. For each value of β the random walk is repeated
for M ≫ 1 steps. In practice, we use values βin ¼ 1,
βf ¼ 4000, andM ¼ 1000. The number of annealing steps
is chosen as 100. Since we work with relatively small
values of n, the stabilizer states ϕj are represented by
vectors of size 2n.
Since our target state jϕi ¼ jH⊗ni has real amplitudes in

the computational basis, one can easily show that the
optimal decomposition Eq. (B1) can be chosen such that all
stabilizer states ϕa have real amplitudes as well (the real
part of a stabilizer state is either zero or proportional to a
stabilizer state). Accordingly, we restrict the random walk
to the subset of Sχ

n corresponding to real stabilizer states.
Clearly, a move ϕj → ϕ0

j ¼ cðI þ PÞϕj maps real states to
real states if P contains even number of Y ’s. The move is
accepted only if this condition is satisfied.
The best decompositions of jH⊗ni found using this

method are shown below. Here, we use the notations of
Sec. IV, so that jHi ¼ j0i þ ð ffiffiffi

2
p

− 1Þj1i:

jH⊗2i ¼ ð2 −
ffiffiffi
2

p
ÞjE2i þ ð−1þ

ffiffiffi
2

p
ÞjK2i;

jH⊗3i ¼ ð−8þ 6
ffiffiffi
2

p
ÞjB3;3i þ ð2 −

ffiffiffi
2

p
ÞjE3i þ ð−1þ

ffiffiffi
2

p
ÞjK3i;

jH⊗4i ¼ ð4 − 2
ffiffiffi
2

p
ÞjB4;0i þ ð20 − 14

ffiffiffi
2

p
ÞjB4;4i þ ð−4þ 3

ffiffiffi
2

p
ÞjO4i þ ð−3þ 2

ffiffiffi
2

p
ÞZ⊗4jK4i;

jH⊗5i ¼ ð−16þ 12
ffiffiffi
2

p
ÞjB5;0i þ ð−40þ 28

ffiffiffi
2

p
ÞjB5;5i þ ð−4þ 3

ffiffiffi
2

p
ÞjO5i þ ð10 − 7

ffiffiffi
2

p
ÞjE5i

þ ð3 − 2
ffiffiffi
2

p
ÞKjO5i þ ð7 − 5

ffiffiffi
2

p
ÞKjE5i:

Here, K ¼ Q
i<jΛðZÞi;j applies controlled Z to each pair of

qubits. The stabilizer decomposition of jH⊗6i is shown in
Eq. (11). By definition, the number of terms χ in these
decompositions gives an upper bound on the stabilizer rank
χn. We conjecture that all above decompositions and the
one in Eq. (11) are optimal in the sense that χ ¼ χn.

APPENDIX C

Let χn be the stabilizer rank of jH⊗ni. Here, we prove a
lower bound χn ¼ Ωðn1=2Þ.
Let ϕ be a pure n-qubit state. Define the T count of ϕ

denoted τðϕÞ as the minimum integer τ such that ϕ can be
prepared starting from the all-zeros state by a quantum
circuit composed of Clifford gates, T gates, and (post-
selective) eigenvalue measurements of Pauli operators,
such that the number of T gates is at most τ. We claim that

χτðϕÞ ≥ χðϕÞ: ðC1Þ

Indeed, as we show in Sec. V, the T gate can be realized by
a gadget that consumes one copy of the magic state jHi and
performs (postselective) Pauli measurements. Thus, we can

prepare ϕ starting from τðϕÞ copies of the magic state jHi
by a sequence of (postselective) Pauli measurement and
Clifford operations. Since the latter do not increase stabi-
lizer rank, we can write ϕ as a linear combination of χτðϕÞ
stabilizer states. This is equivalent to Eq. (C1).
We now choose a state ϕ with a relatively small T count

and a large stabilizer rank. Define

jϕni ¼ jθ1 ⊗ θ2 ⊗ � � �⊗ θni; jθki ¼ j0iþ ð2kþ1−1Þj1i:

Lemma 4.—The state ϕn has 2n distinct amplitudes in the
computational basis.
We postpone the proof of the lemma until the end of

the section. Let us first show that ϕn has a large stabilizer
rank. Indeed, any stabilizer state has C ¼ Oð1Þ distinct
amplitudes in the computational basis. Thus, any linear
combination of χ stabilizer states has at most Cχ distinct
amplitudes. Applying this to ϕn, one gets CχðϕnÞ ≥ 2n; that
is, χðϕnÞ ¼ ΩðnÞ.
Let us now show that ϕn has a small T count. First, we

claim that the state θk has T count OðkÞ. Indeed, we can
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first prepare a state jþi⊗ðkþ1Þ ⊗ j0i and then apply
multiple control CNOT gate Λkþ1ðXÞ such that the last
qubit is the target one. This creates a state

X
x∈f0;1gkþ1

jx1; x2;…; xkþ1i ⊗ jx1x2 � � � xkþ1i:

Measuring the first kþ 1 qubits in the X basis and
postselecting the outcome þ leaves the last qubit in a
state ð2kþ1 − 1Þj0i þ j1i, which coincides with θk modulo
a bit flip. One can easily check that the multiple control
CNOT gate Λkþ1ðXÞ can be implemented usingOðkÞ Toffoli
gates. Furthermore, the Toffoli gate can be implemented
using seven T gates [32,33]. Thus, θk has T count OðkÞ
and, therefore, ϕn has T count OðPn

k¼1 kÞ ¼ Oðn2Þ.
Substituting this into Eq. (C1) yields χn2 ≥ ΩðnÞ; that
is, χn ¼ Ωðn1=2Þ.
Proof of Lemma 4.—Consider any basis vector x ∈ Fn

2.
Let K ⊆ f1; 2;…; ng be the support of x. Then.

hxjϕni ¼
Y
k∈K

ð2kþ1 − 1Þ:

The lemma follows from the following fact.
Proposition 1.—Suppose K;M ⊆ ½2;∞Þ are finite sub-

sets of integers such that

Y
k∈K

ð2k − 1Þ ¼
Y
m∈M

ð2m − 1Þ: ðC2Þ

Then, K ¼ M.
Proof.—First, we claim that

Y
b≥a

ð1 − 2−bÞ > 1 − 2−aþ1 for all a ≥ 1: ðC3Þ

Indeed, define x ¼ 2−a. Then,

Y
b≥a

ð1 − 2−bÞ−1 ¼
Y
b≥0

ð1 − x2−bÞ−1

¼ 1þ
X∞
p¼1

xp
Yp
q¼1

ð1 − 2−qÞ−1:

Define ξp ¼ Qp
q¼1ð1 − 2−qÞ. One can easily check that

ξp > limp→∞ξp > 1=4. Since ξ1 ¼ 1=2, one gets

Y
b≥a

ð1−2−bÞ−1 < 1þ2xþ4
X∞
p¼2

xp ≤
X∞
p¼0

ð2xÞp ¼ð1−2xÞ−1:

This is equivalent to Eq. (C3).
Now let sðKÞ and sðMÞ be the sum of all elements in K

andM, respectively. Assume without loss of generality that
sðKÞ ≥ sðMÞ. Then, Eq. (C2) implies

2sðKÞ−sðMÞ ¼
Q

m∈Mð1 − 2−mÞQ
k∈Kð1 − 2−kÞ

≤
1Q

k≥2ð1 − 2−kÞ <
1

1 − 2−1
¼ 2:

Here, the last inequality follows from Eq. (C3). Thus,
sðKÞ ¼ sðMÞ and

Y
k∈K

ð1 − 2−kÞ ¼
Y
m∈M

ð1 − 2−mÞ≡ ξ: ðC4Þ

Let k1 and m1 be the smallest elements of K and M,
respectively. Assume without loss of generality that
m1 ≥ k1. Let us show that in factm1 ¼ k1. Indeed, otherwise,
m1 ≥ k1 þ 1. Then, Eq. (C4) implies ξ ≤ 1 − 2−k1 and

ξ ≥ ð1 − 2−m1Þ
Y

b≥m1þ1

ð1 − 2−bÞ > ð1 − 2−m1Þ2:

Here, the last inequality follows from Eq. (C3). Thus,
ð1 − 2−m1Þ2 < 1 − 2−k1 , which impliesm1 < k1 þ 1 leading
to a contradiction. We conclude that k1 ¼ m1. Thus, we can
cancel the factor ð1 − 2−k1Þ in both parts of Eq. (C4) and
use induction in the number of elements in the largest of the
sets K, M to show that K ¼ M. ▪
Finally, let us sketch an argument that could potentially

provide a stronger lower bound on χn. Consider a decom-
position jH⊗ni ¼ Pχ

α¼1 cαjϕαi, where ϕα are normalized
stabilizer states. We can assume without loss of generality
that ϕα are linearly independent. Define a vector
c ¼ ðc1;…; cχÞ and a Gram matrix Gα;β ¼ hϕαjϕβi.
Then, hcjGjci ¼ 1. Let gmin > 0 be the smallest eigenvalue
of G. Then, G ≥ gminI and thus ∥c∥2 ≤ g−1min. Let δn be
the largest magnitude of the overlap between jH⊗ni
and a normalized n-qubit stabilizer state. One can easily
check that δn ≤ 2−ΩðnÞ. The identity 1 ¼ Pχ

α¼1 c
�
αhϕαjH⊗ni

implies 1 ≤ δn∥c∥1 ≤ χ1=2δn∥c∥. We conclude that
χ ≥ gminδ

−2
n ≥ gmin2

ΩðnÞ. This proves that χ ≥ 2ΩðnÞ in
the special case when all states ϕα are pairwise orthogonal;
that is, gmin ¼ 1.
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