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Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting
many-body dynamics. Computing characteristics of even small systems on conventional computers poses
significant challenges. A quantum simulator has the potential to outperform standard computers in
calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of
the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum
electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to
construct a digital decomposition of the model-specific evolution and extract its full dynamics.
This approach is universal and efficient, employing only resources that are polynomial in the number
of spins, and indicates a path towards the controlled simulation of general spin dynamics in super-
conducting qubit platforms.
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Quantum simulations using well-controllable quantum
systems to simulate the properties of another less tractable
one [1,2] are expected to be able to predict the properties
and dynamics of diverse systems in condensed matter [3,4],
quantum chemistry [5], and high-energy physics [6,7]. In
particular, quantum simulations are expected to provide
new insights into open problems, such as modeling high-Tc
superconductivity [8], thermalization [9], and nonequili-
brium dynamics [10]. Up to now, several prototypical
quantum simulations have been proposed and realized in
trapped ions [11], cold atoms [12], and quantum photonics
[13]. These systems have fundamentally different intrinsic
properties offering complementary paths for realizing
quantum simulators to which circuit QED platforms are
expected to contribute. Examples of simulations carried out
include spin models [14–16], many-body physics [17], and
relativistic quantum mechanics [18]. In the field of super-
conducting circuits, quantum simulations are still in their
infancy [19]. Topological properties [20,21] have been
simulated recently, as have been fermionic models [22].

Quantum simulators are typically classified into two
main categories, namely, analog and digital. Analog quan-
tum simulators are designed to display intrinsic dynamics
that are equivalent to those of the simulated system. While
this approach is not universal, it features control of the
relevant Hamiltonian parameters better than in the system
to be simulated. Instead, digital quantum simulators [2] can
reproduce the dynamics of a quantum system via a
universal digital decomposition of its Hamiltonian H ¼P

kHk into efficient elementary gates realizing Hk. This
approach is based on the Suzuki-Lie-Trotter expansion of
the time evolution UðtÞ¼ e−iHt¼ limn→∞ð

Q
N
k¼1 e

−iHkt=nÞn
and was recently demonstrated experimentally in a trapped-
ion digital quantum simulator [15]. Variants of this digital
protocol make use of fractal approximations [23], adaptive
time steps for time-dependent Hamiltonians [24], and
heralded protocols for the implementation of linear combi-
nations of operators [25].
Here, we demonstrate digital quantum simulation of spin

systems [16] in an architecture known as circuit QED [26].
Our experiments are carried out with two superconducting
transmon qubits [27] coupled dispersively to a common
mode of a coplanar waveguide resonator (see Appendix A
for the device layout and setup diagram). We operate
the circuit at 30 mK in a dilution refrigerator. The
qubits Q1 and Q2 interact with a coplanar waveguide
resonator with a fundamental resonance frequency at
7.14 GHz, which serves both as a quantum bus [28] and
for readout [29].
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The natural two-qubit interaction is the XY exchange
coupling [28] Hxy

1;2 ¼ ðJ=2Þðσx1σx2 þ σy1σ
y
2Þ mediated by

virtual photons in a common cavity mode, which we also
refer to as the XY interaction. Here, σx;yi are the Pauli
operators acting on qubit i, and J denotes the effective
qubit-qubit coupling strength [30]. The XY interaction is
activated by tuning the transition frequency of qubit Q1
(5.44 GHz) into resonance with qubit Q2 (5.24 GHz) for a
time τ using nanosecond time scale magnetic flux bias
pulses [31] (see Appendix B). When the qubit transition
frequencies are degenerate, the resonator-mediated cou-
pling strength is spectroscopically determined to be
J ¼ −40.4 MHz. To make the presentation of the simu-
lation results independent of the actual J, we express the
interaction time τ for a given J in terms of the acquired
quantum phase angle 2jJjτ. In our setup, the action of the
XY gate [Fig. 1(a)] is characterized by full process
tomography for a complete set of 16 initial two-qubit
states and a series of 25 different interaction times τ finding
process fidelities no lower than 89% (see Appendix D).

In Figs. 2(a) and 2(b), we present nonstationary spin
dynamics under the XY exchange interaction for a char-
acteristic initial two-qubit state j↑iðj↑i þ j↓iÞ= ffiffiffi

2
p

with
spins pointing in perpendicular directions along þz and
þx, respectively. During the XY interaction, the state of
one spin is gradually swapped to the other spin and vice
versa, with a phase angle of π=2. This corresponds to the
iSWAP gate [32]. As a consequence, the measured Bloch
vectors move along the YZ and XZ planes. For a quantum
phase angle of 2jJjτ ¼ π, they point along the þy and þz
directions, respectively, in good agreement with the ideal
unitary time evolution indicated by dashed lines in
Figs. 2(a) and 2(b). We also find that the two-qubit
entanglement characterized by the measured negativity
[33] of 0.246 is close to the maximum expected value of
0.25 for this initial state at a quantum phase angle of π=2.
As a consequence, the Bloch vectors do not remain on the
surface of the Bloch sphere but rather lie within the sphere.
The anisotropic Heisenberg model describes spins inter-

acting in three spatial dimensions,

Hxyz ¼
X

ði;jÞ
ðJxσxi σxj þ Jyσ

y
i σ

y
j þ Jzσ

z
iσ

z
jÞ; ð1Þ

where the sum is taken over pairs of neighboring spins i and
j. Jx, Jy, and Jz are the couplings of the spins along the x, y,
and z coordinates, respectively. Since it does not occur
naturally in circuit QED, we decompose the Heisenberg
interaction into a sequence of XY and single-qubit gates, as
shown in Fig. 1(b). We combine three successive effective
XY, XZ, and YZ gates derived from the XY gate by basis
transformations [16] to realize the isotropic Heisenberg
model with Jx ¼ Jy ¼ Jz ¼ J versus interaction time τ.
Since the XY, XZ, and YZ operators commute for two
spins, the Trotter formula is exact after a single step.
To compare the Heisenberg (XYZ) interaction with the

XY exchange interaction, we prepare the same initial state
as presented in Figs. 2(a) and 2(b). The isotropic
Heisenberg interaction described by the scalar product
between two vectorial spin-1=2 operators preserves the
angle between the two spins. As a result, the initially
perpendicular Bloch vectors of qubits Q1 and Q2 remain
perpendicular during the interaction [Fig. 2(c)] and rotate
clockwise along an elliptical path that spans a plane
perpendicular to the diagonal at half-angle between the
two Bloch vectors [Fig. 2(c)].
In accordance with theory, the XYZ interaction leads to a

full SWAP operation for a quantum phase angle of
2jJjτ ¼ π=2, where the Bloch vectors point along the
þx and þz directions. For the given initial state, we
observe a maximum negativity of 0.210 close to the
expected value of 0.25 for the Heisenberg interaction at
a quantum phase angle of 2jJjτ ¼ π=4. As for the XY
interaction, we characterize the Heisenberg interaction with

FIG. 1. (a) Circuit diagram to characterize the XY exchange
interaction on qubits Q1 and Q2 symbolized by the vertical line
(×), which is activated for a time τ. To perform standard process
tomography of this interaction, separable initial states are
prepared using single-qubit rotations Rprep

1;2 (green) in the begin-
ning and the final state is characterized using single-qubit basis
rotations Rtom

1;2 and joint two-qubit readout (yellow). (b) Digital
quantum simulation of the two-spin Heisenberg (XYZ) inter-
action for time τ. The first step after state preparation is to apply
the XY gate for a time τ (dashed box labeled as XY). In the second
and third steps (dashed boxes with labels XZ and YZ), XZ and
YZ gates are realized using single-qubit rotations R�π=2

x;y (blue) by
an angle �π=2 about the x or y axis transforming the basis in
which the XY gate acts. (c) Protocol to decompose and simulate
Ising spin dynamics in a homogeneous transverse magnetic field.
The circuit between the bold vertical bars with two dots is
repeated n times, invoking each XY and phase gates for a time
τ=n. See text for details. The actual pulse scheme is provided in
Appendix C.
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standard process tomography, finding fidelities above 82%
for all quantum phase angles 2jJjτ.
Next, we consider the quantum simulation of the Ising

model with a transverse homogeneous magnetic field,

HI ¼ J
X

ði;jÞ
σxi σ

x
j þ

B
2

X

i

σzi ; ð2Þ

where the magnetic field B pointing along the z axis is
perpendicular to the interaction given by Jσxi σ

x
j. Since the

two-spin evolution [Fig. 1(c)] is decomposed into two-
qubit XY and single-qubit Z gates which do not commute,
the transverse-field Ising dynamics is only recovered using
the Trotter expansion in the limit of a large number of steps
n for an interaction time of τ=n in each step. To realize the
Ising interaction term using the exchange interaction, the
XY gate is applied twice for a time τ=n, once enclosed by a
pair of π pulses on qubit Q1. This leads to a change of sign
of the σy1σ

y
2 term, which thus gets canceled when added to

the bare XY gate. The external magnetic field part of the
Hamiltonian is realized as single-qubit phase gates Rϕ

z ,
which rotate the Bloch vector about the z axis by an angle

ϕ ¼ Bτ=n per Trotter step. These gates are realized by
detuning the respective qubit by an amount δ from its idle
frequency corresponding to an effective B-field strength
of B ¼ 2πδ.
We experimentally simulate the nonstationary dynamics

of two spins in this model for the initial state
j↑iðj↑i − ij↓iÞ= ffiffiffi

2
p

, which is well suited to assess the
simulation performance. In Fig. 3(a), expectation values for
the digital simulation of the σz1;2 components of the two
spins are shown, as well as the two-point correlation
function hσx1σx2i. The σz1;2 components of the spins repre-
sented by the red and blue data sets in Fig. 3(a), respec-
tively, oscillate with a dominant frequency component of
2J due to the presence of the interaction term ∝ σx1σ

x
2.

Likewise, the XX correlation hσx1σx2i represented by the
yellow data set in Fig. 3(a) is nonstationary and oscillates at
rate 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ J2

p
¼ 2

ffiffiffiffiffi
10

p
J ≈ 6.3J due to the presence of a

magnetic field of strength B ¼ 3J. The evolution of the
measured final state shows agreement with a theoretical
model [solid lines in Fig. 3(a)], which takes into account
dissipation and decoherence with deviations being domi-
nated by systematic gate errors (see Appendix E).
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FIG. 2. (a) Experimentally determined coordinates of the Bloch vectors during exchange (XY) interaction represented by small red
(Q1) and blue (Q2) points are compared to the ideal paths shown as dashed lines in the XY model. The ideal paths are in the YZ and XZ
planes shown as blue and red planes intersecting the Bloch sphere. The time evolution is indicated by the saturation of the colors as the
quantum phase angle 2jJjτ advances from 0 (saturated) to π (unsaturated). (b) Measured expectation values of the Pauli operators σx;y;z1;2

for qubits Q1 (red points) and Q2 (blue points), respectively, for the XY interaction as a function of the quantum phase angle 2jJjτ along
with the ideal evolution (dashed line). (c) Evolution of the Bloch vector for the quantum simulation of the isotropic Heisenberg
interaction versus quantum phase angles from 0 to 3π=4. The path of the Bloch vectors of qubits Q1 and Q2 spans the plane indicated by
the rectangular sheets intersecting the Bloch spheres. (d) As in (b) for the Heisenberg interaction.
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In Fig. 3(b), the fidelity of the simulated state is
compared to the expected state at characteristic quantum
phase angles for both the experimental realization (colored
bars) and the ideal Trotter approximation (wire frames)
after the nth step. In an ideal digital quantum simulator, the
theoretical fidelity (wire frame) converges for an increasing
number of steps n [Fig. 3(b)]. The experimental fidelity,
however, reaches a maximum for a finite number of steps
[Fig. 3(b)], after which it starts to decrease due to gate
errors and decoherence [16]. As expected, the Trotter
approximation converges faster for smaller quantum phase
angles 2jJjτ. For 2jJjτ ¼ π=4, the peak experimental
fidelity [Fig. 3(b)] of 98.3% is already observed for
n ¼ 1, whereas for 2jJjτ ¼ 3π=2, the optimum of 80.7%
is observed for n ¼ 5.
To simulate large lattices, it is important to notice that the

quantum resources needed to realize one digital step scale
polynomially in the size of the problem, while the total
number of gates for the whole protocol scales subpolyno-
mially in the digital error [34]. The required reduction in the
gate errors is expected to be achievable by incorporating
optimal control techniques for pulse shaping [35] and by
optimizing the fabrication process to improve the coher-
ence times. Furthermore, techniques to perform multi-
plexed readout [36] and control of spectrally close
qubits [37] will improve scalability. In addition, the usage
of cryogenic switches or even cryogenic control logic
circuits [38] is expected to reduce the required resources
in terms of both the number of signal sources and the
number of microwave lines affecting the heat load of the
cryostat.

In future experiments, transmission line resonators may
provide a means to design multiqubit devices with nonlocal
qubit-qubit couplings that directly reflect the lattice top-
ology of spin systems such as frustrated magnets. This
design flexibility, in combination with fast gate operations
[39], fast initialization [40,41], and high-fidelity readout
based on quantum-limited amplifiers [42,43], sets the
circuit QED platform apart from other quantum simulators
for investigating static [14,44,45] or dynamic [15,46–50]
properties of systems with Ising and Heisenberg types of
spin-spin interaction. Moreover, the incorporation of cavity
modes as explicit degrees of freedom in the simulated
models [51], following an analog-digital approach, will be
instrumental to scale the system to larger Hilbert-space
dimensions. First steps in these directions have been taken
by realizing and working with devices combining multiple
qubits with multiple resonators [52–55]. With this, the
circuit QED architecture offers considerable potential for
surpassing the limitations of classical simulations, which
can be facilitated by using efficient digital decompositions
of spin Hamiltonians as pursued in this work.
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No. of Trotter steps

(a) No. of Trotter steps: (b)

FIG. 3. (a) Digital quantum simulation of the Ising model with transverse homogeneous magnetic field using 1–3 Trotter steps. Shown
are the z components hσz1i of qubit Q1 (red) and hσz2i of qubit Q2 (blue) and the two-point correlation function in the x direction hσx1σx2i
(yellow points) of the spins as a function of the quantum phase angle 2jJjτ for the initial state j↑iðj↑i − ij↓iÞ= ffiffiffi

2
p

and a magnetic field
strength B ¼ 3J. Theoretically expected results take systematic phase offsets and finite coherence of the qubits into account (solid
curves). The ideal dynamics are obtained from the time-dependent Schrödinger equation for the Ising Hamiltonian (dashed lines).
(b) Fidelity with respect to the exactly solved Ising model for displayed quantum phase angles of the final state after ideal unitary
evolution in the simulation protocol for n Trotter steps (wire frames) and experimentally obtained final state (colored bars).
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APPENDIX A: CHIP ARCHITECTURE AND
MEASUREMENT SETUP

The present experiment is performed using two super-
conducting transmon [27] qubits Q1 and Q2 and one
coplanar waveguide resonator R1 on a microchip
(Fig. 4). The resonator R1 has a fundamental resonance
frequency of νr ¼ 7.14 GHz. From spectroscopic measure-
ments, we determine the maximum transition frequencies
νmax ¼ f5.55; 5.53g GHz and charging energies EC=h ≈
f260; 260g MHz of qubits Q1 and Q2, respectively,
where h is the Planck constant. Qubits Q1 and Q2 are
coupled to resonator R1 with coupling strengths
g=2π ≈ f120; 120g MHz. For this experiment, the qubit
transition frequencies in their idle state are offset to ν ¼
f5.440; 5.240g GHz by applying a constant magnetic flux
threading their SQUID loops with miniature superconduct-
ing coils mounted underneath the chip. At these idle
frequencies, the measured energy relaxation and coherence
times are T1 ¼ f7.1; 6.7g μs and T2 ¼ f5.4; 4.9g μs,
respectively. The transition frequencies of qubits Q3 and
Q4 are tuned to 4.5 and 6.1 GHz such that they do not
interact with Q1 and Q2 during the experiment.

A schematic diagram of the measurement setup is shown
in Fig. 5(a). To realize two-qubit XY gates and single-qubit
phase gates (Z), controlled voltage pulses generated by an
arbitrary waveform generator (AWG) are used to tune the
flux threading the SQUID loop of each qubit individually
using flux bias lines [31]. The single-qubit microwave
pulses (X; Y) are generated using sideband modulation of
an up-conversion in-phase quadrature (IQ) mixer
[Fig. 5(b)] driven by a local oscillator (LO) and modulated
by an AWG. The same up-conversion LO is used with a
splitter (Sp) for the microwave pulses on both qubits to
minimize the phase error introduced by phase drifts of
microwave generators. We use a quantum-limited para-
metric amplifier (PA) to amplify readout microwave (MW)
pulses at the output of R1 [Fig. 5(c)]. Here, the Josephson-
junction-based amplifier in the form of a Josephson para-
metric dimer (JPD) [56] is pumped by a strong pump drive
through a directional coupler (D). To cancel the pump
leakage, a phase-controlled (ϕ) and amplitude-controlled
(A) microwave cancelation tone is coupled to the other port
of the directional coupler (D). Three circulators (C1–C3)
are used to isolate the sample from the pump tone. A
circulator (C4) at base temperature followed by a cavity
bandpass filter (BP) and another circulator (C5) at the still
stage are used to isolate the sample and JPD from higher-
temperature noise. The transmitted signal is further ampli-
fied by a high-electron-mobility transistor (HEMT) at the
4.2 K stage and a chain of ultralow-noise (ULN) and low-
noise (LN) amplifiers at room temperature, as shown in
Fig. 5(d). The amplified readout pulse is down-converted
from radio frequency (RF) to an intermediate frequency

7 mm

R1

R2R4

R3

Q2

Q3Q4

Q1

FIG. 4. Chip design and false-colored optical image of a superconducting qubit (inset). The chip comprises four superconducting
qubits Q1–Q4 (orange) made of aluminium and four niobium coplanar waveguide resonators R1–R4 (deep blue) coupled to input and
output ports (red). The qubits have individual microwave drive lines (green) and flux bias lines (blue).
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(IF) of 25 MHz using an IQ mixer [Fig. 5(e)] and digitally
processed by field-programmable gate array (FPGA) logic
for real-time data analysis.

APPENDIX B: IMPLEMENTATION
OF THE XY GATE

The interaction between two qubits with degenerate
transition frequencies dispersively coupled to the same
coplanar waveguide (CPW) resonator is described by the
exchange coupling [57] Jðσþ1 σ−2 þ σ−1 σþ2 Þ, which can also
be written in terms of Pauli operators as J

2
ðσx1σx2 þ σy1σ

y
2Þ.

We activate this interaction by tuning the transition fre-
quency of qubit Q1 into resonance with qubit Q2 with a
flux pulse (Fig. 6) for an interaction time τ which we varied
from 0 to 60 ns. At the frequency of qubit Q2, we obtain a
coupling strength J ¼ −40.4 MHz from a fit to the
spectroscopically measured avoided crossing. To compen-
sate overshoots of the flux pulse due to the limited
bandwidth of the flux line channel, we use an inverted
linear filter based on room-temperature response

measurements of the flux line channel and in situ
Ramsey measurements of the residual detuning of qubit
Q1 in the time interval from 0 to 2 μs after the flux pulse.
Since the outcome of the XY gate depends strongly on

the relative phase of the two-qubit input state, we use the
same LO signal for the up-conversion of the single-qubit
pulses acting on both qubits Q1 and Q2 [green lines in
Fig. 5(a)]. Then the initial relative phase between the qubits
is defined solely by the pulse sequence generated by the
AWG and the cable lengths. In addition, we choose the
shape of the flux pulse that realizes the XY gate such that
the dynamic phase acquired by qubit Q1 during the idle
time and the rising edge of the flux pulse cancels any
unwanted relative phase offset of the initial state. We satisfy
this condition by tuning the frequency of Q1 to an
intermediate level (buffer) for a fixed time of 16 ns before
and after the XY gate (Fig. 6). A suitable buffer level is
found by performing Ramsey-type experiments with a
single XY gate while sweeping the buffer amplitudes.
This calibration procedure is carried out for each interaction
length of the XY gate. The second buffer at the falling edge

(a) (b)

(e)(c) (d)

FIG. 5. (a) Schematic of the experimental setup with complete wiring of electronic components inside and outside of the dilution
refrigerator with the same color code as in Fig. 4. (b) Up-conversion circuit for generating controlled microwave pulses. (c) Quantum-
limited parametric amplifier circuit to amplify readout pulses at base temperature. (d) Amplifiers used at room temperature just before
down-conversion of the signal. (e) Down-conversion circuit (see text for details).
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of the flux pulse is used to ascertain that the relative phase
between the qubits after tuning qubit Q1 back to its original
position is the same as the initial relative phase.

APPENDIX C: PULSE SCHEME

The quantumprotocols for the digital quantum simulation
of Heisenberg [Fig. 7(a)] and Ising spin [Fig. 7(b)] models
are realized by sequences of microwave and flux pulses
applied on qubit Q1 (red curves in Fig. 7) and qubit Q2 (blue
curves in Fig. 7). The single-qubit rotations are implemented
by 24-ns-long Gaussian-shaped resonant DRAG [58,59]
microwave pulses and the XY gates are implemented using
fast flux pulses. To avoid the effect of residual transient
response of the flux pulse, we add a 40 nsþ Δτwaiting time
after each flux pulse, with Δτ being an adjustable idle time.
We choose Δτ such that the time difference between two
applications of the XY interaction is commensurate with the
relative phase oscillation period of 5 ns, equal to the inverse

7.14 GHzR1

Q1

Q2

5.440 GHz

5.240 GHz

16 ns 16 ns 

2π m 2π n

τ
Time 

F
re

qu
en

cy

FIG. 6. Implementation of the XY gate. The transition fre-
quency of qubit Q1 (red) is tuned into resonance with qubit Q2
(blue) for an interaction time τ using a fast flux pulse. Before and
after the flux pulse, a 16-ns-long buffer is added at an inter-
mediate level to cancel the dynamic phase accumulated by qubit
Q1 relative to Q2 (gray area) during the evolution (see text).
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FIG. 7. Pulse sequences that are applied on qubit Q1 (red) and qubit Q2 (blue) to implement the (a) Heisenberg and (b) Ising spin
models. The Gaussian-shaped microwave pulses, which are based on the derivative removal by adiabatic gate (DRAG) method, are
applied to the charge lines of the respective qubits to implement single-qubit rotations Rϕ

x;y about the x or y axis of the Bloch vector by an
angle ϕ. Each sequence starts with the preparation of an initial state (green boxes) and ends with microwave pulses for basis rotations to
perform state tomography (yellow boxes). The microwave pulses marked with magenta boxes are used for refocusing. The black vertical
bars with the two dots in (b) indicate that the enclosed pulse sequence is repeated n times. The XY gates are realized by applying flux
pulses to the flux line of qubit Q1 for a time τ=n. The phase gates Rϕ=n

z are implemented by detuning the transition frequency of each
qubit from their idle frequencies applying flux pulses for a time τ=n. The numbers stated below the pulses on qubit Q1 represent time
scales in nanoseconds.
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frequency detuning 1=200 MHz. With these measures,
we ensure that the gate can be used in a modular fashion,
i.e., that a single calibration of the gate suffices for all gate
realizations within the algorithm. The single-qubit phase
gates are implemented by detuning the idle frequencies of
each qubit with a square flux pulse. In the idle state, we
observe a state-dependent qubit transition frequency shift of
940 kHz due to the residual σz1σ

z
2 interaction. To decouple

this undesired effect, we use a standard refocusing technique
[60] implemented by two consecutive π pulses on qubit
Q2 (magenta boxes in Fig. 7). In the end of each pulse
sequence,weperformdispersive joint two-qubit state tomog-
raphy [61] by single-qubit basis transformations followedby
a pulsed microwave transmission measurement through
resonator R1.

APPENDIX D: PROCESS TOMOGRAPHY

We perform standard two-qubit process tomography
[62,63] of the XY gate and of the simulated isotropic
Heisenberg (XYZ) model for a varying interaction time τ.
Figure 8 shows the process χ matrices characterizing the
XY gate for a quantum phase angle π=2 [Fig. 8(a)] and π

[Fig. 8(b)] corresponding to a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate [32,64] and an

iSWAP gate [65,66] with process fidelities of 97.8% and
95.3%, respectively. Heisenberg interaction with a quantum
phase angle π=2 leads to a SWAP gate [Fig. 9(a)] with a
process fidelity of 86.1%. While the SWAP gate belongs to
the two-qubit Clifford group, there is no natural interaction
in standard circuit QED architecture to directly implement
the SWAP gate [67,68]. For a phase angle π, the Heisenberg

FIG. 8. (a) Measured real and imaginary parts of the XY process χ matrix (Reχ, Imχ), in the basis fI ¼ identity; X ¼ σx;
~Y ¼ −iσy; Z ¼ σzg, describing the mapping from any initial state to the final state for a quantum phase angle of 2jJjτ ¼ π=2. The
dashed wire frames represent the theoretically optimal matrix elements and the colored bars represent measured positive (blue) and
negative (red) matrix elements. The fidelity of the experimentally observed process with respect to the ideal process is indicated in the
black boxes. (b) As in (a) for a phase angle π.
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interaction is an identity gate [Fig. 9(b)] with a process
fidelity of 83.6%.

APPENDIX E: ERROR CONTRIBUTIONS

The single-qubit gate fidelities measured by randomized
benchmarking [69–71] amount to 99.7%. The dominant
contribution to the loss in fidelity originates from the two-
qubit XY gates for which a process fidelity Fp;XY ¼ 95.7%
is obtained from process tomography averaging over all
quantum phase angles. This indicates that the errors in the
implementation of the XY gate limit the fidelity of the final
state of the quantum simulation. To confirm this, we
calculate the expected process fidelity for the Heisenberg
and Ising protocol from the observed XY gate fidelity by
assuming independent gate errors in all three steps. For the

Heisenberg (XYZ) model simulation neglecting the small
single-qubit gate errors, we expect a mean process fidelity
Fp;XYZ ≈ 1 − 3ð1 − Fp;XYÞ ¼ 87.1%, which is close to the
observed value of 86.3%. For the Ising model simulation,
we expect a process fidelity of Fp;Ising≈1−2nð1−Fp;XYÞ.
From the relation F s ¼ ðdFp þ 1Þ=ðdþ 1Þ between state
(F s) and process fidelity (Fp), we obtain the expected
mean state fidelities of f93.1; 86.2; 79.4; 72.5; 65.6g% for
n ¼ 1–5 Trotter steps, which compare well to the measured
state fidelites f91.7; 88.3; 82.2; 73.0; 60.7g%.
To estimate the dominant source of systematic errors, we

consider a model that includes relaxation (T1) and dephas-
ing (T2) and state-dependent phase errors described by an
effective ~Jzσ

z
1σ

z
2 term with interaction strength ~Jz. In

addition, we include an extra offset in the single-qubit

FIG. 9. (a) Measured real and imaginary parts of the Heisenberg (XYZ) process χ matrix (Reχ, Imχ), in the basis
fI ¼ identity; X ¼ σx; ~Y ¼ −iσy; Z ¼ σzg, describing the mapping from any initial state to the final state for a quantum phase angle
of 2jJjτ ¼ π=2. The dashed wire frames represent the theoretically optimal matrix elements and the colored bars represent measured
positive (blue) and negative (red) matrix elements. The fidelity of the experimentally observed process with respect to the ideal process is
indicated in the black boxes. (b) As in (a) for a phase angle π.
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phase gate acting on qubit Q2 from cross talk of the flux
pulses acting on qubit Q1 in each Trotter step. By fitting the
final state predicted by this model to the observed states, we
estimate an unwanted interaction angle ~Jzτz of approx-
imately 2.3° and a constant phase offset of 4.6°.
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