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Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to
predict. There are, however, a special set of systems where these dynamics are theoretically tractable:
integrable models. Such models possess nontrivial conserved quantities beyond energy and momentum.
These quantities are believed to control dynamics and thermalization in low-dimensional atomic gases as
well as in quantum spin chains. But what happens when the special symmetries leading to the existence of
the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak?
Here, in the presence of weak integrability breaking, we show that it is possible to construct residual
quasiconserved quantities, thus providing a quantum analog to the KAM theorem and its attendant
Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in
one-dimensional Bose gases and argue that these quasiconserved quantities can be probed experimentally.
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I. INTRODUCTION

A milestone in the dynamics of classical many-body
systems is the Kolmogorov-Arnold-Moser (KAM) theory
[1]. Generically, classical many-body systems exhibit
chaotic behavior—that is to say, giving the bodies of such
systems slightly different initial positions and velocities
results in the bodies following radically different trajecto-
ries. An exception to this rule is made for a special set of
systems, termed integrable, which possess conserved
quantities beyond energy and momentum. The existence
of these conserved quantities promises the availability
of a set of action-angle variables fpi; qig where the action
variables, pi, are constants of motion. In such variables,
the Hamiltonian H is solely a function of fpig, and the
Hamiltonian equations of motion become particularly
simple:

_qi ¼
∂H
∂pi

; _pi ¼ 0: ð1Þ

Trajectories of bodies in integrable systems are not sensitive
to initial conditions but instead lie on invariant tori in phase
space described by frequencies fωig parametrizing
solutions to the equations of motion: _qi ¼ ωi. However,

integrable systems and their attendant simple behavior are
comparatively rare. And so the question arises, what can one
expect with a system that is merely close to being integrable.
Is the motion of bodies in this system chaotic? Or is there
some influence on the system’s dynamics from being close
to an integrable point? One answer to this question is given
by the KAM theorem. It tells us that if we weakly perturb a
classical integrable system, we do not immediately transit
to completely chaotic dynamics, but rather see a smooth
crossover. Specifically, the KAM theorem promises that a
subset of the solutions fωig survive under a sufficiently
small perturbation, ϵHpertðpi; qiÞ, provided their frequencies
are sufficiently irrational.
What of quantum analogs to the KAM theorem?

There is tremendous interest [2–29] in the role exotic
conserved quantities play in the dynamics of low-
dimensional systems. This interest [4–11,19,20] arises
in the context of one-dimensional (1D) Bose gases from
the ability to manipulate isolated gases and observe their
relaxation in closed surroundings, both when the gases are
near integrable points [30–32] and when they are far away
[33]. In the context of quantum spin chains [12–18], it
comes about from the wish to understand related thermal-
ization questions as well as whether integrable systems can
sustain ballistic transport. It also appears in the burgeoning
field of many-body localization [34,35] of disordered
interacting systems and associated attempts to construct
sequences of conserved charges in what one would tradi-
tionally consider a nonintegrable setting [36,37].

*rmk@bnl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 5, 041043 (2015)

2160-3308=15=5(4)=041043(21) 041043-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.5.041043
http://dx.doi.org/10.1103/PhysRevX.5.041043
http://dx.doi.org/10.1103/PhysRevX.5.041043
http://dx.doi.org/10.1103/PhysRevX.5.041043
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


To understand crossover behavior arising from integra-
bility breaking, both indirect measures such as level
spacing statistics [38–41] and studies of systems in their
quasiclassical limit using such tools as the semiclassical
eigenfunction hypothesis [42–44] are often employed.
Such behavior is often phrased in terms of prethermaliza-
tion [45–50] or prerelaxation plateaus [51–53], where a
system’s observables, in relaxing from some nonequili-
brium initial state, remain nearly constant over some finite
time interval before decaying to their final equilibrium
value. Such plateaus have been argued to be controlled
by the remnants of the conserved quantities of the nearby
integrable system [48,49].
In this work, we go beyond this and show that, in finite

systems, it is possible to construct an infinite sequence of
nearly conserved local operators, fQig∞i¼1, in the presence
of a perturbation that weakly breaks integrability,

H ¼ Hint þ ϵΦpert: ð2Þ

We show that this near-conservation is good for all times.
The Qi are conserved in the sense that if we consider a
(noneigen)state jsi, with average energy per particle
E ¼ hsjHjsi=N less than some bound ΛðNQÞ, then

∂thsjQiðtÞjsi < δðϵ; NQÞ; ð3Þ

for all times where δðϵ; NQÞ can be made arbitrarily small.
These conserved operators are constructed as finite linear
combinations of length NQ involving the charges fQ̂ig∞i of
the unperturbed Hamiltonian, Hint:

QiðNQÞ ¼
XNQ

j¼1

ai;jQ̂jþiNQ
: ð4Þ

The quality of this conservation can be controlled (i.e., Λ
can be made larger and δ smaller) by adjusting how many,
NQ, of the charges, Q̂i, appear in the linear combinations.
Our construction is akin not so much to the KAM

theorem, but to what are known as Nekhoroshev estimates
[54,55] inasmuch as the chargesQ we construct are nearly
conserved on the entirety of the low-energy Hilbert space.
While the KAM theorem promises that some subset of
solutions of the equations of motion survive a perturbation
and remain “close” to their integrable counterparts for all
time, the Nekhoroshev estimates tell us that all solutions
remain close to their integrable counterparts in the sense
that

jpiðtÞ − pið0Þj < P�ϵ1=ð2NÞ; ð5Þ

for exponentially long times:

t < T�eða=ϵÞ
1=ð2NÞ

; ð6Þ

where P�, T�, and a are constants and N is the number of
degrees of freedom that the system has [54].
While general, we perform this construction in the

context of quantum quenches in 1D Bose gases. This
setting is particularly appropriate as it is the experimental
study of quantum quenches in these gases [30] that has led
to tremendous interest in the role of exotic conserved
quantities in quantum dynamics. Quenches are, moreover,
directly relevant to understanding these experiments.
Because of the one-body potentials that trap the gases,
they can be, at most, approximately integrable. Thus, the
construction of a quantum version of the KAM theorem
and its variants can only help yield insights into the
dynamics of these gases in their experimental settings.

II. QUANTUM QUENCH DYNAMICS
IN 1D BOSE GASES

To set the scene, we first describe the quantum quench in
a 1D Bose gas as described by the Lieb-Liniger model [56].
The Lieb-Liniger model is believed to provide an excellent
description of a 1D Bose gas [57]. In the absence of
external (trapping) one-body terms, it is integrable with
an infinite number of conserved operators, fQ̂ig. Its
Hamiltonian, with the addition of a one-body potential
VðxÞ, is given by

H ¼ − ℏ2

2m

XN
j¼1

∂2

∂x2j þ 2c
X
hi;ji

δðxi − xjÞ þ
X
i

VðxiÞ: ð7Þ

The type of quantum quench we study is found in preparing
the gas on a ring of length L in the ground state of a
parabolic trap [8,19,20], i.e., VðxÞ ¼ 1

2
mω2x2, then at time

t ¼ 0, releasing the gas from the parabolic trap into a
one-body cosine potential, VðxÞ ¼ A cosð2πncosx=LÞ, and
observing the subsequent dynamics of the gas. This quench
protocol is illustrated in Fig. 1.
This form of the Hamiltonian, an integrable model

together with an integrability-breaking perturbation, allows
us to determine the ground and excited states of the model
pre- and post-quench through a numerical renormalization
group (NRG) designed precisely to attack such problems
[8,39,58,59], together with a set of routines known as
ABACUS [60] that allow numerically exact computation of
matrix elements of operators in the Lieb-Liniger model
[61]. In turn, this gives us access to the post-quench
dynamics of the gas. In particular, we employ a NRG able
to study perturbations of integrable and conformal con-
tinuum field theories. This approach, as it is an extension of
a methodology known as the truncated conformal spectrum
approach [62,63], has been primarily used to study per-
turbations of relativistic field theories [39,58,59], but it has
recently been applied to the Lieb-Liniger model perturbed
by a one-body potential [8], the problem at hand. The NRG
uses the eigenstates of the Lieb-Liniger model as a
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computational basis. Because this basis accounts for the
interactions of the Bose gas particles with one another, this
numerical method builds in the strong correlations present
in the problem right at the start. We discuss details of this
method in Appendix A 1.
In Fig. 2, we show the time evolution of the gas after the

quench. At time t ¼ 0, we see the density profile of the gas

in the ground state of the parabolic potential. After
quenching the potential to a cosine, the gas moves away
from the center, oscillates a number of times before settling
into the minima of the cosine. This occurs at times of the
order of t ¼ 50tF—we are able to run the simulation out to
times of t ¼ 80tF [here, tF ¼ 1=EF, where EF ¼ k2F=ð2mÞ
and kF ¼ πðN − 1Þ=L].
While we are able to compute the dynamics of such

observables as the density and the momentum distribution
function, the key to the work in this paper is our ability to
compute the dynamics of the (formerly) conserved Lieb-
Liniger charges, Q̂i. Our numerical approach makes this
extremely simple because of our use of the eigenstates of
the integrable Lieb-Liniger model as a basis. Each Lieb-
Liniger state of an N-particle gas jψiLL is characterized by
N-rapidities, λi; i ¼ 1;…; N, which should be thought of
as, more or less, the momenta of the gas’s particles. These
rapidities determine the action of the conserved operators
on the Lieb-Liniger states. For example, both the energy,
E ¼ Q̂2, and momentum, P ¼ Q̂1, operators act on jψiLL
via (taking m ¼ 1=2)

EjψiLL ¼
XN
i¼1

λ2i
2m

jψiLL; PjψiLL ¼
XN
i¼1

λijψiLL: ð8Þ

The action of all of the higher nontrivial charges, Q̂n,
n ¼ 3; 4; 5;…, in the Lieb-Liniger model are simply higher
power sums of the same rapidities:

Q̂njψiLL ¼
XN
i¼1

λni jψiLL: ð9Þ

While the actual expression of the charges in terms of the
Bose field operators is complicated and unwieldy [64], the
action of the charges on the Lieb-Liniger eigenstates turns
out to be extremely simple. This will be crucial in
facilitating our construction of effective Q’s.

FIG. 1. Quench protocol: We prepare the one-dimensional Bose gas in its ground state in a harmonic trap. At time t ¼ 0, we release the
gas into a cosine potential and track the subsequent dynamics. The shaded green regions are illustrations of the equilibrium density
profiles of the gas in the presence of the confining potentials.
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FIG. 2. The density profile of the gas at selected times post-
quench as computed with the NRG. Here, this time dependence is
computed after releasing an N ¼ L ¼ 14, c ¼ 7200 gas prepared
in a parabolic potential with mω2

0L
2=2EF ¼ 10.36 [shown

with a green dashed line in the t ¼ 0tF frame, tF ¼ 1=EF,
EF ¼ k2F=ð2mÞ, and kF ¼ πðN − 1Þ=L] into a cosine potential
VcosðxÞ=EF ¼ 0.35ðcos½ð4π=LÞx� þ 1Þ (plotted with a dashed
line in the t ¼ 43tF frame). In the t ¼ 0 frame, we show the
density profile as computed analytically in the hard-core limit
(see Appendix A 2). Using the NRG, we can run the time
evolution as far out as t ¼ 85tF before dephasing exceeds 1%.
We see, however, by t ¼ 43tF the gas’s density profile has
already come close to its long time average (black dashed line in
the final panel).
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III. CONSTRUCTION OF CONSERVED
QUANTITIES IN THE BOSE

GAS POST-QUENCH

We now turn to the core of the paper. We have shown, in
the previous section, that we can describe the temporal
dynamics of various quantities post-quench. In that section,
we specifically considered the density profile of the gas after
release into the cosine potential. We now consider the time
evolution of the Lieb-Liniger charges. They are, of course,
not conserved, and so their evolution will be nontrivial. We
however show that one can construct linear combinations
of the Lieb-Liniger charges whose expectation values are
nearly time invariant under evolution by the post-quench
Hamiltonian. The quality of this time invariance can be
controlled by allowing more charges in the linear combi-
nation.Moreover, we show that these linear combinations of
charge are not merely time invariant with respect to the
particular initial condition created in the quench protocol,
but also as operators acting on the low-energy Hilbert space.
We begin by first considering the time evolution of the

individual Lieb-Liniger charges themselves. We plot this
evolution for the first four Lieb-Liniger charges in Fig. 3 for
a gas with N ¼ L ¼ 8 and c ¼ 10. In plotting the time
evolution, we have normalized each charge to its meanvalue
post-quench so that all of the charges fluctuate about 1.
The mean value of the unnormalized nth charge is given by

hQ̂niav ¼
1

T

Z
T

0

hQ̂nðtÞi; ð10Þ

where T is the time out to which we can track the evolution.
Thismeanvalue grows rapidlywith n. This happens because
the charge’s action on a Lieb-Liniger eigenstate jsi ¼
jλ1;…; λNi is a power sum of the rapidities fλigNi¼1, i.e.,
hsjQ̂njsi ¼

P
iλ

n
i . We see from Fig. 3 that, even after

normalization, the size of the oscillations increases with n.
We now consider linear combinations of the Lieb-

Liniger charges of the form

QðNQÞ ¼ a0Iþ
XNQ

i¼1

ai
hQ̂2iiav

Q̂2i; 1¼
XNQ

i¼1

jaij2; ð11Þ

where we choose the constant a0 such that the mean value
ofQðNQÞ is 0 and the remaining constants ai [65] such that
the fluctuations in QðNQÞ are minimized.
We plot the time evolution for a c ¼ 10 gas of these

effective charges in panel (b) of Fig. 3 for three different
values of NQ, the number of charges in the linear combina-
tion. In panel (c), we plot the fluctuations of this charge as a
function ofNQ. We see that these fluctuations drop exponen-
tially with NQ. (On the basis of an error analysis in our
numerics, we would put a numerically induced floor of 10−6
to10−7 on the fluctuations inQ—seeendofAppendixA 1 a.)
In the bottom part of panel (c), we do the same for a quench
involving a c ¼ 1 gas. In order to be sure that we are not
simply reconstructing the post-quench Hamiltonian as some
linear combination of the Lieb-Liniger charges, in both cases
(c ¼ 10; 1), we demonstrate that we can construct simulta-
neous multiple effective charges. In panel (c), we show that
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FIG. 3. (a) The post-quench time evolution of the Lieb-Liniger charges normalized by their mean value as described in the text,
Q̂i=hQ̂iiav. Here, the time dependence is computed after releasing an N ¼ L ¼ 8, c ¼ 10 gas prepared in a parabolic potential of
strength mω2

0L
2=2EF ¼ 3.24 into a cosine potential cos½ð4π=LÞx�. We show this behavior at late times (for details of how long we can

run the simulation, see Appendix A 1). (b) The post-quench time evolution of a sequence of effective charges with the mean subtracted

off, QðNQÞ ¼
PNQ

m¼1 a2mQ̂2m, for NQ ¼ 2; 4, and 8. (c) Top panel: The standard deviation of the fluctuations of two sequences of
effective charges Q. We build the first sequence (in black) using linear combinations of the charges fQ̂2mgm¼8

m¼1, while the second
sequence (in red) is formed with the next eight Lieb-Liniger charges, i.e., fQ̂2mgm¼16

m¼9 . Bottom panel: We show the fluctuations of the
two effective charges built following the quench of a c ¼ 1 gas prepared in a parabolic trap of strengthmω2

0L
2=2EF ¼ 0.13 and released

into the same cosine potential, cos½ð4π=LÞx�.
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the fluctuations of a second effective charge built as a linear
combination of charges drawn from fQ̂2ng16n¼9 also die off
exponentially.
This exponential dependence in NQ is possible to under-

stand at large c. To do so, wewrite the initial condition of the
gas in terms of post-quench cosine eigenstates: jψGSi ¼P

αcαjψα;cosi. With the initial condition as above, the time
dependence of the charge takes the form

QðtÞ ¼
X
αβ

c�αcβhψα;cosjQðtÞjψβ;cosi

¼
X
αβ

c�αcβe−iðEβ−EαÞthψα;cosjQjψβ;cosi: ð12Þ

We demonstrate in Appendix B 1 that each Lieb-Liniger
charge forming Q zeros out a shell of matrix elements
hψα;cosjQjψβ;cosi, α ≠ β, in the above sum.AsNQ increases,
more and more of these matrix elements are zeroed out. For
relatively weak cosine potentials, the total weight Welim of
the jcβcαj2’s whose matrix elements are zeroed out is

Welim ≈ 1–2
e−ΛðNQÞ2ffiffiffi

π
p

XN−1

n¼0

2nΛðNQÞ2n−1
n!

; ð13Þ

with ΛðNQÞ ¼ ð2πðNQ − 2Þ=ðL ffiffiffiffiffiffiffiffiffi
mω0

p Þ. We then see the
weight that is not zeroed out, and thus can contribute toQ’s
temporal fluctuations, goes as e−ðΛðNQÞ=mω0Þ2 . We see from
this that it becomes harder to construct quasistationaryQ’s
as the system sizeL is increased. This is confirmed in Fig. 4,
where we compareQ’s constructed at different N ¼ L. We
see that the point where the fluctuations become exponen-
tially small goes as NQ ¼ L.
For large-amplitude A cosine potentials, the temporal

fluctuations die off much more slowly with NQ:

Welim ∼
�
NQ

NA

�
N
; NA ¼

ffiffiffiffiffiffiffiffiffiffi
2mA

p
L

2π
: ð14Þ

In this latter case, the number of nonzero matrix elements of
QðtÞ proliferate, making a construction where the effective
charge is nearly time invariant much more difficult.
So far, we have only demonstrated that we can construct

charges Q as linear combinations of the original Lieb-
Liniger charges Q̂n whose time fluctuations can be made
arbitrarily small when we start the system at a specific
initial condition, jψGS;parai. However, we now demonstrate
that these charges are quasiconserved not just relative to a
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FIG. 4. We plot the fluctuations in time for Q as a function of
NQ for N ¼ L ¼ 4; 8, and 16 for a quench in a c ¼ 10 gas from a
parabolic potential of strength mω2

0L
2=2EF ¼ 2.33 to a cosine of

amplitude VcosðxÞ ¼ 0.26EF cosð2πx=LÞ. We do so using the
charges constructed at c ¼ ∞, as discussed in Appendix B, as a
partial demonstration that such charges work well at finite c.

(a) (b) (c)

FIG. 5. (a)Weplot the intensity of the off-diagonalmatrixelements of Q̂2=hQ̂2iav, comparing it to (b) the off diagonalm.e.’s ofQð8Þ for the
quench of the c ¼ 1 gas discussed in Fig. 3(c). (c)We plot the average size of the off-diagonal matrix elements of two sequences of effective
charges QðNQÞ; in black is the sequence constructed from Q̂2m, m ¼ 1;…; 8, while in red is the sequence constructed from Q̂2m,
m ¼ 9;…; 16.Weshowthisforboththec ¼ 1 [samequenchasin(a)and(b)]andthec ¼ 10case[samequenchasdescribedinFigs.3(a)–(c)].

GLIMMERS OF A QUANTUM KAM THEOREM: INSIGHTS … PHYS. REV. X 5, 041043 (2015)

041043-5



specific initial state but as operators, at least when projected
onto the low-energy post-quench Hilbert space.
To do so, we compute the off-diagonal matrix elements

in Fig. 5 of one of the twoQ’s we have constructed (the one
constructed with Lieb-Liniger charges, Q̂2;…; Q̂16) rela-
tive to the basis of the low-lying energy eigenstates of the
post-quench Hamiltonian. These matrix elements are plot-
ted in Fig. 5. In the rightmost panel, we display the off-
diagonal matrix elements of Q̂2 (normalized as described
previously) to set the scale of how large these matrix
elements are for the individual Lieb-Liniger charges. In the
middle panel, we then plot the matrix elements of Qð8Þ.
We see that most of the previous nonzero matrix elements
of Q̂2 are now dramatically reduced. We quantify this
disappearance in panel (c) of Fig. 5. There, we present the
average magnitude of the off-diagonal matrix elements as a
function of NQ. We present data for both effective charges
considered in Fig. 3 for both values of c ¼ 1; 10. We see, in
all cases, that the size of these matrix elements drops
exponentially in NQ. Roughly speaking, if the average
energy per particle of two distinct states, jsi; js0i, is less
than ΛðNQÞ, then hsjQjs0i will be exponentially small.
We conclude that the Q’s are then nearly conserved as
operators. This conclusion is supported by an analytic
construction of the Q’s that we present in Appendix B.

IV. DISCUSSION

In this paper, we have found the construction of
quasiconserved operators as linear combinations of the
Lieb-Liniger conserved charges. In this construction, the
linear combinations are chosen to minimize the temporal
fluctuations of the charge upon quenching the gas from a
one-body parabolic potential to a cosine potential. Even
though this minimization is being done for a particular
quench protocol, the conservation of the charge occurs at
the operator level. Specifically, off-diagonal matrix ele-
ments of the charges are small. We demonstrated that both
post-quench temporal fluctuations and the off-diagonal
matrix elements can be made exponentially small in the
number of charges, NQ, in the linear combination. We have
supported this construction by demonstrating an equivalent
analytic construction of these charges (Appendix B).
In this analytic construction of effective charges, we

demonstrate why certain linear combinations of the original
Lieb-Liniger charges act as effective conserved quantities at
low energies. This construction works by finding linear
combinations that zero out off-diagonal matrix elements at
a given order in the effective charge QðtÞ written as a
power series in time t. We show, in particular, that a matrix
element zeroed out at a given order in t remains zero to a
much higher order. This provides an explanation as to why
our construction appears so robust. We emphasize here
that this does not use the c ¼ ∞ integrability of the
Lieb-Liniger model in the cosine potential. (At c ¼ ∞

the Lieb-Liniger model plus arbitrary one-body potential is
generically integrable because the model maps onto free
fermions.) However, to reassure the reader that our c ¼ ∞
construction is not accidentally constructing these occu-
pation numbers, we demonstrate that the charges we
analytically construct at c ¼ ∞ work at finite c as well.
In Fig. 6 we plot the temporal fluctuations of these
analytically constructed charges as a function of NQ for
the c ¼ 1 and c ¼ 10 quenches described in Fig. 3. While
we see that the temporal fluctuations of these analytical
c ¼ ∞ charges are larger than those numerically con-
structed at a given c [compare Fig. 3(c)], we nonetheless
see that the fluctuations in the c ¼ ∞ charges die off
exponentially with NQ. A similar conclusion can be seen in
our study of the temporal fluctuations of Q as a function
of N and NQ in Fig. 4, where we have used the c ¼ ∞
effective charges—although here, for the N ¼ 4 data, one
can see that the fluctuations for the analytic Q have a
comparatively large floor. Altogether, this gives us con-
fidence that our c ¼ ∞ construction is accurately capturing
the essence of the numerical construction of Q at finite c.
In fact, we are able to extend the analytic computation

described in Appendix B to the finite c case. The primary
difference between the construction of Q at c ¼ ∞ and c
finite is the need to take into account that the density
operator can connect states differing by more than one
particle-hole pair. However, these higher particle-hole
processes are suppressed in powers of 1=c, with c the
interaction strength. This means that we have a control
parameter in our finite c analytic computation of Q where
if we ignore processes involving n-particle-hole pairs, the
error we make is only c−n. This in part explains why our
c ¼ ∞ construction of Q is still conserved at c ¼ 10.
However, it is somewhat surprising that our c ¼ ∞ con-
struction of Q works as well as it does (as evidenced in
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0.1
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FIG. 6. We demonstrate that the effective charges constructed
analytically at c ¼ ∞, as described in detail in Appendix B, have
suppressed temporal fluctuations for quenches with finite
c ¼ 1; 10.
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Fig. 6) for c ¼ 1. This suggests that higher particle-hole
processes, at least for quenches whose dynamics are
restricted to the low-energy post-quench Hilbert space,
are unimportant.
In the Introduction to this paper, we have billed these

constructions as being quantum equivalents to the classical
KAM theorem and its counterparts such as the Nekhoreshev
estimates. There are some similarities in the consequences
of our constructions as well as some dissimilarities.
Nekhoreshev estimates tell us that the values of the classical
action variables in the face of a small nonintegrable
perturbation change only very slowly in time, as controlled
by both the size of the perturbation and the number of
degrees of freedom [see Eqs. (5) and (6)].
For the quantum case, we see something analogous but

with certain differences. These differences arise both
because we are forming linear combinations of the origi-
nally conserved charges and because of how, in our
construction, we segregate portions of the quantum phase
(Hilbert) space. Nekhoreshev estimates apply to the entire
phase space of the weakly perturbed model [i.e., Eq. (5) is
good for any piðt ¼ 0Þ]. In contrast, in our constructions,
the approximate time invariance of the charge is restricted to
a portion of the low-energy Hilbert space as marked by the
integer Nmax (this low-energy Hilbert space is defined by
states where none of the particles in the state have momenta
greater than kmax ¼ 2πNmax=L). While we can make Nmax
as large as we want (provided we are willing to make NQ

correspondingly large), we cannot take it to be infinite.
Another difference between the two constructions is the

role played by the strength of the integrability-breaking
perturbation. Here the Nekhoreshev estimates provide a
bound on the temporal variation of the original action
variables. This classical bound goes as A1=ð2NÞ where A is
the perturbation’s strength and N is the number of degrees
of freedom in the system. In contrast, we construct effective
charges,Q, whose temporal variation is controlled not only
by A, but also by NQ the number of Lieb-Liniger charges
forming Q. To be sure, if A is large, NQ will need to be
correspondingly larger in order to produce the same
minimum of temporal variation [see Eq. (14)].
In constructing these charges, the nature of the potential is

important here. Our potentialmixes themomenta of different
(unperturbed) eigenstates solely through the wave vector
of the cosine potential. This process is then considerably
different than the integrability breaking considered in
Refs. [66,67], where they considered integrability that
respected no selection rules and correspondingly saw an
extremely rapid crossover from quantum integrable to
quantum chaoticity. However, this does not mean our
construction of Q does not work if the potential induces
nontrivial mixing between wave vectors. To this end, we
consideredpreparing the systemas normal in the ground state
of a parabolic potential, but instead of releasing the gas into a
cosine potential, we released it into a weaker parabola. In

Fig. 7, we show the fluctuations in QðNQÞ as a function of
the numberNQ of Lieb-Liniger charges used to constructQ.
As with the release into the cosine potential, we are able to
construct a sequence ofQðNQÞwhose temporal fluctuations
die off rapidly with increasing NQ. And although we do not
show it, the off-diagonalmatrix elements of these charges fall
off as rapidly as their cosine counterparts in Fig. 5.

V. EXPERIMENTAL CONSEQUENCES

Having constructed these charges, we can ask what
consequences follow from their existence. That they take
nonzero values on the eigenstates means that the long time
dynamics of the gas post-quench is going to be constrained.
In this light, we have one way to understand the “quantum
Newton’s cradle” experiment presented in Ref. [30]. In the
Introduction, we argued that the post-quench dynamics of a
gas were very slow to achieve equilibration and that this
slowness was indicative of the underlying integrability of
the Lieb-Liniger model. However, strictly speaking, the gas
in this experiment was not integrable. The gas was confined
in a one-body parabolic potential, a potential that breaks
integrability [68]. Our construction of effective quasicon-
served charges in the presence of an integrability-breaking
one-body potential thus provides a means to understand the
slow thermalization of the gas post-quench in this experi-
ment despite the presence of integrability breaking. More
generally, our construction helps explain the findings of
Refs. [69,70], where weak integrability breaking does not
lead to immediate thermalization in finite systems.

0 2 4 6 8
N

Q

1e-06

0.0001

0.01

1

c=10

c=7200

FIG. 7. We show that the fluctuations in the effective chargesQ
constructed from a quench from a stronger to a weaker parabolic
potential, like their parabola to cosine counterparts, die out
rapidly with NQ. We consider two quenches of this type, one
with the gas at c ¼ 7200 and one with c ¼ 10. For the c ¼ 7200
case, we quench from a parabolic potential with strength, ω0;init

given by mω2
0;initL

2=2EF ¼ 6.48 into a parabolic potential with
strength ω0;fin given by mω2

0;finL
2=2EF ¼ 2.11. And for the

c ¼ 10 case, we quench from a parabola described by
mω2

0;initL
2=2EF ¼ 3.24 into one given bymω2

0;finL
2=2EF ¼ 1.06.
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In constructing these operators, it should be stressed that
the operatorswe construct are local (in the sense that they are
spatial integrals over operators that are defined at a single
point in space). This follows as the effective chargesQ are
constructed as linear combinations of the Lieb-Liniger
charges, which are all local quantities. Thus, we are not
constructing, in effect, projection operators corresponding
to eigenstates of the post-quench gas. Such projection
operators are necessarily always present in a model regard-
less of its integrability. To demonstrate this we plot in Fig. 8
the diagonal matrix elements of the charge,Qð8Þ, from the
c ¼ 1 quench of Fig. 3.We see that thesematrix elements are
all non-vanishing and several orders of magnitude larger
than Qð8Þ’s off-diagonal elements (see Fig. 5(c)).
If the nearly conserved quantities are governing the

long time dynamics of 1D Bose gases as in Ref. [30], a
second question that must be asked is whether this
influence is merely confined to a prethermalization plateau
or whether it influences the dynamics of the gas at all times.
There are at least two constructions [48,49] of quasicon-
served quantities that are thought to govern prethermaliza-
tion plateaus. Our construction is fundamentally different
inasmuch as the quasiconserved operators are quasi-
conserved all times. This fact, in particular, implies that
a modified form of Mazur’s inequality [71] holds. This
inequality relates the long time average of a correlation
function limt→∞hOðtÞOð0Þi with the projection hOQi of
the operators O onto conserved charges Q. This inequality
continues to hold with quasiconserved charges Q but
with the addition of an error term that is proportional to
the size ofQ’s off-diagonal matrix elements (which, in our
construction, can be made arbitrarily small), something
immediately clear from the proof of Mazur’s inequality
found in Ref. [72]. This implies that Q will control the
long time limit of a host of experimental observables in
systems with weak integrability breaking. We consider
this further in the next subsection.

A. Q and Mazur’s inequality

To understand Mazur’s inequality [73] in the context of
our effective charges, we adapt the argument presented in
Ref. [72], establishing this inequality in the context of
thermal correlation functions. To this end, we consider the
following connected correlation function:

χk ¼ lim
T→∞

1

hMkiDE

�
1

T2

Z
T

0

dtdt0

× ðhMkðtþ t0ÞMkðt0Þi − hMki2DEÞ
�
1=2

;

hMkiDE ¼ lim
T→∞

1

T

Z
T

0

dthMkðtÞi: ð15Þ

For the case at hand, the most relevant operator, Mk, to
consider will be either the k-th Fourier component of the
momentum distribution function (MDF) operator, i.e.,

MkðtÞ ¼ ψ†
kψk;

or the density operator

MkðtÞ ¼
1

L

X
q

ψ†
kþqψk;

where ψ†
k is the k-th Fourier component of the Bose field.

Here, we are averaging over both t and t0 in order to remove
any dependence on the waiting time t0. We have defined χk
so that correlations are measured in units of Mk computed
in the long time limit, i.e., in the diagonal ensemble.
We evaluate these correlation functions h� � �i with respect
to the initial condition of the gas in the ground state
of a parabolic trap, jii ¼ jψGS;parai. χk is nonzero only if
there are correlations present in Mk that survive the t → ∞
limit, i.e.,

lim
t→∞

hijMkðtþ t0ÞMkðt0Þjii
≠ lim

t→∞
hijMkðtþ t0ÞjiihijMkðt0Þjii: ð16Þ

The presence of similar long time correlations is precisely
what guarantees a finite Drude weight in transport in
integrable systems [12].
We demonstrate in Appendix C that a lower bound can

be put on χk involving our effective charge Q of the form

χk ≥
hijMkQdiagjii2
hijQ2

diagjii
; ð17Þ

where Qdiag is the diagonal part of the effective charge Q.
If our initial condition state jii ¼ jψGS;parai is confined to
the low-energy Hilbert space where Qdiag and Q differ by
off-diagonal matrix elements of size OðδÞ, we can rewrite
this inequality as

20 40 60 80 100

Eigenstate

0.015

0.02

0.025

 
n

FIG. 8. We plot the values of the diagonal matrix elements of
Qð8Þ in the post-quench eigenbasis as derived for the c ¼ 1
quench discussed previously in Figs. 3.
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χk ≥
hijMkQjii2
hijQ2jii þOðδÞ; ð18Þ

as claimed at the end of the last subsection.
We now show that this lower bound arising from Q on

χk is, in fact, finite. In Fig. 9, we plot this lower bound for
both correlations involving the MDF operator and the
density operator. We study this lower bound at three
different system sizes and three different wave vectors.
We see that, in all cases, this lower bound is appreciable.
For the MDF, the lower bound on χk is such that the
correlations in this quantity are at least roughly at the 10%
level. To determine whether this is significant, we com-
pute a similar lower bound for a quench, where we release
the gas into a flat potential (i.e., a quench for which Q is
an exact conserved quantity). We find values for the lower
bound that are comparable to the quench into the cosine
potential. For the density operator, the lower bound for
the long time correlations is considerably larger than that
for the MDF, being bounded by values of up to Oð1Þ.
We thus see that our construction of Q acts to ensure that
the system retains memory of its initial condition even at
infinite time.
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APPENDIX A: DESCRIPTION OF THE
1D BOSE GAS AND ITS POST-QUENCH

DYNAMICS USING A NUMERICAL
RENORMALIZATION GROUP

1. Application of the numerical
renormalization group

Our approach to describing the dynamics associated with
the quantum quench of the gas is to employ a numerical
renormalization group [58] that employs the eigenstates
of the Lieb-Liniger model as a computational basis to

FIG. 9. The lower bounds on χk due to the effective chargeQ for correlators involving the MDF and the density operators. Left-hand
panel: We plot the lower bound on MDF correlations for two different quenches in a c ¼ 10 gas. In the first (the left sets of bars), we
quench into a cosine potential Vcos cosð2πx=LÞ of amplitude Vcos ¼ 0.26EF. In the second (the right set of bars), we quench into a flat
potential, i.e., Vcos ¼ 0, where the post-quench Hamiltonian is then integrable. We present χk for three different system sizes
N ¼ L ¼ 4; 8, and 16 and three different values of k, kn ¼ 2πn=L, n ¼ 0; 1, and 2. The initial state of the quench is given by the ground
state of a gas in a parabolic potential of strength ω ¼ 2.4=N. Right-hand panel: We similarly plot the lower bound on density
correlations. Here, we only consider the case of quenching into Vcos ¼ 2, as χk for the density operator is identically zero in the absence
of the breaking of translational invariance. We again compute the lower bound at three different system sizes and three different
wave vectors k1; k2, and k3. In both cases, we see no obvious dependence on system size. We believe that the fluctuations seen
between different system sizes results from the particular construction of Q at any given system size. We construct
Q to minimize time fluctuations of a particular initial condition rather than construct it to maximize its overlap with a particular
observable as was done in Ref. [74].
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determine the relatively low-lying eigenstates of the
Bose gas in a one-body potential. This numerical renorm-
alization group is built upon both ideas taken from
Wilson’s development of a numerical renormalization
group used to study quantum impurity problems [75]
and Zamolodchikov’s numerical treatment of perturbed
conformal field theories [62,63]. The use of the Lieb-
Liniger basis as such a basis trades on our ability to be able
to efficiently compute matrix elements of relevant operators
such as the density operator exactly. While there are
compact determinantal expressions for such matrix ele-
ments [76,77], their evaluation is still a nontrivial numerical
task, and to this end, we use a set of computerized routines
named ABACUS [61,78,79]. We have already demon-
strated that we are able to perform the first step in our
quench protocol: We have shown in Fig. 2 that we can
accurately compute the ground state of the gas in the
parabolic trap. In this figure, we plotted our numerical
determination (black) of the density profile of a gas with
N ¼ 14 particles in a system of length L ¼ 14 with an
interaction parameter of c ¼ 7200 in a trap of strength
Vpara ¼ ω2

0x
2=ð2mÞ with mω2

0L
2=2EF ¼ 10.36 against the

density profile determined analytically (red) by mapping
these (nearly) hard-core bosons onto free fermions. The
details of the analytic description of the gas in its hard-core
limit are found in Appendix A12.
In the second step of the quench protocol, we released

the gas into a one-body cosine potential,

VcosðxÞ ¼ A cos

�
2πncosx

L

�
: ðA1Þ

In order to compute the post-quench dynamics, we need to
be able to describe not only the ground state in the cosine
potential but also some large number of excited states. In
our quench protocol, we take as our initial t ¼ 0 state the
ground state of the gas in the parabolic potential, jψGS;parai.
If we can compute a wide range of eigenstates in the cosine
potential, both ground and excited states, jψα;cosi, we can
expand this initial state in terms of the post-quench basis:

jψGS;parai ¼
X
α

cαjψα;cosi: ðA2Þ

Of course for this expansion to be exact, we would need to
know all of the eigenstates of the gas in the cosine potential.
We will instead settle for a determination of the post-
quench eigenbasis that allows us to include enough states
so that

P
α jcαj2 > 0.99. We note that after we determine

the initial values of the overlap coefficients, cα, we proceed
to normalize them so that their squares sum to 1.
In computing the spectrum of states in the cosine

potential, we employ the variant of the NRG discussed
in Ref. [39]. The NRG in its plain vanilla formulation [58]
can compute the spectrum of the low-lying states of the gas

in the one-body potential [8]. But to accurately capture an
appreciable fraction of the spectrum, we need to employ a
sweeping routine [39] analogous to that used in the finite
volume routine of the density matrix renormalization
group [80,81].
In Fig. 10, we present results for the spectra of an

N ¼ L ¼ 14 gas in the hard-core limit c ¼ 7200. Here,
we plot in black (right-hand side, r.h.s.) the numerical
determination of the first 365 energy levels of the gas in a
cosine potential. In red (left-hand side, l.h.s.), we plot the
corresponding analytic determination of the levels. This
analytic determination is possible by mapping the bosons to
nearly free fermions who interact with a four-body term of
strength 1=c. Again, the details of the analytics are found in
Appendix A12. The difference between the numerics and
the analytics here is less than 10−3 (in absolute units).
Once we have this expansion of our initial condition

jψGS;parai in terms of the eigenstates in the cosine potential,
we can readily determine the time evolution of the state
post-quench:

40
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62.5

FIG. 10. A plot of the energy spectra for an N ¼ 14 gas with
c ¼ 7200 in a cosine potential of amplitude A=EF ¼ 0.35 (as in
Fig. 2 of the main text). The analytic results are given in red,
while in black are the corresponding numerics. On the r.h.s., we
expand a range of energy with a dense number of states so as to
better exhibit agreement between the numerics and the analytics.
We can determine the first 365 states (up to energies of E ¼ 65)
with accuracy of 10−3.
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jψGS;paraiðtÞ ¼
X
α

cαe−iEαtjψα;cosi: ðA3Þ

We can track time evolution of the state to a point in
time determined by the accuracy by which we can
determine Eα. If the accuracy to which we determine
Eα is δEα, we can only track time evolution while
tδEα ≪ 2π. After this inequality is violated, we are
no longer able to trust the numerics. Concretely, we call
a state jψα;cosi dephased at time t if δEαt > 0.01 × 2π,
and we conservatively will not track the time evo-
lution beyond a point where the sum of states that
are dephased have a weight exceeding 0.01, i.e.,P

α∈dephased states jcαj2 > 0.01. Under this criterion, we
can still track the dynamics out to considerable times.
For the N ¼ 14 data in Fig. 2 of the main text, we can run
out to times around 80tF, while for the N ¼ 8 data in
Figs. 3, 4, and 5 of the main text, we can run consid-
erably longer, to t ∼ 6000tF. While in Fig. 3 we present
the time series for times close to this bound, we present
in Fig. 11 the time series for the same sets of charges
at shorter times, t < 100tF.
With the time evolved state in hand, we are able to

compute the time evolution of a number of observables and
operators. Because we use the eigenstates of the Lieb-
Liniger model minus a one-body potential, jψα;LLi, as the
computational basis of the NRG, the NRG gives any
eigenstate in a one-body potential as a linear combination
of such states:

jψone-bodyi ¼
X
α

bαjψα;LLi: ðA4Þ

Thus, the dynamics of any operator whose matrix ele-
ments are known in the Lieb-Liniger basis can be
determined. As one example, we plotted in Fig. 2 of
the main text the time evolution post-quench of the
density profile of the gas.

a. Error analysis of Q fluctuations

One of the claims made in the text is that the effective
charges Q that we construct have fluctuations that
drop exponentially with the number NQ of Lieb-Liniger
charges used in building them. For this to be a meaningful
statement, we need to put a lower bound on the charge
fluctuations arising from numerical error.
This error would arise from the dephasing errors that

arise because we can only imperfectly determine the post-
quench energies. However, these errors are small. We run
out to times where only postquench eigenstates represent-
ing 1% of the weight of the initial condition have dephased
(defined as having a phase error greater than 1% of 2π), i.e.,
1% of the weight of the state is dephased by 1%.
This might then suggest that we find a lower bound of

10−4 on the fluctuations of the effective charges. However,
the off-diagonal matrix elements of the effective charges
are also very small. Thus, any error due to dephasing will
be suppressed—fluctuations in the charges are due to off-
diagonal matrix elements. So a lower bound on the error
will be approximately the size of these off-diagonal matrix
elements (also on the order of 10−4) times the square root
of the number of off-diagonal matrix elements involved
(square root because we assume the errors introduced
by the off-diagonal matrix elements add in the fashion
of a random walk) times the error due to dephasing, so
approximately 10−6 to 10−7. This is roughly the lower
bound we see on the charge fluctuations.

2. Description of the gas in the cosine potential
in the large c limit

In this appendix, we provide a description of the hard-
core limit (c → ∞) of the Lieb-Liniger model defined on a
ring of length L in the presence of a cosine potential:

HB ¼ −XN
i¼1

1

2m
∂2

∂x2i þ c
X
i<j

δðxi − xjÞ

þ A
XN
i¼1

cos

�
2πncos
L

xi

�
: ðA5Þ

The ability to do analytics in the hard-core limit will then
serve as a check on our numerical results.
For c ≫ 1, the system can be mapped onto a system of

fermions with the Hamiltonian [82–84]

HF ¼ −XN
i¼1

1

2m
∂2

∂x2i −
2

m2c

X
i<j

δ00ðxi − xjÞ

þ A
XN
i¼1

cos

�
2πncos
L

xi

�
; ðA6Þ

t/t
F

t/t
F

(a) (b)
Q / 〈〈     〉2   

 Q2 av

Q / 〈     〉4   
 Q4 av

Q / 〈     〉6   
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Q / 〈     〉8   
 Q8 av

FIG. 11. (a) The post-quench time evolution of the same
normalized Lieb-Liniger charges shown in Fig. 2 of the main text
but at times t < 100tF. (b) The post-quench time evolution of the

sequence of effective charges, QðNQÞ − a0I ¼
PNQ

m¼1 a2mQ̂2m,
shown in Fig. 2 for NQ ¼ 2; 4, and 8 for the same range of time.
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where in the dual picture we have an ultra-local interaction
term of strength 1=c.
For c → ∞, the fermions are noninteracting and the

physics becomes effectively one-body [85]. We then
must only solve the following single-body Schrödinger
equation:

− 1

2m
∂2

∂x2 ψðxÞ þ cos

�
2πncos
L

x

�
ψðxÞ ¼ EψðxÞ: ðA7Þ

This equation can be put in the standard form of the
Mathieu equation,

∂2

∂z2 ψðzÞ þ ða − 2q cosð2zÞÞψðzÞ ¼ 0; ðA8Þ

if we identify

z ¼ πncos
L

x; ðA9Þ

q ¼ A
2

�
L

πncos

�
2

; ðA10Þ

a ¼ E

�
L

πncos

�
2

: ðA11Þ

The Mathieu equation admits Floquet-type solutions of the
form

ψ1
νða; q; zÞ ¼ eiνzPða; q; zÞ; ðA12Þ

ψ2
νða; q; zÞ ¼ ψ1

νða; q;−zÞ ¼ e−iνzPða; q;−zÞ; ðA13Þ

where Pða; q; zÞ is a periodic function in z of period π
(the same periodicity of the cosine term in the Mathieu
equation). Here, ν ¼ νða; qÞ, the Mathieu characteristic
exponent function, is a function of a and q. If ν is an
integer, the second solution is not linearly independent
and a new solution must be built (see Ref. [86]). In the
following, we are interested only in noninteger solutions.
We are able to create linear combinations of the pairs

of degenerate solutions for each triplet fa; q; νg. We focus
on linear combinations that are even and odd in z:

ψþνða; q; zÞ ¼
ψ1
νða; q; zÞ þ ψ2

νða; q; zÞ
2

; ðA14Þ

ψ−νða; q; zÞ ¼
ψ1
νða; q; zÞ − ψ2

νða; q; zÞ
2i

: ðA15Þ

The final step is to construct linear combinations of these
solutions that satisfy the boundary conditions. This step
amounts to the quantization of the values of a, i.e., the
energy, and so ν. For N even, we need to impose
antiperiodic boundary conditions on the single-particle
solutions

ψðxþ LÞ ¼ −ψðxÞ: ðA16Þ

This will still lead the eventual N-body wave function to be
periodic, and it corresponds to the use of half-integer
quantum numbers in constructing the solutions of the
Bethe ansatz equations for N even. To satisfy these
boundary conditions, we choose ν to be

ν ¼ 2n − 1

ncos
; n ¼ 1; 2…: ðA17Þ

It is interesting to notice that for large enough n, the energy
a coming from the two Mathieu characteristic functions
corresponding to ψ−ν and ψþν behaves as a ∼ n2, as would
be expected when the kinetic energy of the state greatly
exceeds its potential energy.
Multiparticle states are then constructed from these

single-particle solutions according to Pauli’s exclusion
principle, remembering that there are two available states
for each energy eigenvalue (ν and −ν). In comparing to the
analytic solutions of the gas in the cosine potential, we
perform our numerics not at c ¼ ∞ but at a large finite
value of c (c ¼ 7200). We thus consider perturbative
corrections in 1=c to the hard-core limit. As the 1=c
correction to the Hamiltonian,

δHF ¼ − 2

m2c

Z
dxdx0Vðx − x0Þψ†ðxÞψ†ðx0Þψðx0ÞψðxÞ;

ðA18Þ

treats two particles at a time, we can first compute the
correction in energy for the two-particle case, and then for
the N-particle case simply by adding the ðN

2
Þ contributions

coming from all possible particle pairs.

APPENDIX B: ANALYTIC CONSTRUCTION
OF CHARGES IN THE HARD-CORE LIMIT

1. General discussion of analytic construction

We have shown that we can construct numerically
quasiconserved quantities formed as linear combinations
of Lieb-Liniger charges, where the quality of the conser-
vation is controlled by the number of charges in the
combination. But while we have a concrete numerical
construction of these new quasicharges, we have only a
minimal analytic understanding of why such charges exist.
Is this happenstance or can we provide something more
solid? The answer is that we can, and it is the aim of this
appendix.
The basic idea behind this is to show that we can

systematically construct charges of the form Q ¼ P
iaiQ̂i

that zero out low-lying matrix elements that would other-
wise lead them to have a nontrivial time dependence. That
Q has a time dependence at all is because of the one-body
potential VðxÞ in the post-quench Hamiltonian:
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Hpost-quench ¼ HLL þ Vcosine

Vcosine ¼
Z

L

0

dxVðxÞρ̂ðxÞ; ðB1Þ

where for us VðxÞ ¼ A cosð2πncosx=LÞ. We can rewrite this
term in terms of the Fourier components of VðxÞ and the
density operator ρ̂ðxÞ:

Z
L

0

dxVðxÞρ̂ðxÞ ¼
X
k

Vkρ̂k

¼ 1

2
ðρ̂kncos þ ρ̂−kncos Þ; ðB2Þ

where ρ̂kn ¼
P

qψ
†
qþkn

ψq with kn ¼ 2πn=L.
The time dependence of QðtÞ can be written as a

power series in time t via the Baker-Campbell-Hausdorff
formula:

QðtÞ¼eiVcosinetQe−iVcosinet

¼Qþ itC1þ
ðitÞ2
2!

C2þ
ðitÞ3
3!

C3þ���

C1¼
�X

k

Vkρ̂k;Q

�
; Cn≥2¼

�X
k

Vkρ̂k;Cn−1
�
: ðB3Þ

What we now argue is that we can systematically zero out
all low-energy matrix elements (below some designated
cutoff) of the first term involving the commutator of the
one-body potential with QðtÞ. This results in a charge Q
that has a t2 (and higher) time dependence on the low-
energy Hilbert space. However, this higher-order depend-
ence is only nominal. What we observe is that for a cosine
one-body potential, zeroing out first-order matrix elements
also zeros out a large number of matrix elements from
higher-order commutators that arise from one-particle-hole
processes. To keep things tractable in this construction, we
mostly focus on the c ¼ ∞ limit where there is no more
than one particle-hole process.
To understand why higher orders remain zeroed out,

we first need to describe the Hilbert space as spanned
by the Lieb-Liniger eigenstates in a bit more detail.
An eigenstate of the Lieb-Liniger model is described by
N-rapidities, λi,

jsi ¼ jλ1;…; λNi ¼ jI1;…; INi; ðB4Þ

which in turn are determined by N-integers (or half-
integers) via the Bethe ansatz equations:

2πIi ¼ Lλi þ
X
j≠i

ϕðλi − λjÞ;

ϕðλÞ ¼ 2tan−1
�
λ

c

�
: ðB5Þ

We use the notion of these quantum numbers both to
delineate the zeroed-out portion of the Hilbert space and
to describe how it changes under higher-order processes.
Let us now construct the effective charge

Q ¼
XNQ

i¼1

aiQ̂i;

by defining it to have the following property: If the integers
characterizing jsi and js0i are all such that

jIij; jIi0j ≤ Nmax; ðB6Þ

then the following matrix element vanishes:

hsj
�X

k

Vkρ̂k;Q

�
js0i ¼ hsjC1;Q�js0i ¼ 0: ðB7Þ

This condition amounts to insisting that

ðQðs0Þ −QðsÞÞhsjVcosinejs0i ¼ 0; ðB8Þ

where QðsÞ is the action of Q on the state jsi,
i.e., Qjsi ¼ QðsÞjsi.
Provided we are willing to include enough Lieb-Liniger

charges inQ (i.e., chooseNQ large enough), we can always
find aQ satisfying Eq. (B8), as the collection of constraints
in Eq. (B8) form a set of homogeneous linear equations:

XNQ

i¼1

aiðQiðs0Þ −QiðsÞÞ ¼ 0;

for all jsi; js0i satisfying Eq: ðB6Þ: ðB9Þ

The number of charges NQ we need to include to be able to
find a nontrivial solution behaves as NQ ¼ Nmax þ 2, a
number that is effectively proportional to the log of the size
of Hilbert space.
We now suppose we have constructed a Q where a

block of states of its commutator with Vcosine has been
zeroed out—see the top square in Fig. 12 for a graphical
representation of this. But now how does this zero block
fare when we consider higher-order commutators,

hsj½Vcosine; Cl�js0i; ðB10Þ

that appear in the Taylor series ofQðtÞ? Roughly speaking,
this block does not immediately disappear at higher order but
rather only shrinks linearly with the order of the commutator.
The lþ 1th-order commutator, hsjVcosine; Cl�js0i, will have
nonzero matrix elements between two states, jsi and js0i,
provided that their quantum numbers satisfy

jIij; jIi0j ≤ Nmax − ðl − 1Þncos: ðB11Þ
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Thus, for every order in the perturbative expansion,we shrink
the block of zero matrix elements by ncos.
We can see this simply for matrix elements of the

second-order commutator. Suppose then that jsi and js0i
are states whose quantum numbers, fIig and fIi0g, satisfy

jIij; jIi0j ≤ Nmax − ncos: ðB12Þ

Then, the matrix element hsjC2js0i equals

hsjC2js0i ¼ hsjVcosineC1 − C1Vcosinejsi: ðB13Þ

Now, the action of Vcosine on jsi is to give a state
Vcosinejsi ¼ j~I1;…; ~INi whose quantum numbers must
satisfy (using that the action of Vcosine is to change one
quantum number by �ncos)

jIij; jIi0j ≤ Nmax: ðB14Þ

But, by construction, the matrix elements of C1 between
such a state and jsi are zero. Hence, C2 has a reduced block
of zeros. This continues on to higher order in an iterative
fashion. At c ¼ ∞ the situation is actually even better than
this argument would indicate. In fact the block of zero
matrix elements for Cn>1 only shrinks to states with
quantum numbers less than

Nmax −
�
ncos⌊

n
2
⌋ − 1

�
:

This result for the c ¼ ∞ case of how the zeroed out matrix
elements remain for the higher order commutators is
pictured in Fig. 12.
Having outlined how we can construct quasiconserved

charges analytically, we now numerically test this quasi-
conservation. To perform this test, we construct a sequence
of effective charges fQNmax

g, defined by a sequence of
maximal quantum numbers, Nmax. A charge QNmax

is
defined by its first-order commutator C1¼½Vcosine;QNmax

�
having no nonzero matrix elements involving any two
states jsi; js0i whose quantum numbers are less than or
equal to Nmax. Such a charge will have to satisfy a number
of constraints of the type found in Eq. (B9). As we have
already stated, there are Nmax þ 1 such constraints. As such
we form QNmax

as a linear combination of NQðNmaxÞ ¼
Nmax þ 2 charges:

QNmax
¼ a0 þ

XNQðNmaxÞ

i¼1

ai
Q̂2i

hQ̂2iiav
;

1 ¼
XNQðNmaxÞ

i¼1

jaij2;

hQ̂iiav ¼
1

T

Z
T

0

dthQ̂iðtÞi; ðB15Þ

i.e., we include the minimal number of Lieb-Liniger
charges Q̂i so that the null space of the set of linear
equations in Eq. (B9) has dimension 1. As in the main body
of the text, we normalize the charges Q̂i, with respect to
their time average following a particular quench.
In Fig. 13, we provide two tests of the quality of the

conservation of the chargeQ as a function ofNmax. In panel
(c) of Fig. 13, we consider the dynamics of QNmax

ðtÞ post-
quench in our standard quantum quench protocol (prepar-
ing the gas in a parabolic potential and releasing it into a
cosine potential). We see that the fluctuations in time of
QNmax

ðtÞ post-quench decrease exponentially with Nmax.
However, the real test of the quality of quasiconservation

of the sequence of fQNmax
g is to be found in the size of

FIG. 12. Herewe showatc ¼ ∞how thematrix elements zeroed
out for the commutator C1 remain zero for the higher order
commutators Cn>1. In the top block we graphically display how
the matrix elements of C1 are zeroed out for states with quantum
numbers less than Nmax. In the second block, we show that the
matrix elements of the second and third order commutatorsC2 and
C3 are also zero for this same set of states. It is only for the fourth
and fifth order commutators, C4 and C5, that the set of states with
zero matrix elements begins to shrink to states with quantum
numbers less than Nmax − ncos (as pictured in the third block).
The set of states with zero matrix elements on C6 and C7 shrinks
further to states with quantum numbers less than Nmax − 2ncos.
This shrinkage in the set of states by steps of ncos continues at
higher order, one step for every two orders of commutators.
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their off-diagonal matrix elements on the low-energy post-
quench Hilbert space. To this end, we display the size of
these off-diagonal matrix elements in panels (a) and (b)
of Fig. 13. In this figure, we show two intensity plots
corresponding toNmax ¼ 4 and 8. We see that the chargeQ
built for Nmax ¼ 8 has considerably smaller off-diagonal
terms than doesQ for Nmax ¼ 4. This is quantified in panel
(d) of Fig. 13wherewe plot the averagemagnitude of the off-
diagonalmatrix elements ofQNmax

as a function ofNmax.We
see that it drops exponentially with the number of charges.

a. Equivalence of the two constructions of the charges

We have now demonstrated an analytic method to
construct effective charges Q. But what is the relationship
between these and those derived numerically from a
particular quench protocol? We show that, in fact, they
do coincide. In order to demonstrate this, we first fix Nmax.
While we have argued that we only need NQ ¼ Nmax þ 2

charges to find a single nontrivial solution of the linear
equations in Eq. (B9), we consider these equations with
NQ ¼ 2Nmax charges—and so the linear equations now
have a null space of dimension Nmax − 2. We then proceed
to find this null space. Having done this, we compute
numerically (as in the main text) the effective charge built
from NQ ¼ 2Nmax Lieb-Liniger charges that arises from
minimizing the post-quench temporal fluctuations. We then
ask whether this charge (or, more precisely, the vector of its
coefficients, faigNi¼1) lies in the null space coming from
analytically building theQ’s. We find that it does lie in the

null space as Nmax grows. This result is summarized in
Table I. In particular, the column labeled “Projection” gives
the projection of the normalized vector of coefficients
faigNi¼1 into the null space (a value of 1 indicates the
numerical charge lies entirely in the null space). We see that
as Nmax increases, this projection increases quickly to its
maximum possible value. Thus, we conclude that the two
methods yield the same effective charge Q.

2. Estimating the temporal variation of QðtÞ
In this section, we estimate the quality of the conserva-

tion of the charges QðtÞ that we have constructed in the
previous section. We do so for both weak and strong
amplitudes of the post-quench cosine potential.
To determine the magnitude of the time variation inQðtÞ

following the quench, we first express the initial condition,
jψparai, in terms of the post-quench eigenbasis jψα;cosi:

jψparai ¼
X

cαjψα;cosi;
and then, in turn, express QðtÞ in terms of matrix elements
of Q in this basis:

3 4 5 6 7 8 9
NQ

1e-05

0.0001

0.001

0.01

0.1

1

3 4 5 6 7 8 9
NQ

1e-06

0.0001

0.01

1

(a) (b)
(c)

(d)

FIG. 13. The magnitude of the off-diagonal matrix elements of the analytically constructed effective charges composed from (a) four
Lieb-Liniger charges,QNmax

ð4Þ, and (b) eight Lieb-Liniger charges,QNmax
ð8Þ. (c) The size of the post-quench temporal fluctuations of

the effective charges QNmax
ðNQÞ as a function of the number of charges in the linear combination. Here, the quench is performed by

preparing an N ¼ 8, c ¼ 7200 gas in a parabolic potential of strength mω2
0L

2=2EF ¼ 6.48 released into a cosine potential of strength
A ¼ 1. We show the size of the temporal fluctuations for two sequences of effective charges, the first (in black) constructed from Lieb-
Liniger charges,Q2m, m ¼ 1;…; 8 and the second (in red) constructed from Q2m, m ¼ 9;…; 16. (d) The size of the off-diagonal matrix
elements of these same two sequences of QNmax

as a function of the number NQ of Lieb-Liniger charges in the linear combination.

TABLE I. Degree to which numerical Q lies in null space of
analytic Q’s for a c ¼ 7200, N ¼ L ¼ 8 gas.

Nmax NQ Dimension of null space Projection

2 4 1 0.282
3 6 2 0.718
4 8 3 0.982
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QðtÞ ¼
X
αβ

c�αcβhψα;cosjQðtÞjψβ;cosi

¼
X
αβ

c�αcβe−iðEβ−EαÞthψα;cosjQjψβ;cosi: ðB16Þ

We have argued in Appendix B 1 that the construction of
QðtÞ is such that the time dependence (at least up to some
order in time) of the low-energy off-diagonal matrix
elements of QðtÞ is zeroed out. This result implies that
some of the terms in the above expansion will be either zero
or at least small. But which ones, and what weight do they
carry? The matrix elements we have zeroed out are not in
the post-quench basis but in the Lieb-Liniger eigenbasis,
the eigenbasis of the gas without a one-body potential.
To see the effects of this zeroing out, we expand jψα;cosi
in terms of this basis:

jψα;cosi ¼
X

I1>���>IN
cα;Ii jI1;…; INi;

where the state jI1;…; INi is constructed according to
Eqs. (B4) and (B5). We then, in turn, rewriteQðtÞ in terms
of matrix elements involving this Lieb-Liniger basis:

QðtÞ ¼
X
α;β

I1>���>IN
J1>���>JN

c�αcβc�α;Iicβ;JihIijQðtÞjJii:

From our construction of Q, we see that the matrix
elements involving states jI1;…; INi and jJ1;…; JNi with
jIij; jJij ≤ Nmax will vanish. Because all states are normal-
ized, we know that

1 ¼
X
α;β

I1>���>IN
J1>���>JN

jc�αcβc�α;Iicβ;Ji j2:

To estimate how much of the time dependence of QðtÞ has
been eliminated, we want to compute the truncated sum,

Welim ¼
X
α;β

I1>���>IN
J1>���>JN

jc�αcβc�α;Iicβ;Ji j2
����
jIij;jJij≤Nmax

:

The fluctuations in QðtÞ will then go as 1 −Welim.
In general, estimatingWelim is difficult. However, we are

able to do so in the limits of a weak and strong cosine
potential. Because we are working at c ¼ ∞, the pre- and
post-quench wave functions of the N-particle gas can be
described as Slater determinants of single-particle states.
Pre-quench, these single-particle states, jχni, are associated
with wave functions, χnðxÞ, given in terms of Hermite
polynomials:

χnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
mω0

π

�
1=4

e−mω0x2=2Hnðx
ffiffiffiffiffiffiffiffiffi
mω0

p Þ: ðB17Þ

Post-quench, the single-particle states jψνi have wave
functions given by Mathieu functions [with ν ¼
�ð2nþ 1Þ=ncos], as discussed in Appendix A 2 [see
Eqs. (A14) and (A17)]. The N-particle eigenstates can
then be denoted by

jψparai ¼ jχI1 ;…; χIN i ðB18Þ

pre-quench and

jψα;cosi ¼ jψν1 ;…;ψνN i ðB19Þ

post-quench. The overlap between pre- and post-quench
eigenstates can then be written as a sum over products of
single-particle overlaps

cα ¼ hψα;cosjψparai ¼
X
P∈SN

signðPÞ
YN
j¼1

hχjjψνPj
i: ðB20Þ

Now, we specialize to the weak and strong cosine poten-
tial cases.

a. Weak cosine amplitudes

For weak amplitudes of the cosine potential, the post-
quench single-particle wave functions are approximately
plane waves:

ψνðxÞ ≈
1ffiffiffiffi
L

p eiðπncosνxÞ=L; ðB21Þ

and the N-particle states jψα;cosi are approximately Lieb-
Liniger eigenstates:

jψα;cosi ≈ jI1;…; INi: ðB22Þ

The sum Welim simplifies in this case to

Welim ¼
X

I1>���>IN
J1>���>JN

jcI1;…;IN cJ1;…;JN j2jjIij;jJij≤Nmax

¼
� X

Nmax≥I1>…>IN≥−Nmax

jcI1;…;IN j2
�

2

≡ X2
elim; ðB23Þ

where we have introduced the variable Xelim. Because the
single-particle overlaps describing the N-particle coeffi-
cients, cα, in Eq. (B20) are given by

hχnjψνji ¼ in

ffiffiffiffiffiffiffiffiffiffiffiffi
2π

mω0L

s
χn

�
πνjncos
L

ffiffiffiffiffiffiffiffiffi
mω0

p
�
; ðB24Þ
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we can reduce the sum Xelim to

Xelim ¼
�

2πffiffiffiffiffiffiffiffiffiffiffiffi
πmω0

p
L

�
N X
Nmax≥I1>���>IN≥−Nmax

e−
P

N
i¼1

ðk2i =mω0Þ

×
X
P;P0

signðPP0Þ
YN−1

n¼0

Hn

�
kPiffiffiffiffiffiffiffiffiffi
mω0

p
�
Hn

�
kP0

iffiffiffiffiffiffiffiffiffi
mω0

p
�
;

ðB25Þ

where P and P0 are permutations of the integers
ðI1;…; INÞ. In the above equation, the off-diagonal
terms of the sum,

P
P;P0 (i.e., those terms involving

different permutations, Pi ≠ Pi
0), are at most of order

e−2k2max=ðmω0Þðk2max=ðmω0ÞÞ4N−4, and so can be ignored in
comparison to the diagonal terms, which take the form

1 − const × e−k2max=ðmω0Þðkmax=ðmω0ÞÞ2N−3:

Thus, the leading-order correction to the diagonal terms
(which is what we care about in determining how much
weight is left over as encoded by 1 −Welim) is much larger
than the off-diagonal terms, which we henceforth ignore.
We can then rewrite Xelim by converting the sums to
integrals:

Xelim ¼
YN−1

n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
mω0π

p
2nn!

Z
kmax

−kmax

dkiH2
n

�
kiffiffiffiffiffiffiffiffiffi
mω0

p
�
e−ðk2i =mω0Þ;

ðB26Þ

where kmax¼kmaxðNQÞ¼2πNmaxðNQÞ=L¼2πðNQ−2Þ=L.
This can then readily be computed to be

Xelim ¼ 1 − e−ΛðNQÞ2ffiffiffi
π

p
XN−1

n¼0

2nΛðNQÞ2n−1
n!

; ðB27Þ

where ΛðNQÞ ¼ kmaxðNQÞ= ffiffiffiffiffiffiffiffiffi
mω0

p
.

We then see that 1 − X2
elim goes as an exponential inN2

max
(and so NQ), thus implying the fluctuations in QðtÞ are
suppressed exponentially in N2

Q.

b. Strong cosine amplitudes

We now turn to the case of strong cosine amplitudes. We
see that the fluctuations are expected to die much more
slowly with NQ than in the weak case.
In this limit, we necessarily treat the N-particle

post-quench wave functions as antisymmetrized products
of Mathieu functions labeled by fνig, i.e., jψα;cosi ¼
jν1;…; νNi. The overlap cα;Ii is then given by

cα;Ii ¼
X
P

signðPÞ
YN
i¼1

hνijnPi
i; ðB28Þ

where hνijnPi
i is the overlap between a single-particle

Mathieu function associated with νi and the plane wave nPi
.

There is no closed-form expression for this overlap (as far
as we know). However, for the purposes of this section, we
use the following approximate:

hνjni ≈ ΘðNν − jnjÞcνn; if
νncos
2

≤ NA; ðB29Þ

where NA ¼ ðL ffiffiffiffiffiffiffiffiffiffi
2mA

p
=2πÞ and where the coefficients cνn

satisfy
Pn¼Nν

n¼−Nν
jcνnj2 ¼ 1. This estimate says that the

expansion of a Mathieu function in terms of plane waves
only has a finite number of terms, 2Nν, provided ν is below
a bound set by NA. Beyond this bound, Mathieu functions
become plane-wave-like (their kinetic energy is much
greater than their potential energy), and their Fourier
expansion changes to one consisting of a single plane
wave. The coefficients cνn in this expansion oscillate
between positive and negative amplitudes with (roughly)
uniform amplitude. While there are Fourier coefficients of
the Mathieu functions with modes beyond Nν, these
coefficients are exponentially small in comparison to those
for jnj ≤ Nν.
We now evaluate

P
Ii jcα;Ii j2:

X
Ii

jcα;Ii j2 ¼
X
Ii;P;P0

signðPÞsignðP0Þ
YN
i¼1

hνijnPi
ihnP0

i
jνii

≈
X

−Nmax≤I1<���<IN≤Nmax

X
P

YN
i¼1

jhνijnPi
ij2

≈
YN
i¼1

XNmax

Ii¼−Nmax

jhνijnPi
ij2

≈
YN
i¼1

minðNνi ; NmaxÞ
Nνi

: ðB30Þ

Here, we make several approximations. We assume that
only the diagonal terms in the sum

P
P;P0 survive (i.e., those

terms with P ¼ P0). This necessarily would happen if
Nmax > Nνi for all νi, but because we are restricting
the sum, this is merely an approximation. However, it
should be a good one given that the matrix elements
are bounded and oscillating in sign. Finally, we approxi-
mate the sum

P
jnj≤Nmax

jcν;nj2 ¼ ½minðNνi ; NmaxÞ�=Nνi .
This is reasonable given that the coefficients cν;n are
oscillating with roughly uniform amplitude in the range
n ∈ ð−Nν; NνÞ.
We now need to consider the overlaps of jψα;cosiwith the

pre-quench ground state, i.e., cα ¼ hν1;…; νN jχ1;…; χNi.
As before, the square of this overlap can be written as
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jhν1;…; νN jχ1;…; χNij2 ¼
X
P;P0

signðPÞsignðP0Þ

×
YN
i¼1

hνPi
jχiihχijνP0

i
i

¼
X
P

YN
i¼1

jhνPi
jχiij2; ðB31Þ

where we suppose that this sum is again dominated by its
diagonal terms. This is justified (weakly) in that we will be
performing partial sums over the νi’s that will (by ortho-
gonality) provide a partial projection of the off-diagonal
(P ≠ P0) terms. We can approximate the single-particle
overlaps jhνjχij2 as follows:

jhνjχij2 ∼ Θ
�
NA − νncos

2

�
1

2NA
: ðB32Þ

Here, we are using the fact that Mathieu functions with
jνj ≤ 2NA=ncos (there are 2NA of them in total) will have an
appreciable overlap with the Hermite function χ as such
Mathieu functions have Fourier transforms that are spread
over a wide range of wave vectors with approximately
equal weight. Those Mathieu functions with jνj> 2NA=ncos
are approximately plane waves with a large wave vector
and, as such, will have an exponentially small overlap with
the Hermite functions, χ. We thus approximate these
overlaps as zero.
With this result, we can write down an expression for

Xelim ¼ W1=2
elim:

Xelim ¼
X

−2NA=ncos≤ν1<���<νN≤2NA=ncos−Nmax≤I1<���<IN≤Nmax

jcαj2jcα;Ii j2

¼
YN
i¼1

1

2NA

X
jνij≤2NA

ncos

minðNνi ; NmaxÞ
Nνi

: ðB33Þ

Before we can evaluate this expression, we need an
expression for Nν. With trial and error, we find such an
expression to be

Nν ¼ aþ b

ffiffiffiffiffiffiffiffiffiffi
νncos
2

r
Nβ

A; ðB34Þ

with a ≈ 18, b ≈ 1.2, and β ≈ 1=2. This expression is
approximately independent of system size L and ncos.
We can then finish the evaluation of Xelim with the
result

Xelim ¼
�
Nmax

NA

2

b

�
1 − a

bNA
log

�
1þ bNa

a

���
N
: ðB35Þ

We see then that unless Nmax (and so NQ ¼ Nmax þ 2) is
approximately equal to the number of Mathieu functions

that have appreciable spread in Fourier space, NA, the
fluctuations ofQðtÞ that are eliminated are a small fraction
of the whole.

APPENDIX C: DEVELOPMENT OF A
MAZUR-LIKE INEQUALITY FOR Q

In this section, we develop a Mazur bound arising from
the existence of the effective chargesQ’s on the correlation
function χk, involving an operator Mk defined by

χk ¼ lim
T→∞

�
1

T2

Z
T

0

dtdt0ðhijMkðtþ t0ÞMkðt0Þjii

− hMki2DEÞ
�
1=2

=hMkiDE;

hMkiDE ¼ lim
T→∞

1

T

Z
T

0

hijMkðtÞjii: ðC1Þ

We suppose that the initial condition state jii ¼ jψGS;parai is
a superposition of post-quench eigenstates whose energies
all fall below a cutoff Λ.
Now, our basic goal is to show that the existence of the

effective chargesQ’s places a lower bound on χk. TheQ’s
that we have constructed take the form

jhjjQjj0ij ¼

8><
>:

< δ for Ej; Ej0 ≤ Λ;

¼ Oð1Þ for j ¼ j0;

¼ Oð1Þ for Ej or Ej0 > Λ;

ðC2Þ

where δ is a dimensionless number.
To demonstrate how Q controls the time evolution of

Mk, we expand Mk as follows:

Mk ¼ αkQþ
X
l

αkl ~Ql þMk
0: ðC3Þ

Here, ~Ql is some set of operators that are completely
diagonal in the post-quench eigenbasis, and Mk

0 is a
completely off-diagonal operator (in the same eigenbasis).
~Ql (not to be mistaken for the Lieb-Liniger charges) are
such that they are orthogonal both to one another and toQ:

h ~Ql
~Ql0 i ¼ δll0 h ~Q2

l i;
h ~QlQi ¼ 0: ðC4Þ

Because Q is only (approximately diagonal) on the low-
energy Hilbert space, we divide it into two pieces: one
diagonal and one wholly nondiagonal:

Q ¼ Qdiag þQnondiag:

With this representation in hand, we now return to χk. We
begin evaluating it by inserting a resolution of the identity
between the two fields. We assume the spectrum is non-
degenerate:
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χk ¼
1

T2

Z
T

0

dtdt0
X
jj0j00

c�jcj00 hjjMkð0Þjj0i

× hj0jMkð0Þjj00ieiðtþt0ÞðEj−Ej0 Þþit0ðEj0−Ej00 Þ

¼
X
j

jcjj2jhjjMkð0Þjjij2: ðC5Þ

In this form, we see that the off-diagonal parts of Mk have
been projected away:

χk ¼
X
j

jcjj2jhjjαkQþ
X
l

αkl ~Qljjij2

¼
X
j

jcjj2
�
α2kjhjjQdiagjjij2

þ
X
l

α2kljhjj ~Qljjij2
�
; ðC6Þ

where in the second line we have used the orthogonality of
Q and the ~Ql’s with one another. As each term in the above
is non-negative, we have the inequality

χk ≥ α2khQ2
diagi: ðC7Þ

However, for this to be a meaningful inequality, we must
show that αk is finite.
To compute αk, we consider the projection ofMk against

Qdiag:

hMkQdiagi ¼ αkhQQdiagiþ
X
l

αklh ~QlQdiagiþ hMk
0Qdiagi

¼ αkhQ2
diagi; ðC8Þ

where in the last line we have used the diagonality ofQdiag

and its orthogonality with the other charges, ~Ql. Thus, αk
equals

αk ¼
hMkQdiagi
hQ2

diagi
: ðC9Þ

By inserting a resolution of the identity between the fields
and taking the action of Qdiag on the post-quench eigen-
basis to be

Qdiagjji ¼ Qjjji;

the above simplifies to

αk ¼
P

jjcjj2QjhjjMkjjiP
jjcjj2Q2

j
; ðC10Þ

while the lower bound on χk becomes

χk ≥
ðPjjcjj2QjhjjMkjjiÞ2P

jjcjj2Q2
j

: ðC11Þ

[1] A. N. Kolmogorov, On Conservation of Conditionally
Periodic Motions for a Small Change in Hamilton’s
Function, Dokl. Akad. Nauk SSSR 98, 527 (1954).

[2] D. Fioretto and G. Mussardo, Quantum Quenches in
Integrable Field Theories, New J. Phys. 12, 055015 (2010).

[3] J.-S. Caux and F. H. L. Essler, Time Evolution of Local
Observables After Quenching to an Integrable Model, Phys.
Rev. Lett. 110, 257203 (2013).

[4] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
Its Mechanism for Generic Isolated Quantum Systems,
Nature (London) 452, 854 (2008).

[5] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii,
Relaxation in a Completely Integrable Many-Body Quan-
tum System: An Ab Initio Study of the Dynamics of the
Highly Excited States of 1D Lattice Hard-Core Bosons,
Phys. Rev. Lett. 98, 050405 (2007).

[6] M. A. Cazalilla, Effect of Suddenly Turning on Interactions
in the Luttinger Model, Phys. Rev. Lett. 97, 156403 (2006).

[7] A. Iucci and M. A. Cazalilla,Quantum Quench Dynamics of
the Sine-Gordon Model in Some Solvable Limits, New J.
Phys. 12, 055019 (2010).

[8] J.-S. Caux and R. M. Konik, Constructing the Generalized
Gibbs Ensemble After a Quantum Quench, Phys. Rev. Lett.
109, 175301 (2012).

[9] J. De Nardis, B. Wouters, M. Brockmann, and J.-S. Caux,
Solution for an Interaction Quench in the Lieb-Liniger Bose
Gas, Phys. Rev. A 89, 033601 (2014).

[10] M. Kormos, A. Shashi, Y.-Z. Chou, J.-S. Caux, and A.
Imambekov, Interaction Quenches in the One-Dimensional
Bose Gas, Phys. Rev. B 88, 205131 (2013).

[11] D. Iyer and N. Andrei, Quench Dynamics of the Interacting
Bose Gas in One Dimension, Phys. Rev. Lett. 109, 115304
(2012).

[12] H. Castella, X. Zotos, and P. Prelovšek, Integrability and
Ideal Conductance at Finite Temperatures, Phys. Rev. Lett.
74, 972 (1995).

[13] J. Sirker, R. G. Pereira, and I. Affleck, Diffusion and
Ballistic Transport in One-Dimensional Quantum Systems,
Phys. Rev. Lett. 103, 216602 (2009).

[14] D. Rossini, A. Silva, G. Mussardo, and G. E. Santoro,
Effective Thermal Dynamics Following a Quantum Quench
in a Spin Chain, Phys. Rev. Lett. 102, 127204 (2009).

[15] T. Prosen, Open XXZ Spin Chain: Nonequilibrium Steady
State and a Strict Bound on Ballistic Transport, Phys. Rev.
Lett. 106, 217206 (2011).

[16] P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum
Quench in the Transverse-Field Ising Chain, Phys. Rev.
Lett. 106, 227203 (2011).

[17] P. Calabrese, F. H. L. Essler, andM. Fagotti,QuantumQuench
in the TransverseField IsingChain I: TimeEvolution ofOrder
Parameter Correlators, J. Stat. Mech. (2012) P07016.

[18] P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum
Quench in the Transverse Field Ising Chain II: Stationary
State Properties, J. Stat. Mech. (2012) P07022.

[19] M. Collura, S. Sotiriadis, and P. Calabrese, Equilibration of
a Tonks-Girardeau Gas Following a Trap Release, Phys.
Rev. Lett. 110, 245301 (2013).

[20] M. Collura, S. Sotiriadis, and P. Calabrese, Quench
Dynamics of a Tonks-Girardeau Gas Released from a
Harmonic Trap, J. Stat. Mech. (2013) P09025.

GLIMMERS OF A QUANTUM KAM THEOREM: INSIGHTS … PHYS. REV. X 5, 041043 (2015)

041043-19

http://dx.doi.org/10.1007/BFb0021737
http://dx.doi.org/10.1088/1367-2630/12/5/055015
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1103/PhysRevLett.109.175301
http://dx.doi.org/10.1103/PhysRevLett.109.175301
http://dx.doi.org/10.1103/PhysRevA.89.033601
http://dx.doi.org/10.1103/PhysRevB.88.205131
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevLett.74.972
http://dx.doi.org/10.1103/PhysRevLett.74.972
http://dx.doi.org/10.1103/PhysRevLett.103.216602
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevLett.106.217206
http://dx.doi.org/10.1103/PhysRevLett.106.217206
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1088/1742-5468/2012/07/P07016
http://dx.doi.org/10.1088/1742-5468/2012/07/P07022
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1088/1742-5468/2013/09/P09025


[21] B. Wouters, M. Brockmann, J. De Nardis, D. Fioretto,
M. Rigol, and J.-S. Caux, Quenching the Anisotropic
Heisenberg Chain: Exact Solution and Generalized Gibbs
Ensemble, Phys. Rev. Lett. 113, 117202 (2014).

[22] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos,
G. Zaránd, and G. Takács, Correlations After Quantum
Quenches in the XXZ Spin Chain: Failure of the General-
ized Gibbs Ensemble, Phys. Rev. Lett. 113, 117203 (2014).

[23] G. Goldstein and N. Andrei, Failure of the GGE Hypothesis
for Integrable Models with Bound States, Phys. Rev. A 90,
043625 (2014).

[24] M. Mestyan, B. Pozsgay, G. Takacs, and M. A. Werner,
Quenching the XXZ Spin Chain: Quench Action Approach
Versus Generalized Gibbs Ensemble, arXiv:1412.4787.

[25] B. Pozsgay, Failure of the Generalized Eigenstate
Thermalization Hypothesis in Integrable Models with
Multiple Particle Species, arXiv:1406.4613.

[26] S. Sotiriadis, G. Takacs, and G. Mussardo, Boundary State
in an Integrable Quantum Field Theory out of Equilibrium,
Phys. Lett. B 734, 52(2014).

[27] F. H. L. Essler, G. Mussardo, and M. Panfil, Generalized
Gibbs Ensembles for Quantum Field Theories, Phys. Rev. A
91, 051602 (2015).

[28] E. Ilievski, M. Medenjak, and T. Prosen, Quasilocal
Conserved Operators in Isotropic Heisenberg Spin 1=2
Chain, Phys. Rev. Lett. 114, 140601 (2015).

[29] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L.
Essler, and T. Prosen, Complete Generalized Gibbs Ensem-
ble in an Interacting Theory, arXiv:1507.02993.

[30] T. Kinoshita, T. Wenger, and D. S. Weiss, A Quantum
Newton’s Cradle, Nature (London) 440, 900 (2006).

[31] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, and
J. Schmiedmayer, Relaxation and Pre-thermalization in an
Isolated Quantum System, Science 337, 1318 (2012).

[32] D. Adu Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer,
R. Geiger, T. Kitagawa, I. Mazets, E. Demler, and J.
Schmiedmayer, Prethermalization Revealed by the Relax-
ation Dynamics of Full Distribution Functions, New J.
Phys. 15, 075011 (2013).

[33] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann,
M. Gröbner, and H.-C. Nägerl, Interaction-Induced Quan-
tum Phase Revivals and Evidence for the Transition to the
Quantum Chaotic Regime in 1D Atomic Bloch Oscillations,
Phys. Rev. Lett. 112, 193003 (2014).

[34] D. Basko, I. Aleiner, and B. Altshuler, Metal-Insulator
Transition in a Weakly Interacting Many-Electron
System with Localized Single-Particle States, Ann. Phys.
(Amsterdam) 321, 1126 (2006).

[35] V. Oganesyan and D. A. Huse, Localization of Interacting
Fermions at High Temperature, Phys. Rev. B 75, 155111
(2007).

[36] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[37] J. Z. Imbrie, On Many-Body Localization for Quantum Spin
Chains, arXiv:1403.7837.

[38] M. V. Berry and M. Tabor, Level Clustering in the Regular
Spectrum, Proc. R. Soc. A 356, 375 (1977).

[39] G. P. Brandino, R. M. Konik, and G. Mussardo, Energy
Level Distribution of Perturbed Conformal Field Theories,
J. Stat. Mech. (2010) P07013.

[40] M. Rigol, Breakdown of Thermalization in Finite One-
Dimensional Systems, Phys. Rev. Lett. 103, 100403 (2009).

[41] M. Rigol, Quantum Quenches and Thermalization in One-
Dimensional Fermionic Systems, Phys. Rev. A 80, 053607
(2009).

[42] I. C. Percival, Regular and Irregular Spectra, J. Phys. B 6,
L229 (1973).

[43] M. V. Berry, Regular and Irregular Semiclassical Wave-
functions, J. Phys. A 10, 2083 (1977).

[44] A. Voros, Stochastic Behavior in Classical and Quantum
Hamiltonian Systems (Springer, Berlin, 1979).

[45] J. Berges, S. Borsányi, and C. Wetterich, Prethermalization,
Phys. Rev. Lett. 93, 142002 (2004).

[46] M. Moeckel and S. Kehrein, Interaction Quench in the
Hubbard Model, Phys. Rev. Lett. 100, 175702 (2008).

[47] M. Moeckel and S. Kehrein, Crossover from Adiabatic to
Sudden Interaction Quenches in the Hubbard Model:
Prethermalization and Nonequilibrium Dynamics, New J.
Phys. 12, 055016 (2010).

[48] M. Kollar, F. A. Wolf, and M. Eckstein, Generalized Gibbs
Ensemble Prediction of Prethermalization Plateaus and
Their Relation to Nonthermal Steady States in Integrable
Systems, Phys. Rev. B 84, 054304 (2011).

[49] F. H. L. Essler, S. Kehrein, S. R. Manmana, and N. J.
Robinson, Quench Dynamics in a Model with Tuneable
Integrability Breaking, Phys. Rev. B 89, 165104
(2014).

[50] B. Bertini, F. H. L. Essler, S. Groha, and N. J. Robinson,
Prethermalization and Thermalization in Models with Weak
Integrability Breaking, arXiv:1506.02994.

[51] M. Fagotti, On Conservation Laws, Relaxation and
Pre-relaxation After a Quantum Quench, J. Stat. Mech.
(2014) P03016.

[52] B. Bertini and M. Fagotti, Pre-relaxation in Weakly Inter-
acting Models, J. Stat. Mech. (2015) P07012.

[53] M. Fagotti and M. Collura, Universal Prethermalization
Dynamics of Entanglement Entropies After a Global
Quench, arXiv:1507.02678.

[54] N. Nekhoroshev, Behavior of Hamiltonian Systems Close to
Integrable, Funct. Anal. Appl. 5, 338 (1971).

[55] J. Pöschel, On Nekhoroshev’s Estimate for Quasi-convex
Hamiltonians, Math. Z. 213, 187 (1993).

[56] E. H. Lieb and W. Liniger, Exact Analysis of an Interacting
Bose Gas. I. The General Solution and the Ground State,
Phys. Rev. 130, 1605 (1963).

[57] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, One Dimensional Bosons: From Condensed Matter
Systems toUltracoldGases, Rev.Mod. Phys. 83, 1405 (2011).

[58] R. M. Konik and Y. Adamov, Numerical Renormalization
Group for Continuum One-Dimensional Systems, Phys.
Rev. Lett. 98, 147205 (2007).

[59] R. M. Konik, Exciton Hierarchies in Gapped Carbon
Nanotubes, Phys. Rev. Lett. 106, 136805 (2011).

[60] J.-S. Caux, Correlation Functions of Integrable Models: A
Description of the ABACUS Algorithm, J. Math. Phys.
(N.Y.) 50, 095214 (2009).

G. P. BRANDINO, J.-S. CAUX, and R. M. KONIK PHYS. REV. X 5, 041043 (2015)

041043-20

http://dx.doi.org/10.1103/PhysRevLett.113.117202
http://dx.doi.org/10.1103/PhysRevLett.113.117203
http://dx.doi.org/10.1103/PhysRevA.90.043625
http://dx.doi.org/10.1103/PhysRevA.90.043625
http://arXiv.org/abs/1412.4787
http://arXiv.org/abs/1406.4613
http://dx.doi.org/10.1016/j.physletb.2014.04.058
http://dx.doi.org/10.1103/PhysRevA.91.051602
http://dx.doi.org/10.1103/PhysRevA.91.051602
http://dx.doi.org/10.1103/PhysRevLett.114.140601
http://arXiv.org/abs/1507.02993
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1088/1367-2630/15/7/075011
http://dx.doi.org/10.1088/1367-2630/15/7/075011
http://dx.doi.org/10.1103/PhysRevLett.112.193003
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://arXiv.org/abs/1403.7837
http://dx.doi.org/10.1098/rspa.1977.0140
http://dx.doi.org/10.1088/1742-5468/2010/07/P07013
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.80.053607
http://dx.doi.org/10.1103/PhysRevA.80.053607
http://dx.doi.org/10.1088/0022-3700/6/9/002
http://dx.doi.org/10.1088/0022-3700/6/9/002
http://dx.doi.org/10.1088/0305-4470/10/12/016
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1088/1367-2630/12/5/055016
http://dx.doi.org/10.1088/1367-2630/12/5/055016
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://arXiv.org/abs/1506.02994
http://dx.doi.org/10.1088/1742-5468/2014/03/P03016
http://dx.doi.org/10.1088/1742-5468/2014/03/P03016
http://dx.doi.org/10.1088/1742-5468/2015/07/P07012
http://arXiv.org/abs/1507.02678
http://dx.doi.org/10.1007/BF01086753
http://dx.doi.org/10.1007/BF03025718
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/PhysRevLett.98.147205
http://dx.doi.org/10.1103/PhysRevLett.98.147205
http://dx.doi.org/10.1103/PhysRevLett.106.136805
http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1063/1.3216474


[61] J.-S. Caux, Correlation Functions of Integrable Models:
A Description of the ABACUS Algorithm, J. Math. Phys.
(N.Y.) 50, 095214 (2009).

[62] V. P. Yurov and A. B. Zamolodchikov, Truncated
Conformal Space Approach to Scaling Lee-Yang Model,
Int. J. Mod. Phys. A 05, 3221 (1990).

[63] V. P. Yurov and Al. B. Zamolodchikov, Truncated
Fermionic Space Approach to the Critical 2-D Ising
Model with Magnetic Field, Int. J. Mod. Phys. A 06,
4557 (1991).

[64] B. Davies and V. E. Korepin, Higher Conservation Laws for
the Quantum Non-linear Schroedinger Equation, arXiv:
1109.6604.

[65] We have not made a systematic study of how the coefficients
ai forming the linear combination depend on NQ, the
number of charges forming the effective charge. Ideally,
one would want the ai to be more heavily weighted for i
small so as to build a more local effective charge. Our
minimization procedure by which the ai’s are constructed
does not necessarily ensure this. However, in a future work,
we plan to look at a weighted minimization scheme for the
fixing of the ai’s that take into account a desire for locality.
Nonetheless, we do point out that the charges we construct
here, even without controlling explicitly for locality, do
control long time dynamics as evidenced in Sec. IVA.

[66] V. A. Yurovksy and M. Olshanii, Memory of the Initial
Conditions in an Incompletely Chaotic Quantum System:
Universal Predictions with Application to Cold Atoms,
Phys. Rev. Lett. 106, 025303 (2011).

[67] M. Olshanii, K. Jacobs, M. Rigol, V. Dunjko, H. Kennard,
and V. A. Yurovsky, An Exactly Solvable Model for the
Integrability-Chaos Transition in Rough Quantum Bil-
liards, Nat. Commun. 3, 641 (2012).

[68] Even though the parabolic potential mixes states with
different momenta more strongly than a cosine potential,
it does not strongly connect the low- and high-energy parts
of the unperturbed Lieb-Liniger eigenspace.

[69] L. F. Santos and M. Rigol, Onset of Quantum Chaos in
One-Dimensional Bosonic and Fermionic Systems and
Its Relation to Thermalization, Phys. Rev. E 81, 036206
(2010).

[70] L. F. Santos and M. Rigol, Localization and the Effects of
Symmetries in the Thermalization Properties of 1D Quan-
tum Systems, Phys. Rev. E 82, 031130 (2010).

[71] P. Mazur, Non-ergodicity of Phase Functions in Certain
Systems, Physica (Amsterdam) 43, 533 (1969).

[72] M. Suzuki, Ergodicity, Constants of Motion, and Bounds
for Susceptibilities, Physica (Amsterdam) 51, 277 (1971).

[73] See also M. Mierzejewski, T. Prosen, and P. Prelovsek,
Approximate Conservation Laws in Perturbed Integrable
Lattice Models, arXiv:1508.06385, where approximate
conserved charges in models with weak integrability break-
ing are deployed in the context of Mazur’s inequality.

[74] M. Olshanii, Geometry of Quantum Observables and
Thermodynamics of Small Systems, Phys. Rev. Lett. 114,
060401 (2015).

[75] K.Wilson, The Renormalization Group: Critical Phenomena
and the Kondo Problem, Rev. Mod. Phys. 47, 773 (1975).

[76] N. Nekhoroshev, Calculation of Scalar Products of Wave
Functions and Form-Factors in the Framework of the
Algebraic Bethe Ansatz, Theor. Math. Phys. 79, 502 (1989).

[77] N. A. Slavnov, Nonequal-Time Current Correlation Func-
tion in a One-Dimensional Bose Gas, Theor. Math. Phys.
82, 273 (1990).

[78] J.-S. Caux, P. Calabrese, and N. Slavnov, One-Particle
Dynamical Correlations in the One-Dimensional Bose Gas,
J. Stat. Mech. (2007) P01008.

[79] J.-S. Caux and P. Calabrese, Correlation Functions of the
One-Dimensional Attractive Bose Gas, Phys. Rev. A 74,
031605 (2006).

[80] S. R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863
(1992).

[81] S. R. White, Density-Matrix Algorithms for Quantum
Renormalization Groups, Phys. Rev. B 48, 10345
(1993).

[82] M. Khodas, M. Pustilnik, A. Kamenev, and L. I. Glazman,
Dynamics of Excitations in a One-Dimensional Bose Liquid,
Phys. Rev. Lett. 99, 110405 (2007).

[83] L. Tonks, The Complete Equation of State of One, Two and
Three-Dimensional Gases of Hard Elastic Spheres, Phys.
Rev. 50, 955 (1936).

[84] M. D. Girardeau, Relationship between Systems of
Impenetrable Bosons and Fermions in One Dimension,
J. Math. Phys. (N.Y.) 1, 516 (1960).

[85] Even in the Tonk-Girardeau limit, the wave functions of the
bosonic and of the fermionic system are not the same, but
they are connected by

ψBðx1;…; xNÞ ¼ jψFðx1;…; xNÞj:

The two wave functions coincide in one of the sectors, say,
x1 < x2;…; < xN , but differ by their symmetry with respect
to the permutation of particles coordinates. While some
observables are sensitive to this difference (for example, the
momentum distribution), the density operator (which we
will be interested in later for computing the profile of the gas
in the potential) does not permute particles; its matrix
elements between any two many-body eigenstates of HB
are identical to those evaluated with the corresponding dual
eigenstates of HF.

[86] Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of
Standards, Applied Mathematics Series No. 55, 10th ed.,
edited by M. Abramowitz and I. Stegun (U.S. Govt. Printing
Office, Washington, D.C., 1972), p. 721.

GLIMMERS OF A QUANTUM KAM THEOREM: INSIGHTS … PHYS. REV. X 5, 041043 (2015)

041043-21

http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1142/S0217751X9000218X
http://dx.doi.org/10.1142/S0217751X91002161
http://dx.doi.org/10.1142/S0217751X91002161
http://arXiv.org/abs/1109.6604
http://arXiv.org/abs/1109.6604
http://dx.doi.org/10.1103/PhysRevLett.106.025303
http://dx.doi.org/10.1038/ncomms1653
http://dx.doi.org/10.1103/PhysRevE.81.036206
http://dx.doi.org/10.1103/PhysRevE.81.036206
http://dx.doi.org/10.1103/PhysRevE.82.031130
http://dx.doi.org/10.1016/0031-8914(69)90185-2
http://dx.doi.org/10.1016/0031-8914(71)90226-6
http://arXiv.org/abs/1508.06385
http://dx.doi.org/10.1103/PhysRevLett.114.060401
http://dx.doi.org/10.1103/PhysRevLett.114.060401
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1088/1742-5468/2007/01/P01008
http://dx.doi.org/10.1103/PhysRevA.74.031605
http://dx.doi.org/10.1103/PhysRevA.74.031605
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevLett.99.110405
http://dx.doi.org/10.1103/PhysRev.50.955
http://dx.doi.org/10.1103/PhysRev.50.955
http://dx.doi.org/10.1063/1.1703687

