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We propose and study the use of photon-mediated interactions for the generation of long-range
steady-state entanglement between N atoms. Through the judicious use of coherent drives and the
placement of the atoms in a network of cavity QED systems, a balance between their unitary and dissipative
dynamics can be precisely engineered to stabilize a long-range correlated state of qubits in the steady state.
We discuss the general theory behind such a scheme and present an example of how it can be used to drive a
register of N atoms to a generalized W state and how the entanglement can be sustained indefinitely.
The achievable steady-state fidelities for entanglement and its scaling with the number of qubits are
discussed for presently existing superconducting quantum circuits. While the protocol is primarily
discussed for a superconducting circuit architecture, it is ideally realized in any cavity QED platform that
permits controllable delivery of coherent electromagnetic radiation to specified locations.
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I. INTRODUCTION

Photon-mediated interactions are ubiquitous in nature.
While the traditional formulation of quantum electrody-
namics places equal emphasis on fields and sources, it is
possible to take a point of view where the electromagnetic
degrees of freedom are integrated out to reach an effective
nonlocal field theory for matter only [1]. A particularly
beautiful example of this point of view, most closely related
to the phenomena investigated here, is Schwinger’s for-
mulation of the Casimir effect [2]. Here, the electromag-
netic degrees of freedom are integrated out and result in a
photon-mediated retarded and nonlocal interaction between
two conducting surfaces.
A classic example where photon-mediated interactions

are at play is the superradiance (and subradiance) of a
cluster of dipoles, first pointed out by Dicke [3]. Here,
photon-mediated interactions ultimately lead to generation
of transient coherence between dipoles [4,5], which results
in the emission of a powerful pulse whose intensity scales
with N2, where N is the number of dipoles within a volume
V ∼ λ3 (λ is the wavelength of radiation). In free space,

however, such interactions decay fast with interdipole
distance, and it is challenging to engineer such interactions
in a controlled way [6,7]. Photon-mediated interactions are
also at play in the self-organization transition of optically
driven cold atoms in a cavity [8]. In these systems, cavity-
mediated long-range interactions between atoms, tunable by
the drive strength, lead to softening of a motional excitation
mode recently observed in experiments [9,10]. Certain
aspects of the underlying critical behavior of this non-
equilibrium phase transition can be described through
photon-mediated interactions between the atoms constituting
the condensate [11–14].
In recent years, we have seen the first attempts to use

such photon-mediated interactions to generate strong cou-
pling and possibly entanglement between artificial atoms in
solid-state cavity QED systems. These approaches capital-
ize on strong light-matter interactions that can be generated
in confined geometries such as resonators [15,16] and
waveguides [17]. In particular, Ref. [17] demonstrated
coherent exchange interactions between two superconduct-
ing qubits separated by as much as a full wavelength (in
that case, λ ∼ 18.6 mm) in an open quasi-1D transmission
line. More recently, superradiance of two artificial atoms
was observed and characterized in a controlled setting in a
superconducting quantum circuit [18].
The goal of this paper is to show how photon-mediated

interactions between qubits embedded in an engineered
electromagnetic environment can be harnessed to control-
lably generate a certain large-scale entangled state of N
qubits in the steady state. In the present work, the role of
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photons is twofold. First, they mediate a coherent coupling
between distant qubits. Second, they provide a controllable
dissipative mechanism that can be used to stabilize a long-
range correlated many-body state of the qubits. By driving
the system at a suitable frequency, one can achieve a
transition that produces the desired many-body state while
dumping energy into one of the electromagnetic modes.
The dissipative mechanisms are key to make the scheme
steady-state, in contrast to better-known alternatives, such
as those based on Rabi cycling between a ground state and
a desired excited state. We show how the balance of the
unitary and dissipative contributions can be precisely tuned
by the placement of qubits in an engineered photonic
environment and a set of coherent electromagnetic drives
with specified amplitudes and frequencies.
Engineered dissipative dynamics has recently been

employed in superconducting circuits to cool a single qubit
to a desired state on theBloch sphere [19]; and twoqubits that
reside in single a cavity to a Bell state [20]. Furthermore, a
number of recent theoretical works have focused on gen-
eration of high-fidelity steady-state entanglement between
two superconducting qubits [21–24]. We present the general
theory underlying these phenomena, deriving and solving
the dynamics of N qubits residing in an arbitrary open
electromagnetic environment, subject to coherent driving
and losses. The underlying new principle is based on using
collective electromagnetic (EM) modes of a large structure
(such as Bloch modes of a lattice of cavities) to dissipatively
stabilize a collective state of spins. By “scalability” we refer
to the fact that, for the specific protocol worked out here for
W states, the same protocol used for N qubits can be used
for N þ 1 qubits. Generally, it is to be expected that the
fidelity of stabilization degrades as N is increased because
of spectral crowding, which we discuss for the particular
protocol we investigate here and provide an estimate for the
maximum number of qubits that can be stabilized reliably.
Interestingly, spatial symmetries in the system (such as
discrete translational invariance) can be used, along with a
spatially modulated coherent drive, to greatly enhance the
spectral resolution. In one of the protocols we propose, this
allows us to resolve W states in such a way that the state
selectivity is limited by only the finesse of the EM system,
instead of themean level spacing of the collective spin states.
In Sec. II, we lay out a particular architecture that we have

in mind for a proof-of-principle demonstration: We consider
a model of N qubits residing in a one-dimensional array of
cavities. We present the different layers of approximations
that allow us to have an analytic handle over the problem.
First, we show how cavity photons mediate effective qubit-
qubit interactions through the collective electromagnetic
modes of the array. In Sec. III, we show how the full
Liouvillian describing the evolution of the reduced density
matrix of the N qubits can be engineered to drive the qubit
subsystem to generalized W states, and the entanglement
sustained as long as the drives are on. The fabrication

tolerances of such a cavity array has recently been studied
experimentally [25]. Thus, the controlled fabrication of such
arrays is well within reach of the current superconducting
circuit technology both in coplanar and 3D configurations
[26]. We present the fidelities that can be expected in
recently fabricated systems and analyze the fault tolerance
of the method to phase and amplitude noise of the drive
parameters, as well as the nonuniformity of qubit and cavity
parameters. Finally, in Sec. IV, we generalize our scheme to
arbitrary arrangements of qubits coupled to an engineered
photonic backbone, going beyond the tight-binding approxi-
mation for the EM system used in previous sections.

II. ONE-DIMENSIONAL LATTICE MODEL

Consider a one-dimensional array of N identical micro-
wave cavities with nominally equal frequenciesωc, coupled
to each other capacitively described by a nearest-neighbor
tunneling matrix element J. Each cavity houses a super-
conducting qubit with splitting ωq. We consider both the
cases of open (i.e., nonperiodic) and periodic boundary
conditions (identifying site N with site 0). Later, we relax
our assumptions on identical cavity resonance frequencies
and consider the most general case, showing that the
general approach to the dissipative stabilization of a
generalized W state stands.
Furthermore, each cavity shall be driven by a coherent

monochromatic microwave source with frequency ωd and
a site-dependent amplitude ϵdi and phase Φi; see Fig. 1(b)
for a 3D superconducting circuit architecture of the system
Fig. 1(a). We work in a regime where ωc, ωq, and ωd
are mutually far detuned from each other (typically on
the order of GHz). The starting Hamiltonian is that of a
one-dimensional driven Jaynes-Cummings lattice model
studied before in Refs. [27–30],

HðtÞ ¼ Hσ þHσa þHaðtÞ; ð1Þ

where Hσ , Hσa, and HaðtÞ are respectively the qubit, the
Jaynes-Cummings light-matter coupling, and the driven
cavity Hamiltonians,

FIG. 1. (a) One-dimensional array of cavity-qubit systems
coupled by photon exchange and subject to one or several ac
microwave drives, cavity decay at rate κ, qubit relaxation γ, and
pure dephasing γϕ. (b) Implementation with superconducting
transmon qubits embedded in interconnected microwave cavities
and driven by external continuous-wave generators.
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Hσ ¼
X
i

ωq
σzi
2
; Hσa ¼ g

X
i

½a†i σ−i þ H:c:�; ð2Þ

HaðtÞ ¼
X
i

½ωca
†
i ai − Jða†i aiþ1 þ H:c:Þ

þ2ϵdi cosðωdtþ ΦiÞðai þ a†i Þ�: ð3Þ

Here, i runs from site 0 to N − 1. The qubits are two-level
systems described by the usual Pauli pseudospin operators
σx;y;zi and σ�i ≡ ðσxi � iσyi Þ=2, and ϵdi and Φi are, respec-
tively, the cavity-dependent amplitude and phase of the ac
microwave drives. Thermal equilibrium is achieved by
setting all drive amplitudes to zero, ϵdi ¼ 0. Without loss of
generality, we assume that the detuning between cavity and
qubit frequency Δ≡ ωq − ωc > 0, and J > 0. We operate
in the dispersive regime corresponding to g=Δ ∼ 10−1
and at sufficiently weak drive amplitudes to ensure the
presence of very few photons in the cavities, so the
Schrieffer-Wolff perturbation theory to be applied shortly
is well justified. Below, we entirely integrate out the
photonic degrees of freedom, resulting in (a) an effective
qubit-qubit interaction as discussed on more general
grounds in Sec. IV, (b) local Zeeman fields of the form
ϵdi σ

x
i (for Φi ¼ 0), and (c) a nonunitary evolution charac-

terized by controllable transition rates.
Intrinsic dissipation in the system.—In addition to the

unitary dynamics described by Eq. (3), we assume the
individual qubits are coupled to uncontrolled environmen-
tal degrees of freedom that give rise to single qubit spin-flip
rate (γ), a single-qubit pure dephasing rate γϕ, and a cavity
decay rate κ.
Typical system parameters.—In a recent experiment

studying the N ¼ 2 case of the protocol described here
[31] in a 3D superconducting circuit architecture, typical
system parameters were as follows: ωc ≃ 7, ωq ≃ 6,
g≃J≃10−1, κ≃7×10−4, γ≃4×10−5, all in units of
2π GHz.Below, our analytical approach is performed assum-
ing the hierarchy of energy scales Δ ≫ g; J ≫ κ ≫ γ ≫ γϕ.
Rotating wave approximation.—We eliminate the time

dependence in HaðtÞ by working in the frame rotating at
ωd and dropping the nonsecular terms. In the rest of the
Hamiltonian (1), this also amounts to replacing ωq byΔq ≡
ωq − ωd and ωc by −Δc ≡ ωc − ωd. Once expressed in the
eigenbasis of the (undriven) coupled cavity system, Ha is
given by

Ha ¼
X
k

ðωk − ωdÞa†kak þ ðϵdka†k þ H:c:Þ: ð4Þ

Here, k is the discrete Bloch wave vector, and a†k ¼P
jφ

�
kðjÞa†j creates a photon in the kth mode. The specific

discrete values of k and the corresponding mode profiles
φkðjÞ are to be fixed by the boundary conditions. For
periodic boundary conditions, the set of quasimomenta are
k ¼ 2πn=N, with n ¼ 0;…; N − 1 and φkðjÞ ¼ e−ikj=

ffiffiffiffi
N

p
.

For open boundary conditions, k ¼ πðnþ 1Þ=ðN þ 1Þ and
φkðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þp

sin ðkðjþ 1ÞÞ. In Eq. (4), we incor-
porated the phase Φj in ϵdj , which can henceforth be
complex, and ϵdk ¼

P
jφkðjÞϵdj . The eigenfrequencies are

given by the photonic dispersion relation

ωk ¼ ωc − 2J cosðkÞ: ð5Þ
Effective dissipative XY model.—We eliminate the light-

matter interaction to second-order perturbation theory in
g=Δ by means of a Schrieffer-Wolf (SW) transformation
which maps H ↦ eXHeX

†
, where

X ≡ g
X
k

�
akσ

†
k

ωq − ωk
− H:c:

�
: ð6Þ

Collecting all the terms, we obtain an isotropic XY model
subject to a magnetic field for the qubit subsystem (Hσ),
weakly coupled to the photon fluctuations of the EM
backbone (Hσa):

Hσ ¼
X
i

hi ·
σi
2
− J
2

�
g
Δ

�
2

½σxi σxiþ1 þ σyi σ
y
iþ1�; ð7Þ

Hσa ¼
X
i

�
g
Δ

�
2

σzi ðΔa†i ai þ ϵdi a
†
i þ ϵdi

�aiÞ: ð8Þ

Here, hxi ¼ 2Reðϵdi Þðg=ΔÞ, hyi ¼ −2Imðϵdi Þðg=ΔÞ, hzi ¼
Δq þ Δðg=ΔÞ2. The effective magnetic field hi is mainly
oriented along the z direction but we shall see that, while
they break the integrability of the model, the x and y
components of the emergent Zeeman field play a crucial
role for the scheme below.
We note that the SW transformation is also responsible

for subleading corrections to the strength of the dissipative
terms (e.g., the qubit decay γ acquires a contribution from
the cavity decay κ, corresponding to a Purcell contribution,
and vice versa), the local contributions of which can be
simply included by working with renormalized parameters
κ, γ, and γϕ at low photon occupations [32], which is the
regime studied here. These effective parameters can be
extracted from experimental measurements.
When the drives are off, ϵdi ¼ 0, the system simply

thermalizes with its environment—this is just the physics of
blackbody radiation in a coupled cavity system (including
N dipoles). Viewed from the perspective of the qubits,
while Hσ describes a quantum phase transition from a
paramagnetic to a ferromagnetic phase when the magnitude
of the transverse field is on the order of the nearest-
neighbor coupling Jðg=ΔÞ2, this regime is never reached
for realistic system parameters. For Raman-driven qubits,
the situation is more interesting, and the phase diagram was
recently studied, displaying various exotic attractors [33].
Henceforth, we only work in the experimentally achievable
regime ωq ≫ Jðg=ΔÞ2 and, to leading order, the ground
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state of Hσ is simply the separable state j0i≡ j↓…↓i.
The low-energy spectral content of the qubit sector is
depicted in Fig. 2: The first N-qubit excited manifolds are
roughly separated by Δq, while the lifting of degeneracy
within each manifold is controlled by Jðg=ΔÞ2.
From the point of view of equilibrium statistical mechan-

ics, the many-body system of qubits described by Hσ is not
interesting because it would thermalize with the radiative
reservoir, reaching a steady state ρσðt → ∞Þ ∝ e−βHσ∼
j0ih0j, a collection of uncorrelated qubits in their ground
state. We shall see that turning on the drives will change
this situation dramatically. A careful choice of drive
parameters (even for small amplitudes of drives) will be
shown to enable the stabilization of a particular many-body
state of qubits in the excited-state manifold.

III. STABILIZATION OF GENERALIZED
W STATES

Our goal in this section is to identify nontrivial entangled
eigenstates of the spin chain Hσ and design a protocol
which, starting from the ground state j0i that can be
straightforwardly prepared, achieves the stabilization of
an interesting excited state of choice. Below, we discuss the
details of a robust protocol for the stabilization of a
generalized W state of qubits with minimal resources.
Linearized photon spectrum.—We first address the non-

linearities in Hσa by decomposing the photonic field into
mean-field plus bosonic fluctuations:

ak ≡ āk þ dk with āk ¼
ϵdk

ωd − ωk þ iκ=2
: ð9Þ

We assume here that all Bloch modes have the same loss κ.
This can be made more precise, but it will not qualitatively
change the results we present. Neglecting those terms that
are quadratic in the fluctuations and that couple to the
qubits, the light sector reduces to

Ha → Hd ¼
X
k

ðωk − ωdÞd†kdk; ð10Þ

Hσa → Hσd ¼
�
g
Δ

�
2X

i

σzi ½ðΔāi þ ϵdi Þd†i þ H:c:�: ð11Þ

Diagonalization of the matter sector.—The Hamiltonian
Eq. (7) in the presence of nonzero drive terms is non-
integrable. We therefore proceed by projecting it into the
low-energy sector with a maximum of one excitation:

Hσ ¼
X
k

Ekjkihkj þ
�
g
Δ

�
ðϵdkjkih0j þ H:c:Þ: ð12Þ

We have set the energy of the ground state j0i≡ j↓…↓i to
zero (E0 ¼ 0). Here, the states

jki ¼
XN−1

i¼0

φ�
kðiÞjii; ð13Þ

with jii≡ j↓0…↓i−1↑i↓iþ1…↓N−1i indicating one excita-
tion located at site i, are states that carry a single qubit
excitation of quasimomentum k, entangled over the entire
chain. These are the eigenstates of the undriven spin chain
(i.e., for ϵdi ¼ 0 ∀ i) with a dispersion relation

Ek ¼ ϵk − ωd; ϵk ¼ ωq þ δωq − 2J

�
g
Δ

�
2

cosðkÞ:

ð14Þ

Here, δωq ≃ g2=Δ is the cavity-induced Stark shift. This
truncation of the Hamiltonian holds if the higher-excitation
manifolds are not significantly occupied during the dynam-
ics. This can be checked a posteriori, and we do so.
Let us first discuss the case of open boundary conditions

for which the absence of translational and space-reversal
symmetry generically yields a fully nondegenerate spec-
trum. The effect of the drive term in Eq. (12), assumed to be
small as stated before, can be taken into account through a
perturbation theory and yields the following eigenstates of
Hσ to lowest order in ðg=ΔÞðϵdk=ΔqÞ:

j~0i≃ j0i −
�
g
Δ

�X
k

ϵdk
Δq

jki; ~E0 ≃−
�
g
Δ

�
2X

k

jϵdkj2
Δq

;

ð15Þ

j~ki≃ jki þ
�
g
Δ

�
ϵdk

�

Δq
j0i; ~Ek ≃ Ek þ

�
g
Δ

�
2 jϵdkj2
Δq

:

ð16Þ

The above corrections to the undriven eigenstates are
crucial for the success of the two-photon cooling mecha-
nism presented below.
Transition rates.—By virtue of Eq. (9), the coupling of

the photonic fluctuations (on top of a classical part) to the

FIG. 2. Engineered qubit many-body spectrum. The nonequili-
brium drive and the resulting photon fluctuation bath are used to
create a dominant transition from the trivial ground state to a
target entangled W state in the one-excitation manifold. The
existence of a nonzero spontaneous decay γ is critical to avoid
populating higher excited-state manifolds.
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spin chain Eq. (8) can be treated in perturbation theory.
This permits us to integrate them out, arriving at an
effective master equation for qubits only. We note that
the fluctuations of the collective photon modes of the
lattice, described by the spectral function per mode q,

ρqðωÞ ¼ − 1

π
Im

1

ω − ωq þ iκ=2
; ð17Þ

can be easily manipulated by the design of the cavity
lattice. Assuming that the photon fluctuations, which
couple to the spin degrees of freedom via Eq. (11),
thermalize with the radiative environment, which in turn
is taken to be at very low temperature, we arrive at the
effective master equation for spins only, ρσ, at a steady
state, ρNESSσ ≡ limt→∞ρσ:

∂tρ
NESS
σ ¼ 0 ¼ −i½Hσ; ρNESSσ � þ

X
k

Γ0→kD½j~kih~0j�ρNESSσ

þ γ
X
k

D½j~0ih~kj�ρNESSσ þ 2γϕ
N

X
kq

D½j ~qih~kj�ρNESSσ :

ð18Þ

The derivation of this master equation relies on the
separation of time scales: The relaxation time scale of
cavity fluctuations dk, on the order of 1=κ, is much shorter
than that of the reduced density matrix of the spins ρσðtÞ.
This separation of time scales is perfect in the steady state
[34–36], which we are interested in here.
The Lindblad-type operators are defined as D½X�ρ≡

ðXρX† − X†Xρþ H:c:Þ=2, and the Γ0→k’s correspond to
nonequilibrium transition rates between the ground state j~0i
and a given excited many-body state j~ki [see Eq. (16)]
in the one-excitation manifold of Hσ , given in Eq. (7).
These are found to be

Γ0→k ¼ 2π
X
q

Λ2
kqρqðωd þ ~E0 − ~EkÞ; ð19Þ

where the transition matrix elements are given by

Λkq ¼
����
�
1þ 2

Δ
Δc

�
1

Δq

�
g
Δ

�
3X
k0k00q0

fkk0k00f�q0qk0ϵ
d
k00ϵ

d
q0

����; ð20Þ

with the tensor fkk0k00 ≡P
iφkðiÞφ�

k0 ðiÞφ�
k00 ðiÞ. The integra-

tion over the photon-fluctuation degrees of freedom also
yields Lamb-shift corrections of the energy levels, but
this does not play any substantial role in our scheme [see
discussion below Eq. (24)].
Dynamics.—By virtue of having written the steady-state

master equation (18) in the eigenbasis of Hσ, all off-
diagonal matrix elements of ρNESSσ , by construction, vanish
as the steady state is approached. Consequently, the
dynamics can be faithfully described by effective rate
equations for the populations of eigenstates, n0 and nk:

dn0
dt

¼ γ
X
q

nq − Γ0→qn0; ð21Þ

dnk
dt

¼ −γnk þ Γ0→kn0 þ
2γϕ
N

X
q

ðnq − nkÞ: ð22Þ

The terms in γ correspond to qubit decay, flipping down the
pseudospins and relaxing the energy by Δq (in the rotating
frame). The terms in γϕ correspond to pure dephasing
processes, the action of which is to equalize the populations
of the states in the one-excitation manifold. The emergent
level structure and rates are summarized in Fig. 2.
We note that, while the full dynamical evolution of the

qubit-EM system [viz. Eq. (1) in the presence of qubit and
cavity decay] is clearly non-Markovian, the proper secu-
larization of the equations around the operation frequency
ωd allows us to describe the qubit dynamics through the
relatively transparent rate equations (21) and (22).
Irrespective of the initial conditions, Eqs. (21) and (22)

have a unique nonequilibrium steady-state solution and,
after transient dynamics, the occupation of the state jki is
given by

nNESSk ¼ 1

1þ 2γϕ=γ

Γ0→k þ ð2γϕ=NγÞPqΓ0→q

γ þP
qΓ0→q

: ð23Þ

Stabilization protocol.—Equation (23), together with
Eq. (19), transparently elucidates how to stabilize a given
pure entangled state of qubits jki in the steady state. The
protocol requires the maximization of Γ0→k, given in
Eq. (19), to make it the largest of all rates among
(fΓ0→qg, γ, γϕ). This is performed by optimally tuning
the drive frequency ωd such that the sharply peaked
photonic spectrum ρqðωd þ ~E0 − ~EkÞ in Eq. (19) reaches
the maximum amplitude of the Lorentzian, which is on the
order of 1=κ. This is possible whenever there is at least one
mode q0 with Λkq0 ≠ 0 and the optimum ωd is the solution

of the energy-conservation equation ωd þ ~E0 − ~Ek ¼ ωq0 ,
i.e.,

ωd ¼
ωq þ δωq þ ωc

2
− J cosðq0Þ

þ
�
g
Δ

�
2
�
−J cosðkÞ þ 1

2

X
q≠k

jϵdqj2
Δq

�
: ð24Þ

This energy-matching condition describes a one-photon
process in the rotating frame equivalent to a two-photon
process in the laboratory frame. The corresponding Raman
inelastic scattering process uses the energy of the two
incoming drive photons to perform the qubit transition
while simultaneously dumping a photon in one of the
cavity modes [31]. We note that when Eq. (24) is satisfied,
the Lamb-shift correction of ~Eq vanishes.
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Scalability and limitations.—Equation (23) sets an upper
bound on the fidelities, nNESSk ≤ nmax ¼ ðγ þ 2γϕ=NÞ=
ðγ þ 2γϕÞ, which highlights the necessity of working with
qubits that have a pure dephasing rate γϕ much smaller
than their relaxation rate γ. This upper bound is not tight
but allows us to highlight the role of the pure dephasing
mechanisms. The success of the protocol, and its scalability
to large N, also relies, via the numerator of Eq. (23), on the
resolving power of the spectral width of the photon density
of states (∼κ), i.e., the precision with which the photon
fluctuations can target the spin-chain state jki without
exciting other eigenstates close in energy. The limitations
on the resolving power depend strongly on the drive spatial
profile. This is illustrated here considering two extreme
cases, one where only one cavity is driven (ϵdi ¼ ϵdδi1), the
other corresponding to a case where all cavities are driven
with equal amplitude (ϵdi ¼ ϵd ∀ i). In the first case
[Fig. 3(a)], the transition rates for every 0 → k have
multiple peaks. Thus, the stabilization of jki at the optimal
frequency given by Eq. (24) while avoiding the population
of the nearest state jk0i requires the condition κ <
Δ ~E≡ j ~Ek − ~Ek0 j ∼ 2πJðg=ΔÞ2=N. On the other hand, the
second case, driving each site identically yields rates that
have a single peak, which for neighboring spin chain
states k and k0 are separated by the free spectral range
(of the collective EM modes) of the cavity chain, Δω≡
jωk − ωk0 j ∼ 2πJ=N. This indicates that the protocol with
uniform driving can be scaled up to a number of qubits on
the order of Nmax ≲ 2πJ=κ.
This situation is easily understood: The rates given in

Eq. (19) contain the fulfillment of an energy-conservation
condition, which can, in principle, be satisfied by picking
any collective EM mode q. The set of nonzero transition
matrix elements in the sum Eq. (19) can, however, be
substantially narrowed down by choosing a drive-amplitude
profile (ϵdi ) that is narrow in the momentum domain. For
example, ϵdp ¼ δpp0

collapses the sum to a single term by
imposing a quasimomentum conservation condition between

p0, the target spin-chain state with momentum k, and q0, the
quasimomentum of the collective EM mode picked for
stabilization (note that conservation of momentum is strictly
valid in periodic systems). This is given by k ¼ 2p0 − q0
and is consistent with the interpretation of stabilization via a
two-photon process. For such driving, the optimal frequency
of the drive ωd is then given by Eq. (24). We note that this
transparent criterion was used in Ref. [37] to selectively
stabilize either the triplet or the singlet state of two transmon
qubits.
Effective master equation simulations.—To complement

the analytic approach, we have performed full numerical
simulations of the effective master equation (18), where we
(i) compute exactly the full spectrum of the spin chain Hσ

in Eq. (7) withN ¼ 5 qubits and open boundary conditions,
(ii) determine the rates between all the eigenstates, and
(iii) solve for the steady-state populations. In these calcu-
lations, a sufficient number of higher-excitation manifolds
of the spin chain were included to achieve convergence.
Because the parameter space is fairly large, we per-

formed our simulations for a presently existing fabricated
system for N ¼ 2 [37]. These parameters are quoted in the
caption of Fig. 4, where the fidelities to achieve various
spin-chain states (k) for N ¼ 5 are compared for a localized

(a) (b)

FIG. 3. Schematics of the pumping rate Γ0→k as a function of
the drive frequency ωd for N ¼ 5. (a) Driving first cavity only:
Any of the five photon-fluctuation modes (responsible for the five
peaks) can be used for dissipative stabilization. Driving to jki
while avoiding populating the nearest state jk0i necessitates
κ < Δ ~E≡ j ~Ek − ~Ek0 j ∼ 2πJðg=ΔÞ2=N. (b) Driving all cavities
equally: Only one of the five modes can channel the mechanism,
and driving to the nearest state jk0i is avoided if κ < Δω≡
jωk − ωk0 j ∼ 2πJ=N.
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FIG. 4. Fidelities to all the possible jki states versus drive
frequency ωd for open boundary conditions. (Top panel) Only
the first of the N ¼ 5 cavities is driven; the energy difference
between driving to two neighboring jki states is controlled by
Δ ~E ∼ 2πJðg=ΔÞ2=N. (Bottom panel) However, when all cavities
are driven equally, the energy differences are controlled by
Δω ∼ 2πJ=N, allowing a much better control over stabilizing
the desired target state. Please note the widely different scales for
the frequency ranges shown in the two plots. ϵd ¼ 0.3, ωc ¼ 6,
Δ ¼ 1, g ¼ J ¼ 10−1, κ ¼ 10−4, γ ¼ 10−5, γϕ ¼ 10−6 in units of
2π GHz.
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drive [Fig. 4(a) (top panel)] and a spatially uniform drive
[Fig. 4(b) (bottom panel)]. We note that compared to the
current state of the art [20], these are remarkable fidelities.
These fidelities can be generally improved by reducing the
ratio of the dephasing over the qubit relaxation rate.
We have also tested the robustness of our protocol against

site-to-site inhomogeneities of the different parameters
and found no qualitative difference for δωc=ωc ∼ 10−2,
δωq=ωq ∼ 10−4, δg=g ∼ 10−4, and δJ=J ∼ 10−2. A more
extensive analysis of achievable fidelities in the presence of
site-to-site inhomogeneities will be presented in future work.
Periodic boundary conditions.—Let us now consider

the case of periodic boundary conditions for which the
undriven system is space-translational and space-reversal
invariant. Such a symmetry results in degeneracies between
the eigenstates jki and j2π − ki of the undriven spin chain
(except for k ¼ 0 and k ¼ π). A symmetry-breaking drive
profile will generically lift the degeneracy of the spectrum
and, importantly, the emergent eigenstates will strongly
depend on the particular drive profile. To exemplify
this point, let us start by driving the first cavity only:
ϵdi ¼ ϵdδi;0. Second-order degenerate perturbation theory in
ðg=ΔÞðϵd= ffiffiffiffi

N
p

ΔqÞ lifts the degeneracy in the subspaces
spanned by jki and j2π − ki. To lowest order, the eigen-
states are

jk�i≡ jki � j2π − kiffiffiffi
2

p ð25Þ

for all k ∈�0; π½ complemented with the W state j0þi≡ j0i
and jπþi≡ jπi (for N even); one obtains the rates Γ0→k� ¼
2πΛ2

k�

P
qρqðωd þ ~E0 − ~Ek�Þ with

Λk− ¼ 0 and Λkþ ¼
����

ffiffiffi
2

p

N2

�
1þ 2

Δ
Δc

��
g
Δ

�
3 ðϵdÞ2

Δq

����
ð26Þ

for all jk−i and jkþi except for j0i or jπi, in which case Λkþ
is reduced by a factor

ffiffiffi
2

p
. Figure 5 shows that the jkþi

states can be obtained with substantial fidelities.
It is worth noting that, in the case of a generic driving

profile ϵdi , instead of Eq. (25), the emergent eigenstates are
given by

jk�i≡ jki � αkj2π − kiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2k

q ; ð27Þ

where αk, the relative weight of jki and j2π − ki, is now
controlled by the ratio ϵdk=ϵ

d
2π−k. Therefore, such a non-

equilibrium symmetry-breaking scenario offers highly
flexible control over the target entangled state by simply
engineering the drive profile ϵdk.

IV. PHOTON-MEDIATED INTERACTIONS:
GENERAL FORMULATION

In the previous sections, we focused on a particular
geometry of the cavity-qubit system, namely, a one-
dimensional tight-binding lattice of photons. In this section,
we show that our dissipative stabilization scheme via
photon-mediated interactions is broadly applicable to any
engineered EM environment. The situation we consider
here is depicted in Fig. 6, where the two-level systems are
now placed at arbitrary locations and interact with a general
EM environment [Fig. 6(a)]. In practice, the latter is
described by the solution of Maxwell equations in an
arbitrary scattering geometry, characterized by a spectral
problem with certain continuity and boundary conditions.
In the simplest case, this would be a single resonator or a
waveguide or, as in the specific example discussed pre-
viously, an array of evanescently (or capacitively) coupled
cavities (transmission line cavities). After the derivation of
the most general result, we show how the effective tight-
binding result can be derived from first principles.
The qubits and their coupling to the EM fluctuations are

described by the Hamiltonian

H ¼ Hσ þHσ−EM þHEM; ð28Þ

with (ℏ ¼ 1)

Hσ ¼
X
i

ωq
i
σzi
2
; HEM ¼ ϵ0

2

Z
V
d3xðE2 þ c2B2Þ; ð29Þ

Hσ−EM ¼ −
Z
V
d3xP · E: ð30Þ

The integrals above run over the entire volume V of the
scattering structure. We note that such a Hamiltonian can
indeed be obtained for subgap electrodynamics in a general
superconducting circuit architecture by a proper choice of
normal modes [38], starting from the parameters (position-
dependent capacitances and inductances per unit length
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FIG. 5. Fidelities to the jkþi states defined in Eq. (25) versus
drive frequency ωd in case only the first of N ¼ 5 cavities is
driven and with periodic boundary conditions. Same parameters
as in Fig. 4.
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and the parameters of the qubits) of the underlying
electrical circuit.
For qubits residing at xi, each with a dipole moment

strength μ (projected along a particular eigenpolarization of
the electromagnetic medium), the collective atomic polari-
zation operator can be written as

PðxÞ ¼ μ
X
i

δ3ðx − xiÞσxi : ð31Þ

The electric field can generally be written in terms of a
complete set of modes and corresponding eigenfrequencies
fφn;ωng specific to the chosen architecture,

EðxÞ ¼
X
n

εnφnðxÞan þ H:c:; ð32Þ

so that

HEM ¼
X
n

ωna
†
nan: ð33Þ

Here, a†n (an) creates (annihilates) a photon in the
spatial mode φnðxÞ with frequency ωn and corresponding
zero-point electric field εn. The modes are assumed to
satisfy the completeness and orthogonality conditionsP

nφnðxÞφ�
nðx0Þ ¼ δ3ðx − x0Þ and

R
V d

3xφnðxÞφ�
mðxÞ ¼

δnm. With these normalization conditions, the zero-point
fields are given by εn ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn=2ϵ0

p
. Neglecting counter-

rotating terms, the light-matter coupling becomes

Hσ−EM ¼
X
i;n

gnφnðxiÞa†nσ−i þ H:c:; ð34Þ

where σ�i ≡ ðσxi � iσyi Þ=2 and gn ≡−μεn.
We consider the regime in which the qubit frequencies

ωq
i are far detuned from the photonic modes ωn such that

the light-matter coupling can be treated via second-order
perturbation theory in gn=ðωq

i − ωnÞ. This is achieved
by means of a SW transformation [39] which maps
H ↦ eXHeX

†
, where

X ≡X
n;i

�
gnφnðxiÞ
ωq
i − ωn

σþi an − H:c:

�
: ð35Þ

This yields the following Hamiltonian H ¼ Hσ þHσa þ
Ha to Oðg2=Δ2Þ, with

Hσ ¼
X
i

ωq
i
σzi
2
þ 1

2

X
ij

Σijðωq
i Þσ−j σþi þ H:c:; ð36Þ

Hσa ¼
X
i;mn

λi;mnðωq
i Þ
σzi
2
ana

†
m þ H:c:; ð37Þ

and Ha is still given by Eq. (33). In this low-energy
Hamiltonian, the second term in Hσ describes the qubit-
qubit interactions mediated by virtual photons. These

photons can be emitted into and absorbed from photonic
channels at frequencies ωn with spatial distribution φnðxÞ.
This is precisely the story told by the coefficients
ΣijðωÞ ¼

P
njgnj2φnðxiÞφ�

nðxjÞ=ðω − ωnÞ, which appear
as a self-energy correction to the qubit sector. ΣijðωÞσxj
can be seen as the electric field generated at xi by a dipole
at xj, oscillating harmonically at frequency ω. Note that the
bare electromagnetic retarded Green’s function is given
by GRðx;x0;ωÞ¼P

nφnðxÞφ�
nðx0Þ=ðω−ωnÞ. This immedi-

ately implies that, in principle, all qubits interact with each
other, to the extent that they can radiate EM radiation to
each other [see schematic in Fig. 6(b)]. We note that
realization-specific and restricted versions of this interac-
tion vertex have been derived before [15,17].
For what is proposed here, however, an equally impor-

tant role is played by the term Hσa in Eq. (37). This is the
generalized version of the ac Stark-shift contribution to a
qubit’s frequency that is well known in the dispersive
regime of single-mode cavity QED [32], which can also
be interpreted as a scattering term for photons generated
by the interaction of the radiation field with qubits.
This term expresses the spatial fluctuations of the effective
index of refraction of the electromagnetic medium through
the dynamically generated polarization fluctuations
[i.e., PðxÞ] of the qubits. The interaction vertex here is
again given by the resonant modes and their frequencies:
λi;mnðωÞ ¼ gng�mφnðxiÞφ�

mðxiÞ=ðω − ωnÞ. We note that for
a 1D tight-binding model of a cavity array with nearest-
neighbor hopping, ΣijðωqÞ≃ ðg=ΔÞ2½Δδi;j − Jδi;j�1� and
λi;kqðωqÞ≃ Δðg=ΔÞ2φ�

kðiÞφqðiÞ to lowest relevant order in
J=Δ and g=Δ. This result agrees with our direct derivation
in Sec. III. These results can be extended to a full-
fledged stabilization protocol for a generalized W state
jWni ¼

P
N−1
i¼0 φ�

nðxiÞj↓0…↓i−1↑i↓iþ1…↓N−1i.

FIG. 6. Light-mediated interactions offer a highly versatile
platform to design and control networks of interacting qubits.
(a) The qubits (blue arrows) are embedded in an electromagnetic
environment, which is the solution of the Maxwell equations in a
given scattering geometry. (b) Integrating out the EM degrees of
freedom yields effective interactions between the qubits, forming
a network that can sustain large-scale entangled many-body
states.
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V. DISCUSSION AND CONCLUSIONS

We proposed a general and scalable method based on
photon-mediated interactions to drive a set of N qubits to a
desired generalized W state. The particular protocol dis-
cussed here for qubits embedded in a cavity array amounts
to the dissipative stabilization of a particular excited state of
a many-body system (in the present case, a nonintegrable
variant of the XY model). This approach stands in contrast
to cooling techniques employed for condensed-matter and
cold atomic systems that, at least in principle, target the
stabilization of the ground state.
An interesting feature of the present approach compared

to earlier approaches to dissipative engineering of entan-
glement [40–45] is the fact that both the unitary and the
dissipative parts of the dynamics are adjusted through
coupling to a common photonic bath. The Hamiltonian
part provides the set of pure many-body states that can be
reached in the steady state, while the dissipative part
determines the occupation of those states. For cavities that
are high Q, the transitions can be made very selective.
In the case of the dissipative stabilization of a W state
of N qubits, we discussed the scaling of the fidelity with
the system size N.
The fact that various properties of multiqubit dynamics

can be precisely adjusted by drive parameters provides a
suitable platform for quantum simulation [46] and compu-
tation [47]. In scaling up CQED-based simulators [48] to
larger architectures, one of the main obstacles is the
uncontrolled site-to-site fluctuation of system parameters
[25]. In the presented scheme, the dynamical tuning of
effective spin-chain parameters, in fact both the unitary and
the dissipative parameters, through the drive frequency and
amplitude, provides a promising route to realize large-scale
quantum simulators.
More generally, the method proposed here and its

possible generalization to higher-dimensional lattices holds
promise for various quantum-information applications,
such as deterministic teleportation [49,50]. The reduction
of the collective dephasing mechanisms and the generation
of entangled states in higher-excitation manifolds are
important goals. Another interesting open question is the
adaptation and extension of our protocol for targeted
many-body state preparation in the photonic sector, scaling
up recent approaches [51].
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