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Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary
dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized
for such a realistic analog quantum device which takes advantage of noise-induced thermalization and
relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of
this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the
same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical
characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are
particularly important for the dynamics in the presence of the exponential degeneracy of metastable states.
We determine the optimal regime of the open-system quantum annealing algorithm for this model and find
that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum
tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual
nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most
efficient transition rate corresponds to zero temperature. This model calculation is the first analytically
tractable example where open-system quantum annealing algorithm outperforms simulated annealing,
which can, in principle, be realized using an analog quantum computer.
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I. INTRODUCTION

Quantum computing hardware is affected by a substantial
level of intrinsic noise and therefore naturally realizes dis-
sipative quantum dynamics [1,2]. Optimization algorithms,
where a configuration of a binary string xminimizing a given
(energy or cost) function fðxÞ is sought for, naturally extract a
computational advantage from the irreversible dissipative
dynamics and could therefore be readily implemented on a
number of existing hardware platforms [3,4]. More specifi-
cally, quantum annealing [5] (QA) is a quantum analog of the
widely applied classical simulated annealing algorithm [6]
(SA), a heuristic solver of NP-hard (non-deterministic poly-
nomial-time hard [7]) optimization problems [5,8–11], with
quantum fluctuations playing the role analogous to thermal

fluctuations in simulated annealing. NP-hard optimization
problems, such as finding a ground-state spin configuration of
a spin glass, are often characterized by an energy landscape
with a large number of local minima separated by extensive
energy barriers. Dissipative dynamics realized by the open-
system quantum annealing provides an efficient mechanism
for thermalization within domains of attraction of local
minima. For an efficient search of the configuration space,
the barriers separating different domains of attraction have to
be overcome, which may proceed via thermal excitation or a
quantum-tunneling process. The performance of the open-
system quantum annealing algorithm is therefore character-
ized by a set of relaxation rates associatedwith such processes,
as opposed to, for example, the spectral gaps, as is the case for
an adiabatic quantum algorithm [10,12,13].
The longest relaxation times correspond to the often

exponentially slow transitions between local minima sep-
arated by extensive potential barriers. Unitary dynamics of
a pair of such states corresponds to the switching rate of the
order of the matrix element Δ, which in the presence of an
extensive barrier may scale exponentially with the system
size Δ ∝ expð−const × NÞ (here, N is the number of qubits
in the system). However, fast dissipative relaxation within a
domain of attraction of a local minima due to the hardware
noise introduces a lifetime or level widthW. This fast local
relaxation strongly suppresses the coherent superposition
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of the states localized in different local minima when
W ≫ Δ. Nevertheless, the incoherent quantum tunneling
is possible in the presence of such strong dissipation, where
the transition rate is described by the Fermi golden-rule-type
expression∝ Δ2 ≪ Δ. This is the regime likely realized in a
large-scale quantum annealer [3,14]. It is an open question
whether such incoherent extensive quantum tunneling may
provide a more efficient mechanism for searching the
configuration space as compared to classical simulated
annealing relying on thermal excitation. Initial numerical
analysis of the two-dimensional (2D) spin-glass problem
[15] suggested a superior scaling of the outcome of finite-
temperature quantum annealing compared to simulated
annealing [11]. However, this observation turned out to be
an artifact of the numerical discretization scheme and
therefore cannot be reproduced using analog hardware [17].
In this paper,we provide an analytically tractable example

where the speedup originates from incoherent quantum
tunneling. We consider a system of Ising spins interacting
each with each other with a p-body interaction of equal
strength, a model often referred to as a p-spin model. This
model allows a quasiclassical Wentzel-Kramers-Brillouin
(WKB) description [18,19], where the expansion is per-
formed in 1=N rather than the more usual ℏ, and, at the same
time, it demonstrates key features characteristic of a range of
complex (NP-hard) optimization problems, such as the first-
order phase transition (forp ≥ 3) and an exponentially small
gap between the ground and excited states [20]. Crucially,
the metastable state realized in this model is characterized
by an exponential degeneracy, whereas the ground state is
unique. Such entropic imbalance is, in fact, typical for
low-energy states in the spin-glass phase, and it strongly
affects the low-temperature dynamics of the system in both
quantum and classical cases. The effect of entropic imbal-
ance is the main focus of our analysis in this paper.
We show that the scaling of the optimal QA computation

time (allowing for repeated runs of the algorithm) is
determined by the quantum-tunneling amplitude at a single
point in the algorithm, the so-called freezing point, after
which quantum (or thermal) fluctuations are relatively weak
and the transitions over or through the barrier are no longer
likely. We find that, because of the effect of the entropy
associated with the metastable state, the optimal quantum-
tunneling rate is achieved at vanishing temperature; i.e.,
raising the temperature may reduce the quantum-tunneling
rate. This is in contrast to the usual intuition about a
quantum-mechanical particle trapped in a nondegenerate
metastable potential well, where the escape rate monoto-
nously increases with temperature. The optimal QA regime
corresponds to the fastest tunneling rate and therefore
vanishing temperature as well. Comparing the optimal
computation time of QA obtained in this regime with that
of SA for a range of the potential barrier shapes, we find that
QA could outperform SA under certain circumstances, thus
providing a polynomial (rather than exponential) speedup.

The physical mechanism of the quantum speedup that
we find is distinct from the usual intuition of quantum
fluctuations overcoming thin and tall barriers more effi-
ciently. It is a generic mechanism, and we expect it to
manifest in more complex quantum models where quantum
fluctuations are introduced by transverse spin-spin or
multispin interaction terms [21–23] in addition to the
transverse field. We emphasize that the speedup mechanism
we find is not limited to the models that can be efficiently
simulated with quantum Monte Carlo dynamics on
classical computers [24,25] (such as the transverse-field
Ising model). The regime considered here could, in
principle, be reproduced using an analog quantum annealer.
Before outlining the formal calculation, we discuss the

qualitative picture of the effect of the entropy imbalance
between the ground andmetastable states on the efficiency of
simulated and quantum annealing. In the presence of the
entropy imbalance, SA computation time scales exponen-
tially with the system size N. This can be understood
intuitively by considering the performance of SA applied
to a model demonstrating a first-order phase transition into
a state characterized by an order parameter, assuming a
ferromagnet for simplicity. In simulated annealing, the
system is initialized at infinite temperature, or equal occu-
pation of all classical spin states, and then the temperature is
gradually lowered to zero. The simulated spin dynamics is
chosen to satisfy the detailed balance condition such that it
samples the thermal distribution at a given (instant) temper-
ature. The initial state is a paramagnet, and therefore the
solution, the ground-state spin configuration at zero temper-
ature, is expected to have high statistical weight only at low
enough temperatures below the ferromagnetic phase tran-
sition. The exponential degeneracy of the metastable state
corresponds to the entropy linear in the system sizeN, which
significantly lowers the transition temperature (see Fig. 1).
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FIG. 1. Thermodynamic functions of a classical model char-
acterized by the order parameter M above (blue lines) and
below (red lines) the phase transition temperature. Dashed lines
correspond to potential energy, and solid lines correspond to
free energy that includes the entropy, shown separately by a
dash-dotted black line. The difference between dashed and solid
lines shows the contribution from entropy. δF is the free energy
difference that has to be overcome by classical Monte Carlo
dynamics at temperatures below the transition T < Tc.
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This can be understood intuitively from the following
argument. We assume a mean-field case in which energies
of the metastable and ground states, as well as the barrier
separating them, scale linearly with the system size NEMS,
NEGS and NU, respectively. We find from equating the
free energies NQMS − NEMS=T ≈ −NEGS=T, where the
entropy imbalance is given by NQMS, that the transition
occurs at Tc ∼ ½ðEMS − EGSÞ=ðQMSÞ� ∼Oð1Þ. Furthermore,
high statistical weight of the ground state is achieved
only after equilibration at the low temperature below the
phase transition T ≲ Tc ∼Oð1Þ. In the presence of the
extensive barrier NU, the relaxation towards the thermal
distribution described by the classical Kramers escape
rate ∼ exp ð−NU=TcÞ is exponentially slow. Moreover,
the entropy gradient along the over-the-barrier escape tra-
jectory gives rise to an additional entropic factor
∼ exp½NðQMS −QTÞ�, whereQT is the entropy correspond-
ing to the maximum of the free energy. Here, QT appears as
an exponential contribution to the prefactor of the Kramers
rate [26]. In this paper, we call QT the “entropic barrier.”
The SA computation time allowing for such relaxation
to occur is at least as long as the relaxation time
τu ∼ exp½NUQMS=ðEMS − EGSÞ þ NðQMS −QTÞ�. In fact,
a more careful analysis (see Appendix A) shows that the
optimal SA computation time in the presence of the extensive
entropy imbalance is given by the smallest of either τu or the
exhaustive search time τes ∼ 2N . At the same time, the
quantum-tunneling amplitude saturates as T → 0 and may
bemore efficient than over the barrier escape, suggesting that
quantum annealing could be more efficient than simulated
annealing. Moreover, we see below that the transverse field
introduced in QA lifts the degeneracy of the metastable state,
and in this way, QA avoids the entropic barrier completely.
Note, however, that the quantum-tunneling rate in this mean-
field model also scales exponentially with N. Therefore, the
performance (computation time) of SA and QA is charac-
terized by the numerical scaling factors in the exponent (in
front ofN),whichhave tobecarefully compared.The result is
not obvious a priori since here we are comparing different
microscopic mechanisms: the quantum dynamics con-
strained by conservation laws with the classical thermal
excitation process constrained by the entropy imbalance and
the low temperature.
The remainder of the paper is organized as follows. In

Sec. II, we introduce thep-spin model and itsWKB analysis
describing the evolution of the potential energy and the tran-
sition rates in the course of the quantum annealing algorithm.
InSec. III,wediscuss thedynamics of themodel in the course
of the quantum annealing and identify the freezing point and
its optimal position in the course of the algorithm. We
conclude with a discussion of the results in Sec. IV.

II. THE MODEL

We consider N Ising spins-1=2 on a fully connected
graph (i.e., each spin interacts with each other spin) with

uniform strength of spin-spin and multispin interactions,
subject to a uniform field. The uniform interactions give
rise to a highly symmetric Hilbert space such that the
unitary dynamics of the system is fully described in terms
of the total spin projection operators Ŝα ¼ P

N
i¼1 σ̂

α
i , where

α ¼ x, y, z and σ̂α is a set of spin-1=2 operators. In other
words, the Hamiltonian is defined as

H ¼ sNf

�
2

N
Ŝz
�
− ð1 − sÞŜx: ð1Þ

Here, the second term describes the uniform transverse
field, and the first term is a potential energy function fðxÞ,
which is assumed to be a function of the z-projection
operator only. In this paper, we consider a polynomial form
of fðxÞ, although the general case can be treated in a similar
fashion. Polynomial terms of the form fðxÞ ¼ xp have a
natural microscopic form of p-spin interaction of unit
strength H ¼ ð2=NÞp P σ̂zi1 σ̂

z
i2
…σ̂zip . For example, a uni-

form version of the Sherrington-Kirkpatrick modelP
ijJσ

z
iσ

z
j ¼ JðPiσ

z
i Þ2 corresponds to fðxÞ ¼ x2. In the

same way, a fully connected graph with three-spin inter-
actions

P
ijkJσ

z
iσ

z
jσ

z
k ¼ JðPiσ

z
i Þ3 corresponds to the cubic

form of the potential energy fðxÞ ¼ x3. Quantum dynamics
of the fully connected graphs is not a purely theoretical
pursuit, it can be implemented experimentally on existing
analog quantum annealing hardware [27], reducing
the model to local interactions only [28,29]. Moreover,
three-spin interactions may be implemented directly in
superconducting circuits [30] motivated by the novel
physics they could introduce [31].
Without loss of generality, we choose both of the terms

in the Hamiltonian Eq. (1) to scale linearly with N. The
parameter s in Eq. (1) controls the relative strength of the
potential energy and the transverse field and changes from
s ¼ 0 to s ¼ 1 in the course of the quantum annealing
algorithm.
For a general function fðxÞ, the Hamiltonian Eq. (1)

commutes with Ŝ2 ≡ ðŜxÞ2 þ ðŜyÞ2 þ ðŜzÞ2, which is there-
fore a conserved quantity. In the basis of states, jS;Mi:
Ŝ2jS;Mi ¼ SðSþ 1ÞjS;Mi, with definite total spin S and
its projection on the z axis M ¼ f−S;…; Sg, the matrix
elements of the Hamiltonian Eq. (1) are given by the
standard spin-S rules,

ŜzjS;Mi ¼ MjS;Mi; ð2Þ

Ŝ�jS;Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ −MðM � 1Þ

p
jS;M � 1i; ð3Þ

where we introduced raising and lowering operators,
Ŝ� ¼ 1

2
ðŜx � iŜyÞ. We introduce an integer parameter

K ¼ 0; 1;…; ⌊N=2⌋ to label the total spin eigenstates
S ¼ ðN=2Þ − K. The Hamiltonian Eq. (1) is symmetric
with respect to exchanges of pairs of spins σ̂i ↔ σ̂j and, in
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fact, with respect to all permutations of spins since such
operations do not change the sum over all spins Ŝα. This
symmetry introduces high degeneracy of eigenstates depen-
dent on the total spin S. The subspacewith the maximal total
spin S ¼ ðN=2Þ or K ¼ 0 contains 2Sþ 1 nondegenerate
states (there are no nontrivial permutations) corresponding to
all possible projections of the total spin on the z axis. The
states withK ≠ 0 are highly degenerate, with the degeneracy
being determined by the representations of the group of
permutations. The eigenstate with a total spin labeled by K

has the degeneracy

�
N
K

�
−
�

N
K − 1

�
∼ exp ðNQkÞ,

where k≡ ðK=NÞ ¼ f0; ð1=NÞ; ð2=NÞ;…; ð1=NÞ⌊N=2⌋g,
which corresponds to the entropy term,

Qk ≈ −k ln k − ð1 − kÞ lnð1 − kÞ þO

�
lnN
N

�
;

that has to be added to the free energy of a state with a given
energy E and total spin parameter k, F ¼ βE −Qk. Each
value of k labels a Hilbert subspace completely disconnected
from that labeled by different values of k. This is a
manifestation of the spin permutation symmetry that will
be violated by the coupling to a thermal bath, which
introduces matrix elements between states with different k
and effective relaxation in the system.
In this paper, we are interested in a cubic potential

energy,

fðqÞ ¼ −cðq − qminÞ2
�
q − 3qmax − qmin

2

�
; ð4Þ

where q≡ ð2=NÞM, q ¼ f−ð1 − 2kÞ;…; ð1 − 2kÞg.
Equation (4) is the most general cubic function with the
metastable minimum at qmin and the potential barrier top at
qmax, where fðqminÞ > fð1Þ ensures that q ¼ 1 is the global
minimum. Without loss of generality, we can put c ¼ 1; the
only effect of c ≠ 1 is to rescale the parameter s in Eq. (1).
We are interested in analyzing a computational task, which
can be formulated for the model Eq. (1) by defining an
appropriate “oracle” [32].
The cubic potential is chosen such that the model

demonstrates a first-order phase transition that is unavoid-
able in the course of quantum annealing [34]. Below, we
focus on the open-system quantum annealing in the
presence of dissipation and nonzero temperature, which
is the case more suitable for implementation on current
analog quantum annealers.

A. Quantum annealing computation time

In the course of the QA algorithm, the transverse-field
parameter s is varied from s ¼ 0 to s ¼ 1with a fixed rate v
at a fixed inverse temperature β. The goal is to find the
ground state with a probability approaching 1, allowing for
repeated runs of the algorithm. Here, we assume that

finding any state within the ground-state potential well is
sufficient to find the solution (as a local search could allow
one to identify the lowest energy state within the well).
Given the probabilityPGS of finding the ground state after a
single run of duration v−1, the number of runs needed to
achieve this goal is P−1

GS. The total computation time is
therefore given by

τ ∼ v−1 × P−1
GS: ð5Þ

The goal of this paper is to analyze the scaling of the
optimal τ with the number of qubits in the system N
characterized specifically by the quantity

ξ≡ 1

N
log τ: ð6Þ

Below, we show that the scaling of ξ in our model is
dominated by the exponentially slow quantum tunneling
through (or classical escape over) a wide barrier separating
the metastable and the ground states. The tunneling rate can
be analyzed using the WKB wave functions we introduce
in the following sections.

B. WKB wave functions

The dynamics of the model Eq. (1) can be described using
a systematic quasiclassicalWKBexpansion. For an excellent
review, see Ref. [18]. In a spin model, this expansion is
performed in terms of the small parameter ε≡ 2=N ≪ 1,
which is an analog of ℏ in the textbookWKB approach [35].
We consider a wave function in the form

Ψ ¼ eið1=εÞΦðqÞ

and expand it, ΦðqÞ ≈ Φ0 þ εΦ1 þ ε2Φ2 þOðε2Þ. We can
further expand the coefficients Φi for a small shift of the
argument from q to q� ε,

ΨM�1 ¼ ΨMe�i _Φ0

�
1þ i

ε

2
Φ̈0 � iε _Φ1

�
;

where _O≡ ðdO=dqÞ. Substituting this expansion into the
Schroedinger equation, we obtain

HΨðqÞ ≈ eðqÞΨðqÞ;
where in themain order in ε, the Hamiltonian is diagonal and
reads

eðqÞ ≈ sfðqÞ − 1

2
ð1 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

q
cos _Φ0: ð7Þ

Note that the function p≡ _Φ0 is precisely the canonical
momentum conjugate to the coordinate q,p → −iðd=dqÞ. In
other words, the second term above is the quantum kinetic
energy, which for p ≪ 1 corresponds to a particle with a
position-dependent mass m−1 ≡ 1

2
ð1 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

p
moving in an effective classical potential,
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Uðk; qÞ ¼ sfðqÞ − 1

2
ð1 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

q
: ð8Þ

Note that the mass of the effective quantum particle increases
with increasing q and diverges as q → 1, which affects the
efficiency of quantum tunneling into the states near q ¼ 1.
The effective potential Eq. (8) for different values of s is
shown in Fig. 2. In the course of the QA algorithm
s ¼ 0 → s ¼ 1, the effective potential deforms from a
square-root parabola corresponding to the ground state
ðq; kÞ ¼ ð0; 0Þ with the maximal spin polarization along
the transverse-field direction at s → 0 (see left panel in Fig. 2)
and the classical potential corresponding to the ground state
ðq; kÞ ¼ ð1; 0Þ fully polarized along the axis of quantization
s → 1. Note that the initial and final states of the algorithm
are characterized by an exponentially small overlap (see
Appendix B).
States with small kinetic energy are confined to one of

the potential wells, centered around the two minima

qðLÞminðsÞ < qðRÞminðsÞ of the effective potential Uðk; qÞ, which
in the course of the evolution as s → 1, approach the

metastable qðLÞmin → qmin and ground state qðRÞmin → 1 of the
classical model, respectively. Confinement of the states is
determined by the condition of vanishing classical velocity,
vðk; q; EÞ≡ ð∂H=∂pÞ ¼ 0, which gives

−1 ≤ 2
sfðqÞ − E

ð1 − sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

p ≤ 1: ð9Þ

The solution of this equation gives the location of the

turning points qð1ÞTP ðk; EÞ and qð2ÞTP ðk; EÞ, which limit the

classically allowed region. Inverting the secular equation,
Eq. (7), for a given energy E, we write the wave function in
the leading order in ε,

Ψ ∼ exp

�
i
ε

Z
q

qð1ÞTP

dqp

�
; ð10Þ

with

p ¼ arccos 2
sfðqÞ − E

ð1 − sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

p ; ð11Þ

when the condition Eq. (9) is satisfied, and

p ¼ iarccosh2
sfðqÞ − E

ð1 − sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

p ð12Þ

otherwise. The latter expression corresponds to the expo-
nentially decaying tail of the wave function extending
beyond the classically allowed region into the potential
barrier.

C. Quantum phase transition

In the course of the evolution, s: 0 → 1, there is a point of
zero-temperature discontinuous quantum phase transition,
s ¼ sQPT, at which the minimal energies in the two wells,
left EL at q ∼ qmin and right ER at q ∼ 1, are equal to each
other. In the course of the QA algorithm at finite temper-
ature, this transition occurs at a weaker transverse-field
strength s ¼ sPTðβÞ ≥ sQPT. The phase transition point
can be found from the condition of equal occupation of
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FIG. 2. The effective classical potential is shown for s ¼ 0, the pure transverse-field case (left); s ¼ sQPT ≈ 0.698, the zero-
temperature quantum phase transition point (center); and s ¼ 1, the pure classical potential (right). Different lines (bottom to top on all
plots) correspond to different values of k ¼ 0;…; 0.5 with equal intervals. Note that in the absence of the transverse field, the states with
different values of k are degenerate. Here, qmin ¼ 0 and qmax ≈ 0.467.
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the two potential wells PL ¼ PR, including the entropy of
the states. In the large N limit and at low temperatures
β ∼OðN0Þ, we can approximate the occupation number
PL ¼P

E;k exp ð−NF − logZÞ≈ exp ð−NFL − logZÞ by
a single dominant term corresponding to a minimum of
the free energy. We write the local minimum condition in a
potential well as ð∂F=∂kÞ ¼ 0 to obtain

−β ∂E∂k ¼ −∂Qk

∂k ≈ ln
k

1 − k
: ð13Þ

This determines the kmin corresponding to the minimum of
the free energy, whereas the optimal energy (principal
quantum number) with a given k corresponds to the
minimum of the potential Uðkmin; qÞ. We neglect the
quantization of levels due to finite N for the purpose of
this calculation. At s > sPTðβÞ, the metastable (left) poten-
tial well is separated from the ground state by a potential
barrier with the shape determined by the parameters qmin
and qmax, and the overall scaling ∼N. At low temperatures,
the relaxation in this model is therefore determined by
the rate of transitions between the two wells, which we
calculate in the following.

D. Quantum tunneling

In a closed quantum system in the absence of the thermal
bath, quantum-mechanical states are coherent superposi-
tion of states in the two wells, the so-called Schroedinger
cat states. Formally, these states correspond to a coherent
(infinite) sum of amplitudes of multiple tunneling events
between the wells. In a large system, however, the level
splitting Δ corresponding to such a superposition state is
exponentially small (in the system size N), and therefore,
such coherent dynamics is quickly suppressed by small
perturbations, such as the hardware noise. This results in
overdamped dynamics characterized by fast intrawell
relaxation towards thermal occupation [36] reflected in
the level width W ≫ Δ and exponentially rare incoherent
tunneling events with the rate ∼Δ2. This is the regime we
consider in this paper. At the same time, we neglect the
effect of noise on the tunneling event itself since tunneling
is a fast process occurring on the time scale 1=Ω, where Ω
is the frequency determined by the curvature of the
potential. We assume, therefore, that Ω ≫ W ≫ Δ. We
are interested only in the exponential scaling of the
transition rates in this paper, ignoring the renormalization
of the preexponential factor that may be substantial in the
regime of strong coupling to the environment. Note that
the overdamped dynamics and thermalization are expected
even in the absence of the coupling to a thermal bath; it can
be introduced by a weak disorder in the spin-spin inter-
actions δH ¼ P

εijσ̂
z
i σ̂

z
j or even a weak random transverse

field [37].
At s < sPTðβÞ, the ground state corresponds to

q ¼ qðLÞminðsÞ. As the system goes past the phase transition

with growing s > sPTðβÞ, this state becomes metastable.
The average transition rate w ≪ W across the barrier in the
presence of the fast intrawell relaxation W can be obtained
by calculating the total current escaping the metastable
well [38,39],

w ∝
1

Z

X
k;E

wðk; EÞe−NðβE−QkÞ: ð14Þ

Equation (14) is a thermal average, weighted with the usual
Boltzmann factor e−NðβE−QkÞ, including the entropy Qk, of
wðk; EÞ ∼ jΔðk; EÞj2 ∼ e−NSWKBðk;EÞ, the incoherent tunnel-
ing amplitude through the barrier of a state with a given
energy E and total spin parameter k. The so-called reduced
action SWKBðk; EÞ can be obtained by matching the
quasiclassical wave functions across the barrier region or
following the analytical continuation procedure [35],

SWKBðk; EÞ ¼ −
Z

qR

qL

dqpðqÞ

¼ −
Z

qR

qL

dqarccosh
2ðsfðqÞ − EÞ

ð1 − sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kÞ2 − q2

p :

The sum in Eq. (14) can be approximated by its largest
term, the rest being exponentially smaller,

w ∼
1

Z

X
k;E

wðk; EÞe−NðβE−QkÞ ≈ e−NS; ð15Þ

where the largest term is found by minimizing the action,

S ¼ SWKB þ βE −Qk þ
1

N
lnZ ð16Þ

with respect to k and E,

TðEÞ≡−∂SWKB

∂E ¼ β; ð17Þ

−
∂SWKB

∂k − β
∂E
∂k ¼ −∂Qk

∂k ≈ ln
k

1 − k
: ð18Þ

In Eq. (17), fixed k is assumed. Since Qk is independent of
the energy level E, the conditions on the optimal tunneling
parameters separate into the standard condition Eq. (17)
[requiring the period of motion in the inverted potential
TðEÞ to match the inverse temperature β [39]] and the
condition Eq. (18) due to the entropy of states dependent on
k, which introduces novel physics in the dynamics of this
model. Equations (16)–(18) need to be supplemented with
conditions ensuring that the energy and total spin k are
conserved in the tunneling event (we emphasize that we
neglect here the effect of the thermal bath during the
tunneling event). The tunneling from the metastable well
has to be at energy and spin values, E and k, at which a state
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exists in the ground state well, i.e., E ≥ min fERðkÞg,
which is not always satisfied in the system with large
entropy of states; i.e., FL < FR does not necessarily
imply EL < ER.
Equation (17) has a solution in a range of energies E

such that Tmin ≤ TðEÞ < ∞ (see inset in Fig. 3, left). In the
case of β > Tmin, the quantum-tunneling process dominates
in the sum in Eq. (15). For β < Tmin, there are no solutions

to Eq. (17), and therefore, the optimal energy is at the edge
of the interval E ¼ UðqmaxÞ −UðqminÞ corresponding to
the height of the barrier. In other words, in this regime, the
over-the-barrier escape process dominates, with β ∼ Tmin
being the point of a quantum-to-classical phase transition.
Note that the global minimum Emin of the function TðEÞ in
the inset in Fig. 3 does not always correspond to the top of
the barrier, which means that the quantum-to-classical
transition (in the limit N → ∞) has a discontinuous first-
order character [19]. Considering Eq. (18), we look for a
solution in the interval 0 ≤ k ≤ k�, where k� is the
inflection point of the potential Uðq; kÞ in which the right
(the ground-state) potential well disappears (see Fig. 2);
since quantum tunneling conserves the total spin k, for it to
occur there must exist states with matching k in the ground-
state potential well.
The result of this optimization procedure is the optimal

action SðβÞ at a fixed s shown in Fig. 3. In the vanishing
temperature limit β → ∞, where the effect of entropy on
the occupation of levels is negligible, SðβÞ corresponds to
the quantum tunneling from the lowest energy level in the
metastable well corresponding to k ¼ 0 (horizontal dashed
line in Fig. 3, left). As temperature increases (β decreases),
the entropy starts playing a role in dynamics, and SðβÞ
increases up to some maximum value (see blue solid line in
Fig. 3, left), in contrast to the usual (nondegenerate) case
[39] where the quantum-tunneling rate increases monoto-
nously with increasing temperature β−1. This is a result of
the entropy providing high statistical weight to the state
with a suboptimal tunneling rate. This behavior is natural
because the transverse field splits the degeneracy of the
metastable state at q ¼ qmin favoring the state with maxi-
mal total spin, corresponding to k ¼ 0. At the same time,
the transverse field provides maximal quantum kinetic
energy (minimal mass in the quadratic approximation) to
the same state, as can be seen from Eq. (7), whereas the
finite temperature due to the effect of entropy favors the
states with 1=2 ≥ k > 0 (at β → 0), which have lower
kinetic energy (higher mass) and correspond to the sub-
optimal tunneling rate through the classical potential sfðqÞ.
The result is SðβÞ increasing with decreasing β up to the
regime of the transition into the classical escape at
high temperatures β ≪ Tmin. The classical over-the-barrier
excitation is described by the thermal excitation rate
wcl ∼ Z−1 exp½−NðβE −QkÞ�. Note that the classical proc-
ess is driven by the Glauber dynamics of the spins due
to the effect of the thermal bath. This process does not
conserve the total spin k, and therefore, the optimal
classical trajectory is determined by the saddle point of
the free energy (including the entropy) in the 2D space of
ðk; qÞ. Entropy provides an additional cost, reducing the
transition rate, which is reflected in the finite offset of the
dependence of the classical transition rate on β as β → 0
(see black solid line in Fig. 3, left; see Appendix A for more
details). Blue and red dashed lines in Fig. 3 indicate the
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FIG. 3. Tunneling action as a function of inverse temperature β,
for qmin ¼ 0, qmax ¼ 0.533 at s ¼ 0.85 > sQPT. Left: Black dots
and the solid blue line fit correspond to an optimal finite-
temperature quantum-tunneling action. The horizontal dotted
line is the β → ∞ limit of the incoherent tunneling action
corresponding to the quantum-mechanical tunneling from the
lowest level of the metastable well corresponding to k ¼ 0. The
solid black line corresponds to the optimal action of the classical
Glauber dynamics. Blue and red dashed lines show the classical
over-the-barrier escape action at k ¼ 0 and along the line q ¼
1 − 2k with the potential maximum at k� ≈ 0.152, respectively.
The latter, k�, is the point of inflection, i.e., the point where the
minimum of the right potential well merges with the maximum at
the barrier top (see Fig. 2). The vertical dashed line corresponds
to the temperature-driven phase transition point βPT ≈ 4.32
corresponding to equal occupation of the two potential wells.
Inset: TðEÞ ¼ −∂S=∂E at fixed k, which corresponds to the
period of quantum-mechanical tunneling trajectory in the imagi-
nary time representation. The dominant contribution comes from
tunneling at the energy determined from TðEÞ ¼ β for β > Tmin;
at β < Tmin, the transition rate is dominated by the over-the-
barrier escape. Different lines from bottom to top correspond to
different values of s at fixed k ¼ 0. Red dots correspond to Tmin.
Note that the minimum Emin: TðEminÞ ¼ Tmin does not corre-
spond to the highest tunneling energy. This means that the
transition from the quantum-tunneling regime to over-the-barrier
escape has discontinuous first-order character. Right: Quantum-
classical transition region on a larger scale. Black dots correspond
to the dominant tunneling action at each β. Different lines show
the quantum-mechanical tunneling action for fixed k; colors
correspond to growing 0 ≤ k ≤ 0.152 (red to blue). The quantum-
tunneling process conserves energy and the total spin value k.
At k > kLR, the point where ELðkLRÞ ¼ ERðkLRÞ, the quantum
mechanical tunneling process requires the state in the metastable
well to be at an energy E ≥ ERðkÞ, which comes with an
additional thermal excitation cost β½ERðkÞ − ELðkÞ� in the tun-
neling action. Therefore, for growing k, the tunneling action SðβÞ
resembles linear classical dependence. Solid black and dashed
red and blue lines are the same as in the left figure.
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linear in β dependence of the energy cost of the over-the-
barrier excitation at k ¼ 0 and along the line of q ¼ 1 − 2k
with the potential maximum at k ≈ k� [the latter is the
inflection point of the potential Uðk; qÞ], respectively,
which correspond to the low-temperature potential-
energy-dominated regime and the high-temperature
entropy-dominated regime [40].
The steepest descent approximation Eq. (15) is appli-

cable as long as the preexponential factors in the sum are
nondivergent, which is true away from β ∼ Tmin, a phase
transition point from the quantum-tunneling regime to the
classical over-the-barrier escape regime [39]. On general
grounds, we expect the action to be continuous even in the
case where this quantum-to-classical transition is of the first
order, with the discontinuity occurring in the derivative of
the action [19]. Therefore, we expect Fig. 3 to provide a
qualitatively correct dependence of SðβÞ in the whole range
of inverse temperatures β.

III. QUANTUM ANNEALING
COMPUTATION TIME

We now turn to the calculation of the computation time
defined in Eq. (6). The quantum mechanical tunneling rate
vanishes as s → 1 (at very low temperatures of interest,
here the over-the-barrier transition rate is also weak).
Therefore, there exists a point s ¼ sF in the course of
the sweep of the transverse field where the relaxation time
∼w−1ðsFÞ required to achieve thermal distribution becomes
longer than the length of the algorithm, w−1ðsFÞ ∼ v−1. In
other words, the computation will be finished before the
thermal equilibrium is reached. The system effectively
freezes the values of the occupation numbers of the left
PL and right PR wells at the last point (in the course of the
algorithm) where the interwell transition process was still
fast enough (the intrawell relaxation may still be efficient at
s > sF). We call this the freezing point. Sudden freezing of
quantum dynamics in the course of quantum annealing is
typical for the algorithms relying on quantum tunneling
between states separated by large Hamming distance
[3,41–44]. The computation time of the algorithm (its
exponential scaling) is therefore determined by the thermal
(equilibrium) occupation probability PGS ¼ PRðsFÞ, and
the equilibration time w−1ðsFÞ at the freezing point,

ξ≡ 1

N
log τ ≈

1

N
log ½eNSð1þ eNðFR−FLÞÞ�; ð19Þ

where S is the optimal quantum-tunneling action given
by Eq. (16), with s ¼ sF. The optimal computation time
of the quantum annealing is found by minimizing with
respect to the location of sF and the temperature β at which
the computation is performed. The point of the phase
transition, β ¼ βPT and sF ¼ sPT, respectively, defined
by FR − FL ¼ 0, separates two scaling regimes of the
computation time,

ξ ≈
�
Sþ FR − FL β < βPTðsÞ
S β > βPTðsÞ:

ð20Þ

The high-temperature limit (β → 0) of this expression is
given by the entropy difference between the two wells. This
is the limit of a local exhaustive search, which is a bound on
the computation time of the algorithm, and we need to
compare it to the optimal computation time ξðβÞ to make
sure we find the global optimum.We first consider β < βPT,
assuming the free energy of the system demonstrates two
minima, FR and FL. In the quantum-tunneling regime,
both SðβÞ and FR − FL decrease with growing β, and
therefore, ξðβÞ is monotonously decreasing as well. In the
classical regime, Sþ FR − FL is also a monotonous
function, which depending on competition between SðβÞ
andFR − FL, can be either increasing, in which case β→ 0
is the optimal classical computation regime (i.e., the local
exhaustive search limit), or decreasing towards the critical
point β ¼ βPT. Therefore, we need to analyze the perfor-
mance in the regime β > βPT and s > sPT and compare it to
a local exhaustive search. The optimal computation time in
this regime [see Eq. (20)] is determined by the minimum of
the transition action S with respect to β and s.
Because of the concave dependence of SðβÞ on the

inverse temperature, as shown in Fig. 3 (left), the minimum
of the action with respect to β corresponds to one of the
edges of the inverse temperature interval, i.e., either
β ¼ βPT or β → ∞. The global minimum is therefore the
smallest of S½βPTðsFÞ; sF� and Sð∞; sFÞ. The minimum
with respect to sF (and therefore the global minimum) is
determined by comparing these two functions.
A typical critical line is shown in the left panel of Fig. 4.

The inverse critical temperature βPTðsÞ, blue solid line in
Fig. 3 (left), diverges at the point of the quantum phase
transition in the course of the algorithm, s ¼ sQPT (vertical
dashed line in Fig. 4), and at s > sQPT it monotonously
decreases, with s approaching the classical transition
temperature at s ¼ 1 (horizontal dashed line in Fig. 4).
The right panel of Fig. 4 shows the over-the-barrier escape
action at the given critical temperature βPTðsÞ, blue (upper)
solid line. The blue dots in the left and right panels
correspond to the same values of s. The classical action,
following the behavior of the inverse critical temperature,
diverges at the point of the quantum phase transition s ¼
sQPT and decreases with s in the course of the algorithm
approaching the value corresponding to the classical model
s ¼ 1, shown as the blue (upper) dashed line. The latter
is the optimum (due to the highest critical temperature)
and therefore defines the optimal computation time of the
classical simulated annealing algorithm (see Appendix A
for more details). The optimum of the quantum action, at
vanishing temperature β → ∞, is given by the tunneling
from the bottom of the metastable well. In this limit, the
entropy does not affect the occupation of the energy levels
in the course of the algorithm. We assume that the
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temperature is still high enough such that there is suffi-
ciently fast intrawell relaxation. Figure 4 (right panel)
shows Sð∞; sÞ, red (lower) solid line, which assumes the
minimal value at the quantum phase transition point
s ¼ sQPT. Note that this is not true for all the parameter
values; instead, the minimum of Sð∞; sÞ often occurs at
some s > sQPT, and its value at this point can be as much as
2 times smaller than the value at s ¼ sQPT (see Fig. 5,
left panel).
Figure 4 (right panel) demonstrates that the quantum-

tunneling process may be more efficient than over-the-
barrier escape. Both classical and quantum transition rates,
and therefore the corresponding computation times, scale
exponentially with the system size, τ ∝ expðαNÞ, yet the
coefficient in the exponent is smaller in the case of QA
as compared to the classical simulated annealing, which
corresponds to a polynomial speedup. Note that it is
important to compare the computation times in Fig. 4 with
that of the local exhaustive search in the interval ðqmin; 1Þ,
which is the high-temperature limit of SA. The correspond-
ing computation time is given by the entropy ξ ¼ QclðqminÞ,
which for parameters considered in Fig. 4, Qclð0.88Þ≈
0.227, scales worse than the QA computation time shown
by red dots in Fig. 4 (right panel). We further compare
the optimal performance of the open-system quantum
annealing Sopt to simulated annealing for a wide range

of barrier shapes within the cubic model Eq. (4) by varying
the location of the metastable minimum qmin and the barrier
top qmax in Eq. (4) (see right panel in Figs. 5 and 6). QA
outperforms SA in a range of the parameter space where the
potential barrier separating the metastable and the ground
states is small. Note that the origin of the speedup in the
case considered here is distinct from the standard intuition
of thin and tall barriers favoring quantum tunneling (see
Ref. [13] for refining the standard intuition) since the shape
of the potential is cubic throughout the range of parameters
shown in Fig. 6. Instead, the quantum algorithm turns
out to be more efficient because it proceeds along a path
with lower entropic cost than the path that SA takes. This
is a result of the transverse field lifting the degeneracy of
the metastable state in the quantum case. Therefore, the
smallness of the barrier required for the speedup in this case
is determined by the comparison of the quantum-tunneling
action and the SA action, including entropy cost of over-
the-barrier escape, the latter being a combination of βPTU
and the additional entropic cost QclðqminÞ −QclðqtopÞ,
where qtop is the maximum of the free energy (see
Appendix A for details). Note also that the numerical
value of the ratio of the logarithms of the normalized
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FIG. 4. Left panel: Inverse critical temperature dependence on
the transverse-field strength βPTðsÞ for qmin¼0.88, qmax ¼ 0.955.
The horizontal dashed line corresponds to the classical transition
temperature, and the vertical dashed line marks the point of
the quantum phase transition. Right panel: Comparison of the
vanishing temperature quantum-tunneling action to that of the
classical over-the barrier escape. The blue line shows optimal
over-the-barrier escape action along the critical lineshown in the
left panel. Blue points correspond to the same values of s as in the
left figure. The horizontal blue line corresponds to the transition
rate at the critical temperature in the classical model, s ¼ 1.
The vertical line corresponds to the point of zero-temperature
quantum phase transition. The red line corresponds to the
vanishing temperature limit of the quantum-tunneling action.
The red horizontal dashed line corresponds to the minimum
of the quantum-tunneling action at the quantum phase transition
point. The local exhaustive search corresponds to
ξ ¼ ð1=NÞ log τes ¼ QclðqminÞ ≈ 0.227, larger than the quantum
annealing time.

FIG. 5. Left panel: Quantum mechanical tunneling action at
vanishing temperature in the incoherent regime as a function of
the transverse-field parameter s. Different curves correspond to
different values of qmax ¼ 0.929, 0.946, 0.958, 0.961 (order is
from bottom to top on the right side of the plot) with fixed
qmin ¼ 0.9. Note that the optimal tunneling rate emphasized by
the horizontal dashed lines does not always correspond to the
phase-transition point denoted by vertical dashed lines. Right
panel: Optimal action for SA (blue) and QA (red) at qmin ¼ 0.88
for different values of qmax [see Eqs. (19) and (20) and the text
for details]. The dashed red line corresponds to the coherent
quantum-tunneling action (scaling as 1=2 of the action in the
incoherent regime). The vertical dashed line corresponds to
qmin ¼ 3

2
qmax, at which point the classical potential has a

degenerate ground state at q ¼ qmin and q ¼ 1. At this point,
both the SA action and the QA action diverge; however, the QA
action diverges logarithmically slow, in contrast to the SA action.
For the parameters chosen, the local exhaustive search corre-
sponds to ξ ¼ ð1=NÞ log τes ¼ QclðqminÞ ≈ 0.227, which is above
the value of the QA action in the figure, except for the close
vicinity of the divergence point, i.e., QA is faster than SA and an
exhaustive search for most of the parameter values.
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computation times ξ≡ ð1=NÞ log τ for QA and SA can be
substantial [see Fig. 5 (right panel)].

IV. DISCUSSION

In this paper, we consider a model problem of open-
system quantum annealing that allows analytical inves-
tigation and, at the same time, demonstrates key features
of complex optimization problems, including the discon-
tinuous first-order phase transition and the exponential
degeneracy of the metastable state. We demonstrate that,
for problems with extensive degeneracy, the SA algorithm
relies on over-the-barrier escape at very low temperatures,
β ∼Oð1Þ; as a result, the SA computation time is expo-
nential in N. In addition, the classical over-the-barrier
escape rate is reduced because of an additional entropic
barrier, the difference in the statistical weights of the
metastable well and the states near the top of the barrier.
At the same time, we show that a computational advantage
can be gained using open-system quantum annealing,
which exploits the effects of thermally assisted quantum
tunneling and relaxation. In the course of QA, the applied
transverse field splits the degeneracy of the metastable
state and provides the nondegenerate low-energy states
with the highest quantum kinetic energy; in other words,
the transverse field favors the quantum-tunneling trajecto-
ries involving nondegenerate states. In this way, the QA
algorithm naturally circumvents the entropic barrier and
thus gains a clear advantage over SA. This is a novel feature
in the quantum-tunneling process caused by the entropy of

the metastable states, manifested particularly in the tunnel-
ing rate decreasing with increasing temperature. As a
consequence, the optimal quantum annealing regime cor-
responds to vanishing temperature; i.e., raising the temper-
ature reduces the efficiency of QA [45]. The faster
tunneling with lower temperature contrasts the standard
intuition that raising temperature should always improve
transition rates. In this paper, we provided an important and
very widespread counterexample to this standard intuition.
We also found that at low temperatures, the optimal
quantum-tunneling rate does not always correspond to
the point of the phase transition sQPT; in fact, tunneling
at s > sQPT can have a substantially higher rate, which can
be exploited in conjunction with the noise-induced thermal-
ization to improve the performance of the algorithm. In the
mean-field model considered in this paper, the comparison
of the quantum annealing and simulated annealing comes
down to the numerical coefficient in the scaling of the
computation time with N. We demonstrated that optimal
QA could outperform SA in a certain parameter range of
our model characterized by small potential barriers. This is
in spite of the constrained nature of the quantum-tunneling
process due to the conservation laws, as opposed to the
unconstrained classical Glauber dynamics of SA.
We also identified key features of the model affecting the

performance of the QA, specifically, the quantum fluctua-
tions strength in the vicinity of the phase transition point and
the diverging mass in the quantum kinetic energy, which
both strongly affect the efficiency of quantum tunneling in
the course of the algorithm. In this respect, it would be
interesting to use methods developed in this paper to explore
QA in mean-field models with different types of driver
Hamiltonians whose ground states are not simple product
states where ferromagnetic order competes with the trans-
verse (XY) ferromagnetism or superfluidity [46–49].
Note that the model of escape from a highly degenerate

potential well considered in this paper is quite generic, as it is
natural to expect that the applied transverse field will favor
the trajectories involving nondegenerate states, thus circum-
venting the entropic barrier, which slows down classical
stochastic dynamics. This is because the states most strongly
affected by the transverse field both acquire the largest
energy shifts and the highest kinetic energy and hence the
highest transition rates. This suggests a speculation that
optimization problems in which entropy is a dominant factor
yet, at the same time, which are characterized by a potential
energy landscape that can be exploited for a more efficient
search (Grover’s unstructured search problem [50] with an
added potential landscape), may represent a class of prob-
lems where quantum annealing could have a computational
advantage over simulated annealing.

ACKNOWLEDGMENTS

This work is supported by NASA under Grant
No. NNX12AK33A and in part by the Office of the

 

 

 

q
 q

q

q

FIG. 6. Left panels: Potential barrier between themetastable and
the ground state, Eq. (4), corresponding to s ¼ 1 for two pairs of
values ðqmin; qmaxÞ equal to (0, 0.633) (upper plot) and (0.88,
0.955) (lower plot). Right panel: Scaling exponent of the optimal
computation time of quantum annealing (red) [see Eqs. (6) and
(19)] and simulated annealing (blue) given by ð1=NÞ log τ, with τ
given by Eq. (A2) as a function of the location of the metastable
minimum qmin and the top of the barrier qmax. The lower of the two
surfaces corresponds to the shorter computation time. QA is
advantageous for a range of parameters corresponding to suffi-
ciently narrow potential barriers. Solid lines in the plane S ¼ 0

correspond to qmin ¼ qmax and qmin ¼ 3
2
qmax (under both surfaces

in the figure) outlining the range of possible potentials in the cubic
model Eq. (4).

KECHEDZHI and SMELYANSKIY PHYS. REV. X 6, 021028 (2016)

021028-10



Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via IAA
145483, and by the AFRL Information Directorate under
Grant No. F4HBKC4162G001.

APPENDIX A: SIMULATED ANNEALING

We discuss the performance of simulated annealing on
the model, Eqs. (1) and (4), in the purely classical case of
s ¼ 1 (see the rightmost panel in Fig. 2). The SA algorithm
is realized by starting with the infinite temperature limit
β → 0, i.e., equal occupation of all states, and reducing
the temperature to zero. For simplicity (and without loss
of generality), we consider an algorithm where β changes
linearly in time from 0 to a very large value with a fixed
rate v.
The time it takes to find the ground state with probability

approaching around 1, allowing for repeated runs of the
algorithm, is given, as in the quantum case, by

τ ∼ v−1 × P−1
GS:

Simulated annealing relies on the system reaching thermal
equilibrium throughout at least part of the algorithm, such
that the ground-state occupation is given by the Gibbs
distribution. In problems with a free energy barrier sepa-
rating the initial and the ground state, the system’s
relaxation time is dominated by the over-the-barrier escape
probability with F ðqÞ ¼ βEðqÞ þQclðqÞ,

wðβÞ ∼ exp ½−NðF ðqtopÞ − F ðqminÞÞ�;
given by the statistical weight of the escape trajectory [26],
where we include the entropy of the classical state with
magnetization q given by QclðqÞ ≈ −½ð1þ qÞ=2� ln½ð1þ
qÞ=2� − ½ð1 − qÞ=2� ln½ð1 − qÞ=2�, and qtop is the maxi-
mum of F ðqÞ. Here, wðβÞ reduces exponentially with
decreasing temperature (growing β), and therefore, in
analogy with the quantum case considered in the main
text, there exists a freezing point β ¼ βF in the course of the
sweep of the inverse temperature where the relaxation time
∼w−1ðβFÞ required to achieve thermal distribution becomes
longer than the length of the algorithm, w−1ðβFÞ ∼ v−1.
After this point, the values of the occupation numbers of the
left PL and right PR potential wells are effectively frozen.
Therefore, the computation time is determined by two
quantities calculated at the freezing point, the occupation
of the ground-state potential well PGS ¼ PRðβFÞ and the
relaxation time at the freezing point w−1ðβFÞ,

τ ≈ eN½F ðqtopÞ−F ðqminÞ�ð1þ eN½F ð1Þ−F ðqminÞ�Þ; ðA1Þ
where we keep only the main order in the limit
N → ∞ such that PGSðβFÞ ≈ exp½−F ð1Þ�=½expð−F ð1Þ�þ
exp½−F ðqminÞ�. The optimal computation time can be
obtained by minimizing with respect to the inverse temper-
ature at the freezing point, ð∂=∂βFÞ½ð1=NÞlog2τ� ¼ 0. This

derivative is discontinuous at the point of the phase transition
βPT, where FR − FL ¼ 0. The computation time is an
increasing function at βF > βPT, as it is dominated by the
decreasing transition rate, the prefactor in front of the curly
brackets in Eq. (A1). However, it can be either a monoto-
nously decreasing or increasing function at βF < βPT
depending on the competition between the prefactor and
the exponents in the brackets in Eq. (A1). Therefore, the
global minimum of τðβFÞ corresponds to the smallest value
out of τðβPTÞ and τð0Þ ≈ 2N , in the decreasing and increasing
cases, respectively. The latter corresponds to the exhaustive
search, i.e., 2N repetitions of infinitely fast SA. The
ground state at q ¼ 1 is unique, Qð1Þ ≈ 0; therefore,
the point of the classical phase transition is at
βPT ¼ ½QðqminÞ=EðqminÞ − Eð1Þ�. Therefore, the optimal
SA computation time corresponds to the smaller of the
two values,

τ →

"
exp

h
N
�
EðqtopÞ−EðqminÞ
EðqminÞ−Eð1Þ QðqminÞ þ δQ

�i
;

2N;
ðA2Þ

where δQ≡QðqminÞ −QðqtopÞ. Note that the entropy asso-
ciated with the metastable state causes a very low transition
temperature βPT ∼Oð1Þ and gives rise to an additional
statistical factor expðδQÞ slowing down the transitions over
the barrier. This additional factor appears as a prefactor in the
Kramers rate calculation [26]; in the model considered here,
this factor is exponential andneeds to be included to correctly
describe the scaling of the classical transition rate with N.

APPENDIX B: EIGENSTATES OVERLAP

One of the characteristics associated with complexity of
a given problem for the quantum annealing algorithm is the
overlap of the eigenstate wave functions at the beginning
and the end of the algorithm. We analyze it for our model,
Eqs. (1) and (4). The initial state s ¼ 0 is characterized by
the maximal x projection of the total spin,

Ŝx
����N2 − K

	
x
¼

�
N
2
− K

�����N2 − K

	
x
:

The overlap of this state with the solution of the classical
problem, the state fully polarized along z axis, is

xhN=2 − Kj~0i ¼
�
1

2N

�
N

K

�

1=2
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