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Motivated by the commonplace observation of Mott insulators away from integer filling, we construct a
simple thermodynamic argument for phase separation in first-order doping-driven Mott transitions. We
show how to compute the critical dopings required to drive the Mott transition using electronic structure
calculations for the titanate family of perovskites, finding good agreement with experiment. The theory
predicts that the transition is percolative and should exhibit Coulomb frustration.
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I. INTRODUCTION

The Mott transition is a pervasive and complex phenom-
ena, observed in many correlated oxide systems [1]. It
comes in two varieties: the bandwidth-controlled transition
at half-filling, tuned by the ratio of the on-site Coulomb
repulsion U and bandwidth W, and the filling-controlled
transition, tuned by electron doping x away from half-
filling. Theoretically, Mott insulators exist only at half-
filling: With one electron per site, hoppings necessarily
create empty and doubly occupied sites that are heavily
penalized by U. Introducing a finite charge density allows
carriers to move without incurring the on-site Coulomb
cost, destroying the Mott insulator [2]. However, experi-
ments in a wide variety of transition metal oxides show
that the critical doping xc needed to destroy insulating
transport is not zero but rather a substantial fraction of
unity [3], ranging from 0.1 in the nickelates [4] to 0.5 in
the vanadates [5]. Systematic variations of xc with
bandwidths also show that it is an intrinsic quantity [6]
and motivate the search for mechanisms independent of
disorder or coupling to lattice vibrations for insulating
behavior away from half-filling.
The scenario of doping a Mott insulator has been heavily

studied using a variety of techniques [7–10]. For the classic
case of a square lattice, basic issues such as whether the
Mott transition is first [11–14] or second [15–18] order,
the specific parameter regimes and underlying mechanisms
of phase separation [19–24], and the structure of the

inhomogeneous phases [25–27] have been actively
researched, with results dependent on the specific model
considered and technique applied. We take a different
approach: We assume the bandwidth-controlled Mott
transition is first order and deduce its implications by
constructing a simple thermodynamic description. We
predict that the filling-controlled transition is first order
as a consequence, implying that phase separation occurs
and the critical doping scales as xc ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U −Uc

p
, where Uc

defines the critical U for the bandwidth-controlled tran-
sition. Using the prototypical example of the rare-earth
titanates, an experimentally [28,29] and theoretically
[30–32] well-characterized family of Mott compounds,
we show how to compute xc within electronic structure
calculations [33].

II. THERMODYNAMICS

We construct a theory of the Mott transition by con-
necting the bandwidth- and filling-controlled transitions.
By assuming the former transition is first order (which
covers the majority of cases observed in experiment), we
can explicitly write down the energy densities ϵ ¼ E=V
for the metallic and insulating states since the two states
must independently exist over a finite parameter range and
cross at the first-order transition. We determine the phase
boundary of the Mott transition in the μ-U plane (μ is the
chemical potential) and compute the scaling of the critical
doping xc with U.
Consider a one-band Hubbard model on a generic lattice.

The μ-U phase diagram generically consists of two regions:
a Mott insulator occupying a finite range in μ at sufficiently
largeU > Uc and a Fermi liquid (actually a superconductor
or any other compressible phase including a possible non-
Fermi liquid will suffice for the argument) everywhere else
(Fig. 1). Expanding the grand-canonical energy densities
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of the metal and insulator to lowest order about the
bandwidth-controlled transition point (dot labeled Uc in
Fig. 1), we obtain

ϵmðμ; UÞ ¼ ϵ0 þ dmΔU − 1

2
κðΔμÞ2; ð1Þ

ϵiðμ; UÞ ¼ ϵ0 þ diΔU: ð2Þ

Here, κ ¼ ∂x=∂μ is the electronic compressibility, where
the doping x ¼ n − 1 is defined relative to half-filling, and
dm and di are the per-site double occupancies hni↑ni↓i in
the metallic and insulating states. The chemical potential
Δμ ¼ μ − μn¼1 and Coulomb repulsion ΔU ¼ U −Uc are
measured relative to the bandwidth-controlled transition
point.
Equating the two energies, we obtain the Mott phase

boundary,

ΔU ¼ Δμ2

2

κ

dm − di
: ð3Þ

Evaluating the metallic density x ¼ −∂ϵm=∂μ along the
phase boundary, we obtain the critical doping

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔU · 2κðdm − diÞ

p
: ð4Þ

Similar to the liquid-gas transition, thermodynamics for-
bids charge densities lying in the range 0 < jxj < xc. The
system will phase separate if doped to lie within this
regime [24].
We note that the filling-controlled transition is not

doping in the conventional sense, where the insulator is
connected to a metal formed by shifting μ into the bands
lying adjacent to the spectral gap. Indeed, the smallness of
Δμ for small ΔU implied by Eq. (3) dictates that the
first-order transition occurs without the closing of the

single-particle gap, when ΔU is small. Rather, the Mott
insulator transitions to a disconnected, lower-energy,
metallic state [11].

III. PHASE SEPARATION

Thermodynamics forbids charge densities in the range
0 < jxj < xc, causing the system to phase separate into
insulating regions with x ¼ 0 and metallic regions with
x ¼ xc (shaded region in Fig. 2). The surface energy
Esurface ∼ σLd−1, where σ > 0 is the surface tension and
L is the characteristic size of a metallic region, favors
forming a single large puddle. However, the long-ranged
part of the Coulomb interaction ECoul ∼ x2cL2d−1 penalizes
macroscopic charge imbalances. Balancing the two gives
domains of typical size L ∼ ðσ=x2cÞ1=d. The actual spatial
patterns formed depend on system-specific details such as
dimensionality, anisotropy, and elastic forces [26].
Conducting transport does not coincide with the dis-

appearance of phase separation at xc and the formation of
the homogeneous metallic state. Instead, when the volume
fraction x=xc ∼ ϕ of the metallic puddles reaches the
percolation limit, roughly ϕc ∼ 1=3 in three dimensions
[34], conduction occurs across the system. Depending on
the spatial patterns favored, we may expect anisotropic
transport. Additionally, we predict an intermediate con-
ducting magnetic state (AF-M in Fig. 2) since long-range
order persists as long as the insulating regions percolate,
up to a doping x=xc ∼ 1 − ϕc. This intermediate state does
not exist in two dimensions since ϕc ∼ 1=2, implying
that the metallic and insulating states never simultaneously
percolate.
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FIG. 1. The phase diagram for the Mott transition, plotted as a
function of interaction strength U and chemical potential μ. The
energy vs μ curve at constant U exhibits level crossings between
the metallic and insulating states. The discontinuity in the
derivative x ¼ −∂ϵ=∂μ implies thermodynamically forbidden
densities where the system will phase separate into undoped
x ¼ 0 and critically doped x ¼ xc patches.
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FIG. 2. Generic Mott phase diagram for a three-dimensional
(3D) system plotted in the U vs x plane. Beginning at the pure
Mott insulating state at zero doping x ¼ 0, we progress through
three phase-separated states (shaded) to arrive at a uniform Fermi
liquid. The three phase-separated states have distinct magnetic
(AF or PM) and transport (M or I) signatures. Since the
percolation threshold ϕ3D

c ∼ 1=3, we expect an intermediate
phase (AF-M, bolded text) where metallic conductivity coexists
with magnetic order. This intermediate phase is absent in 2D
since ϕ2D

c ∼ 1=2, so the metal and insulator are never simulta-
neously percolated.
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IV. AB INITIO MODELING

The rare earth titanates RTiO3 are an ideal system to
investigate the Mott transition [28,29]. Varying the ionic
radius of the rare earth R tunes the correlation strength,
while rare earth vacancies [35] or Ca substitution [6]
tune the Ti valence from d1 to d0. The interplay between
structure, transport, and magnetism is well characterized.
Critical dopings, determined via transport, range from 0.05
in LaTiO3 to 0.35 in YTiO3, and the predicted intermediate
metallic antiferromagnetic state has been observed [6],
although the claim is not without controversy [36]. Careful
bulk measurements suggest signatures of phase separation
[37,38]. However, these prior studies suffer from chemical
disorder due to the divalent substitution used to obtain
filling control, so recent synthesis of high-quality electro-
statically doped heterostructures opens the possibility of
filling control without cation disorder [39].
To apply our theory to the titanates, we perform

electronic structure calculations using the combination of
density functional theory and dynamical mean-field theory
[33] with the implementation described in Ref. [40]. We
used U ¼ 9.0 eV and J ¼ 0.8 eV for the strength of the
Coulomb repulsion on the Ti t2g orbitals, and Edc ¼
Uðnd − 1=2Þ − Jðnd − 1Þ=2 with nd ¼ 1.0 as the standard
double-counting energy. The empty eg orbitals do not
require correlations for their correct description. We
include all the valence states, notably the oxygen 2p states
in the hybridization window. We use T ¼ 100 K, well
below the Mott transition temperature at half-filling. The
value for U was determined by requiring the calculated gap
of the end-member LaTiO3 to match the experimentally
determined value, reported to be in the range 20 meV to
0.2 eV [41]. Once fixed, these parameters were used for the
entire RTiO3 family. To capture correlations in the 4f shells
of the compounds with partially filled rare earth ions, we
applied the atomic self-energy

ΣfðiωnÞ ¼ Σ0 þ
U2

fpð1 − pÞ
iωn þ μ −Ufðp − 1=2Þ ; ð5Þ

with the static shift Σ0 ¼ −Ufðp − 1=2Þ − ϵf. Here, Uf ¼
10 eV is the Hartree term on the f shell, ϵf is the center of
mass of the f density of states, and p is the filling fraction
(e.g., 3=14 for NdTiO3). Since the chemical potential is
the independent variable in the scans needed to compute
the n vs μ curves, we do not update the charge density, as
this would require self-consistent adjustment of the nuclear
charges. To obtain spectral quantities, we analytically
continued the 3d self-energy Σ onto the real axis by
applying the maximum entropy method to the effective
Green’s function G ¼ 1=½iωn − E − ΣðiωnÞ�.
Shown in Fig. 3 is the density of states for the end

compounds LaTiO3 and YTiO3. The contraction of the
cation ionic radii from La to Y enhances the octahedral

distortions, reducing the bandwidth of YTiO3 relative to
LaTiO3 (observed within DFT). The reduction places the
YTiO3 deeper inside the Mott insulating state, which is
reflected in the increased spectral gap of nearly 2 eV.
The salient features—the location of the lower Hubbard
band and oxygen 2p binding energies—agree well with
photoemission [42,43].
We explicitly determine the critical doping xc of the

titanates by monitoring the charge density as we lower the
chemical potential to hole dope the Mott insulator (Fig. 4).
The critical doping, as given by the discontinuity between
the insulator and Fermi liquid, increases monotonically

FIG. 3. Density of states for end members LaTiO3 and YTiO3

of the RTiO3 series computed using DFTþDMFT. The reduc-
tion of bandwidth in YTiO3 enhances the relative strength of
correlations and produces a larger spectral gap. We emphasize
that a single set of Coulomb parameters was used for both
simulations, and the differences are driven purely by chemistry.

FIG. 4. Doping as a function of chemical potential near the
hole-doped Mott transition, computed with DFTþDMFT for
representative members of the RTiO3 family. The size of the
density discontinuity (the critical doping xc) increases as we
progress away from the largest rare earth La. The lines are guides
to the eye. The electron-doped transition can be seen for LaTiO3

in the upper right.

PHASE SEPARATION IN DOPED MOTT INSULATORS PHYS. REV. X 5, 021007 (2015)

021007-3



from about 2% for La to about 15% for Y, corroborating our
expectation that correlations increase xc. We note that the
small contribution to the compressibility due to the partially
filled 4f shells for the intermediate rare earths has been
subtracted out to give a flat n vs μ curve in the Mott-
insulating regime. We do not observe a jump in GdTiO3

and YTiO3 because the Mott critical endpoint drops below
the simulation temperature of T ¼ 100 K, as observed
experimentally [6], so we roughly extract xc by pinpointing
the location of steepest slope in the n vs μ curve. The
critical dopings are smaller than experiment by a factor
of 2, which we attribute to the effect of the strong chemical
disorder required for doping, as well as polaron formation,
which is known to drive the finite-T Mott transition more
strongly first order [44].
As a consistency check, we also determine xc for

representative compounds using Eq. (4), which is valid
near the bandwidth-controlled transition point. First, we
determined the critical Coulomb strengths Uc for the
bandwidth-controlled transition, which decrease from
LaTiO3 to YTiO33 as expected. The charge compressibility
was obtained by scanning n vs μ at Uc. To obtain the
“double occupancy” of the metallic and insulating solu-
tions, we note that in multiband models, the Coulomb
U couples to the generalization of the on-site double
occupancies—the Hartree component of the potential
energy—NiðNi − 1Þ=2, where Ni runs from 0 to 10 within
the 3d manifold. The extracted parameters are shown in
Table. I. Again, xc increases as we progress from the least-
to the most-correlated compounds and roughly agree with
the values inferred from the n vs μ curves, even for YTiO3,
which is quite far from the bandwidth-controlled transition.

V. SUMMARY

We have outlined a theory for the first-order filling-
controlled Mott transition, which predicts intrinsic electronic
phase separation when a Mott insulator is doped away from
half-filling, and we demonstrated explicitly how to calculate
the critical doping xc in electronic structure calculations
for a family of titanates. The thermodynamic signatures of
this pervasive phase separation have been observed in
many other correlated systems [1], as well as directly
using near-field optics on VO2 [45] and STM in

the cuprates [46]. The key tasks to enhance the quantitative
agreement between theory and experiment involve (a) includ-
ing disorder and polarons into theoretical calculations and
(b) designing cleaner experimental systems where chemical
disorder can be reduced, e.g., through modulation-doped
samples or oxide heterostructures. The accessibility of thin
films to spatially resolved probes (STM, spatially resolved
optics) is especially advantageous as they would allow direct
visualization of the phase-separated region.
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