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We study the dynamic after a smooth quench across a continuous transition from the disordered phase to
the ordered phase. Based on scaling ideas, linear response, and the spectrum of unstable modes, we develop
a theoretical framework, valid for any second-order phase transition, for the early-time evolution of the
condensate in the broken phase. Our analysis unveils a novel period of nonadiabatic evolution after the
system passes through the phase transition, where a parametrically large amount of coarsening occurs
before a well-defined condensate forms. Our formalism predicts a rate of defect formation parametrically
smaller than the Kibble-Zurek prediction and yields a criterion for the breakdown of Kibble-Zurek scaling
for sufficiently fast quenches. We numerically test our formalism for a thermal quench in a (2þ 1)-
dimensional holographic superfluid. These findings, of direct relevance in a broad range of fields including
cold atom, condensed matter, statistical mechanics, and cosmology, are an important step toward a more
quantitative understanding of dynamical phase transitions.
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I. INTRODUCTION

Driving a system smoothly from a disordered to an
ordered phase unveils the rich, and still poorly understood,
phenomenology of dynamical phase transitions, a research
theme of interest in vastly different fields. The Kibble-Zurek
(KZ) mechanism (KZM) describes the spontaneous gener-
ation of topological defects when a system is driven through
a second-order phase transition into the ordered phase [1–3].
Numerical simulations [4–14] have confirmed the sponta-
neous generation of defects and the scaling exponent of the
defect density with the quench rate predicted by the KZM.
The KZM has also been generalized to quantum phase
transitions [15–17] and has been employed to compute
correlation functions [18] in the scaling region.
Different experiments, with ion crystals [19,20], ultracold

atomic gases [21–23], spin liquids [24], superconducting
films [25], polariton superfluids [26], Josephson junctions

[27], and helium [28–30], have observed, with different
levels of certainty, defect generation, but a really quantitative
comparison with the predictions of the KZM is still missing.
Let us briefly review the KZM [31–33]. Consider a

system with a second-order phase transition at temperature
Tc, below which a symmetry is spontaneously broken and
an order parameter ψ develops a condensate. In equilibrium
at temperature T > Tc, the correlation length ξeq and
relaxation time τeq are related to the reduced temperature
ϵ≡ 1 − ðT=TcÞ by

ξeq ¼ ξsjϵj−ν;
τeq ¼ τsjϵj−νz; ð1:1Þ

for some scales ξs, τs and critical exponents ν, z. Consider a
quench from Ti > Tc to Tf < Tc with quench protocol

ϵðtÞ ¼ t=τQ;

t ∈ ðti; tfÞ; ð1:2Þ

where ti ¼ð1−Ti=TcÞτQ < 0 and tf ¼ð1−Tf=TcÞτQ > 0.
The system can respond adiabatically to the change in
temperature until τeqðtÞ ∼ jtj. This condition defines the
freeze-out time and length scale
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tfreeze ¼ τs

�
τQ
τs

�
νz=ð1þzνÞ

; ξfreeze ¼ ξs

�
τQ
τs

�
ν=ð1þνzÞ

:

ð1:3Þ

During the interval t ∈ ð−tfreeze; tfreezeÞ, the evolution of
the system is essentially frozen.1 The correlation length
ξfreeze then imprints itself on the state at t ¼ þtfreeze.
The density of topological defects generated across the

phase transition can then be estimated as

ρKZ ∼ 1=ξd−Dfreeze ∼ τðd−DÞν=ð1þνzÞ
Q ; ð1:4Þ

where d is the number of the spatial dimensions and D is
the number of dimensions of a defect. While the KZM is
only supposed to determine the density of defects up to an
Oð1Þ factor, it often significantly overestimates the real
density of defects observed in numerical calculations: One
needs a “fudge” factor f multiplying ξfreeze with f ¼ Oð10Þ
[33]. See also Ref. [34] for a recent discussion.
One motivation of this paper is to develop a formalism

for describing the growth and coarsening of the order
parameter after tfreeze in a general critical system. Our
analysis stresses a period of nonadiabatic evolution, before
a well-defined condensate forms, where the system coars-
ens and the correlation length grows parametrically larger
than ξfreeze. In particular, we show that in many systems,
including conventional superconductors and superfluid
4He, there could be a large logarithmic hierarchy between
tfreeze and the time scale we refer to as teq when one can
sensibly measure the density of defects. Thus, our analysis
reconciles the need for a fudge factor f. Moreover, our
analysis yields a new criterion for the breaking of the KZ
scaling (1.4). Our discussion can also be applied without
essential changes to quantum phase transitions. For defi-
niteness, we will restrict discussion to thermal phase
transitions throughout the paper.
A second motivation of this paper is to test the scaling

predicted by the KZM and its refinement in strongly
coupled systems using holographic duality. Holography
equates certain systems of quantum matter without gravity
to classical gravitational systems in one higher spatial
dimension [35–37]. Hence, complicated many-body phys-
ics can be mapped onto a solvable numerical gravity
problem. Some examples include Refs. [38–47] (see also
Refs. [48,49] for a discussion of KZM for a holographic
quantum quench). In this paper, we study the KZM in a
holographic superfluid in 2þ 1 spacetime dimensions. Our
gravity calculation will provide a first check of KZ scaling
in a strongly coupled system without quasiparticles and

will verify key features of the coarsening physics discussed
in the next section.2

II. FAR-FROM-EQUILIBRIUM COARSENING

A. Unstable critical modes

We now develop a formalism to describe a period of
nonadiabatic growth of the order parameter ψ after tfreeze.
The seeds for condensate growth come from thermal and
quantum fluctuations, whose effects on the macroscopic
evolution of ψ can be described in terms of a stochastic
source φ for ψ. In the IR, the statistics of the fluctuations in
φ read

hφ�ðt; xÞφðt0; x0Þi ¼ ζδðt − t0Þδðx − x0Þ; ð2:1Þ
where ζ is a (weakly) temperature-dependent constant.
Let ψðt; qÞ and φðt; qÞ be the Fourier-transformed order

parameter and noise, respectively. At early times, ψðt; qÞ is
small and can be described by linear response

ψðt; qÞ ¼
Z

dt0GRðt; t0; qÞφðt0; qÞ; ð2:2Þ

where GRðt; t0; qÞ is the retarded ψ correlator. Statistical
homogeneity and isotropy imply GR only depends on
q ¼ jqj. The regime of validity for the linear response will
be discussed below. To elucidate the growth of ψ and to
extract the time evolution of the correlation length after
tfreeze, we study the evolution of the correlation function

Cðt; rÞ≡ hψ�ðt; xþ rÞψðt; xÞi: ð2:3Þ
Averaging over the noise (2.1), we find

Cðt; qÞ ¼
Z

dt0ζjGRðt; t0; qÞj2: ð2:4Þ

As the dynamics is essentially frozen between
ð−tfreeze; tfreezeÞ, at t ∼ tfreeze, the system is in a supercooled
state for which the leading time dependence of GR can be
obtained by analytically continuing to below Tc the
equilibrium-retarded correlator Geq above Tc. Close to
Tc, the time dependence of Geqðt; qÞ should be dominated
by the leading pole w0ðqÞ (the critical mode) of Geqðω; qÞ
in the complex frequency plane, i.e.,

Geqðt; qÞ ¼ θðtÞHðqÞe−iw0ðϵ;qÞt;

w0ðϵ; qÞ ¼ ϵzνhðqϵ−νÞ; ð2:5Þ
where HðqÞ is some function that depends weakly on q.
hðxÞ is a universal scaling function that is analytic in x2 for

1Strictly speaking, one should distinguish t>freeze for T > Tc
and t<freeze for T < Tc as they can differ by an Oð1Þ constant.
We will suppress such differences for notational simplicities.

2Independently, Sonner, del Campo, and Zurek [50] have
found universal scaling behavior in the dynamics of strongly
coupled superconductors with a holographic dual.
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small x. For T > Tc,w0ðq; TÞ lies in the lower half ω plane,
and its imaginary part at q ¼ 0 gives the inverse of the
relaxation time.3 When continued to a supercooled state at
T < Tc, w0 moves to the upper half frequency plane for q
smaller than a certain qmax, and for such q’s, (2.5) grows
exponentially with time. More explicitly, for positive ϵ, we
can expand Imw0 in small q as

Imw0 ¼ −aϵðz−2Þνq2 þ bϵzν þ � � � ; ð2:6Þ

where a and b are positive constants. Hence, Imw0 > 0
until q ∼ qmax with

qmax ∼ ϵν: ð2:7Þ

Now, let us consider the limit of slow quenches ϵ0ðtÞ → 0.
Assuming that the Green function depends weakly on
temperature, then for a short interval t − t0 ≪ ð1=jw0jÞ
(2.5) should still apply, if w0 changes with time sufficiently
slowly, i.e.,

j∂t logw0½TðtÞ�j ≪ jw0j: ð2:8Þ

Under this approximation, GR then satisfies a first-order
differential equation

∂tGRðt; t0; ~kÞ ¼ −iw0½TðtÞ�GRðt; t0; Þ þ ~k � � � ; t > t0;
ð2:9Þ

the integration of which leads to

GRðt; t0; qÞ ¼ θðt − t0ÞHðqÞe−i
R

t

t0 dt
00w0½ϵðt00Þ;q�: ð2:10Þ

From j∂t logw0j < jw0j, and using (2.6) and (1.3), it is
straightforward to show the earliest time when (2.10) can be
applied is precisely t > tfreeze.
Substituting (2.10) into (2.4), we then secure

Cðt; qÞ ¼
Z

t

tfreeze

dt0ζjHðqÞj2e2
R

t

t0 dt
00Imw0½ϵðt00Þ;q� þ � � � :

ð2:11Þ

The ellipses in (2.11) denote the contributions in (2.4)
coming from the integration domain t0 < tfreeze, which will
be neglected in our discussion below as the first term in
(2.11) grows exponentially with time and will soon
dominate.4 We note that w0 can also have a real part
and therefore lead to oscillations of the order parameter

superimposed to the exponential growth induced by the
imaginary part. These oscillations are an interesting phe-
nomenon that deserves further discussion. Let us consider
the behavior of the above integral for t parametrically large
compared to tfreeze assuming for the moment that the linear
analysis holds. For this purpose, it is convenient to introduce

t̄≡ t
tfreeze

: ð2:12Þ

In the regime t̄ ≫ 1, we find for qξfreeze ≪ 1 (see
Appendix A for details)

Cðt; qÞ ¼ a1ζtfreeze exp

�
a2 t̄1þνz −

1

2
q2l2

coðt̄Þ
�
; ð2:13Þ

where

lcoðt̄Þ ¼ a3ξfreezet̄½1þðz−2Þν�=2 ð2:14Þ

and a1; a2; a3 areOðτ0QÞ constants. Fourier transforming q to
coordinate space, we find

Cðt; rÞ ∼ jψ j2ðtÞe−r2=2l2
coðtÞ; with jψ j2ðtÞ ∼ ~εðtÞea2 t̄1þzν

;

ð2:15Þ
where

~εðtÞ≡ ζtfreezel−d
co ðtÞ ∼ εtfreezet̄−d½1þνðz−2Þ�=2 ð2:16Þ

with

ε≡ ζξ−dfreeze ∼ ζτ−dν=ð1þνzÞ
Q : ð2:17Þ

Equations (2.13)–(2.17) are our main results of this section.
We now proceed to discuss their physical meaning and
physical implications.

B. Equilibration time and density of defects

With the usual inverse volume dependence, ε defined in
(2.17) may be interpreted as the effective parameter
characterizing fluctuations for a spatial region of size
ξfreeze, while εtfreeze may be interpreted as the fluctuations
accumulated over a time scale of order OðtfreezeÞ. In the
limit of large τQ, ε goes to 0, justifying the use of linear
response. The linear response analysis should break down
at some point, which can be estimated by comparing jψ j2ðtÞ
in (2.15) with the equilibrium value of the condensate
square. Recall that in equilibrium, the expectation value
of an order parameter for reduced temperature ϵ ≪ 1 is
characterized by a critical exponent β

jψ j2eqðϵÞ ∼ ϵ2β: ð2:18Þ

Introducing a scale teq by requiring

3In the language of the dual gravitational description discussed
below, w0 is the lowest quasinormal mode frequency of a dual
black hole.

4In addition to the exponential suppression in time, when
Fourier transformed to real space, the omitted terms in (2.11) also
fall off parametrically faster with distance than the first term.
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jψ j2ðt ¼ teqÞ ∼ jψ j2eq½ϵðteqÞ�; ð2:19Þ

we expect the linear analysis to break down for t ∼ teq.
In particular, for t≳ teq, we expect the condensate growth
to transition from the exponential growth of (2.15) to
the adiabatic growth governed by (2.18) with ϵ in (2.18)
given by the time-dependent reduced temperature (1.2).
Moreover, the system does not contain a well-defined
number of topological defects until a well-defined con-
densate forms that necessarily lies outside the domain of
linear response. Thus, teq is also the natural time scale to
measure the density of topological defects.
To estimate teq, we have to solve Eq. (2.19) for teq=tfreeze.

From (2.14)–(2.18), it is clear that this ratio, which
determines the duration of the coarsening region, is con-
trolled by the dimensionless parameter

R≡ ϵ2β

~εðtÞ≃
τ−2β=ð1þνzÞ
Q

εtfreeze
∼ ζ−1τΛ=ð1þνzÞ

Q ;

Λ≡ ðd − zÞν − 2β: ð2:20Þ

When R≲Oð1Þ, we must have teq ∼ tfreeze. In this case,
there is no hierarchy of scales between tfreeze and teq and the
condensate begins to grow adiabatically after tfreeze. In other
words, in this case, our analysis reduces to the standard
story of the KZM and the density of topological defects is
given by (1.4). When R ≫ 1, there is, however, a hierarchy
between teq and tfreeze, and (2.15) applies over a parametri-
cally large interval of time during which the condensate
grows with time exponentially, and the coarsening length
lcoðtÞ, which controls the typical size of a condensate
droplet, grows with time as a power. In particular, in the
limit R → ∞, from (2.15), (2.19), and (2.14), we see

teq
tfreeze

∼ ðlogRÞ1=ð1þνzÞ þ � � � → ∞ ð2:21Þ

and

lcoðteqÞ
ξfreeze

∼ ðlogRÞ½1þðz−2Þν=½2ð1þzνÞ� þ � � � → ∞: ð2:22Þ

Thus, for R ≫ 1, a parametrically large amount of coars-
ening occurs before a well-defined condensate even forms.
The density of topological defects of dimension D is then
[using (2.14)]

ρðteqÞ ∼ 1=ld−D
co ðteqÞ

∼ ½logðζ−1τΛ=ð1þνzÞ
Q Þ�−fðd−DÞ½1þðz−2Þν�g=2ð1þzνÞρKZ:

ð2:23Þ

As a result of early-time coarsening, the defect density ρ is
parametrically much smaller than the Kibble-Zurek

prediction ρKZ and the standard KZ scaling is corrected
by a logarithmic prefactor. Possible systems with R ≫ 1
will be further discussed in the conclusion section.
We stress that the time dependence of (2.15) differs from

the scaling behavior of standard coarsening physics [51],
which applies only after the magnitude jψ j has achieved its
equilibrium value. The possible importance of early-time
coarsening physics in the KZM has recently also been
discussed in Ref. [34], but it assumed the scaling behavior
of standard coarsening physics and thus is not compatible
with our result.

C. Rapid quenches

By decreasing τQ (while keeping Ti, Tf fixed), even-
tually the scaling (2.23) for the defect density must break
down. In standard KZ discussions, this breakdown should
happen when tf ≲ tfreeze. Here, we point out that for
systems with teq ≫ tfreeze, the scaling (2.23) breaks down
for tf ≪ teq, and can happen even for tf parametrically
much larger than tfreeze. This behavior is easy to understand;
for teq ≫ tf ≫ tfreeze, since the system stays at Tf after tf,
the growth of the condensate will largely be controlled by
the unstable modes at Tf, and the defect density will be
determined by Tf rather than τQ. We now generalize the
above discussion of far-from-equilibrium coarsening to
such a case, where Eq. (2.11) should be modified to

Cðt; qÞ ¼
Z

t

tfreeze

dt0ζjHðqÞj2e2Imw0ðϵf;qÞðt−t0Þ þ � � � ; ð2:24Þ

where as commented below (2.11), the ellipses denote
contributions from earlier times that can be neglected in
subsequent discussions. Note that w0ðϵf; qÞ is now evalu-
ated at ϵf ≡ ðTc − TfÞ=Tc, which results in a simple et

growth for any ν, z [compare with (2.13)]. Fourier trans-
forming the above expression, then Cðt; rÞ can be written in
a scaling form (see Appendix A for details)

Cðt; rÞ ∼ ϵðd−zÞνf ζf½ϵνzf ðt − tfreezeÞ; rϵνf� ð2:25Þ

for some scaling function f. For ϵνzf ðt − tfreezeÞ ≫ 1 and
rϵνf ≫ 1 (assuming linear response still applies), f can be
obtained explicitly and one finds

Cðt; rÞ ¼ jψ j2ðtÞe−r2=2l2coðtÞ;
jψ j2ðtÞ ∼ ϵðd−zÞνf ζ exp ½2bðt − tfreezeÞϵνzf � ð2:26Þ

with

l2
coðtÞ ¼ 4aðt − tfreezeÞϵνðz−2Þf : ð2:27Þ

Note that in comparing with (2.13) and (2.14), we see that
both the logarithm of the condensate square and the
coarsening length square grow linearly with time.
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Parallel to the earlier discussion, we postulate that the
linear response analysis breaks down when the condensate
squared obtained from (2.26) becomes comparable to
jψ j2eq. To estimate the time scale teq when this breakdown
happens, it is again convenient to introduce

Rf ≡
ϵ2βf

ζϵðd−zÞνf

¼ ζ−1ϵ−Λf ; ð2:28Þ

and the criterion for linear response to apply for
ϵνzf ðt − tfreezeÞ ≫ 1 is again Rf ≫ 1. In particular, the
equilibrium time teq and the density of defects should be
given by

teq − tfreeze ∼

8<
:

ϵ−zνf Rf ≲Oð1Þ
ϵ−νzf logRf Rf ≫ 1;

ρ ∼

8<
:

ϵðd−DÞν
f Rf ≲Oð1Þ
ϵðd−DÞν
f log−ðd−DÞ=2Rf Rf ≫ 1:

ð2:29Þ

Clearly, ρ is independent of τQ.
For very fast quenches, i.e., tf ≪ tfreeze, the whole

quench from Ti to Tf will be nonadiabatic. In such a case,
at the end of quench, the system will have correlation
length ξi ∼ ξeqðTiÞ imprinted from the state before the
starting of quench, and the scale tfreeze is no longer relevant.
But, the above discussion of far-from-equilibrium coars-
ening still applies with t − tfreeze replaced by t − tf.

5

III. NUMERICAL RESULTS:
OUT-OF-EQUILIBRIUM DYNAMIC
OF A HOLOGRAPHIC SUPERFLUID

In this section, we test the predictions of the previous
section by constructing numerical solutions for the time
evolution of a (2þ 1)-dimensional holographic superfluid
after a quench across a second-order phase transition. In
Appendix B, we give a detailed account of the gravity setup
and technical details. Here, we discuss the main results.

A. Predictions for holographic systems

Many examples of field theories with gravity duals are
now known in various spacetime dimensions, which
essentially consist of elementary bosons and fermions
interacting with non-Abelian gauge fields. The rank N
of the gauge group is mapped to the Newton constantGN of

the bulk gravity such that GN ∼ 1=N2; the classical gravity
approximation in the bulk thus corresponds to the large N
limit in the boundary theory. Finite temperature in the
boundary system is described on the gravity side by a black
hole. In the large N limit, thermal and quantum fluctuations
are suppressed by 1=N2 and on the gravity side are encoded
in quantum gravity effects induced from the black hole’s
Hawking radiation.
In this paper, we consider a holographic superfluid phase

transition in two spatial dimension with relevant topologi-
cal defects being pointlike vortices. In the large N limit,
the phase transition has mean-field critical exponents with
ν ¼ 1=2, z ¼ 2, β ¼ 1=2, and ζ in (2.1) of order Oð1=N2Þ.
For such a system, the predictions from the KZM for
density of superfluid vortices read

tfreeze ∼ τ1=2Q ; ξfreeze ∼ τ1=4Q ; ρKZ ∼ τ−1=2Q : ð3:1Þ

Applying the discussion of the last section to such large N
theories, we can make the following predictions.
(1) For slow quenches, i.e., quenches with tf ≫ teq,

with d ¼ 2 and mean-field exponents, Eq. (2.15)
becomes (t̄ ¼ t=tfreeze)

Cðt; rÞ ∼ jψ j2ðtÞe−r2=2l2coðtÞ;
jψ j2ðtÞ ∼ ~εtfreezet̄ea2 t̄

2

;

lcoðtÞ ∼ ξfreeze
ffiffī
t

p
: ð3:2Þ

Furthermore, from (2.20), we find Λ ¼ −1 and thus

R ∼ ζ−1τ−1=2Q ∼ N2τ−1=2Q : ð3:3Þ

In the large N limit, we always have R ≫ 1, and
from (2.21) and (2.23),

teq
tfreeze

∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

N2ffiffiffiffiffi
τQ

p
s

ð3:4Þ

and

ρ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log N2ffiffiffiffi
τQ

p
q ρKZ: ð3:5Þ

(2) For rapid quenches, with mean-field exponents and
d ¼ 2, Eq. (2.26) can be written as

Cðt; rÞ ¼ jψ j2ðtÞe−r2=2l2coðtÞ;
jψ j2ðtÞ ∼ ζ exp ½2bðt − tfreezeÞϵf� ð3:6Þ

with

l2
coðtÞ ¼ 4aðt − tfreezeÞ: ð3:7Þ

5Strictly speaking, the above discussion applies to ξi <
ξminðTfÞ≡ q−1maxðTfÞ ∼ ϵ−νf . For ξi > ξminðTfÞ, unstable q modes
with q−1 < ξi will be averaged out and only those modes with
q−1 > ξi can grow.
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Furthermore, Rf ¼ ζ−1ϵ−1f ∼ N2ϵ−1f is always much
greater than 1 in the large N limit, and we have from
(2.29)

teq − tfreeze ∼ ϵ−1f log
N2

ϵf
; ρ ∼

ϵf

log N2

ϵf

: ð3:8Þ

Note that both quantities above are independent
of τQ.

B. Numerical results

We have performed numerical simulations of thermal
quenches across a second-order phase transition of a (2þ 1)-
dimensional holographic superfluid. We employ the linear
quench (1.2), which in the gravity context translates into a
black hole with a time-dependent temperature. Instead of
directly computing fluctuations from Hawking radiation
(see, e.g., Refs. [52,53]), we model fluctuations from
quantum gravity effects as a random noise that enters as a
nontrivial boundary condition in the gravity equation of
motion. In such a formulation, ζ can be taken as an
adjustable parameter, which we take to be numerically small
so as to imitate the Oð1=N2Þ fluctuations. See Appendix B
for details. In what follows, all dimensional quantities are
expressed in units of the critical temperature Tc.
We begin our analysis by studying the normalized

average order parameter

AðtÞ ¼ 1

M

XM
i¼1

aiðtÞ
aið∞Þ ; aiðtÞ≡

Z
d2xjψ iðt; xÞj2:

ð3:9Þ

The sum over i represents an ensemble average over M
configurations at fixed τQ. The time evolution of AðtÞ for
various τQ are given in Fig. 1. The left and middle plots
correspond to slow quenches where we see all curves
experience a period of rapid growth after tfreeze followed by
a period of approximate linear growth. This regime of
slow quenches is the one at which the KZ mechanism of
defect formation applies. We note that the KZ mechanism
assumes that defects are generated at tfreeze, so it does not
provide a theory of the condensate growth. However, this
problem has been previously addressed in the condensed-
matter literature [54,55]. We operationally define tfreeze as
the time at which AðtÞ ¼ 2Að−∞Þ. The rapid growth can be
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FIG. 1. Left: The normalized average condensate AðtÞ defined in (3.9) for quench rates τQ ¼ nτo for n ¼ 2;…; 10 (from left to right)
with τo ¼ 161.37=Tc. The black diamonds denote the times at which for each τQ the thermal quench is over. All curves experience a
period of rapid growth, which is followed by a period of approximate linear growth. The start of the rapid growth can be identified as
tfreeze, which we operationally define as the time at which AðtÞ ¼ 2Að−∞Þ, and are denoted by the green circles. The crossover from
exponential to linear growth corresponds to the equilibration time teq (2.19), which we operationally define as the time at which
A00ðteqÞ < 0.1max fA00ðtÞg, and are labeled by the red stars and circles. Middle: Scaling behavior of slow quenches; when A is plotted vs
t̄2 ¼ ðt=tfreezeÞ2, only curves corresponding to slow quenches collapse into a single one. The linear behavior in the logarithmic plot is
consistent with (3.2). Right: Scaling behavior of rapid quenches; AðtÞ is plotted vs t − tfreeze on a logarithmic scale for quench rates
τQ ¼ nτo for n ¼ 0.1; 0.2;…; 10. As predicted from (3.6), only τQ curves corresponding to fast quenches collapse into a single one,
which exhibits linear exponential growth. All dimensional quantities are measured in units of Tc (B15).

FIG. 2. Left: The freeze-out time tfreeze and equilibration time
teq as a function of τQ expressed in units of Tc (B15). For rapid
quenches, teq → const, as expected. For slow quenches, both

tfreeze and teq are consistent with the τ1=2Q scaling. Right: teq also

exhibits logarithmic correction to the τ1=2Q scaling, consistent with
the prediction of (3.4).
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FIG. 3. The time evolution of jψðt; xÞj2=jψðt ¼ ∞; xÞj2 for τQ ¼ 3τo (upper) and τQ ¼ 10τo (lower) at times t ¼ tfreeze, t ¼ 0.7teq,
t ¼ 0.85teq, and t ¼ teq. Similar results (not shown) are obtained for faster (τQ ≤ τ0) quenches. The key message is that we can sensibly
talk about defect density only after teq. At t ¼ tfreeze, the order parameter is very small and dominated by fluctuations. These fluctuations
seed droplets of condensate, whose subsequent causal connection can be seen at time t ¼ 0.7teq. At such a time, the droplets are still
separated by large regions where there is no condensate. Subsequently, the droplets expand and grow in amplitude and the system
becomes smoother and smoother. By time teq, the droplets have merged into a comparatively uniform condensate with isolated regions
where ψ ¼ 0. The nonuniformities—the localized blue “dots”—are superfluid vortices with winding number �1. All dimensional
quantities are expressed in units of Tc (B15).
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FIG. 4. Left: Cðt; rÞ for τQ ¼ 4τo. Right: The time evolution of the full width at half maximum ξFWHMðtÞ of Cðt; rÞ for τQ ¼ τon with
n ¼ 2; 3; 4;…; 10. The green circles correspond to ξFWHMðtfreezeÞ while the red stars correspond to ξFWHMðteqÞ. At t ≈ tfreeze, ξFWHM

starts a period of growth. Note that ξFWHMðtfreezeÞ ≫ ξFWHMðteqÞ. The collapse of all curves between tfreeze and teq is consistent with the
scaling behavior of (3.2). It is possible that the observed oscillations superimposed on the square-root growth of the ξFWHMðtÞ are related
to the finite real part of w0 (2.5).
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identified with the regime described by (2.15) and (3.2) as
indicated by the middle plot. The linear growth can be
identified as the regime of adiabatic condensate growth. To
see this, note that for the mean field, jψ j2eq ∼ ϵðtÞ ¼ t=τQ,
implying AðtÞ ∼ t=τQ for adiabatic growth. This conclusion
is supported by the slope of the linear growth, the
observation that the termination of the linear condensate
growth coincides with the end of the quench, and that when
extrapolated to t ¼ 0, the linear curves have A ¼ 0. The
crossover from exponential to linear growth corresponds to
the equilibration time teq (2.19), which we operationally
defined as the time in which A00ðteqÞ < 0.1max fA00ðtÞg.
A key feature of the middle plot of Fig. 1 is that curves of

different τQ all lie top of one another when we plot them in
terms of the scaling variable t̄2 ¼ ðt=tfreezeÞ2. In particular,
the linear t̄2 growth in the logarithmic plot agrees very well
with the prediction of (3.2). We note that in the context of
condensed matter, the formation of a 1D condensate was
investigated numerically in Ref. [55]. Indeed, a similar
collapse, for different τQ’s, was recently observed [8] in a
1D system governed by the stochastic Gross-Pitaevskii
equation. The right plot describes fast quenches discussed
in Sec. II C, with all the qualitative features of (3.6)
confirmed numerically, namely, et growth as compared
with the et

2

growth of slow quenches, and all curves of
different τQ lying on top of one another when plotted vs
t − tfreeze.

6 For such a “rapid” quench, the growth of the
condensate and the resulting defect density are dictated by
Tf and are independent of τQ. This expectation is also
borne out in Fig. 2, where we plot the freeze-out time tfreeze
and equilibration time teq as a function of τQ. While for
large τQ, their behavior is consistent with

ffiffiffiffiffi
τQ

p scaling, for
rapid quenches, teq approaches a constant. The right panel
of Fig. 2 also shows that our numerical results are
consistent with the presence of a logarithmic hierarchy
between the two time scales as predicted in (3.4).
In Fig. 3, we plot the time evolution of jψðt; xÞj2=

jψðt ¼ ∞; xÞj2 for two values of τQ at various times up to
t ¼ teq. These plots help to visualize the key point that
before teq when a relative uniform jψ j2 has not formed, one
cannot sensibly count defects. Moreover, it is evident that
the defect density is higher for the faster quench.
To quantify the time evolution of coarsening and

smoothing of the condensate, we numerically compute
the correlation functionCðt; rÞ by computing the average in
(2.3) over an ensemble of solutions at fixed τQ. The results
are in Fig. 4, where we also present the full width at half

maximum ξFWHMðtÞ of Cðt; rÞ. Before tfreeze, ξFWHM is
dominated by fluctuations and is therefore constant. After
t ≈ tfreeze, ξFWHM experiences a period of rapid growth,
which is consistent with our prediction (3.2) including the
scaling behavior. Note that ξFWHMðteqÞ is significantly
larger than ξFWHMðtfreezeÞ, which highlights the importance
of the fudge factor needed to account for the correct defect
density. This observation is in line with our expectation
from Eqs. (2.14) and (3.4).
Finally, in the left panel of Fig. 5, we show that for slow

quenches, our numerical results reproduce the KZ scaling of
the number of vortices Nvortices. For τQ < 200, our numerics
are consistent with Nvortices ¼ const. A constant number of
vortices is the expected behavior from our discussion of
the breakdown of the KZ scaling in the preceding section:
The density of defects should asymptote to a constant in the
limit of sudden quenches. For such rapid quenches, the right
plot confirms the scaling of the defect density with ϵf as
predicted in (2.29) and (3.8). For both situations, our
statistics are not enough to resolve the logarithms predicted
in (3.5) and (3.8). Also included in the left panel of Fig. 5 is a
plot of ½LB=ξFWHMðteqÞ�2, where B ≈ 1.92. The fantastic
agreement between ½LB=ξFWHMðteqÞ�2 andNvortices for all τQ
bolsters the notion that the vortex density is a measure of the
correlation length. Moreover, the observation that B ¼ Oð1Þ
and ξFWHMðteqÞ ≫ ξFWHMðtfreezeÞ is consistent with our
argument that coarsening during the early stages of the

FIG. 5. Left: The number of vortices Nvortices and ξ−2FWHM at time
t ¼ teq as a function of τQ expressed in units of Tc (B15). Each
data point is computed by averaging the number of vortices over
an ensemble of solutions at fixed τQ. The error bars are computed
from the variance of Nvortices. The numerical results are consistent
with KZ scaling τ−1=2Q for τQ > 200. For τQ < 200, our numerics
are consistent with Nvortices ¼ const, which is consistent with our
expectation that the density of defects should asymptote to a
constant in the limit of sudden quenches. Also included is a plot
of ½LB=ξFWHMðteqÞ�2, where L is our box size and B ≈ 1.92. Our
statistics are not sufficient to resolve the logarithmic prefactor in
(3.5). Right: Nvortices vs ϵf ¼ ϵðTfÞ, in units of Tc (B15) for
sufficiently small τQ. The results are consistent with (3.8) with
Nvortices ∼ ϵf. Our statistics are again not sufficient to resolve the
logarithmic prefactor in (3.8).

6We note that our numerical results go at least up to times
t ∼ 2teq. This is the shortest time scale necessary to distinguish
between the growth corresponding to fast and slow quenches. For
slow quenches, technical limitations related to long computation
times prevent us from going beyond this time scale.
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evolution can dramatically increase the correlation length
and decrease the expected density of defects from the KZ
prediction (1.4).

IV. CONCLUSION AND DISCUSSION

To summarize, we elucidated a novel period of non-
adiabatic evolution after a system passes through a second-
order phase transition, where a parametrically large amount
of coarsening occurs before a well-defined condensate
forms. The physical origin of the coarsening can be traced
to the fact that when the system passes through the phase
transition, IR modes of the order parameter become
unstable and exponentially grow. We showed that such a
far-from-equilibrium coarsening regime could have impor-
tant consequences for defect formation. We also numeri-
cally simulated thermal quenches in a (2þ 1)-dimensional
holographic superfluid, which provided strong support for
our analytic results.
For slow quenches, a key quantity is R (2.20), which we

copy here for convenience:

R ∼ ζ−1τΛ=ð1þνzÞ
Q ; Λ≡ ðd − zÞν − 2β: ð4:1Þ

For R ≫ 1, there is a large hierarchy between tfreeze and teq,
and the density of defects can be significantly lower than
that predicted by KZ. Systems with R ≫ 1 can be separated
into two cases.

(I) The exponent Λ is positive, i.e.,

ðd − zÞν > 2β ð4:2Þ
for which R → ∞ as τQ → ∞. For a mean field with
z ¼ 2, ν ¼ 1

2
, β ¼ 1

2
, Eq. (4.2) implies d > 4, i.e.,

above the upper critical dimension of mean-field
theory. Using the hyperscaling relation 2β ¼
ðd − 2þ ηÞν, for a general critical point, Λ can be
simplified as

Λ ¼ ð2 − η − zÞν ð4:3Þ
and (4.2) becomes

z < 2 − η: ð4:4Þ
An example that satisfies this condition is superfluid
4He, which has

z ¼ 3

2
; η ≈ 0.037: ð4:5Þ

Other examples include a three-dimensional isotropic
antiferromagnet and the three-dimensional XY model.

(II) Λ is negative, but ζ ≪ 1, so that for large but finite
τQ, we still have R ≫ 1, i.e.,

ζ ≪ τΛ=ð1þνzÞ
Q : ð4:6Þ

One class of examples is holographic theories, such as
that discussed in Sec. III, for which ζ ∼ 1=N2 with
N → ∞. As another class of examples, let us consider
model A for dynamic critical phenomena [56]. Recall
that the van Hove theory of critical slowing-down
predicted exactly z ¼ 2 − η. Renormalization-group
analysis gives z slightly greater than this value [57],
which means that generically for model A, Λ is only
slightly negative, and thus (4.6) essentially translates
into ζ ≪ 1. As an explicit example, conventional
superconductors have a very small ζ, and thus we
expect them to have a large hierarchy between tfreeze
and teq.

For fast quenches, the analogous quantity is Rf defined
in (2.28). Comparing (2.28) with (2.20), we see the
conditions for Rf ≫ 1 are essentially identical to those
for R ≫ 1, and the above discussion also applies.
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APPENDIX A: DETAILS ON VARIOUS
INTEGRALS

In this section, we give some details in the derivation of
(2.13) and (2.26).

1. Slow quenches

Consider the integral (2.11) for small q≲ qmax

Cðt; qÞ ¼
Z

t

tfreeze

dt0ζjHðqÞj2e2
R

t

t0 dt
00Imw0½ϵðt00Þ;q�

≈ ζjHð0Þj2tfreeze
Z

t̄

1

dt̄0

× exp

�
2tfreeze

Z
t̄

t̄0
dt̄00Imw0½ϵðt00Þ; q�

�
; ðA1Þ

where we have introduced t̄ ¼ t=tfreeze. Now, note from
(2.6) that

tfreezeImw0½ϵðtÞ; q� ¼ −
aτs
ξ2s

t̄ðz−2Þνq2ξ2freeze þ bτst̄zν þ � � � ;

ðA2Þ
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where we have used (1.2) and (1.3). We thus find that

Cðt; qÞ ≈ ζCjHð0Þj2tfreeze exp
�
a2t̄1þνz −

1

2
q2l2

coðt̄Þ
�
;

l2
coðt̄Þ≡ a23ξ

2
freezet̄

1þðz−2Þν; ðA3Þ

where

a2 ¼
2bτs
1þ zν

; a23 ¼
4aτs

½1þ νðz − 2Þ�ξ2s
;

C ¼
Z

t̄

1

dx exp

�
−a1x1þνz þ 1

2
a23q

2ξ2freezex
1þνðz−2Þ

�
:

ðA4Þ

Note that since x > 1, ν > 0, and we are interested in the
regime qξfreeze ≲Oð1Þ, the first term in the exponential of
C always dominates over the second term. For large t̄, due
to exponential suppression, the integral for C is dominated
by the lower end, and we thus conclude that C ∼Oð1Þ.
For t̄ ∼Oð1Þ, the t̄ dependence is more complicated, but
this is not the regime we are interested in. Suppressing
various Oð1Þ prefactors, we thus find (2.13) and (2.14).
Note that in (2.11), we have assumed the condensate

starts growing at tfreeze, but it is clear from our derivation
that (2.13) and (2.14) are not sensitive to the specific time
when the condensate starts growing. For example, the
conclusion remains the same if the lower end of the integral
of (A1) is changed to 0.

2. Rapid quenches

For rapid quenches discussed in Sec. II C, we have

Cðt; qÞ ¼
Z

t

tfreeze

dt0ζjHðqÞj2e2Imw0ðϵf;qÞðt−t0Þ

≈
ζjHð0Þj2

Imw0ðϵf; qÞ
½e2Imw0ðϵf;qÞðt−tfreezeÞ − 1�: ðA5Þ

Given the scaling form of Imw0ðT; qÞ ¼ ϵνzImhðqϵ−νÞ, the
above equation can be written as

Cðt; qÞ ≈ ϵ−νzf ζjHð0Þj2
2Imhð ~qÞ ½e2Imhð ~qÞ~t − 1�; ~q≡ qϵ−νf ;

~t≡ ðt − tfreezeÞϵνzf ðA6Þ

whose Fourier transform can also be written in a scaling
form

Cðt; rÞ ¼ ϵðd−zÞνf ζfð~t; ~rÞ; ~r≡ rϵνf ðA7Þ

for some scaling function f. For large ~r ≫ 1, we can use
the small ~q expansion hð ~qÞ ¼ b − a ~q2, and for ~t ≫ 1, we
find that

Cðt; rÞ ∼ ϵðd−zÞνf ζ exp

�
2bðt − tfreezeÞϵνzf −

r2

2l2
coðtÞ

�
ðA8Þ

with

l2
coðtÞ ¼ 4aðt − tfreezeÞϵνðz−2Þf : ðA9Þ

APPENDIX B: NONEQUILIBRIUM
HOLOGRAPHIC SUPERFLUIDITY:

GRAVITY SETUP

The field content of the (2þ 1)-dimensional holographic
superfluid we study consists of the metric GMN , a Uð1Þ
gauge field AM, and a charged scalar Φ with charge e.
These fields live in asymptotically AdS4 spacetime.
Following Ref. [58], we take the action to be

Sgrav ¼
1

16πGNewton

Z
d4x

ffiffiffiffiffiffiffi
−G

p

×

�
Rþ Λþ 1

e2

�
−
1

4
FMNFMN

−jDΦj2 −m2jΦj2
��

; ðB1Þ

where R is the Ricci scalar, FMN is the Uð1Þ field strength,
D is the gauge-covariant derivative, and G ¼ −detGMN .
The mass m of the scalar field and the cosmological
constant Λ are given by

m2 ¼ −2; Λ ¼ −3: ðB2Þ

The Uð1Þ gauge redundancy in the bulk encodes a Uð1Þ
global symmetry in the boundary theory where the boun-
dary order parameter transforms with a phase ψ → ψeiα.
Indeed, the bulk scalar field Φ encodes ψ .
Following Ref. [38], we employ infalling Eddington-

Finkelstein coordinates where the metric takes the form

ds2 ¼ r2gμνðt; x; rÞdxμdxν þ 2drdt: ðB3Þ

Here, greek indices run over boundary spacetime coordi-
nates and r is the anti–de Sitter (AdS) radial coordinate
with r ¼ ∞ the AdS boundary. With our choice of
coordinates, lines of constant t represent infalling null
radial geodesics affinely parametrized by r. In addition, we
choose to work in the gauge Ar ¼ 0.
For simplicity, we choose to work in the probe limit

e → ∞ where gravitational dynamics decouple from the
dynamics of the gauge and scalar fields. The equations of
motion following from (B1) are then simply

0 ¼ RMN −
1

2
GMNðRþ 2ΛÞ; ðB4aÞ
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0 ¼ ∇MFNM − JM; ðB4bÞ

0 ¼ ð−D2 þm2ÞΦ: ðB4cÞ

Since the boundary of AdS is timelike, the equations of
motion (B4) require boundary conditions to be imposed
there. As the boundary geometry of AdS corresponds to the
geometry the dual quantum theory lives in, we demand that
the boundary geometry be that of flat (2þ 1)-dimensional
Minkowski space. This is accomplished by setting
limr→∞gμν ¼ ημν. The near-boundary behavior of the gauge
and scalar fields can easily be worked by from Eqs. (B4b)
and (B4c) and read

Aαðt; x; rÞ ¼ Að0Þ
α ðt; xÞ þ Að1Þ

α ðt; xÞ
r

þOð1=r2Þ; ðB5Þ

Φðt; x; rÞ ¼ Φð1Þðt; xÞ
r

þ Φð2Þðt; xÞ
r2

þOð1=r3Þ: ðB6Þ

On the gauge field, we impose the boundary condition

Að0Þ
α ðt; xÞ ¼ δα0μ; ðB7Þ

where μ is a constant. In the dual quantum field theory, μ is
interpreted as a chemical potential for the conserved Uð1Þ
charge. As a final boundary condition, we set

Φð1Þðt; xÞ ¼ φðt; xÞ ðB8Þ

with φ random variable satisfying statistics (2.1). The
stochastic driving of the scalar field mimics the effect of
quantum and thermal fluctuations induced by the black
brane’s Hawking radiation. In the dual quantum theory, the
boundary condition (B8) amounts to deforming the
Hamiltonian

H → H þ
Z

d2xfφ�ψ þ φψ�g: ðB9Þ

Note that φ has mass dimension one and ψ has mass
dimension two. In terms of the asymptotic behavior of the
scalar field (B6), the boundary order parameter reads

ψðt; xÞ ¼ Φð2Þðt; xÞ − ð∂t − iμÞφðt; xÞ: ðB10Þ

Let us first discuss static equilibrium solutions to the set
of equations of motion (B4). Translationally invariant
equilibrium solutions to Einstein’s equations consist of
black branes

ds2 ¼ r2½−fdt2 þ dx2� þ 2drdt; ðB11Þ

where

f ¼ 1 −
�
rh
r

�
3

: ðB12Þ

The Hawking temperature T of the black brane is related to
the horizon radius rh by

rh ¼
4πT
3

ðB13Þ

and corresponds to the temperature of the dual quantum
theory.
Static equilibrium solutions to the scalar-gauge-field

system (B4c) and (B4b) were first explored in Ref. [58].
One static solution to (B4c) and (B4b) (with ε ¼ 0 and
hence no stochastic driving) is simply

Aα ¼ μ

�
1 −

rh
r

�
δα0; ðB14aÞ

Φ ¼ 0: ðB14bÞ

However, for sufficiently low temperatures, this solution
is unstable and not thermodynamically preferred. For
T < Tc, where

Tc ≈ 0.0587μ; ðB15Þ

the thermodynamically preferred solution has Φ ≠ 0. Hence,
the bulk Uð1Þ gauge redundancy is spontaneously broken at
low temperatures and the black brane develops a charged
scalar atmosphere. Likewise, via (B10), the boundary order
parameter is nonzero and the global Uð1Þ symmetry on the
boundary is spontaneously broken. The gravitational and
boundary systems have a second-order phase transition at
T ¼ Tc with mean-field critical exponents.
To study the Kibble-Zurek mechanism gravitationally,

we drive the system stochastically with the boundary
condition (B8) and choose to dynamically cool the black
brane geometry through Tc. When the geometry cools
through Tc, the aforementioned instability will result in the
scalar field Φ growing and the black brane developing a
scalar atmosphere. Likewise, as this cooling happens, the
boundary quantum field theory condensate (B10) will grow
in amplitude.
Instead of solving Einstein’s equations (B4a) for a black

brane with dynamic temperature, we choose to fix the
geometry to be the equilibrium geometry (B11) but with a
time-dependent temperature TðtÞ equal to the boundary
quench protocol temperature (1.2), which we control. The
metric will therefore no longer satisfy Einstein’s equations.
Why is it reasonable to employ a geometry that does not
satisfy Einstein’s equations? To answer this question, we
note that to cool the system through Tc, we can couple it to
an external thermal bath at controllable temperature TextðtÞ.
This coupling can be done by, for example, putting our
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system in a box of size L and putting the surface of the box
in contact with the thermal reservoir. As we are ultimately
interested in slow quenches where T 0

extðtÞ is parametrically
small, we expect thermal equilibration and TðtÞ ≈ TextðtÞ.
In this limit, Einstein’s equations can be solved with the
gradient expansion of fluid and gravity [59]. At leading
order in gradients, the solution is simply (B11), but with the
time-dependent temperature TðtÞ.
Our numerical methods used to solve the scalar-gauge-

field system (B4c) and (B4b) are outlined in Ref. [38]. We
use pseudospectral methods and discretize the AdS radial
coordinate using 20 Chebyshev polynomials. In the spatial
directions, we work in a periodic spatial box and discretize
using a basis of 201 plane waves. We chose box size LTc ¼
30.8 and measure all other dimensionful quantities in units
of Tc. We choose noise amplitude ζTc ¼ 1.5 × 10−3. As
our quench protocol (1.2) starts off at temperatures T > Tc,
in the infinite past, we choose initial conditions (B14).
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