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The problem of low Reynolds number turbulence in active nematic fluids is theoretically addressed.
Using numerical simulations, I demonstrate that an incompressible turbulent flow, in two-dimensional
active nematics, consists of an ensemble of vortices whose areas are exponentially distributed within a
range of scales. Building on this evidence, I construct a mean-field theory of active turbulence by which
several measurable quantities, including the spectral densities and the correlation functions, can be
analytically calculated. Because of the profound connection between the flow geometry and the topological
properties of the nematic director, the theory sheds light on the mechanisms leading to the proliferation of
topological defects in active nematics and provides a number of testable predictions. A hypothesis, inspired
by Onsager’s statistical hydrodynamics, is finally introduced to account for the equilibrium probability
distribution of the vortex sizes.
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I. INTRODUCTION

The paradigm of “active matter” [1–3] has had notable
successes over the past decade in describing self-
organization in a surprisingly broad class of biological
and bioinspired systems: from flocks of starlings [4,5] to
robots [6], down to bacterial colonies [7–11], motile
colloids [12,13], and the cell cytoskeleton [14–16].
Active systems are generic nonequilibrium assemblies of
anisotropic components that are able to convert stored or
ambient energy into motion. Because of the interplay
between internal activity and the interactions between
the constituents, these systems exhibit a spectacular variety
of collective behaviors that are entirely self-driven and do
not require a central control mechanism.
A particularly interesting manifestation of collective

behavior in active systems is the emergence of spatiotem-
poral chaos. In active biofluids, such as bacterial suspen-
sions or cytoskeletal mixtures, the chaotic dynamics takes
place through the formation of structures, such as jets or
swirls, reminiscent of turbulence in Newtonian fluids, in
spite of the undisputed predominance of dissipation over
inertia at the microscopic scale. Examples of low Reynolds
number turbulence in active fluids were first reported for
the case of bacterial suspensions [7–11], where this is
believed to have an important impact on nutrient mixing
and molecular transport at the microbiological scale.
Recently, a series of remarkable experiments on acto-

myosin motility assays [17] and suspensions of microtuble
bundles and kinesin [18,19] [see Fig. 1(a)] have unveiled a

profound link between the topological structure of the
orientationally ordered constituents and the flow dynamics,
suggesting that active turbulence could be mediated by
unbound pairs of topological defects. According to this
picture, the strong distortion associated with a defect,
fueled by the active stresses, determines a local shear flow
which in turn drives the unbinding of more defect pairs.
Similar patterns have been observed in “living liquid
crystals” obtained from the combination of swimming
bacteria and lyotropic liquid crystals [20]. Whether these
examples of active turbulence are different realizations of
the same universal mechanism or substantially different
forms of spatiotemporal chaos represents a profound and
yet unsolved problem.
The current efforts toward understanding active turbu-

lence rely on the use of continuum models, such as the
Toner-Tu or Swift-Hohenberg model [10,11] or the equa-
tions of active nematodynamics [21–25]. Both of these
approaches have been shown to be able to account for the
occurrence of self-sustained low Reynolds number turbu-
lence such as that observed in the experiments on bacteria
and cytoskeletal fluids, although a systematic comparison
between theory and experiments is still in its infancy.
The recent numerical work by Thampi et al. [21–23], in
particular, has provided a convincing demonstration of the
correlation between defects dynamics and turbulence in
active nematics. The interplay between defects and turbu-
lence has been further investigated in Refs. [24,25] and,
following a different approach, in Ref. [26]. Agent-based
simulations have also been recently employed to highlight
the interplay between defects and dynamics in granular
active nematics [27]. The overlap between these “dry”
systems and active liquid crystals remains, however,
unclear.
In this article, I report an exhaustive numerical study

of turbulence in active nematics. As a starting point, I
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demonstrate that, as for inertial turbulence, low Reynolds
number turbulence in active nematics is, in fact, a multi-
scale phenomenon characterized by the formation of
vortices spanning a range of length scales. Within this
active range, the areas of the vortices are exponentially
distributed, while their vorticity is approximately constant.
Building on these observations, I then formulate a mean-
field theory of turbulence in active nematics that allows
the analytical calculation of several measurable quantities,
including the mean kinetic energy and enstrophy, their
corresponding spectral densities, and the velocity and
vorticity correlation functions. The connection between
the topological structure of the nematic phase and the
geometry of the flow is then elucidated through a quanti-
tative description of the defect statistics.

II. RESULTS

A. Active nematdynamics

Let us consider an incompressible uniaxial active
nematic liquid crystal in two spatial dimensions. The two-
dimensional setting is appropriate to describe experiments,

such as that by Sanchez et al. [18], where the microtubule
bundles are confined to awater-oil interface forming a dense
active nematicmonolayer, but is also of considerable interest
in its own right. Let then ρ and v be the density and velocity
of an incompressible nematic fluid. Incompressibility
requires ∇ · v ¼ 0. Nematic order is described by the
alignment tensorQij ¼ Sðninj − δij=2Þ, with n the director
and 0 ≤ S ≤ 1 the nematic order parameter. The tensor Qij
is by construction traceless and symmetric and has only
two independent components in two dimensions. The
hydrodynamic equations of an active nematic can be
constructed from phenomenological arguments [14,28,29]
or derived from microscopic models [30,31] in the form

ρ
Dvi
Dt

¼ η∇2vi − ∂ipþ ∂jσij; ð1aÞ

DQij

Dt
¼ λSuij þQikωkj − ωikQkj þ γ−1Hij: ð1bÞ

Here, D=Dt ¼ ∂t þ v ·∇ indicates the material derivative,
p is the pressure, η the shear viscosity, λ the flow alignment
parameter, and γ the rotational viscosity [32]. In Eq. (1b),
uij ¼ ð∂ivj þ ∂jviÞ=2 and ωij ¼ ð∂ivj − ∂jviÞ=2 are the
strain rate and vorticity tensors corresponding to the
symmetric and antisymmetric parts of the velocity gradient,
whileHij ¼ −δFLdG=δQij is the so-calledmolecular tensor,
governing the relaxational dynamics of the nematic phase
and obtained from the two-dimensional Landau–de Gennes
free energy [32]:

FLdG ¼ 1

2

Z
d2r½Kj∇Qj2 þ CtrQ2ðtrQ2 − 1Þ�; ð2Þ

with K and C material constants. Finally, the stress tensor
σij ¼ σeij þ σaij is the sum of the elastic stress
σeij ¼ −λHij þQikHkj −HikQkj, due to the entropic elas-
ticity of the nematic phase, and an active contribution
σaij ¼ αQij describing the contractile ðα > 0Þ and extensile
ðα < 0Þ stresses exerted by the active particles in the
direction of the director field. The Ericksen stress,
σEij ¼ −∂iQklδFLdG=δð∂jQklÞ, has been neglected because
of higher order in the derivatives ofQij compared to σeij. This
simplification is known not to have appreciable conse-
quences in the fluid mechanics of two-dimensional active
nematics [28,29].
Equations 1(a) and 1(b) have been numerically inte-

grated in a square domain of size L with periodic boundary
conditions (see the movie in the Supplemental Material
[33]). To render the equations dimensionless, all the
variables have been normalized by the typical scales
associated with the viscous flow. Distances are then scaled
by the system size L, time by the time scale of viscous
dissipation τ ¼ ρL2=η, and stress by the viscous stress
scale Σ ¼ η=τ. Finally, low Reynolds number is imposed
by setting Dvi=Dt ¼ ∂tvi in Eq. (1a). The integration

(a) (b)

(c) (d)

FIG. 1. (a) A two-dimensional active nematic suspension of
microtubule bundles and kinesin at the water-oil interface. The
white scale bar corresponds to 100 μm (courtesy of the Dogic
Lab). (b)–(d) Numerical simulations of an extensile active
nematic obtained from an integration of Eq. (1). (b) Flow velocity
(black streamlines) and vorticity (background color). (c) Schlieren
texture constructed from the director field n. The red and blue
dots mark, respectively, the þ1=2 and −1=2 disclinations.
(d) Clockwise rotating (blue) and counterclockwise rotating
(red) vortices, detected by measuring the Okubo-Weiss field as
described in the text.
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is performed by finite differences on a square grid of
256 × 256 points via a fourth-order Runge-Kutta method.
To make contact with the recent and ongoing experiments
on microtubule suspensions [18,19], I restrict the discus-
sion to the case of extensile systems (α < 0). The con-
tractile case was found to be nearly identical and is briefly
described in Appendix D. Unless stated otherwise, the
parameter values used in the numerical simulations are
λ ¼ 0.1, K ¼ 1, γ ¼ 10, and C ¼ 4 × 104, in the previ-
ously described units.

B. Active range

Equations 1(a) and 1(b) contain two important length
scales, in addition to the system size L. These are the
coherence length of the nematic phase ln ¼

ffiffiffiffiffiffiffiffiffiffi
K=C

p
and

the active length scale la ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=jαjp

. The former deter-
mines how quickly the nematic order parameter drops in
the neighborhood of a topological defect and can be taken
as a measure of the defect core radius. The quantity la, on
the other hand, is the length scale over which active and
passive stresses balance, leading to spontaneous elastic
distortion and hydrodynamic flow [22,23,25]. As a con-
sequence, a quiescent uniformly oriented configuration
becomes unstable to a laminar flowing state once la ∼ L
[15,28,29,34]. As la becomes lower than the system size L,
the laminar flow is eventually replaced by a turbulent flow.
Depending on the values of the various parameters in
Eq. (1), the onset of turbulence can be characterized by the
formation of “walls,” narrow regions where the director is
highly distorted, and their breakup into pairs of �1=2
disclinations [21,25]. The number of unbound defects
increases with activity until saturation when la ≈ ln, as
the reduction of the nematic order parameter due to the
defects compensates the activity increase [25]. Here, we
overlook the problem of the onset and focus on the regime
where turbulence is fully developed, but still far from
saturation: thus, ln ≪ la ≪ L.
Experimentally, la depends on the microscopic details

of the system as well as the abundance of the biochemical
fuel powering the active stresses. For instance, in the
microtuble-kinesin suspension shown in Fig. 1(a), la ≈
100 μm (i.e., the typical length scale associated with
bending deformations), while the microtubles themselves
(hence, ln) are approximatively 1.5 μm in length [18].
Similar la values have been probed in experiments with
actomyosin motility assays, using filaments of approxima-
tively 5 μm in length [17]. The latter is also the typical
length of the Bacillus subtilis cells used in Ref. [10] to
investigate bacterial turbulence, while in this case
la ≈ 10 μm, which is, thus, much closer to the lower
bound of the range of length scales analyzed here.
Figure 1(b) shows the typical structure of the turbulent

flow arising from Eq. (1) for large (negative) values of the
active stress α. The velocity field appears to be decomposed

in vortices of various sizes and shapes, while the director
field is highly distorted by the presence of several �1=2
disclination pairs [Fig. 1(c)].
In order to demonstrate the multiscale structure of the

flow, I measure the distribution of the vortex area. Calling a
the area of a vortex, this can be described by a density
function nðaÞ, such that dN ¼ danðaÞ is the total number
of vortices of area in between a and aþ da. The area of a
vortex can be measured from the numerical data by
introducing the so-called Okubo-Weiss field [35,36]
Q ¼ ð∂2

xyψÞ2 − ð∂2
xψÞð∂2

yψÞ, with ψ the stream function,
such that vx ¼ ∂yψ and vy ¼ −∂xψ . The quantity Q is
related to the Lyapunov exponent of a tracer particle
advected by the flow: where Q > 0, the distance between
two initially close particles will diverge exponentially in
time, while for Q < 0, the trajectories will remain close.
Thus, coherent regions in the flow are defined as regions in
whichQ < 0 [35]. The Okubo-Weiss field has been widely
used for analyzing atmospheric and oceanic circulations
and realized as an important quantity to characterize two-
dimensional flows [37,38]. To identify the vortex cores, on
the other hand, one can calculate the angle the velocity field
rotates in one loop around each cell of the computational
grid [39]. If the cell contains the core of a vortex, this angle
is equal to 2π, regardless of whether the vortex is left- or
right-handed. The combination of these two criteria allows
us to formulate the following vortex detection algorithm:
(1) from the velocity field v, the cores of the vortices are
initially located, (2) the area of a vortex is then defined as
the area of the region surrounding a vortex core where
Q < 0. Figure 1(d) shows the vortices detected by this
method.
Figure 2 shows the density function nðaÞ versus the

vortex area a obtained from a numerical integration of
Eq. (1). The data show a prominent exponential distribution
of the form:

nðaÞ ¼ N
Z
expð−a=a�Þ; amin < a < amax; ð3Þ

where amin and amax ∼ L2 are, respectively, the minimal
and maximal area of an active vortex and a� is a suitable
scale parameter. By analogy with the inertial range in
classic turbulence, hereafter, we refer to this range as the
active range. Here, by active vortex we mean a vortex
resulting directly from mechanical work performed by the
active stresses. Beside active vortices, other vortices might
form due to the strong shear in the space between active
vortices. These secondary vortices are expected to lie
outside the active range, thus, where a < amin. The quan-
tities N ¼ R

amax
amin

danðaÞ and Z ¼ R
amax
amin

da expð−a=a�Þ in
Eq. (3) represent, respectively, the total number of active
vortices and a normalization constant. In the Sec. III, I
speculate about the physical origin of this exponential
distribution. The vortices’ mean vorticity ωv ¼
ð1=aÞ Rvortex d2rωðrÞ is shown in the inset of Fig. 2 as a
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function of a. Unlike nðaÞ, ωv remains roughly constant
across the scales and shows some dependence only for
large activity values, where the mean vortex size is
substantially smaller than the size of the system (see the
blue line in the inset of Fig. 2).
As activity is increased, the vortices become smaller and

faster as indicated by the dependence of amin, a�, and ωv
on α. With la the only length scale associated with
activity, intuitively one could expect that amin ≈ a� ∼ l2

a.
Analogously, the balance of active and viscous stresses
over the scale of a vortex suggests that ωv ∼ α=η. These
expectations are confirmed from the numerical data shown
in Fig. 3.
It is useful to recall that the microtubules-kinesin

suspensions studied in Refs. [18,19] consist of an active
nematic monolayer at the interface of a three-dimensional

bulk fluid. As was investigated in a classic paper by Stone
and Ajdari [40], the frictional damping exerted by the
surrounding fluid dissipates momentum through a force of
the form f fri ¼ −ξv in Eq. (1a). Such a frictional interaction
removes kinetic energy from the flow at scales lfri ¼

ffiffiffiffiffiffiffi
η=ξ

p
and is expected to have no effect on the global properties of
the flow as long as lfri ≫ la.

C. Statistical geometry of the flow

The multiscale organization and the exponential distri-
bution of the vortex areas have striking consequences on
the overall statistical properties of the flow. From a gross
application of the central limit theorem, we could expect
the velocity components to be Gaussianly distributed. The
numerical data shown in Fig. 4(a) support this expectation.
As in classic high Reynolds number turbulence, on the
other hand, vorticity and, in general, any function of the
velocity gradients do not obey the Gaussian distribution
due to the spatial correlation introduced by the derivatives
[41]. In this particular case, the vorticity probability density
function (PDF) exhibits a visible deviation from
Gaussianity along the tails [see Fig. 4(c).
Figures 4(c) and 4(d) show the normalized velocity

and vorticity correlation functions: CvvðrÞ ¼ hvð0Þ ·
vðrÞi=hjv2ð0Þji and CωωðrÞ ¼ hωð0ÞωðrÞi=hω2ð0Þi, where
the angular brackets hi indicate an average over space and
time. These quantities have played a central role in the
study of active turbulence starting from the experimental
work by Sanchez et al. [18]. In the latter work, it was
argued that, after rescaling by the mean-squared value, the
correlation functions no longer depend on activity, sug-
gesting that the underlying geometrical structure of the

FIG. 2. Number of vortices nðaÞΔa (with Δa=L2¼1.5×10−5)
with area in between a and Δa as a function of a, obtained, in
extensile systems, from a numerical integration of Eq. (1) for
various α values. The shaded regions surrounding the curves
correspond to the statistical error obtained from five simulations
with different (disordered) initial conditions. The data show a
prominent exponential distribution in the range amin < a < L,
with amin the area of the smallest active vortex. Inset: Average
vorticity of an individual vortex as a function of its area.

(a) (b)

FIG. 3. (a) The areas amin (red tones) and a� (blue tones)
appearing in the vortex probability distribution Eq. (3) for various
activity and Frank constant K values. The collapse of the data
demonstrates that amin ≈ a� ∼ l2

a. (b) Vortices’ mean vorticity ωv
versus activity for various K values. As expected, ωv grows
linearly with activity, with a prefactor weakly dependent on the
Frank constant.

(a) (b)

(c) (d)

FIG. 4. Probability distribution function of the velocity com-
ponents (a) and vorticity (b). All of the data are normalized
by their corresponding standard deviation. The black solid
line represents a unit-variance Gaussian function: fðxÞ ¼
1=

ffiffiffiffiffi
2π

p
expð−x2=2Þ. Velocity (c) and vorticity (d) correlation

functions (CF) for various activity values. The distance is
normalized by rmax ¼

ffiffiffi
2

p
=2L, corresponding to the maximal

distance between two points on a periodic square of size L.
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flow is due to a passive mechanism, while activity controls
only the flow average speed. This scenario found support in
the numerical work of Thampi et al. [21], who also
provided an elegant interpretation based on the creation
and annihilation dynamics of topological defects. The
numerical data shown in Fig. 4, combined with that
reported in the previous section, demonstrate that the
geometrical structure of the flow does in fact depend on
activity through the active length scale la. Such a depend-
ence, which is clearly marked by the intersection of the
curves in Figs. 4(c) and 4(d), is, however, subtle and could
have been missed before due to the limited activity range
explored. An analytical approximation of the correlation
functions CvvðrÞ and CωωðrÞ is given in Appendix C.
Togain further insight abouthowactivity affects the flow, I

measure the average kinetic energy hv2i=2 and enstrophy
hω2i=2perunit area forvaryingαvalues [Figs.5(a) and5(b)].
These exhibit, respectively, a clear linear and quadratic
dependence on activity. These scaling properties can be
straightforwardly understood from the geometrical picture
previously described. As the vorticity is decomposed in
a discrete number of vortices having ωv ≈ α=η, the total
enstrophy can be expressed as

Ωtot ¼
1

2

Z
d2rω2ðrÞ ¼ 1

2

Z
danðaÞaω2

v ¼
1

2
Nāω2

v;

where N is the total number of vortices and ð·Þ ¼R
danðaÞð·Þ=N indicates thevortexensemble average. Thus,

1

2
hω2i ¼ Ωtot

L2
≈ ω2

v ∼ α2; ð4Þ

where we use the fact that ā ≈ L2=N. Analogously, the
total kinetic energy of a single vortex is given by
EvðaÞ ≈ 1=ð16πÞω2

va2, with the approximation becoming

an equality in the case of a circular vortex. Averaging over

the vortex ensemble thus gives Etot ¼ 1=ð16πÞω2
vNa2, from

which

1

2
hv2i ≈ ω2

v
a2

ā
∼ α: ð5Þ

While changing the resolution of the vortex ensemble,
activity does not affect the spectral structure of the flow.
Figures 5(c) and 5(d) show the enstrophy ΩðkÞ and energy
EðkÞ ¼ ΩðkÞ=k2 spectra [41] for various activity values.
Analogously to what is observed in bacterial turbulence
[10], the spectra are nonmonotonic with a peak around
ka ¼ 2π=la dividing the growing regime at small k values
from the decay regime at large k values. In the latter regime,
the data show a clear power-law decay withΩðkÞ ∼ k−2 and
EðkÞ ∼ k−4. In the next section, we illustrate the origin of
these exponents in a mean-field framework.

D. Mean-field theory

The spectral structure of turbulence in two-dimensional
active nematics as well as short-scale velocity and vorticity
correlation can be satisfactorily described within a mean-
field approximation. This approach was introduced by
Benzi et al. [35,42] to account for the emergence of
self-similar coherent structures in two-dimensional
decaying turbulence and can be extended to the non-
self-similiar case discussed here. We consider a two-
dimensional flow whose vorticity field can be decomposed
in a discrete number of vortices of radius Ri and vorticity
ωiðrÞ ¼ ωv;ifðr=RiÞ, with r the distance from the
vortex center and ωv;i a constant. Then, ωðrÞ ¼P

iωv;ifðjr − rij=RiÞ, where ri is the position of the ith
vortex center. The power spectrum of the function ωðrÞ can
then be expressed as

jω̂ðkÞj2 ¼
X
ij

e−ik·ðri−rjÞωv;iωv;jR2
i R

2
j F̂ðkRiÞF̂ðkRjÞ; ð6Þ

where F̂ðkRÞ ¼ 1=ð2πÞ R∞
0 dξξfðξÞJ0ðκRξÞ, with J0 a

Bessel function of the first kind, is a dimensionless vortex
structure factor (see Appendix A). Now, if we neglect the
spatial correlation between the vortices, only the diagonal
terms in the sum survive upon averaging. Then,

hjωðkÞj2i ¼
X
i

ω2
v;iR

4
i F̂

2ðκRiÞ

≈
Z

dRnðRÞω2
vðRÞR4F̂2ðκRÞ; ð7Þ

where we have replaced the summation with an integral
over the vortex population. Finally, the enstrophy spectral
density can be calculated from the vorticity power spectrum
as ΩðkÞ ¼ 4π3khjωðkÞj2i (see Appendix B).

(a) (b)

(c) (d)

FIG. 5. (a) Enstrophy and (b) energy per unit area versus
activity. The data show, respectively, quadratic and linear scaling.
(c) Enstrophy and (d) energy spectra for three activity values. The
wavelength is normalized to unity at kmin ¼ 2π=L.
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Now, the distribution function nðRÞ can be obtained
from Eq. (3) upon setting a ¼ πR2, so that
nðRÞ ¼ jda=dRjnðaÞ. Note that assuming the vortices to
have circular shape is not generally correct as it is not
guaranteed that the ansatz used to parametrize the vorticity
field would hold in general. Nonetheless, based on the
existence of a single characteristic length scale la, one
could hope that both approximations would affect the
accuracy of the calculation only through irrelevant
prefactors. Next, using the fact that ωv does not depend
on R and using Eq. (3) yields, after some algebraic
manipulations,

ΩðκÞ ¼ 8π4ω2
vN

Z

�
R�

κ

�
5
Z

dξξ5e−ðξ=κÞ2F̂2ðξÞ; ð8Þ

where we set R� ¼ ffiffiffiffiffiffiffiffiffiffi
a�=π

p
∼ la and κ ¼ kR�. Now,

consistent with the previous assumption about the shape
of a vortex, we can choose fðr=RÞ ¼ 1 for r=R ≤ 1 and
fðr=RÞ ¼ 0 otherwise, then the structure factor can be
easily calculated in the form F̂ðξÞ ¼ J1ðξÞ=ð2πξÞ (see
Appendix A). Using this in Eq. (8) and extending for
simplicity the integration to the whole positive real axis
yields

ΩðκÞ ¼ Cκe−κ
2=2

�
I0

�
κ2

2

�
− I1

�
κ2

2

��
; ð9Þ

where I0 and I1 are modified Bessel functions of the first
kind [43] and C ¼ π2ω2

vNR�5=ð2ZÞ is a quantity indepen-
dent of κ. The spectral structure of the turbulent flow is
encoded in the asymptotic behavior of the function in
Eq. (9). For κ ≫ 1,ΩðκÞ ∼ κ−2 (see Appendix B), in perfect
agreement with the numerical data. The energy spectral
density can be calculated straightforwardly from ΩðκÞ; this
yields EðκÞ ∼ κ−4. For κ ≈ 0, on the other hand, Eq. (9)
yields ΩðκÞ ∼ κ and EðκÞ ∼ κ−1. These predictions are very
difficult to compare with the numerical data as they refer to
the narrow range of the spectrum (i.e., kmin < k < 10kmin,
with kmin ¼ 2π=L) preceding the crossover region.
From the spectra ΩðkÞ and EðkÞ, the correlation func-

tions CvvðrÞ and CωωðrÞ can be easily determined (see
Appendix C). Because of the mean-field approximation,
however, the accuracy of this calculation is limited to the
range 0 < r < R�, where the spatial correlation between
vortices is negligible.

E. Topological structure of active turbulence

As I mentioned in the Introduction, the geometry of the
flow field is strictly connected with the topological struc-
ture of the nematic phase [18,21–24]. As was stressed in
Ref. [25], the configuration of the nematic director in the
neighborhood of a �1=2 disclination determines the local
vortex structure (Fig. 6). Topological defects serve then as a
template for the turbulent flow, which in turn advects the

defects themselves leading to chaotic mixing. To provide a
quantitative description of the defect chaotic dynamics, I
measure the mean-squared displacement (MSD) of �1=2
disclinations as a function of time [Fig. 7(a)]. For both
positively and negatively charged defects, this shows a
substantially diffusive behavior, with a slight superdiffusive
trend in the short time dynamics ofþ1=2 disclinations, due
to the self-propulsion provided by the self-induced dipolar
flow (Fig. 6(a) and Ref. [25]).
The total number of topological defects Nd is evidently

proportional to the number of vortices. Thus,
Nd ∼ L2=ā ∼ α, consistently with what we find numeri-
cally [see Fig. 7(b)]. As already mentioned, this linear
growth in the defect population tends to saturate when the
active length scale la approaches the defects core radius,

(a) (b)

FIG. 6. The flow field generated by a þ1=2 (a) and −1=2
disclination (b). The white lines indicate the orientation of the
director field. The black arrows correspond to the flow velocity
while the background color indicates the vorticity. The flow is
obtained from an analytical solution of the incompressible Stokes
equation in the presence of a body force f� ¼ ∇ · ðαQ�Þ and Q�
the nematic tensor associated with a �1=2 disclination [25].

(a) (b)

(c) (d)

FIG. 7. (a) Mean-squared displacement ofþ1=2 (red tones) and
−1=2 (blue tones) disclinations versus time for various activity
values. Number (b), mean free path (c), and rates of creation and
annihilation (d) of �1=2 disclinations versus activity.
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proportional to ln (not shown here) [25]. Analogously, the
defect mean-free path [Fig. 7(c)] is Λ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=Nd

p
∼ 1=

ffiffiffi
α

p
.

Figure 7(d) shows the defect creating and annihilation
rates νc and νa versus activity (in units of the viscous time
scale τ). For large activity values, these exhibit a quadratic
dependence on α: νc ≈ νa ∼ α2. This behavior can be
understood by noticing that topological defects move
predominantly along the edge of the vortices at approx-
imatively constant angular velocity ωv ≈ α=η (see the
movie in the Supplemental Material [33]). During this
circulation, they might approach an oppositely charged
defect and annihilate. The elastic, Coulomb-like, attraction
between oppositely charged defects takes over only when
these have become very close to each other; thus, the
typical time scale of annihilation ta is predominantly
dictated by the active circulation: ta ∼ 1=ωv. From this,
we might expect that νa ≈ Nd=ta ∼ α2. Once turbulence
reaches a steady state, the defect’s creation and annihilation
balance; hence, νc ≈ νa.
The interplay between defects and vortices illustrated

here for two-dimensional active nematics is both remark-
able and unique, due to the asymmetric structure of semi-
integer disclinations and, simultaneously, the absence of
vortex stretching in two-dimensional fluids [41]. In three-
dimensional active nematics, for instance, disclination lines
will give rise to tubular vortices according to the same
mechanism illustrated here for the two-dimensional case.
Because of vortex stretching, however, these vortices will
tend to lengthen with a consequent redistribution of energy
toward the small scale. Whether the effect of this redis-
tribution will be only to bias the function nðaÞ toward small
a values or more dramatic is, at the moment, impossible to
predict. In active polar liquid crystals, on the other hand, the
active stress associated with aþ1 disclination does not give
rise to a flow, due to the O(2) symmetry of this configu-
ration. The proliferation of þ1 defects is then expected to
hinder turbulence rather than fueling it. While this property,
evidently, does not prevent low Reynolds number turbu-
lence from developing in active polar liquid crystals, we
can expect it to affect the statistics of the vortices and
therefore the spectral properties of the turbulent flow.

III. DISCUSSION AND CONCLUSIONS

In this article, I report a thorough numerical and analytical
investigation of low Reynolds number turbulence in two-
dimensional active nematics. Spectacular experimental real-
izations of this system are found in cytoskeletal fluids of
microtubules and kinesin at the water-oil interface [18] or
incapsulated in a lipid vesicle [19]. For large enough activity
values (corresponding to high concentrations of motors or
adenosine triphosaphate in cytoskeletal fluids), these sys-
tems are known to develop a chaotic spontaneous flow
reminiscent of turbulence in viscous fluids [see Fig. 1(a)].
Here, I demonstrate that, as for inertial turbulence, low

Reynolds number turbulence in active fluids is in fact a

multiscale phenomenon characterized by the appearance of
vortices spanning a range of length scales. Within this
active range the vortex areas follow the exponential
distribution, whose characteristic length scale la is set
by the balance between active and elastic stresses. This
peculiar geometrical structure of the flow leaves a strong
signature on all the relevant physical observables. The
mean kinetic energy, for instance, scales linearly with
activity (and not quadratically as one could have naively
expected from a comparison with the laminar case, where
v ∼ αL=η) because the vortices become smaller as activity
is increased. Furthermore, the enstrophy and energy spectra
scale as k−2 and k−4, respectively, thus in net contrast with
two-dimensional inertial turbulence [41]. The statistics
of the vortices, finally, completely determines that of the
defects (and vice versa), making possible the formulation of
various scaling relations amenable to experimental scrutiny.
While some questions have been answered in this work,

others remain open. How do energy and enstrophy flow
across the scales? In two-dimensional inertial turbulence, it
is well known that enstrophy flows toward the small scale,
where it is eventually dissipated, while energy flows toward
the large scale, where it is either dissipated by frictional
interactions with the wall or condensed in large coherent
structures [41]. In complex fluids, on the other hand, kinetic
energy can be converted into elastic energy and dissipated
or stored via mechanisms that do not require cascading.
While the existence of an active range does imply that of
energy and enstrophy flux across scales, the organization of
such a flux remains unknown.
Another important question,which I deliberately saved for

the end, concerns the origin of the exponential distribution
of the vortex areas. Perhaps the most natural explanation
appeals to the interpretation of the vortex population as an
equilibrium ensemble, subject to the laws of statistical
mechanics. This reasoning is not new in two-dimensional
turbulence, but goes back to the pioneeringworks ofOnsager
[44] and of Joyce and Montgomery [45,46] (see also
Refs. [47,48] for a review). To clarify this concept, let us
consider a system of N active vortices having the same
absolute vorticity and let ni be the number of vortices of area
ai, so that

P
ini ¼ N. A microscopic configuration is then

characterized by a set of occupancy numbers fnig∞i¼1 and, as
the vortices are indistinguishable, there are W ¼ N!=

Q
ini!

different ways to realize the samemicroscopic configuration.
In the limit of large N, corresponding to fully developed
active turbulence, W ∼ eS, where S ¼ −

R
danðaÞ log nðaÞ

is an analog of the Shannon-Gibbs entropy for the vortex
ensemble. Since the vortices all have the same vorticity, a
macroscopic state can be arguably identified by the their total
number N ¼ R

danðaÞ and area A ¼ R
danðaÞa, with

ā ¼ A=N. The most probable ðN;AÞ macrostate is that
maximizing the entropy S for fixedN andA; hence, nðaÞ ¼
N=ā expð−a=āÞ. Finally, setting ā ∼ l2

a yields an expression
equivalent to Eq. (3).
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This hypothesis is inevitably naive and yet incredibly
fascinating in suggesting an unexpected connection
between the simplest and the most complex forms of
matter.
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APPENDIX A: VORTEX FORM FACTOR

The dimensionless vortex structure factor F̂ðkRÞ, intro-
duced in the mean-field calculation, is defined from the
Fourier transform of the vorticity profile function fðr=RÞ,
where r is the distance from the vortex center. Thus,

f̂ðkÞ ¼
Z

d2r
ð2πÞ2 e

−ik·rf

�
r
R

�

¼ 1

2π

Z
∞

0

drrf

�
r
R

�
J0ðkrÞ; ðA1Þ

where J0 is a zeroth-order Bessel function of the first
kind. Now, the simplest approximation of the function f is
evidently

f
�
r
R

�
¼

�
1 r=R ≤ 1

0 r=R > 1;
ðA2Þ

representing a circular vortex of radius R. Placing this into
Eq. (A1) yields

f̂ðkÞ ¼ 1

2π

Z
R

0

drrJ0ðkrÞ ¼
R
2πk

J1ðkRÞ: ðA3Þ

The dimensionless function F̂ðkRÞ is then defined from
f̂ðkÞ ¼ R2F̂ðkRÞ; hence,

F̂ðkRÞ ¼ 1

2πkR
J1ðkRÞ: ðA4Þ

APPENDIX B: ASYMPTOTIC BEHAVIOR OF
THE SPECTRAL DENSITIES

The expression of the enstrophy spectrum, as obtained
within the mean-field approximation, is given by

ΩðκÞ ¼ Cκe−κ
2=2

�
I0

�
κ2

2

�
− I1

�
κ2

2

��
: ðB1Þ

Now, small κ limit can be easily determined by considering
that, for κ ≪ 1, I0ðκ2=2Þ ≈ expð−κ2=2Þ ≈ 1 and
I1ðκ2=2Þ ≈ 0. Therefore,

ΩðκÞ ∼ κ; κ ≪ 1: ðB2Þ

To calculate the large κ limit, we can use the following
asymptotic expansion of the modified Bessel function:

IνðxÞ ≈
exffiffiffiffiffiffiffiffi
2πx

p
�
1þ 1 − 4ν2

8x
þ � � �

�
: ðB3Þ

From this we obtain

I0

�
κ2

2

�
− I1

�
κ2

2

�
≈

eκ
2=2ffiffiffi
π

p
κ3

: ðB4Þ

The exponential term exactly cancels that in Eq. (B1),
resulting in a simple power-law behavior:

ΩðκÞ ∼ κ−2; κ ≫ 1: ðB5Þ

The asymptotic behavior of the energy spectrum follows
directly from this by virtue of the relation ΩðkÞ ¼ k2EðkÞ.

APPENDIX C: CORRELATION FUNCTIONS

The spectral densities EðkÞ and ΩðkÞ and the correlation
functions hvð0Þ · vðrÞi and hωð0ÞωðrÞi are related by the
Weiner-Kinchin theorem [41]. This implies that

ΩðkÞ ¼ 1

2
Δdkd−1Ffhωð0ÞωðrÞig; ðC1Þ

where Δd is the d-dimensional solid angle and F denotes
Fourier transformation. An equivalent expression holds
for the vorticity spectrum and, in general, for the power
spectrum of any random field given its two-point correla-
tion function. For the special case of a two-dimensional
vorticity field with azimuthal symmetry, Eq. (C1) yields

ΩðkÞ ¼ 1

2

Z
∞

0

drkrJ0ðkrÞhωð0ÞωðrÞi: ðC2Þ

If the spectrum is known, Eq. (C2) can be inverted to
obtain the vorticity correlation function CωωðrÞ ¼
hωð0ÞωðrÞi=hjωð0Þj2i. This yields

CωωðrÞ ¼
2

hω2i
Z

∞

0

dkJ0ðkrÞΩðkÞ; ðC3Þ

where hω2i=2 ¼ R
∞
0 dkΩðkÞ is the mean enstrophy per unit

area. The same expression holds for the velocity correlation
function upon replacing ΩðkÞ with EðkÞ and the normali-
zation factor with the mean energy per unit area:
hv2i=2 ¼ R∞

0 dkEðkÞ.

LUCA GIOMI PHYS. REV. X 5, 031003 (2015)

031003-8



Now, placing the expression for ΩðkÞ given in Eq. (B1)
into Eq. (C3) yields

CωωðrÞ ¼ erfc

�
r

2R�

�
; ðC4Þ

where erfcðxÞ ¼ 1 − erfðxÞ is the complementary error
function [43] while 2R� ∼ la represent the mean diameter
of an active vortex.
The simple algebraic relation between energy and ens-

trophy spectra translates to real space in the following
differential relation between the velocity and vorticity
correlation functions [48]:

∇2hvð0Þ · vðrÞi ¼ −hωð0ÞωðrÞi: ðC5Þ

For an azimuthally symmetric function, this implies

CvvðrÞ ¼ 1 −
hω2i
hv2i

Z
r

0

dr0
hðr0Þ
r0

; ðC6Þ

where hðrÞ ¼ R
r
0 dr

0r0CωωðrÞ. Figure 8 shows a compari-
son between the normalized velocity and vorticity corre-
lation functions obtained from a numerical integration of
Eq. (1) and their mean-field approximations given in
Eqs. (C3) and (C6). For small distances, the agreement
is remarkable. This, however, breaks down for r ≫ R�,
where the spatial correlation between neighboring vortices
(which is neglected in the mean-field framework) becomes
crucial. For instance, CωωðrÞ becomes negative when r is
larger than the average vortex diameter, due to the fact that
a given central vortex is surrounded by vortices of opposite

vorticity (see the red dots in Fig. 8). This feature is clearly
absent in the mean-field calculation and the resulting
correlation function decays without sign changes (solid
black line in Fig. 8).

APPENDIX D: EXTENSILE VERSUS
CONTRACTILE

The numerical results presented in the main text describe
the case of extensile active nematics (α < 0), such as the
suspensions of microtubule bundles and kinesin pioneered
by Sanchez et al. [18] and recently employed by Keber
et al. in the fabrication of active vesicles [19]. The behavior
of contractile active nematics (α > 0) is nearly identical to
the extensile case. For a given activity magnitude jαj, the
average number of defects in contractile and extensile
systems (therefore, the spatial organization of the flow) is
essentially the same [Fig. 9(a)].
The only notable difference appears to be the offset in the

linear relation between a� and l2
a [Fig. 9(b)]. Such an offset

is presumably due to the asymmetry between contractile
and extensile systems at the onset of turbulence [25], which
is in turn related to the asymmetry in the linear instability of
the quiescent state. I remand the reader to Refs. [25,34] for
a detailed explanation.

FIG. 8. Normalized vorticity (red dots) and velocity (gray dots)
correlation functions obtained from a numerical integration of
Eq. (1). The curves correspond to the mean-field theory (MFT)
Eqs. (C3) and (C6), with R� ¼ 0.034rmax obtained from a fit of
the data. An extrapolation of R� from the scale parameter a�, as
defined in Eq. (3), can be obtained by setting R� ¼ ffiffiffiffiffiffiffiffiffiffi

a�=π
p

; this
gives R� ¼ 0.054rmax slightly larger than the value obtained from
a fit of the correlation function. This slight discrepancy is
presumably due to the inevitable systematic error in the calcu-
lation of the vortex area from the Okubo-Weiss field, as well as
the circular approximation of the vortex shape.

(a)

(b)

FIG. 9. (a) Number of defects and scale factor a� versus activity
for contractile (gray dots) and extensile (red dots) systems.
(b) The scale factor a� appearing in the vortex area distribution
nðaÞ versus the active length scale la ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
K=jαjp

for contractile
(gray dots) and extensile (red dots) systems.
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