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We develop a new implementation of the Gutzwiller approximation in combination with the local
density approximation, which enables us to study complex 4f and 5f systems beyond the reach of
previous approaches. We calculate from first principles the zero-temperature phase diagram and
electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr
indicates that its pressure-induced volume-collapse transition would not occur without change of lattice
structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the
differentiation between the equilibrium densities of its allotropes is the competition between the Peierls
effect and the Madelung interaction and not the dependence of the electron correlations on the lattice
structure.
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I. INTRODUCTION

There has been a renewed interest in first-principles
approaches to the electronic structure of strongly correlated
materials. Density functional theory (DFT)—and, in par-
ticular, the local density approximation (LDA)—proved to
be a good starting point for deriving model Hamiltonians
[1,2] that can be studied with more elaborate methods that
are able to treat correlations. While early approaches to
solve the realistic many-body problem in solids focused
on perturbative treatments of the interactions [3], over the
last two decades several nonperturbative methodologies
have emerged. Dynamical mean field theory (DMFT) was
combined with realistic electronic structure methods, for
example, in the LDAþ DMFT approach [4,5]. This
methodology can be thought of as a spectral density
functional [6] and is nowadays widely used to study 3d,
4d, 5d, 4f, and 5f systems. For reviews see, e.g.,
Refs. [7–11]. LDAþ DMFT has been implemented in
different basis sets, such as the linearized augmented plane
wave (LAPW) [12,13], plane-wave pseudopotentials [14],

the projector-augmented wave method [15], and linearized
muffin-tin orbitals [16]. Another important approach—
which is not as accurate as DMFT but has the advantage
to be less computationally demanding—is the Gutzwiller
approximation (GA) [17–19], which was first implemented
to study real solids in Ref. [20]. The GA approximation
was, thereafter, extensively developed [21–27], and it
has been formulated and implemented in combination
with realistic electronic structure calculations such as the
LDAþ GA approach [23,28], which has been applied
successfully to many systems [29–36]. A third important
many-body technique is the slave boson approach (SB)
[37,38], which is, in principle, an exact reformulation of
the quantum many-body problem for model Hamiltonians,
and it reproduces the results of the GA at the saddle-point
level [24,39]. This technique has recently been extended to
treat full rotationally invariant interactions [38,40], and it
has also been combined with LDA for the study of real
materials, either in the form of impurity solvers for the
resulting LDAþDMFT impurity models (LDAþDMFTþ
SB) [6,41] or directly on the lattice [42]—which are
equivalent approaches, as we will show.
On the methodological side, here we show that the

three above-mentioned methods are closely connected and
largely complementary of each other. We use the con-
nection between the GA and the SB methods to introduce a
functional formulation, which can be used not only at zero
temperature but also at finite temperatures. This functional
is a first step toward deriving formulas for the forces [43]
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and the phonon spectra in the LDAþ GA and LDAþ SB
methods. Our functional formulation of the LDAþ GA
method [23] has a mathematical structure similar to LDAþ
DMFT [7]. This parallelism suggests possible synergistic
combinations between the two methods—such as using
LDAþ GA for structural relaxation while using the
exact impurity solver in the LDAþ DMFT iteration to
determine the spectral properties. Furthermore, it enables
us to pattern the LAPW interface [44] between LDA and
the GA after the LDAþ DMFT work of Ref. [12]. These
connections result in a new algorithm for solving the
LDAþ GA equations, which is faster and more precise
than earlier methods and sheds light on the physical
interpretation of the SB amplitudes—which are central
quantities both in the GA and in the SB approach. In fact,
we display a connection between the SB amplitudes and
the coefficients of the Schmidt decomposition [45]-which
was also recently used to derive the density matrix
embedding theory [46–49]. Our algorithm consists in
recursively calculating the ground state of a series of
Anderson impurity Hamiltonians (one for each inequivalent
impurity within the lattice unit cell), whose baths have
the same dimension as the corresponding impurities. This
enables us to derive accurate equations of state for materials
currently far beyond the reach of LDAþ DMFT.
The technical advances obtained in this work result in a

new understanding of the volume-collapse transition in f
systems. In particular, we use our all-electron (LAPW)
implementation of the LDAþ GA method to study two
prototypical systems with partially delocalized f electrons:
elemental Pr and Pu.
Pr is a rare earth like Ce, and it is the next element in

the periodic table. An interesting property of Pr is that,
similarly to many other rare-earth compounds, it undergoes
a volume-collapse structure transition under pressure,
which is accompanied by an abrupt delocalization of the
f electrons [50]. Here, we compute its pressure-volume
phase diagram, finding very good agreement with the
experiments. In particular, we show that the method is
able to capture the pressure-induced volume-collapse
structure transition toward the low-symmetry α-U phase,
and that the GA correction to the total energy is crucial to
correctly determine the stable lattice structure of Pr. Finally,
we investigate the relation between the f delocalization and
the volume-collapse structure transition—which is one of
the most important puzzles in condensed matter physics.
Our main conclusion is that, contrarily to Ce [35], in Pr
there would not be any volume-collapse transition without
taking into account the change of lattice structure (at least at
low temperatures).
The stable allotrope of Pu at ambient conditions is

α-Pu, and five different crystalline phases (named
β; γ; δ; δ0; ϵ) can be stabilized at higher temperatures.
One of the most intriguing properties of Pu is that these

temperature-induced structure transitions are accompa-
nied by significant changes of density. Here, we perform
LDAþ GA calculations of all of the six phases of Pu and
study how the total energy and the f-electron correlations
depend on the volume and the lattice structure. These
results provide a complete bird’s eye view of this material
and, in particular, indicate that the most important effect
originating the above-mentioned large differences
between the equilibrium volumes of the phases of Pu is
the competition between the Peierls effect and the
Madelung interaction and not the dependence of the
electron correlations on the lattice structure, which we
find to be a negligible effect. We point out that the
explanation of this phenomenon is of great interest both
physically and from a metallurgic standpoint.
The outline of the paper is as follows. In Sec. II, the

formulation and the implementation of the GA/SB devel-
oped in Refs. [22,24,25,27] are substantially improved.
In Sec. III, the connection between the GA/SB and DMFT
is discussed. In Sec. IV, our functional formulation of the
LDAþ GA method is derived. Finally, in Secs. V and VI,
our calculations of Pr and Pu are illustrated.

II. THE GUTZWILLER APPROXIMATION
FOR THE HUBBARD MODEL

Let us consider the Hubbard model (HM)

Ĥ ¼
X
k

X
ij

X
αβ

ϵαβk;ijĉ
†
kiαĉkjβ þ

X
Ri

Ĥloc
Ri ½fĉ†iαg; fĉiαg�;

ð1Þ

where k is the momentum conjugate to the unit-cell label R,
the atoms within the unit cell are labeled by i; j, and the
spin orbitals are labeled by α; β. We assume that the first
term is nonlocal, i.e., that

X
k

ϵk;ii ¼ 0 ∀ i; ð2Þ

and that Ĥloc includes both the one-body and the two-body
part of the Hamiltonian. Note that no specific assumption
needs to be made on the structure of the local interaction.
In particular, in this work we have used the rotationally
invariant Slater-Condon parametrization of the on-site
interaction [51].
We define the temperature T and the corresponding

fermionic Matsubara frequencies as ω ¼ ð2mþ 1ÞπT .
As shown in Appendix A, the SB mean-field theory
[37,38] can be formulated in terms of the following
Lagrange function, which gives the free energy when it
is evaluated at its saddle point and reduces to the GA
at T ¼ 0:
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LN ½ϕ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�

¼ T
N

X
k;ω

Tr log

�
1

iω −RϵkR† − λ − ηþ μ

�
eiω0

þ

þ
X
i

Tr
�
ϕiϕ

†
iH

loc
i þ

X
aα

ð½Di�aαϕ†
i F

†
iαϕiFia þ H:c:Þ þ

X
ab

½λci �abϕ†
iϕiF

†
iaFib

�
þ
X
i

Ec
i ð1 − Tr½ϕ†

iϕi�Þ

−
X
i

�X
ab

ð½λi�ab þ ½λci �abÞ½n0i �ab þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q �
þ μN; ð3Þ

where the dimension Mi of the matrices Ri;Di; λi; λci ; ηi is
the number of spin orbitals within the ðR; iÞ space;R, λ and
η are block matrices whose blocks are Ri, λi and ηi,
respectively; μ is the chemical potential; N is the total
number of electrons (normalized to the number of k points
N ); the matrices Fia and Hloc

i represent the local operators
f̂Ria and Ĥloc

Ri in a given (arbitrary) basis set of local
multiplets jΓ; Rii,

½Fia�ΓΓ0 ≡ hΓ; Rijf̂RiajΓ0; Rii; ð4Þ

½Hloc
i �ΓΓ0 ≡ hΓ; RijĤloc

Ri ½fĉ†iαg; fĉiαg�jΓ0; Rii; ð5Þ

and ϕi are the SB amplitudes, which are 2Mi-dimensional
matrices such that

�
ϕi;

X
α

F†
iαFiα

�
¼ 0 ∀ i; ð6Þ

i.e., that couple only local multiplets with the same number
of electrons (which amounts to restricting ourselves to
nonsuperconducting phases).
Note that the above finite-temperature extension has

been recently used in Ref. [36] to study the thermody-
namical properties of Ce in relation to its α-γ isostructural
volume-collapse transition.
For later convenience, we observe that the first term of

Eq. (3) can be equivalently rewritten as

T
N

X
k;ω

Tr log

�
1

iω −RϵkR† − λ − ηþ μ

�
eiω0

þ

¼ T
N

X
k;ω

Tr log

�
1

R†
1

iω − ϵk þ μ − ΣðiωÞ
1

R

�
eiω0

þ

¼ T
N

X
k;ω

Tr log

�
1

iω − ϵk þ μ − ΣðiωÞ
�
eiω0

þ
; ð7Þ

where

ΣðzÞ≡−z I −R†R
R†R

þ 1

R
ðλþ ηÞ 1

R† − μ
I −R†R
R†R

; ð8Þ

and in the last step of Eq. (7), we used that the renorm-
alization factors in the quasiparticle Green’s function give
only a frequency-independent term, which does not con-
tribute because of the Matsubara summation. Note that
since R, λ, and η are block matrices, ΣðzÞ is also block
diagonal, with blocks

ΣiðzÞ≡−z I −R†
iRi

R†
iRi

þ 1

Ri
ðλi þ ηiÞ

1

R†
i

− μ
I −R†

iRi

R†
iRi

:

ð9Þ

Once the GA solution is determined by imposing the
saddle-point conditions of LN with respect to all of its
arguments, the expectation value of any observable can be
readily computed. In particular (see Appendix A), it can be
proven that the expectation value of any local operator
within the site ðR; iÞ is given by

hÂRi½fĉ†iαg; fĉiαg�iT ¼ Tr½ϕiϕ
†
i Ai�; ð10Þ

where Ai is the representation of ÂRi in the same basis used
in Eqs. (4) and (5),

½Ai�ΓΓ0 ≡ hΓ; RijÂRi½fĉ†iαg; fĉiαg�jΓ0; Rii: ð11Þ

A. Physical interpretation of the parameters ϕi
based on the Schmidt decomposition

In this section, we show that the space of matrices ϕi
[see the second line of Eq. (3)] can be conveniently mapped
into the Hilbert space of states jΦii of an impurity system
composed of the i impurity and an uncorrelated bath with
the same dimension, which is determined self-consistently
in order to describe the entanglement between Ĥloc

i and the
rest of the system [see Eq. (1)].
Let us consider the impurity local many-body space Vi

generated by the same Fock fermionic basis that has been
used in Eqs. (4) and (5),

jΓ; ii ¼ ½ĉ†i1�ν
Γ
1…½ĉ†iMi

�νΓMi j0i; ð12Þ
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where νΓα are the occupation numbers of jΓ; ii, so that the
total number of electrons corresponding to this state is

NΓ ≡
X

α¼1;…;Mi

νΓα: ð13Þ

We define a copy ofWi of Vi generated by another set of
Fock states jn; ii represented as

jn; ii ¼ ½f̂†i1�ν
n
1…½f̂†iMi

�νnMi j0i: ð14Þ

Note that, since the f ladder operators act only on the Wi
degrees of freedom, they anticommute with all of the c
ladder operators. We define νnα as the occupation numbers
of jn; ii, so that the total number of electrons corresponding
to this state is

Nn ≡
X

a¼1;…;Mi

νna: ð15Þ

Let us now consider a generic pure state within the
tensor-product space Ei ≡ Vi ⊗ Wi, and represent it as

jΦii≡
X
Γn

eiðπ=2ÞNnðNn−1Þ½ϕi�ΓnUPHjΓ; iijn; ii; ð16Þ

where UPH is the particle-hole (PH) transformation satisfy-
ing the following identities:

U†
PHf̂

†
i UPH ¼ f̂i; ð17Þ

U†
PHf̂iUPH ¼ f̂†i ; ð18Þ

U†
PHĉ

†
i UPH ¼ ĉ†i ; ð19Þ

U†
PHĉiUPH ¼ ĉi; ð20Þ

i.e., acting only on the f degrees of freedom.
For later convenience, we assume that the condition

[Eq. (6)] is respected by the matrix ϕi appearing in Eq. (16)
so that it couples only states with NΓ ¼ Nn. Note that this
condition amounts to assuming that

N̂tot
i jΦii ¼ MijΦii; ð21Þ

where

N̂tot
i ≡X

a

f̂†iaf̂ia þ
X
α

ĉ†iαĉiα ð22Þ

is the total number operator in the embedding system Ei,
and Mi is the number of spin orbitals in the R; i space. In
fact [see Eq. (16)], jΦii is a linear combination of product
states with NΓ þMi − Nn electrons, with NΓ ¼ Nn.
It can be readily verified that, for any operator Â acting

within the space generated by the states jΓ; ii,

hΦijÂ½fĉ†iαg; fĉiαg�jΦii ¼ Tr½ϕiϕ
†
i Ai�; ð23Þ

where ϕi is the matrix of coefficients that appears in
Eq. (16) and

½Ai�ΓΓ0 ≡ hΓ; ijÂi½fĉ†iαg; fĉiαg�jΓ0; ii: ð24Þ

Furthermore, it can be shown that

hΦijĉ†iαf̂iajΦii ¼ Tr½ϕ†
i F

†
iαϕiFia�; ð25Þ

hΦijf̂ibf̂†iajΦii ¼ Tr½ϕ†
iϕiF

†
iaFib�; ð26Þ

hΦijΦii ¼ Tr½ϕ†
iϕi�; ð27Þ

where the matrix elements of Fiα are defined by

½Fiα�ΓΓ0 ≡ hΓ; ijĉiαjΓ0; ii ð28Þ

and can be equivalently calculated as

½Fiα�nn0 ≡ hn; ijf̂iαjn0; ii: ð29Þ

Note, in fact, that Eqs. (28) and (29) represent the matrix
elements of ladder operators in their own Fock basis [see
the definitions (12) and (14)]. The explicit derivation of
Eqs. (23)–(27) is given in Appendix B.
Thanks to Eqs. (23)–(27), the GA Lagrange function [see

Eq. (3)] can be rewritten as follows:

LN ½Φ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�

¼ T
N

X
k;ω

Tr log

�
1

iω −RϵkR† − λ − ηþ μ

�
eiω0

þ þ
X
i

½hΦijĤemb
i ½Di;D

†
i ; λ

c
i �jΦii þ Ec

i ð1 − hΦijΦiiÞ�

−X
i

�X
ab

ð½λi�ab þ ½λci �abÞ½n0i �ab þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q �
þ μN; ð30Þ
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where

Ĥemb
i ½Di;D

†
i ; λ

c
i �≡ Ĥloc

i ½fĉ†iαg; fĉiαg�
þ
X
aα

ð½Di�aαĉ†iαf̂ia þ H:c:Þ

þ
X
ab

½λci �abf̂ibf̂†ia ð31Þ

and jΦii belongs (by construction) to the subspace
defined by Eq. (21); i.e., it is an eigenstate of N̂tot

i with
eigenvalue Mi.
Since the GA solution is stationary with respect to jΦii

and Ec
i , Ĥ

emb
i can be interpreted as an impurity Hamiltonian

whose bath has the same dimension of the impurity and is
determined by the GA procedure in order to describe the
entanglement between the impurity and the rest of the
system.
We point out that, in principle, a Hamiltonian whose

bath has the same dimension of the impurity is sufficient to
represent exactly the ground-state local properties of the
Hubbard model, as it can be readily shown by making use
of the Schmidt decomposition [45,46]. What we have
shown in this section is that the GA consists in assuming
that the form of this Hamiltonian is limited to an Anderson
impurity model [see Eq. (31)], where the coefficientsDi; λci
are determined by the stationarity of the Lagrange function
[Eq. (30)]. This insight makes it clear that taking into
account all of the components of ϕi is crucial to accurately
describe the local physics of the system—including the off-
diagonal matrix elements in a basis that diagonalizes Ĥloc

i .

B. Numerical solution of the GA
Lagrange equations

In Eq. (7) and the text below, we have introduced the
block matrices R, λ, and η appearing in the functional
[Eq. (30)], whose respective blocks (one for each i within
the unit cell) are Ri, λi, and ηi. For later convenience, we
defineΠi as the projectors onto the above-mentioned i local
subspaces. The symbol f will indicate the Fermi function.
It can be readily shown that the saddle-point condition

of LN with respect to all of its arguments provides the
following system of Lagrange equations:

1

N

�X
k
ΠifðRϵkR† þ λþ η − μÞΠi

�
ba

¼ 0 ∀ a ≠ b;

ð32Þ
X
ia

1

N

�X
k
ΠifðRϵkR† þ λþ η − μÞΠi

�
aa

¼ N; ð33Þ

1

N

�X
k
ΠifðRϵkR† þ λþ η − μÞΠi

�
ba

¼ ½n0i �ab; ð34Þ

1

N

�
1

Ri

X
k
ΠiRϵkR†fðRϵkR† þ λþ η − μÞΠi

�
αa

¼ ½Di�aα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q
; ð35Þ

½n0i �aa − 1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n0i �aað1 − ½n0i �aaÞ
p

�X
α

½Di�aα½Ri�aα þ c:c:

�
δab

− ½λi þ λci �ab ¼ 0; ð36Þ

Ĥemb
i ½Di;D

†
i ; λ

c
i �jΦii ¼ Ec

i jΦii; ð37Þ

½F ð1Þ
i �αa ≡ hΦijĉ†iαf̂iajΦii

− ½Ri�aα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q
¼ 0; ð38Þ

½F ð2Þ
i �ab ≡ hΦijf̂ibf̂†iajΦii − ½n0i �ab ¼ 0: ð39Þ

Note that the projectors Πi appear in Eqs. (32)–(35)
because derivatives are taken with respect to the matrix
elements of the block matrices η, λi, and Ri.
A possible way to compute the Gutzwiller solution is the

following [27]: (i) Given ðR; λÞ, use Eqs. (32) and (33) to
compute the Lagrange multipliers μ and η and the corre-
sponding jΨ0i, which determines n0i through Eq. (34), Di
through Eq. (35), and λci through Eq. (36). (ii) Thereafter,
build the embedding Hamiltonians Ĥemb

i and compute jΦii
[see Eq. (37)], which determine the left sides of Eqs. (38)
and (39). Equations (38) and (39) are verified if and only if
ðR; λÞ is the correct set of variational parameters.
In conclusion, we have formulated the solution of the

Gutzwiller equations as a root problem for ðR; λÞ, which
can be formally written as

ðF ð1Þ
i ½R; λ�;F ð2Þ

i ½R; λ�Þ ¼ 0 ∀ i ð40Þ

and solved numerically. Note that the vector functions F i
[see Eqs. (38) and (39)] can be evaluated independently
through the numerical steps outlined above.

C. Summary of the main results of Sec. II

In this section, we have expressed the GA Lagrange
function derived in Ref. [27] [see Eq. (3)] in the convenient
form of Eq. (30), from which follows an exceptionally
efficient numerical scheme [see Eqs. (32)–(39) and text
below].
We have shown that our algorithm consists in iteratively

solving a series of Anderson impurity Hamiltonians
whose bath has the same dimension as the impurity [see
Eq. (31)]. This finding provides a useful interpretation of
the Gutzwiller variational parameters based on the Schmidt
decomposition and opens up the possibility to exploit
techniques such as those developed in quantum chemistry
to solve Ĥemb

i , in order to further speed up our algorithm.
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We point out that in our numerical scheme, the treatment
of the correlation effects scales linearly with the number of
correlated atoms per unit cell (as in LDAþ DMFT). Since
linear-scaling DFT methods are also available [52], the
linear-scaling property of our solver opens up the possibil-
ity of studying correlated systems with extremely large
supercells [53–55]—even containing several hundreds of
correlated atoms.
In Appendix C, alternative expressions for the GA

Lagrange equations (32)–(35) are derived using the
Green’s function formalism [see Eqs. (C8) and (C9)],
which can be preferable if the unit cell of the system
contains many atoms and/or if only a few orbitals are
correlated [56]. In Appendix D, the numerical strategy
discussed in this section is generalized to Anderson
impurity models.

III. THE GUTZWILLER-BAYM-KADANOFF
FUNCTIONAL

In this section, we formulate the GA of the Hubbard
model [see Eq. (1)] as the saddle-point of a functional of the
coherent part of the local Green’s function, and we show
that the mathematical structure of this functional resembles
the Baym-Kadanoff (BK) theory [57] on top of the DMFT
approximation.
Let us rewrite Eq. (30) as follows:

L0½Φ; Ec;R;R†; λ; η; μ;D;D†; λc;n0�

¼ T
N

X
k;ω

Tr log

�
1

iω − ϵk þ μ − ΣðiωÞ
�
þ μN

þ
X
i

ΘĤloc
i
½Φi; Ec

i ;Ri;R
†
i ; λi;Di;D

†
i ; λ

c
i ; n

0
i �; ð41Þ

where we have implicitly assumed that the regularization
factor eiω0

þ
is present in the Matsubara summation,

ΘĤloc
i
½Φi; Ec

i ;Ri;R
†
i ; λi;Di;D

†
i ; λ

c
i ; n

0
i �

≡ hΦijĤemb
i ½Di;D

†
i ; λ

c
i �jΦii þ Ec

i ð1 − hΦijΦiiÞ
−X

ab

ð½λi�ab þ ½λci �abÞ½n0i �ab

þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q
;

ð42Þ

and ΘĤloc
i

depends on Ĥloc
i through Eq. (31). Note that,

thanks to the formal manipulations of Eq. (7), the quasi-
particle parameters R; λ; η affect the first term of L0 only
through the Gutzwiller self-energy Σ, which was defined
in Eq. (8).
It is useful to promote the self-energy to an independent

variable by introducing the following additional Lagrange-
Legendre term in Eq. (41):

X
i

T
X
ω

X
ab

ð−GiðiωÞÞba
�
ΣiðiωÞ −

�
−iω I −R†

iRi

R†
iRi

þ 1

Ri
ðλi þ ηiÞ

1

R†
i

− μ
I −R†

iRi

R†
iRi

��
ab

; ð43Þ

where GiðiωÞ are, at the present stage, the Lagrange
multipliers used to enforce the GA definition of ΣiðiωÞ
[see Eq. (9)]. However, by deriving the so-obtained
Lagrange function with respect to ΣiðiωÞ, one obtains
the Dyson equation for the i local Green’s function,

GiðiωÞ ¼ Πi
1

N

X
k

1

iω − ϵk þ μ − ΣðiωÞΠi; ð44Þ

where Πi is the projector onto the i local subspace.
The above formal manipulations enable us to express the

GA in terms of the following Lagrange function:

L00½G;Σ;Φ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�

≡ T
N

X
k;ω

Tr log
�

1

iω − ϵk þ μ − ΣðiωÞ
�

−X
i

T
X
ω

Tr½ΣiðiωÞGiðiωÞ�

þ
X
i

~ΦĤloc
i ;N ½Gi; μ;Φi; Ec

i ;Ri;R
†
i ; λi; ηi;Di;D

†
i ; λ

c
i ; n

0
i �;

ð45Þ

where

~ΦĤloc
i ;N ½Gi; μ;Φi; Ec

i ;Ri;R
†
i ; λi; ηi;Di;D

†
i ; λ

c
i ; n

0
i �

≡ T
X
ω

Tr

�
GiðiωÞ

�
−iω I −R†

iRi

R†
iRi

þ 1

Ri
ðλi þ ηiÞ

1

R†
i

− μ
I −R†

iRi

R†
iRi

��
þ μN

þ ΘĤloc
i
½Φi; Ec

i ;Ri;R
†
i ; λi;Di;D

†
i ; λ

c
i ;n

0
i �: ð46Þ

We observe that the functional ~ΦĤloc
i ;N can be viewed

as a Lagrange function on its own, which depends
parametrically on Gi and μ, and explicitly on
Xi ≡ ðΦi; Ec

i ;Ri;R
†
i ; λi; ηi;Di;D

†
i ; λ

c
i ; n

0
i Þ—which appear

only in ~ΦĤloc
i ;N . The stationary solution of ~ΦĤloc

i ;N for the
variables Xi can be formally expressed as a function of Gi
and μ itself. This mathematical construction enables us to
define the following functional of Gi and μ only:

ΦGA
Ĥloc

i ;N
½Gi; μ�≡ ~ΦĤloc

i ;N ½Gi; μ;Xi½Gi; μ��; ð47Þ

which can be substituted back in Eq. (45).

LANATÀ et al. PHYS. REV. X 5, 011008 (2015)

011008-6



In conclusion, we have demonstrated that the GA
solution is the saddle-point with respect to G and Σ of
the functional,

ΩGA½G;Σ; μ�≡ T
N

X
k;ω

Tr log

�
1

iω − ϵk þ μ − ΣðiωÞ
�

þ
X
i

ΦGA
Ĥloc

i ;N
½Gi; μ�

−X
i

T
X
ω

Tr½ΣiðiωÞGiðiωÞ�; ð48Þ

which resembles the BK theory on top of the DMFT
approximation.
We point out that, remarkably, the functional ΦGA

Ĥloc
i ;N

depends on the nonlocal dispersion ϵk only through the
coherent part of the local Green’s functions Gi. In other
words, it is determined only by Ĥloc

i and N, and is formally
analogous to ΦL

Ĥint
i
þ T

P
ω Tr½Giϵ

loc
i � þ μN, where ΦL

Ĥint
i
is

the impurity Luttinger functional corresponding to the i on-
site interaction, and T

P
ω Tr½Giϵ

loc
i � is the additional term

arising from having included the on-site quadratic part ϵloc

of the Hamiltonian and the chemical potential μ within the
definition of the self-energy. Note that, since the on-site
quadratic operators have to be treated together with the
interaction within the GA, the Gutzwiller approximation
for ΦL

Ĥint
i
alone cannot be defined in general.

A. Summary of the main results of Sec. III

In this section, we have derived a functional formu-
lation of the GA which has essentially the same formal
structure of the Baym-Kadanoff theory on top of the
DMFTapproximation [see Eq. (48)], making an exception
for the following technical differences. (1) The
Gutzwiller-Baym-Kadanoff functional depends only on
the coherent part of the Green’s function [see Eq. (44) and
Eqs. (C5)–(C7)]. (2) Within the GA, it is necessary to
treat the quadratic part of the local Hamiltonian together
with the interaction [see Eq. (2) and text below Eq. (48)].
This result clarifies the connection between GA/SB and
DMFT and proves the equivalence between DMFTþ SB
and SB.

IV. FUNCTIONAL FORMULATION
OF LDAþGA

Approximations to DFT [58] represent the state of the
art of materials simulations. DFT calculations based on
LDA [59] enable us to theoretically attack a wide class of
materials, but they are generally not satisfactory for the so-
called “strongly correlated” systems, such as, e.g., the high-
Tc superconductors, transition metal oxides, and rare-earth
compounds. In order to study this important class of
materials, several “hybrid” techniques, such as LDAþ U

[51], LDAþ DMFT [7], and LDAþ GA [23,28], have
been developed.
In this section, we discuss our implementation of the

LDAþ GA method.

A. Correlated orbitals

The application of any LDAþ X method requires the
identification of a proper subset of “correlated” orbitals
(e.g., d or f), which we indicate with the symbol P.
The correlated orbitals are determined on a physical

basis. Usually, they are constructed using Wannier function
methods, e.g., maximally localized Wannier functions [60],
projected Wannier functions [16,61], or quasi-atomic min-
imal basis-set orbitals [62,63]. In particular, in this work,
we refer to the construction of Haule et al. (see Ref. [12]),
which is exploited in our numerical implementation.
Given a set of P orbitals, we introduce an orthonormal

subset of “uncorrelated” orbitalsQ spanning the orthogonal
complement to the corresponding P linear space so that
P and Q are a complete basis for the physical system
considered.
For later convenience, we expand the field operator as

Ξ̂ðr; σÞ ¼
X
σ0

X
ki;π∈P

ξki;πðrÞχσ0 ðσÞĉkiπσ þ Ξ̂Qðr; σÞ

≡X
i

Ξ̂Piðr; σÞ þ Ξ̂Qðr; σÞ; ð49Þ

where ξki;πðrÞ represents the πth correlated orbital within
the i local space (in the Bloch representation), χσ0 ðσÞ
represents the eigenstate of the third component of the
spin with eigenvalue σ0, and Ξ̂Q is the component of the
field operator that corresponds to the Q orbitals.
Equation (49) provides a prescription to express any

one-body operator A in second quantization as

Â ¼
X
σ

Z
drΞ̂†ðr; σÞAΞ̂ðr; σÞ≡X

i

Âloc
i þ Âhop; ð50Þ

where

Âloc
i ≡X

σ

Z
drΞ̂†

Piðr; σÞAΞ̂Piðr; σÞ; ð51Þ

Âhop ≡ Â −X
i

Âloc
i : ð52Þ

Let us define VPi
as the ith single-particle subspace

and Πi as the corresponding orthogonal projector. For later
convenience, we also define

Gloc
i ðiωÞ≡ ΠiGðiωÞΠi; ð53Þ

Σloc
i ðiωÞ≡ ΠiΣðiωÞΠi; ð54Þ
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where GðiωÞ is the Green’s function of the system within
the whole single-particle space, and ΣðiωÞ is the corre-
sponding self-energy, which is block diagonal in i, within
both DMFT and the GA.

B. Functional formulation of LDAþGA

The purpose of this section is to derive a functional
formulation of the LDAþ GA method [23] with the same
mathematical structure of LDAþ DMFT [7].

1. The LDAþ DMFT functional

In Ref. [7], it was shown that the solution of the
LDAþ DMFT method can be formulated as the saddle
point of the following functional [64]:

ΩN ½ρðrÞ;J ðrÞ;GlocðiωÞ;ΣlocðiωÞ; μ�

¼ T
N

X
ω

Tr log

�
1

iωþ Δ̂ − Ĵ þ μ − ΣlocðiωÞ

�

−
X
i

T
X
ω

Tr½Σloc
i ðiωÞGloc

i ðiωÞ�

þ
X
i

½ΦL
i ½Gloc

i � − Φdc½Gloc
i �� þ μN

þ ELDA
Hxc ½ρ� þ Eion½ρ� þ Eion-ion −

Z
drJ ðrÞρðrÞ;

ð55Þ

where μ is the chemical potential, ρðrÞ is the electron
density, Δ̂ is the Laplacian, J ðrÞ is the corresponding
constraining field, and

Ĵ ≡X
σ

Z
drΞ̂†ðr; σÞJ ðrÞΞ̂ðr; σÞ ð56Þ

is the corresponding operator. The functional ΦL
i is the

i-impurity Luttinger functional associated with a local
interaction operator Ĥint

i , and Φdc is an appropriate dou-
ble-counting correction. In particular, in this work, we
assume that Ĥint

i is the general (rotationally invariant)
Slater-Condon parametrization of the on-site interaction,
which is identified by the (atom-dependent) interaction-
strength parameters Ui and Hund’s coupling constant Ji,
and we employ the following standard form for the double-
counting functional [51]:

Φdc½Gloc
i � ¼ Edc½Nloc

i �

¼ Ui

2
Nloc

i ðNloc
i − 1Þ − Ji

2
Nloc

i

�
Nloc

i

2
− 1

�
; ð57Þ

where

Nloc
i ≡ T

X
ω

Tr½Gloc
i ðiωÞ� ð58Þ

is the local population of the i correlated electrons.
The total number of electrons N (correlated and uncor-

related) is predetermined by the charge-neutrality condition
of the system.
For later convenience, in the rest of this subsection, we

assume a linear double-counting functional, represented as

Φdc½Gloc
i � ¼ ΦVdc

i
½Gloc

i �≡ Vdc
i T

X
ω

Tr½Gloc
i ðiωÞ�≡ Vdc

i N
loc
i ;

ð59Þ

where Vdc
i is a given real number. The generalization to the

problem of nonlinear double-counting functionals—such
as Eq. (57)—will be obtained in Sec. IV D by reducing it to
the simpler case of linear double counting.
Note that, under the assumption [Eq. (59)], the LDAþ

DMFT functional can be written as

ΩVdc;N ½ρ;J ;Gloc;Σloc; μ�

≡ΩKSH
Vdc;N

½J ;Gloc;Σloc; μ� −
Z

drJ ðrÞρðrÞ

þ ELDA
Hxc ½ρ� þ Eion½ρ� þ Eion-ion; ð60Þ

where

ΩKSH
Vdc;N

½J ;Gloc;Σloc; μ�

¼ T
N

X
ω

Tr log

�
1

iωþ Δ̂ − Ĵ þ μ − ΣlocðiωÞ

�

−
X
i

T
X
ω

Tr½Σloc
i ðiωÞGloc

i ðiωÞ�

þ
X
i

½ΦL
i ½Gloc

i � − ΦVdc
i
½Gloc

i �� þ μN ð61Þ

is the DMFT approximation to the BK functional for the
Kohn-Sham-Hubbard (KSH) Hamiltonian

ĤKSH
Vdc ½J �≡−Δ̂þ

X
σ

Z
drΞ̂†ðr; σÞJ ðrÞΞ̂ðr; σÞ

þ
X
i

Ĥint
i −X

i

Vdc
i N̂

loc
i ; ð62Þ

where N̂loc
i is the number operator for the correlated

electrons at the site i.

2. The LDAþGA functional

In the previous section, we have shown that, in the case
of linear double counting [see Eq. (59)], the LDAþ DMFT
functional can be rewritten as in Eq. (60), where ΩKSH

Vdc;N
is

the DMFT functional [Eq. (61)] of the Hubbard model
ĤKSH

Vdc ½J � [see Eq. (62)]. This point of view suggests a
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natural method to derive the LDAþ GA functional. In fact, our derivation of the LDAþ GA functional consists
in replacing in Eq. (60) the DMFT functional ΩKSH

Vdc;N
of the Hubbard model ĤKSH

Vdc ½J � [see Eq. (62)] with the corresponding
GA functional. Note that the GA functional for a generic Hubbard model was already derived in Sec. II [see Eq. (30)].
Specializing Eq. (30) to Eq. (62) gives

ΩKSH
Vdc;N

½J ;Φ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�

¼ T
N

X
ω

Tr log

�
1

iωþR½Δ̂hop − Ĵ hop�R† − λ − ηþ μ

�

þ
X
i

�
hΦij − Δ̂loc

i ½fĉ†iαg; fĉiαg� þ Ĵ loc
i ½fĉ†iαg; fĉiαg� þ Ĥint

i ½fĉ†iαg; fĉiαg� − Vdc
i

X
α

ĉ†iαĉiα

þ
X
aα

ð½Di�aαĉ†iαf̂ia þ H:c:Þ þ
X
ab

½λci �abf̂ibf̂†iajΦii þ Ec
i ð1 − hΦijΦiiÞ

�

−X
i

�X
ab

ð½λi�ab þ ½λci �abÞ½n0i �ab þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q �
þ μN: ð63Þ

Note that the operators Δ̂ and Ĵ , which appear in the
Hubbard Hamiltonian [Eq. (62)], have been split into their
local and nonlocal components consistently with the
definitions (51) and (52). This is because the local and
nonlocal operators have to be treated differently within the
GA [see, e.g., point (2) in Sec. III A]. More precisely, the i
local parts of Δ̂ and Ĵ have to be treated together with the
interaction Ĥint

i , while the nonlocal parts are accounted for
within the first term of Eq. (63) [see Eq. (2) and text below].
Note also that, since the Q states are uncorrelated,R is (by
construction) a block matrix acting as the identity within
the space Q and with blocks Ri within the corresponding i
correlated spaces. The matrices λ and η are instead zero
within the Q space and with blocks λi and ηi, respectively,
within the corresponding i correlated spaces.
In summary, the LDAþ GA functional for linear double

counting is given by

ΩVdc;N ½ρ;J ;Φ;Ec;R;R†;λ;η;μ;D;D†;λc;n0�
≡ΩKSH

Vdc;N
½J ;Φ;Ec;R;R†;λ;η;μ;D;D†;λc;n0�

−
Z

drJ ðrÞρðrÞþELDA
Hxc ½ρ�þEion½ρ�þEion-ion; ð64Þ

where ΩKSH
Vdc;N

is given by Eq. (63).

As in LDAþ DMFT, the total number of electrons N
(correlated and uncorrelated) is predetermined by the
charge-neutrality condition of the system.

C. Charge self-consistency and KSH Hamiltonian

In this section, we discuss the general structure of our
implementation of the charge self-consistent LDAþ GA
method in the case of linear double counting.
The stationarity condition of Eq. (64) with respect to

ρðrÞ is

J ðrÞ ¼ δELDA
Hxc

δρðrÞ þ δEion½ρ�
δρðrÞ ; ð65Þ

while the stationarity condition with respect to J ðrÞ is

ρGAðrÞ ¼ T
N

X
ω

Tr

�
1

iωþR½Δ̂hop − Ĵ hop�R† − λ − ηþ μ

×R
�X

σ

Ξ̂†ðr; σÞΞ̂ðr; σÞ

−X
σ

X
i

Ξ̂†
Piðr; σÞΞ̂Piðr; σÞ

�
R†

�

þ
X
σ

X
i

hΦijΞ̂†
Piðr; σÞΞ̂Piðr; σÞjΦii

≡
�X

σ
Ξ̂†ðr; σÞΞ̂ðr; σÞ

�
T
; ð66Þ

where the GA expectation value of the local part of the
density operator is not computed from the quasiparticle
Green’s function but is computed using jΦii according to
Eqs. (10) and (23). Finally, the stationarity condition with
respect to the variables jΦii, Ec

i , Ri, R
†
i , λi, ηi, μ, Di, D

†
i ,

λci , n0i amounts to solving within the GA the KSH
Hamiltonian [Eq. (62)] following the procedure described
in Sec. II B.
In conclusion, under the assumption (59), both LDAþ

GA and LDAþ DMFT can be solved numerically as follows
(see Fig. 1): (1) Given an initial electron density ρ0ðrÞ (e.g.,
the LDA electron density), we construct ĤKSH using
Eqs. (62) and (65); (2) we solve ĤKSH within the GA (see
Sec. II B) and compute the corresponding electron density
ρGAðrÞ according to Eq. (66). The procedure is iterated until
the charge self-consistency condition is satisfied.
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The generalization of the above numerical procedure to a
more general class of double-counting functionals is given
in the next section.

D. The LDAþGA for general double counting

It is useful to generalize the procedure described above
to the case when the double-counting functional is a
generic nonlinear function of the on-site occupations of

the correlated electrons Nloc
i , as in Eq. (57). In this case,

Eq. (55) reduces to

ΩN ½ρðrÞ;J ðrÞ;GlocðiωÞ;ΣlocðiωÞ; μ�

¼ T
N

X
ω

Tr log
�

1

iωþ Δ̂ − Ĵ þ μ − ΣlocðiωÞ

�

−
X
i

T
X
ω

Tr½Σloc
i ðiωÞGloc

i ðiωÞ�

þ
X
i

�
ΦL

i ½Gloc
i � − Edc

i

�
T
X
ω

Tr½Gloc
i ðiωÞ�

��
þ μN

þ ELDA
Hxc ½ρ� þ Eion½ρ� þ Eion-ion −

Z
drJ ðrÞρðrÞ:

ð67Þ
For later convenience, we promote the average local

occupations

Nloc
i ≡ T

X
ω

Tr½Gloc
i ðiωÞ� ð68Þ

to independent variables by adding to Eq. (67) the follow-
ing Lagrange-Legendre term:

X
i

Vdc
i

�
T
X
ω

Tr½Gloc
i ðiωÞ� − Nloc

i

�
: ð69Þ

This step enables us to rewrite Eq. (67) as follows:

ΩN ½Nloc; Vdc; ρðrÞ;J ðrÞ;GlocðiωÞ;ΣlocðiωÞ; μ�

¼ T
N

X
ω

Tr log

�
1

iωþ Δ̂ − Ĵ þ μ − ΣlocðiωÞ

�
−
X
i

T
X
ω

Tr½Σloc
i ðiωÞGloc

i ðiωÞ� þ
X
i

½ΦL
i ½Gloc

i � − Edc
i ðNloc

i Þ�

þ μN þ ELDA
Hxc ½ρ� þ Eion½ρ� þ Eion-ion −

Z
drJ ðrÞρðrÞ þ

X
i

Vdc
i

�
T
X
ω

Tr½Gloc
i ðiωÞ� − Nloc

i

�

≡ΩVdc;N ½ρ;J ;Gloc;Σloc; μ� þ
X
i

½Edc
i ½Nloc

i � − Vdc
i N

loc
i �; ð70Þ

where Edc
i is now a function of the new variable Nloc

i andΩVdc;N is the LDAþ DMFT functional valid for the special case of
linear double counting [seeEq. (60)]. Consequently, usingEq. (64),we obtain that theLDAþ GAfunctional is represented as

ΩEdc;N ½Nloc; Vdc; ρ;J ;Φ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�
¼ ΩVdc;N ½ρ;J ;Φ; Ec;R;R†; λ; η; μ;D;D†; λc; n0� þ

X
i

½Edc
i ½Nloc

i � − Vdc
i N

loc
i �

¼ T
N

X
ω

Tr log
�

1

iωþR½Δ̂hop − Ĵ hop�R† − λ − ηþ μ

�
þ
X
i

�
hΦij − Δ̂loc

i ½fĉ†iαg; fĉiαg� þ Ĵ loc
i ½fĉ†iαg; fĉiαg�

þ Ĥint
i ½fĉ†iαg; fĉiαg� − Vdc

i

X
α

ĉ†iαĉiα þ
X
aα

ð½Di�aαĉ†iαf̂ia þ H:c:Þ þ
X
ab

½λci �abf̂ibf̂†iajΦii þ Ec
i ð1 − hΦijΦiiÞ

�

−X
i

�X
ab

ð½λi�ab þ ½λci �abÞ½n0i �ab þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q �
þ μN

−
Z

drJ ðrÞρðrÞ þ ELDA
Hxc ½ρ� þ Eion½ρ� þ Eion-ion þ

X
i

½Edc
i ½Nloc

i � − Vdc
i N

loc
i �; ð71Þ

where ΩVdc;N is the LDAþ GA functional previously derived for the case of linear double counting [see Eq. (64)].

FIG. 1. Schematic flow chart of the LDAþ GA charge self-
consistent procedure for linear double counting. The solution of
ĤKSH is calculated as discussed in Sec. II B.
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Equation (71) enables us to reduce the LDAþ GA
problem for generic double counting to the problem solved
in Sec. IV C. In fact, the saddle-point condition with respect
to the variables ρðrÞ, J ðrÞ, jΦii, Ec

i , Ri, R
†
i , λi, ηi, μ, Di,

D†
i , λ

c
i , n

0
i—at fixed Nloc

i and Vdc
i —of the so-modified

Eq. (63) can be solved numerically following the procedure
of Sec. IV C (see Fig. 1).
The stationarity conditions with respect to Nloc

i and Vdc
i

give the additional equations

Vdc
i ¼ dEdc

i

dNloc
i

				
Nloc

i ¼hΦij
P

α
ĉ†iαĉiαjΦii

; ð72Þ

which determine the self-consistent Vdc
i and can be solved

numerically, e.g., as shown in Fig. 2.
Note that the structure of the algorithm discussed above

and represented in Figs. 1 and 2 is applicable to both
LDAþ GA and LDAþ DMFT.

E. A possible synergistic combination of LDAþGA
and LDAþDMFT

In the previous subsection we have shown that the
LDAþ GA and the LDAþ DMFT methods require, in
order to determine the double-counting potentials Vdc

i and
the charge density ρðrÞ, solving iteratively the correlated
Hubbard Hamiltonian [Eq. (62)].
We observe that, remarkably, the calculation of Vdc

i and
ρðrÞ, as well as the total energy, does not require us to
compute the spectral properties of the system but only the
ground state.
Since the GA ground-state properties are generally in

very good agreement with DMFT for strongly correlated
metals [23,27,35,65,66]—even though the GA is much less
computationally demanding—this observation opens up
the possibility to use the GA for structural relaxation and to
determine Vdc

i and ρðrÞ, and to perform a single DMFT

iteration afterwards, in order to also have access to the
spectral properties of the system of interest.

F. Summary of the main results of Sec. IV

We have derived a functional formulation of the
LDAþ GA method [23] with the same mathematical
structure of LDAþ DMFT [7] [see Eq. (71)]. This paral-
lelism has enabled us to use the same LAPW interface
between DMFT/GA and the LDA code, and it suggests
possible synergistic combinations between the two
methods.
We have derived a very stable and numerically efficient

implementation of the LDAþ GAmethod, whose structure
is as follows. (1) The double-counting potentials Vdc

i are
determined by the outer loop represented in Fig. 2. (2) Each
iteration of the outer loop requires us to calculate the
LDAþ GA solution at fixed Vdc

i —i.e., the saddle point of
the functional [Eq. (63)]—which is computed numerically
using the charge self-consistent procedure represented in
Fig. 1. Each iteration of the charge self-consistency loop
consists in solving the Kohn-Sham-Hubbard Hamiltonian
determined by the input electron-density according to
Eq. (62) and computing the corresponding output electron
density according to Eq. (66) until convergence. (3) The
Kohn-Sham-Hubbard Hamiltonian is solved using the
procedure given in Sec. II B.

V. THE PRESSURE-VOLUME PHASE DIAGRAM
OF PRASEODYMIUM

In this section, we apply our LDAþ GA implementation
to the elemental praseodymium. As in Refs. [35,36], we
employ the “standard” prescription for the double-counting
functional and the general Slater-Condon parametrization
of the on-site interaction [51], assuming that the Hund’s
coupling constant is J ¼ 0.7 eV and that the value of the
interaction strength is U ¼ 6 eV, which is consistent
with previous constrained LDA calculations [50].
However, since the value of U is generally difficult to
predict exactly, here we also perform calculations for
U ¼ 5 eV and U ¼ 7 eV.
The lattice structure of the elemental praseodymium is

dhcp at ambient conditions, and it undergoes the following
sequence of transformations under pressure: dhcp → fcc →
distorted − fcc → α-U [50,67]. While no appreciable vol-
ume collapse is associated with the transitions between
the three lower-pressure phases—which are all character-
ized by relatively high symmetry and/or good packing
ratios [68]—the distorted − fcc → α-U transition is accom-
panied by a sizable volume collapse (about 10% at room
temperature).
It is widely believed that the low-symmetry α-U lattice

structure in the elemental praseodymium is stabilized at
high pressures by the delocalized f electrons, in accordance
with a general argument based on the Peierls theorem

FIG. 2. Schematic flow chart of the LDAþ GA outer loop that
determines the double-counting potentials Vdc

i . The step con-
cerning the solution of the problem at fixed Vdc

i is implemented as
in Fig. 1 (see Sec. IV C).
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(see Refs. [69,70]). The deformation from a high-symmetry
structure to a low-symmetry structure can lower the band’s
energy by opening a Peierls gap between a “bonding” band
(below the Fermi level) and an “antibonding” band (above
the Fermi level). This effect competes with the electrostatic
Madelung interaction, which favors the high-symmetry
lattice structures [71] such as the fcc. Nevertheless, there
are a couple of important aspects of the physics underlying
the volume-collapse transition of Pr that are still not fully
understood and that require further investigation. (1) What is
the role of the electron correlations for the volume-collapse
transition? (2)Would Pr display a volume-collapse transition
even without taking into account the change of structure?
In order to further investigate the physics underlying the

volume-collapse transition of Pr, in this work, we study it

theoretically in the fcc and α-U lattice structures
(see Fig. 3).
The theoretical LDA and LDAþ GA phase diagrams

are shown in the lower panels of Fig. 4, in comparison with
the experimental data. The pressure was obtained as P ¼
−dE=dV from the corresponding total-energy curves,
which are shown in the upper panels. Note that the
calculations at U ¼ 6 eV are shown in the main panels,
while the calculations at U ¼ 5 eV and U ¼ 7 eV are
shown in the insets. The LDAþ DMFT calculations of
fcc Pr of Ref. [72], which were performed at T ¼ 632 K,
are also reported. Note that in these LDAþ DMFT calcu-
lations the charge self-consistency was not carried out, and
part of the Slater integrals and the non-density-density terms
in the local f-electron interaction were neglected. The
theoretical and experimental values of equilibrium volume,
bulk modulus, and critical pressure are reported in Table I.
The agreement between the LDAþ GA theoretical

results and the experimental data is very good. In particular,
U ¼ 7 eV gives an overall better agreement with the
experimental phase diagram. Remarkably, the GA correc-
tion to the LDA total energy is very important for Pr,
especially at low pressures. In particular, the LDA equilib-
rium point is about VLDA

eq ≃ 21 Å3=atom, while the
experimental value is approximately Vexp

eq ≃34.5Å3=atom,
which is better reproduced by the LDAþ GA calculations,
which give VLDAþGA

eq ≃ 32 Å3=atom. Furthermore, while

FIG. 4. Theoretical total energy as a function of the volume (upper panels) at zero temperature for the fcc and the α-U phases. The
corresponding pressure-volume phase diagrams (lower panels) are shown in comparison with the experimental data of Ref. [50] (colored
markers) and Ref. [67] (gray markers), which refer to measurements at room temperature. The LDA calculations are reported in the left
panels, and the LDAþ GA calculations are reported in the right panels. The LDAþ DMFT calculations of fcc Pr at T ¼ 632 K of
Ref. [72] are also shown (see the dotted red lines in the right panels).

FIG. 3. Representation of the fcc andα-U crystal structures of Pr.

LANATÀ et al. PHYS. REV. X 5, 011008 (2015)

011008-12



the LDA predicts that the α-U structure becomes less
stable than the fcc phase only at negative pressures, the
LDAþ GA method predicts correctly that the volume
collapse occurs at positive pressures (see the common-
tangent construction in the upper-right panel of Fig. 4). Our
LDAþ GA calculations are also consistent with the
LDAþ DMFT calculations of fcc Pr of Ref. [72].
Our theoretical results indicate that in Pr, the correlation

effects energetically favor the fcc lattice structure with
respect to the α-U, stabilizing it at the equilibrium point and
for a wide range of positive pressures. This fact is also
clearly illustrated in the inset of the upper-left panel of
Fig. 4, which represents the energy difference between the
fcc and α-U structures as a function of the volume, both in
LDA and in LDAþ GA.
We point out that, contrarily to Ce [35], the fcc phase of Pr

would not display any isostructural volume-collapse tran-
sition by applying pressure. In fact, the second derivative of
the fcc energy-volume curve is positive within the entire
range of volumes and for all of the values of U considered.
Let us examine how the correlation effects taken into

account by the GA correction influence the on-site f
occupation probabilities Wf and the f quasiparticle
renormalization weights, which are determined as Z ¼
R†R according to Eq. (8). In the upper panels of Fig. 5, the
on-site f occupation probabilities are illustrated for the fcc
and for the α-U phases as a function of the volume. While
the LDA probability distribution is very “broad” at all
pressures, the LDAþ GA probability distribution is rela-
tively narrow, especially at large volumes, where we find
that the majority of the f electrons lie within the f2 space,
in agreement with recent experiments [69]. The averaged f
quasiparticle renormalization weights are shown in the
upper panels of Fig. 6. Note that, because of the spin-orbit
coupling, the f quasiparticle weights are split into two
groups with total angular momentum J ¼ 5=2 and 7=2,
respectively. While at small volumes both of the Z’s
decrease as a function of the volume, at larger volumes
they develop a qualitatively different behavior: Z5=2

becomes significantly smaller than 1—indicating that the
system is very correlated in this regime—and Z7=2

increases. This behavior is a consequence of the spin-orbit

FIG. 6. Evolution as a function of the volume of the averaged
LDAþGA (U ¼ 6 eV) quasiparticle renormalization weights Z
(upper panels) of the averaged 5=2 and 7=2 f electrons and
corresponding orbital occupations (lower panels) for the fcc
phase (left panels) and for the α-U phase (right panels) of Pr. For
the fcc phase, the LDAþDMFT results of Ref. [72] are also
reported (dots).

FIG. 5. Theoretical on-site f occupation probabilities Wf
for the fcc phase (left panels) and for the α-U phase (right panels).
The LDA results are reported in the upper panels, and the
LDAþ GA results at U ¼ 6 eV are reported in the lower
panels. For the fcc phase, the LDAþ DMFT results of
Ref. [73] are also reported (dots).

TABLE I. Theoretical equilibrium volume Veq, bulk modulus
K, and critical pressure Pc of Pr in comparison with the
experiments. The LDA results are also given for α-U Pr, which
has a lower energy with respect to fcc Pr (within LDA).

Pr VeqðÅ3Þ KðGpÞ PcðGpÞ
Experiments 34.54 (dhcp) 26–37 (dhcp) 20
LDA 20.9 (fcc) 61 (fcc) <0
LDA 20.0 (α-U) 84 (α-U) <0
LDAþ GA (U ¼ 6 eV) 32.3 (fcc) 33 (fcc) 13
LDAþ GA (U ¼ 5 eV) 31.9 (fcc) 30 (fcc) 8
LDAþ GA (U ¼ 7 eV) 32.6 (fcc) 38 (fcc) 18
LDAþ DMFT (Ref. [72]) 34.5 (fcc) 31 (fcc) —
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effect, which occurs also in Ce [35,36]. In particular, Z7=2

grows because the 7=2 electrons disappear at larger
volumes, as indicated in the upper panels of Fig. 6.
Note that the difference for Wf and the Z’s is very small

between the two lattice structures.
As shown in the lower panels of Fig. 4, the GA

correction to the pressure-volume phase diagram becomes
more substantial at large volumes, where the quasiparticle
renormalization weights are considerably smaller than 1.
This is not surprising, as decreasing the distance between
the atoms increases the bandwidth of the f electrons, which
reduces the relative importance of the GA correction to the
LDA functional—i.e., of the interaction and the double-
counting terms [see Eq. (63)]. Nevertheless, it is important
to observe that the above-mentioned correction to the
pressure-volume phase diagram is essentially identical
for the two lattice structures considered. Note that this
consideration is consistent with the fact that, according to
our calculations, the strength of the electron correlations is
very similar for the fcc and the α-U lattices.
Let us now analyze the role of the electron correlations in

the determination of the more stable structure as a function of
the volume. As we have anticipated, the Peierls mechanism,
which stabilizes the α-U phase, relates to the itinerant
character of the f electrons, and it is consequently less
effective at large volumes, where the f bandwidth is smaller.
Note that this effect is qualitatively well captured already by
the LDA. In fact, at very large volumes (negative pressures),
the LDA total energy of the fcc lattice structure becomes
lower with respect to the α-U (see the upper-left panel of
Fig. 4). As shown in the inset of the upper-right panel of
Fig. 4, the effect of the GA correction on the total energy
difference between the two lattice structures is of the same
order of magnitude for all volumes. Consequently, we
attribute the consequent improved quantitative agreement
with the experiments for the transition volume to the overall
more realistic evaluation of the total energy in LDAþ GA
with respect to LDA. In other words, we argue that the
behavior of the energy difference between the fcc and the
α-U structures is essentially already qualitatively captured
by the LDA, and it is not directly related to the f-electron
localization—which is substantial only at large volumes, as
indicated by the f quasiparticle weights shown in the lower
panels of Fig. 6.
In conclusion, we have observed that the behavior of the

quasiparticle weights and of the f configuration probabil-
ities as a function of the volume is essentially equal for the
fcc and the α-U lattice structures. In particular, at small
volumes we find that Z≃ 1, while at large volumes we find
that Z ≪ 1. Consistently with the Peierls mechanism, while
at small volumes the α-U structure has a lower energy, at
large volumes the fcc lattice configuration becomes more
stable. Since both the energy difference between the phases
and the quasiparticle weights are controlled by the volume,
it is not surprising that the volume-collapse transition of Pr

is accompanied by an abrupt delocalization of the f
electrons, and it is not even surprising that a correlation
between these two phenomena is found experimentally in
several other rare-earth materials [50]. On the other hand,
based on our calculations, it does not seem appropriate to
regard the above-mentioned correlation as a general cause-
effect relation. In fact, Pr would not display the transition
without taking into account the change of structure (at least
at low temperatures). Note also that other f systems, such
as americium [74], display volume-collapse structure
transitions maintaining essentially a constant f valence,
indicating that f localization is not a crucial prerequisite for
the volume-collapse transitions in f systems.

VI. PHASE DIAGRAM OF PLUTONIUM

Plutonium is the most exotic and mysterious element in
the periodic table. Its stable structure at ambient conditions
is α-Pu, which has a low-symmetry monoclinic structure
with 16 atoms within the unit cell grouped in eight
nonequivalent types. At higher temperatures (see Fig. 7),
Pu can assume the following distinct lattice structures: β
(monoclinic, with 34 atoms within the unit cell grouped in
seven inequivalent types), γ (orthorhombic), δ (fcc), δ0 (bct),
and ϵ (bcc). One of the most intriguing properties of Pu
is that these temperature-induced structure transitions are
accompanied by significant changes of density. In particular,
the equilibrium volumes of the δ and δ0 phases are very large
with respect to the other allotropes. Another interesting
puzzle is that δ- and α-Pu have negative thermal-expansion
coefficients within their respective range of stability, unlike

FIG. 7. Experimental volume-temperature phase diagram of
Pu. The dotted lines indicate the zero-temperature equilibrium
volumes extrapolated by linear interpolation.
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the vast majority of materials. These facts have stimulated
extensive theoretical and experimental studies. However, a
convincing explanation of the metallurgic properties of Pu
based on fundamental principles is still lacking, and none of
the previous theories has been able to describe simulta-
neously the energetics and the f electronic structure of all of
the phases of Pu on the same footing.
Previous state-of-the-art DFT calculations [75–78] were

able to reproduce reasonably well the equilibrium volumes
of the phases of Pu, but in order to describe all of them on
the same footing, it was necessary to introduce artificial [79]
spin and/or orbital polarizations—thus compromising the
description of the electronic structure. In fact, without spin
and orbital polarization, these techniques predict that the
equilibrium volumes of all of the phases are essentially
identical, in contrast with the experiments (see Fig. 7).
Calculations within the framework of DFT in combination
with dynamical mean field theory (DFTþ DMFT) have
explained several aspects of the electronic structure of Pu
(see, e.g., Refs. [80–84]). Nevertheless, the computational
complexity of this approach made it impossible to calculate
the pressure-volumephase diagramof all of the phases of Pu.

In this section, we provide a bird’s eye view of Pu by
studying all of its crystalline phases at zero temperature
using our implementation of the LDAþ GAmethod, whose
description of the ground-state properties is generally in
very good agreement with LDAþ DMFT but is consid-
erably less computationally demanding. In particular, we
employ the general Slater-Condon parametrization of the
on-site interaction with parameters U ¼ 4.5 eV and J ¼
0.36 eV—as we find that LDAþ GA calculations per-
formed using these values give a better overall agreement
with the experiments with respect to U ¼ 4.5 eV and J ¼
0.51 eV (which are the values previously assumed in
Ref. [84]). Calculations of α-Pu with different values of
U and J are shown in Ref. [85]. Very interestingly, our
study indicates that the electron correlations are only
weakly dependent on the lattice structure, while the most
important element originating the differentiation between
the equilibrium densities of the phases of Pu is the com-
petition between the Peierls effect and the Madelung
interaction [70,71].
In the upper panels of Fig. 8, we show the LDA (left) and

LDAþ GA (right) evolutions of the total energies E as a

FIG. 8. Theoretical total energies for the crystalline phases of Pu as a function of the volume (upper panels) and corresponding
pressure-volume curves (lower panels) in comparison with the experimental data of α-Pu from Refs. [88] (black circles), [89] (blue
squares), and [86] (red diamonds). Our results are shown both in LDA (left panels) and in LDAþ GA (right panels). The right insets are
zooms of the curves in the corresponding panels. In the upper-left inset, we show the correlation energies, while the corresponding
contributions to the pressure are shown in the lower-left inset. The vertical lines indicate the minima of the energy curves. The horizontal
lines of the legend indicate the estimated zero-temperature equilibrium volumes, which are assumed to lie between the zero-temperature
values extrapolated by linear interpolation and the experimental values at the temperatures in which the allotropes are stable (see Fig. 7).
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function of the volume V for all of the crystalline phases
of Pu. In the lower panels, we show the corresponding
evolutions of the pressure P ¼ −dE=dV in comparison
with the experimental data of α-Pu. In the left insets,
we show the correlation energies—here defined as the
differences between the LDAþ GA and LDA total ener-
gies—and the respective contributions to the pressure. Note
that in our calculations, we have not performed structure
relaxation, but we have assumed a uniform rescaling of the
experimental lattice parameters (see Refs. [86,87]).
In Table II, the theoretical zero-temperature equilibrium

volumes are shown in comparison with the zero-
temperature experimental volumes, which we assume to
be in between the thermal-equilibrium volumes and the
zero-temperature values extrapolated by linear interpola-
tion in Fig. 7. The bulk modulus and energies (referred to as
the ground-state energy of α-Pu) are shown in comparison
with the experimental data of Refs. [78,90]. Remarkably,
while the theoretical equilibrium volumes of all phases
of Pu are very similar in LDA, they are very different in
LDAþ GA, and in good quantitative agreement with the
zero-temperature experimental values. Furthermore, while
LDA predicts very large equilibrium energy differences
between the phases of Pu, these differences are very small
in LDAþ GA, in agreement with the experiments. Note
also that the LDAþ GA ground-state energies increase
monotonically from each phase to the next-higher-
temperature phase, consistently with the experiments
(see Fig. 7 and Table II). The only exception is β-Pu,
whose theoretical equilibrium energy is larger than γ-, δ-,
and δ0-Pu.
In order to understand how the electron correlations so

drastically affect the energetics of Pu, it is enlightening to
look at the behavior of the correlation energies (see the left
insets in Fig. 8). In fact, the evolution of the correlation
energies as a function of the volume is essentially struc-
tureless and identical for all of the phases (except for a
uniform structure-dependent energy shift whose main
effect is to slightly increase the energy of α-Pu with respect
to the other phases). As a result of this correction, the LDA
total energies are transformed as indicated by the gray
circles in the upper panels of Fig. 8. The relative behavior

of the LDAþ GA zero-temperature energies of the allo-
tropes of Pu is clearly inherited by the LDA energy-volume
curves in the region highlighted in the upper-left panel of
Fig. 8, which transform into the region highlighted in the
upper-right panel of Fig. 8 when the correlation energies
are taken into account. The same considerations apply to
the evolutions of the pressure, as indicated by the gray
circles in the lower panels of Fig. 8.
The above observations explain from a simple perspec-

tive how the electron correlations determine the unusual
energetics of Pu. In fact, the energy crossings between the
LDA energy curves of the high-symmetry structures (δ- and
α-Pu) and the other phases can be simply understood in
terms of the competition between the Peierls effect and the
Madelung interaction—which is known to energetically
favor the low-symmetry structures at small volumes and the
high-symmetry structures at large volumes [69–71]. The
most important effect of the correlation energies is to shift
the position of the equilibrium volumes to larger values,
near where the above-mentioned energy crossings take
place and the LDA energy differences are relatively small.
Interestingly, a similar interplay between correlation effects
and bands structure is displayed in Pr (see Sec. V) and
might emerge in even greater generality.
In the upper panels of Fig. 9, we show the occupations of

the f electrons. The total number of f electrons in δ-Pu is
nf ≃ 5.2, which is consistent with previous LDAþ DMFT
calculations [81]. Here, we find that nf ≃ 5.2 also for γ-,
δ0-, and ϵ-Pu. In the monoclinic structures, nf is different
for the inequivalent atoms within the unit cell; it runs
between 5.21 and 5.32 in α-Pu, while it runs between 5.17
and 5.21 in β-Pu. In the middle panels of Fig. 9 we show the
averaged orbital populations with total angular momentum
J ¼ 7=2 and J ¼ 5=2. Note that for all of the phases of Pu,
the number of 7=2 f electrons decreases as a function of
the volume, while the number of 5=2 f electrons increases.
This behavior simply indicates that the spin-orbit effect is
more effective at larger volumes, as expected. Finally, in the
lower panels, we show the behavior of the branching ratio
B, which is a measure of the strength of the spin-orbit
coupling interaction in the f shell and is calculated from the
orbital populations using the following equation:

TABLE II. Zero-temperature theoretical equilibrium volumes, bulk modulus, and total energies of the crystalline phases of Pu in
comparison with the experiments [78,90]. Consistently with Fig. 8, the zero-temperature equilibrium volumes are assumed to lie
between the zero-temperature values extrapolated by linear interpolation and the experimental values at the temperatures in which the
allotropes are stable (see Fig. 7).

Pu α β γ δ δ0 ϵ

VexpðÅ3Þ 19.5–20.4 21.5–22.6 21.9–23.5 25.0–25.5 24.7–27.6 22.3–24.5
V th � 0.5ðÅ3Þ 21.1 22.0 21.3 25.5 25.0 21.2

EexpðKÞ 0 470 550 620 710 1130
Eth � 100ðKÞ 0 460 110 310 330 870
KexpðGPaÞ 70.2 � � � � � � 38 � � � � � �
KthðGPaÞ 50–70 40–55 45–70 15–35 10–25 35–55
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(see Refs. [91,92]). Consistently with the behavior of the
orbital populations, B increases as a function of the volume.
Note that the behavior of nf and B is very similar for all of
the phases of Pu.

The α-Pu theoretical value of nf at equilibrium is in
good agreement with the values extrapolated from the x-ray
absorption near-edge structure (XANES) measurements
of Ref. [93]. On the other hand, while our calculations
indicate that nf is slightly smaller in δ-Pu than in α-Pu,
according to the extrapolations of Ref. [93], the 1.9%-Ga
δ-Pu alloy has a larger nf with respect to α-Pu. Also, the
theoretical values of B are in good agreement with values
extrapolated in Refs. [94,95] from electron energy-loss
spectroscopy (EELS) and x-ray absorption spectroscopy
(XAS) [91,96–98].
Let us study the behavior of the many-body reduced

density matrix ρ̂f of the f electrons, which is obtained from
the full many-body density matrix of the system by tracing
out all of the degrees of freedom with the exception of the f
local many-body configurations of one of the Pu atoms. We
define

F̂≡− ln ρ̂f þ k; ð74Þ
where k is an arbitrary constant that we determine so that
the lowest eigenvalue of F̂ is zero by definition. Within
this definition, ρ̂f ∝ e−F̂; i.e., F̂ represents an effective
local Hamiltonian of the f electrons that depends on the
volume and that is renormalized with respect to the atomic
f Hamiltonian because of the entanglement with the rest of
the system (see Ref. [99]).
Figure 10 shows the eigenvalues Pn of ρ̂f as a function

of the eigenvalues fn of F̂ for all of the allotropes of Pu
(that are computed at their respective theoretical zero-
temperature equilibrium volumes). Consistently with
Ref. [81], we find that for δ-Pu there are two dominant
groups of multiplets: one withN ¼ 5 and J ¼ 5=2 (that is 6
times degenerate) and one with N ¼ 6 and J ¼ 0 (that is
nondegenerate). Interestingly, our results show that this
conclusion also applies to all of the other phases. The f
probability distribution of δ- and δ0-Pu is slightly less broad

FIG. 10. Configuration probabilities of the eigenstates of the reduced density matrix ρ̂f ≡ e−F̂=Tr½e−F̂� of the f electrons as a function
of the eigenvalues fn of F̂. Each configuration probability is weighted by the degeneracy dn ¼ 2Jn þ 1 of the respective eigenvalue fn,
where Jn is the total angular momentum.

FIG. 9. Upper panels: Evolution as a function of the volume of
the averaged orbital populations of the 5=2 and 7=2 f electrons.
Middle panels: Total orbital occupations in comparison with the
values extrapolated in Ref. [93] from XANES measurements at
ambient conditions of α-Pu (black stars) and the 1.9%-Ga δ-Pu
alloy. Lower panels: Theoretical branching ratios in comparison
with the values extrapolated in Refs. [94,95] from XAS (black
cross) and EELS (blue crosses) experiments of α-Pu and the
0.6%-Ga δ-Pu alloy. The colors in the first and second panels
from the left correspond to the inequivalent atoms of α-Pu and
β-Pu. The vertical dotted lines indicate the LDAþ GA equilib-
rium volumes for the respective phases.
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with respect to the other phases. This is to be expected, as
δ- and δ0-Pu are stable at larger volumes, such that the local
f degrees of freedom are less entangled with the rest of the
system with respect to the other phases. The f probability
distributions of α- and β-Pu are considerably different for
inequivalent atoms, as they depend on the number and
relative distances of the nearest-neighbor atomic positions,
consistently with Ref. [84] (see also Ref. [85]). Note that in
β-Pu the atom dependency of the f probability distribution
is less pronounced than in α-Pu.
We point out that nf ≃ 5.2 reveals that the f electrons of

Pu are in a pronounced mixed-valence state [100]. Indeed,
the probability of the N ¼ 6, J ¼ 0 multiplet is very large,
as indicated by the fact that it has the lowest F̂ eigenvalue.
The reason why nf is closer to 5 than to 6 is that the N ¼ 6,
J ¼ 0 multiplet is nondegenerate, while the N ¼ 5, J ¼
5=2 F̂ eigenvalue is 6 times degenerate—so its contribution
to nf is weighted by a factor 6 ¼ 2 × 5=2þ 1. The
observation that the f electrons have a significant
mixed-valence character indicates that the local f degrees
of freedom are highly entangled with the rest of the system
[99]. This observation is consistent with the fact that the
Pauli susceptibility of the δ-Pu Ga alloy is Pauli-like at low
temperatures [79]. Furthermore, it is consistent with the
statement of Ref. [90] that Pu is an ordinary quasiharmonic
crystal in all of its crystalline phases; i.e., already at
T ≳ 200 K, the electronic entropy is very small with
respect to the quasiharmonic contributions.
In conclusion, we have calculated from first principles

the zero-temperature energetics of Pu, finding good agree-
ment with the experiments. Our analysis has clarified how
the electron correlations determine the unusual energetics
of Pu, including the fact that the different allotropes have
very large equilibrium-volume differences while they are
very close in energy. Remarkably, in our calculations, we
did not introduce any artificial spin and/or orbital polar-
izations [79], while this was necessary in previous state-of-
the-art DFT calculations [75–78]. This advancement has
also enabled us to describe the f electronic structure of Pu
on the same footing. Our calculations indicate that—
similarly to Pr—the ground-state f electronic structure is
similar for all of the phases of Pu and that the f-electron
atomic probabilities display a significant mixed-valence
character. Our zero-temperature calculations of Pu also
constitute an important step toward the theoretical under-
standing of its peculiar temperature-dependent properties,
e.g., the negative thermal expansion of δ- and α-Pu. In fact,
above room temperature, the contributions to the free
energy of the nonadiabatic effects and of the thermal
excitations of the electrons from their ground state are
expected to be negligible in Pu [90]. Consequently, the total
energy could be used to investigate this problem either
within direct Monte Carlo simulations or using molecular
dynamics [101,102] with atomistic potentials extrapolated
from this work.

VII. CONCLUSIONS

We have developed an exceptionally efficient algorithm
to implement the GA. Furthermore, we have derived a
functional formulation of LDAþ GA that has the same
mathematical structure of LDAþ DMFT [7]. This insight
has enabled us to pattern the LAPW interface [44] between
LDA and GA after the LDAþ DMFT work of Ref. [12].
Using our LDAþ GA code, we have performed first-
principles calculations of Pr and Pu under pressure, which
are prototypical systems with partially localized f
electrons.
Our calculations of Pr indicate that its volume-collapse

transition is not driven only by the concomitant delocal-
ization of the f electrons. In fact, contrarily to Ce [35], Pr
would not display any volume-collapse transition without
taking into account the change of lattice structure (at least at
low temperatures). This suggests that there is no reason to
exclude the possibility that, in other f materials, a volume-
collapse transition may occur without any concomitant
substantial f delocalization—as indicated, for instance, by
recent experiments on the elemental Am [74]. Note that the
understanding of the connection between f delocalization
and volume-collapse transitions in f systems is one of the
most important puzzles in condensed matter theory.
Our calculations of Pu constitute the first theoretical

description of all of the crystalline phases of this material
giving good agreement with all of the experiments on the
same footing—including both the thermodynamical prop-
erties and the f electronic structure. A particularly impor-
tant conclusion of our study is that the most important
effect originating the differentiation between the equilib-
rium densities of the phases of Pu is the competition
between the Peierls effect and the Madelung interaction
and not the dependence of the electron correlations on the
lattice structure, which is a negligible effect. Note that the
explanation of this phenomenon is of great interest both
physically and from a metallurgic standpoint.
From a technical point of view, our calculations clearly

demonstrate the exceptional capabilities of the computa-
tional scheme presented in this work. Indeed, our method
enables us to rapidly perform accurate first-principles
calculations of strongly correlated materials even for
systems so complex that other state-of-the-art methods
are too time-consuming to be practically applicable.
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APPENDIX A: SUMMARY OF THE STANDARD
FORMULATION OF THE GUTZWILLER

VARIATIONAL METHOD

Let us write the Hubbard Hamiltonian in an infinite-
coordination lattice [see Eq. (1)] in the form

Ĥ ¼
X
kij;αβ

ϵαβk;ijĉ
†
kiαĉkjβ þ

X
Ri

X
ΓΓ0

½Hloc
i �ΓΓ0 jΓ; RiihΓ0; Rij;

ðA1Þ

where here, in order to derive our formalism, we conven-
iently assume that jΓ; Rii are local Fock states,

jΓ; Rii ¼ ½c†Ri1�n1…½c†RiM�nM j0i: ðA2Þ

From now on, we will name the above c basis set the
“original” basis.
The GA consists in variationally determining a projected

wave function represented as

jΨGi ¼ P̂GjΨ0i≡
Y
Ri

P̂RijΨ0i; ðA3Þ

where jΨ0i is a Slater determinant and P̂Ri is a general
operator acting on the local configurations at the site ðR; iÞ,
which we represent in the original basis as follows:

P̂Ri ¼
X
ΓΓ0

½Λ̄i�ΓΓ0 jΓ; RiihΓ0; Rij: ðA4Þ

Here, we assume that jΨ0i is an eigenstate of the number
operator and that the local operators P̂Ri satisfy the
commutation rule

�
P̂Ri;

X
α

ĉ†RiαĉRiα

�
¼ 0 ∀ R; i; ðA5Þ

which implies that jΨGi is also an eigenstate of the number
operator. Note that these assumptions are no longer valid
when the method is generalized to study superconductivity
(see, e.g., Refs. [22,25]), but this subject will not be
addressed in the present work.
In order to analytically evaluate the expectation value of

Ĥ with respect to jΨGi,

E½Ψ0; Λ̄� ¼
1

N
hΨ0jP̂†

GĤP̂GjΨ0i; ðA6Þ

the following two additional approximations are done.
(1) The manifold of variational wave functions is further
restricted by the following conditions [22]:

hΨ0jP̂†
RiP̂RijΨ0i ¼ 1; ðA7Þ

hΨ0jP̂†
RiP̂Riĉ

†
RiαĉRiβjΨ0i ¼ hΨ0jĉ†RiαĉRiβjΨ0i; ðA8Þ

which are commonly named “Gutzwiller constraints.”
(2) The so-called GA is assumed, which is an approxima-
tion scheme that, like DMFT [9], becomes exact in the limit
of infinite coordination lattices (see, e.g., Ref. [22]).
The derivation of the Lagrange formulation of the GA

[Eq. (3)]—that we employed in Sec. II as a starting point—
is summarized in this appendix. The material presented
in this appendix makes large use of ideas developed in
previous works by several authors [22–25,27,103].

1. Reformulation of the Gutzwiller problem

In this section, we briefly summarize the reformulation
of the Gutzwiller problem derived in Refs. [24,25].

a. The mixed-basis representation

Let us consider the matrix

hΨ0jĉ†RiαĉRiβjΨ0i≡ ½ρ0i �αβ: ðA9Þ

Since ρ0i are Hermitian, there always exists a unitary
transformation U i that diagonalizes it, i.e., such that

f̂†Ria ¼
X
α

½Ui�αaĉ†Riα; ðA10Þ

hΨ0jf̂†Riaf̂RibjΨ0i≡ ½n0i �ab ¼ δab½n0i �bb: ðA11Þ

The so-obtained ladder operators fRib are named natural-
basis [22] operators.
Note that the connection between the natural basis f and

the original basis c depends only on jΨ0i. At given jΨ0i,
the coefficients Λ̄ that determine the Gutzwiller projector
[see Eq. (A4)] are free variational parameters.
Instead of expressing the Gutzwiller projector in terms of

the original basis as in Eq. (A4), it is convenient to adopt
the following mixed original-natural [24] basis form

P̂Ri ¼
X
Γn

½Λi�ΓnjΓ; Riihn; Rij; ðA12Þ

where jΓ; Rii are Fock states in the original basis [see
Eq. (A2)], while jn; Rii are Fock states in the natural basis,
represented as

jn; Rii ¼ ½f̂†Ri1�n1…½f̂†RiM�nM j0i: ðA13Þ

For later convenience, we adopt the convention that the
order of the jΓ; Rii and the jn; Rii states is the same. For
instance, if the second Γ vector in Eq. (A12) is ĉ†1↑ĉ2↓j0i,
then the second n vector is f̂†1↑f̂

†
2↓j0i.
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As we will see, the mixed-basis parametrization of the
Gutzwiller projector enables us to gauge away from the
formalism the unitary matrix U that relates the original
basis and the natural basis [24] [see Eq. (A10)], which is a
great simplification.

b. Gutzwiller expectation values

In an infinite-coordination lattice, the expectation value
of any observable can be computed analytically.
Let us define the uncorrelated occupation-probability

matrices P0
i with elements [22]

½P0
i �nn0 ≡ hΨ0jjn0; Riihn; RijjΨ0i

¼ δnn0
YM
a¼1

ð½n0i �aaÞnað1 − ½n0i �aaÞ1−na : ðA14Þ

We also introduce the matrix representations of the oper-
ators f̂Rib and ĉRiβ,

½Fib�nn0 ¼ hn; Rijf̂Ribjn0; Rii: ðA15Þ

Note that, since we have assumed that the order of the
jΓ; Rii and the jn; Rii states is the same, the matrix
elements of Fib can be equivalently computed as

½Fiβ�ΓΓ0 ¼ hΓ; RijĉRiβjΓ0; Rii: ðA16Þ

With the above definitions, it can be readily verified
that the expectation value of any local observable can be
calculated as

hΨ0jP̂†
GÂRiP̂GjΨ0i ¼ Tr½P0

iΛ
†
i AiΛi�; ðA17Þ

where

½Ai�ΓΓ0 ¼ hΓ; RijÂRijΓ0; Rii; ðA18Þ
and that the Gutzwiller constraints can be written as

Tr½P0
iΛ

†
iΛi� ¼ 1; ðA19Þ

Tr½P0
iΛ

†
iΛiF

†
iaFib� ¼ hΨ0jf̂†Riaf̂RibjΨ0i: ðA20Þ

The average of the intersite density matrix reduces to
[24,26]

hΨ0jP̂†
Gĉ

†
RiαĉR0jβP̂GjΨ0i

¼
X
ab

hΨ0jð½Ri�aαf̂†RiaÞð½Rj��bβf̂R0jbÞjΨ0i: ðA21Þ

In other words, the intersite single-particle density matrix
averaged on jΨGi is computed by averaging over jΨ0i a
renormalized density matrix with natural fermionic oper-
ators, replacing the physical ones according to the rule

ĉ†Riα →
X
a

½Ri�aαf̂†Ria: ðA22Þ

Within the definitions given in this section, it can be shown
that the renormalization matrices Ri can be expressed as

½Ri�aα ¼ Tr½P0
iΛ

†
i F

†
iαΛiFia�=½n0i �aa: ðA23Þ

Note that, thanks to the mixed-basis representation of the
Gutzwiller projector, the unitary transformation that relates
the natural-basis operators f to the original ones c need not
be known explicitly, which is a great simplification.

c. The ϕ matrix and the GA total energy

The formalism can be further simplified by defining the
following matrix [24]:

ϕi ¼ Λi

ffiffiffiffiffiffi
P0
i

q
: ðA24Þ

Note that Eq. (A5) translates into Eq. (6) for ϕi.
Within this definition, the expectation value of any local

observable [see Eq. (A17)] reduces to

hΨ0jP̂†
GÂRiP̂GjΨ0i ¼ Tr½ϕiϕ

†
i Ai�; ðA25Þ

the Gutzwiller constraints [see Eqs. (A19) and (A20)]
simplify as follows:

Tr½ϕ†
iϕi� ¼ 1; ðA26Þ

Tr½ϕ†
iϕiF

†
iaFib� ¼ hΨ0jf̂†Riaf̂RibjΨ0i

≡ δab½n0i �bb; ðA27Þ

and Eq. (A23) for the renormalization factors reduces to

½Ri�aα ¼ Tr½ϕ†
i F

†
iαϕiFia�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q
: ðA28Þ

In conclusion, the variational energy [Eq. (A6)] is given
by [24]

E ¼ 1

N

X
k;ij

X
ab

½Riϵk;ijR
†
j �abhΨ0jf̂†kiaf̂kjbjΨ0i

þ
X
i

Tr½ϕiϕ
†
iH

loc
i �; ðA29Þ

and it has to be minimized by fulfilling Eqs. (A26)-(A28).
Following Ref. [27], we take into account the constraints

by applying the theorem of the Lagrange multipliers as
follows:
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L½Ψ0; E;ϕ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�

¼ 1

N

X
k;ij

X
ab

½Riϵk;ijR
†
j �abhΨ0jf̂†kiaf̂kjbjΨ0i þ

X
i

Tr½ϕiϕ
†
iH

loc
i � þ Eð1 − hΨ0jΨ0iÞ þ

X
i

Ec
i ð1 − Tr½ϕ†

iϕi�Þ

þ
X
i;aα

½ ~Di�aα
�

Tr½ϕ†
i F

†
iαϕiFia�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n0i �aað1 − ½n0i �aaÞ
p − ½Ri�aα

�
þ c:c:þ

X
i;ab

½λci �abðTr½ϕ†
iϕiF

†
iaFib� − ½n0i �abÞ

þ 1

N

X
Ri;ab

½λi�abðhΨ0jf̂†Riaf̂RibjΨ0i − ½n0i �abÞ þ
1

N

X
Ri;a≠b

½ηi�abhΨ0jf̂†Riaf̂RibjΨ0i: ðA30Þ

Note that n0i and Ri have been conveniently promoted to independent variables [104]. Within this formulation, the
numerical problem arising from the stationarity condition of L is particularly easy to solve numerically (see Sec. II B).
It is convenient to rewrite Eq. (A30) as follows:

L½Ψ0;E;ϕ;Ec;R;R†; λ;η;D;D†; λc;n0�

¼ 1

N
hΨ0jĤqp

G ½R;R†; λþ η�jΨ0i þEð1− hΨ0jΨ0iÞ

þ
X
i

Tr

�
ϕiϕ

†
iH

loc
i þ

X
aα

ð½Di�aαϕ†
i F

†
iαϕiFia þH:c:Þ þ

X
ab

½λci �abϕ†
iϕiF

†
iaFib

�

þ
X
i

Ec
i ð1−Tr½ϕ†

iϕi�Þ−
X
i

�X
ab

ð½λi�ab þ ½λci �abÞ½n0i �ab þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1− ½n0i �aaÞ

q �
; ðA31Þ

where

Ĥqp
G ½R;R†; λþ η�≡X

k;ij

X
ab

½Riϵk;ijR
†
j �abf̂†kiaf̂kjb þ

X
Ri;ab

½λi�abf̂†Riaf̂Rib þ
X
Ri;a≠b

½ηi�abf̂†Riaf̂Rib ðA32Þ

is the GA quasiparticle Hamiltonian of the system [105].

d. GA Lagrange functional in the canonical ensemble

If the Hubbard Hamiltonian [see Eq. (A1)] has to be solved in the canonical ensemble, i.e., at a fixed number of particles
per site N, the functional [Eq. (A31)] becomes

LN ½Ψ0; E;ϕ; Ec;R;R†; λ; η; μ;D;D†; λc; n0�

¼ 1

N
hΨ0jĤqp

G ½R;R†; λþ η; μ�jΨ0i þ Eð1 − hΨ0jΨ0iÞ

þ
X
i

Tr

�
ϕiϕ

†
iH

loc
i þ

X
aα

ð½Di�aαϕ†
i F

†
iαϕiFia þ H:c:Þ þ

X
ab

½λci �abϕ†
iϕiF

†
iaFib

�
þ
X
i

Ec
i ð1 − Tr½ϕ†

iϕi�Þ

−
X
i

�X
ab

ð½λi�ab þ ½λci �abÞ½n0i �ab þ
X
aα

ð½Di�aα½Ri�aα þ c:c:Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0i �aað1 − ½n0i �aaÞ

q �
þ μN; ðA33Þ

where

Ĥqp
G ½R;R†; λþ η; μ�≡X

k;ij

X
ab

½Riϵk;ijR
†
j �abf̂†kiaf̂kjb þ

X
Ri;ab

½λi�abf̂†Riaf̂Rib þ
X
Ri;a≠b

½ηi�abf̂†Riaf̂Rib −
X
Ri;a

μf̂†Riaf̂Ria: ðA34Þ

Note that the constraint on the number of particles has been imposed on jΨ0i instead of jΨGi. This is licit because
we have assumed that the Gutzwiller projector P̂G commutes with the number operator N̂.
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2. Finite-temperature extension

We observe that the terms involving jΨ0i in Eq. (A33)
can be substituted with the ground-state energy of Ĥqp

G ,
which can be written as

T
N

X
k;ω

Tr log

�
1

iω −RϵkR† − λ − ηþ μ

�
eiω0

þ
; ðA35Þ

where the summation over the fermionic Matsubara
frequencies ω is continuous, μ is the chemical potential,
andR, λ, and η are block matrices, whose blocks areRi, λi,
and ηi, respectively.
Within the SB mean field theory [37,38], discretizing the

Matsubara summation by assuming that ω ¼ ð2mþ 1ÞπT
(with m integer) actually amounts to performing calcula-
tions at the finite temperature T . In fact, the so-obtained
functional is equivalent to Eq. (51) of Ref. [38] written in
the natural-basis gauge—once R and n0 are promoted to
independent variables, as we did in Eq. (A33).

APPENDIX B: DERIVATION OF EQS. (23)–(27)

In order to facilitate the reading, we summarize the main
equations from the main text, which are necessary for the
proofs, and drop the impurity label i.
We consider the impurity local many-body space V

generated by fermionic Fock states

jΓi ¼ ½ĉ†1�ν
Γ
1…½ĉ†M�ν

Γ
M j0i; ðB1Þ

with the number of electrons

NΓ ≡
X

α¼1;…;M

νΓα: ðB2Þ

We define a copy W of V (bath) generated by

jni ¼ ½f̂†1�ν
n
1…½f̂†M�ν

n
M j0i; ðB3Þ

with the number of electrons

Nn ≡
X

a¼1;…;M

νna; ðB4Þ

where the f ladder operators anticommute with the c ladder
operators. Finally, we define the tensor-product space E ≡
V ⊗ W and represent the most general state in E as

jΦi≡X
Γn

eiðπ=2ÞNnðNn−1Þ½ϕ�ΓnUPHjΓijni; ðB5Þ

hΦj≡X
Γ0n0

e−iðπ=2ÞNn0 ðNn0−1Þ½ϕ�†n0Γ0 hΓ0jhn0jU†
PH; ðB6Þ

where

jΓijni≡ ½ĉ†i1�ν
Γ
1…½ĉ†iMi

�νΓMi ½f̂†i1�ν
n
1…½f̂†iMi

�νnMi j0i; ðB7Þ

hΓ0jhn0j≡ h0j½f̂iMi
�νnMi…½f̂i1�νn1 ½ĉiMi

�νΓMi…½ĉi1�νΓ1 ; ðB8Þ

and UPH is the particle-hole (PH) transformation satisfying
the following identities:

U†
PHf̂

†
aUPH ¼ f̂a; ðB9Þ

U†
PHf̂aUPH ¼ f̂†a; ðB10Þ

U†
PHĉ

†
αUPH ¼ ĉ†α; ðB11Þ

U†
PHĉαUPH ¼ ĉα: ðB12Þ

Let us finally assume that

N̂totjΦi ¼ MjΦi; ðB13Þ

where

N̂tot ≡X
a

f̂†af̂a þ
X
α

ĉ†αĉα: ðB14Þ

1. Proof of Eqs. (23) and (27)

Let us consider a generic (bosonic) operator acting only
on the c degrees of freedom Â½fĉ†αg; fĉαg� and define its
matrix elements in the jΓi basis as follows:

½A�ΓΓ0 ≡ hΓjÂ½fĉ†αg; fĉαg�jΓ0i: ðB15Þ

By using the definitions [Eqs. (B5) and (B6)], we obtain

hΦjÂ½fĉ†αg; fĉαg�jΦi
¼

X
Γn

X
Γ0n0

e−iðπ=2ÞNn0 ðNn0−1Þeiðπ=2ÞNnðNn−1Þ

ϕΓnϕ
†
n0Γ0 hΓ0jhn0jU†

PHÂUPHjΓijni
¼

X
Γn

X
Γ0n0

ϕΓnϕ
†
n0Γ0 hΓ0jÂjΓiδnn0

¼ Tr½ϕϕ†A�: ðB16Þ

Equation (27) is obtained as a special case of Eq. (B16)
by assuming that Â is the identity operator.

2. Proof of Eq. (25)

Let us write the expectation value of a quadratic
impurity-bath operator explicitly:
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hΦjĉ†αf̂ajΦi ¼
P
Γn

P
Γ0n0

e−iðπ=2ÞNn0 ðNn0−1Þeiðπ=2ÞNnðNn−1Þ

ϕΓnϕ
†
n0Γ0 hΓ0jhn0jU†

PHĉ
†
αf̂aUPHjΓijni

¼
X
Γn

X
Γ0n0

ð−1ÞNnϕΓnϕ
†
n0Γ0 hΓ0jhn0jĉ†αf̂†ajΓijni; ðB17Þ

where we used Nn0 ¼ Nn þ 1, so

e−iðπ=2ÞNn0 ðNn0−1Þeiðπ=2ÞNnðNn−1Þ ¼ e−iπNn ¼ð−1ÞNn: ðB18Þ
It can be readily verified that

hΓ0jhn0jĉ†αf̂†ajΓijni ¼ ð−1ÞNnhΓ0jĉ†αjΓihn0jf̂†ajni
≡ ð−1ÞNn ½F†

α�Γ0Γ½F†
a�n0n

≡ ð−1ÞNn ½F†
α�Γ0Γ½Fa�nn0 ; ðB19Þ

wherewe introduced thematrix elements ofF†
α, which is the

representation of the ladder operators in their own Fock

basis. The phase ð−1ÞNn appearing in the first step of
Eq. (B19) is due to the fact that the c and f ladder operators
anticommute, so a minus sign is generated whenever
they are transposed. Note that in the last step we used that
F†
a is real (its matrix elements can only assume the values 0,

1, and −1), so doing the Hermitian conjugate amounts to
transposing the labels.
By substituting Eq. (B19) in Eq. (B17), we obtain

hΦjĉ†αf̂ajΦi ¼
X
Γn

X
Γ0n0

ϕΓnϕ
†
n0Γ0 ½F†

α�Γ0Γ½Fa�nn0

¼ Tr½ϕ†F†
αϕFa�: ðB20Þ

3. Proof of Eq. (26)

Let us write the expectation value of a quadratic bath
operator explicitly:

hΦjf̂bf̂†ajΦi ¼
X
Γn

X
Γ0n0

e−iðπ=2ÞNn0 ðNn0−1Þeiðπ=2ÞNnðNn−1Þ

ϕΓnϕ
†
n0Γ0 hΓ0jhn0jU†

PHf̂bf̂
†
aUPHjΓijni ¼

X
Γn

X
Γ0n0

e−iðπ=2ÞNn0 ðNn0−1Þeiðπ=2ÞNnðNn−1Þ

ϕΓnϕ
†
n0Γ0 hΓ0jhn0jf̂†bf̂ajΓijni ¼

X
Γn

X
Γ0n0

ϕΓnϕ
†
n0Γ0 hn0jf̂†bf̂ajniδΓΓ0

¼
X
Γn

X
n0

ϕΓnϕ
†
n0Γhnjf̂†af̂bjn0i ¼ Tr½ϕ†ϕF†

aFb�: ðB21Þ

APPENDIX C: EXPECTATION VALUES
IN TERMS OF THE LOCAL

GREEN’S FUNCTIONS

In this section, we derive useful alternative expressions
for Eqs. (32)–(35).
It is well known that the Fermi function can be expressed

as a partial fraction decomposition (PFD),

fðϵÞ ¼ 1

2
þ T

X
n

1

zn − ϵ
; ðC1Þ

where several alternative choices are possible for zn. For
instance, the well-known Matsubara expansion is given
in terms of the Matsubara frequencies zn ¼ iωn, which
are purely imaginary. However, the convergence of the
Matsubara series is very slow. A numerically more con-
venient alternative to the Matsubara expansion was pro-
posed in Ref. [106], which converges faster than
exponentially, and where the poles zn are complex, with
finite real and imaginary components.
Equation [106] enables us to express the left members of

Eqs. (32)–(35) in terms of the local quasiparticle Green’s
functions

Gqp
i ðzÞ ¼ Πi

1

N

X
k

1

z −RϵkR† − λ − ηþ μ
Πi ðC2Þ

as follows:

1

N

�X
k
ΠifðRϵkR† þ λþ η − μÞΠi

�
ba

¼
�
1

2
þ T

X
n
Gqp
i ðznÞ

�
ba
; ðC3Þ

1

N

�
1

Ri

X
k
ΠiRϵkR†fðRϵkR† þ λþ η − μÞΠi

�
αa

¼
�
1

Ri
T
X

n
½ðzn − λi − ηi þ μÞGqp

i ðznÞ − Πi�
�
αa
:

ðC4Þ

We observe that Gqp
i can be rewritten as

Gqp
i ðzÞ ¼ 1

R†
i

Πi
1

N

X
k

1

z − ϵk þ μ − ΣðzÞΠi
1

Ri

≡ 1

R†
i

GiðzÞ
1

Ri
; ðC5Þ
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where ΣðzÞ, which represents the GA approximation for the
self-energy, is a block-matrix [see Eq. (8)] whose blocks are
given by

ΣiðzÞ≡−z I −R†
iRi

R†
iRi

þ 1

Ri
ðλi þ ηiÞ

1

R†
i

− μ
I −R†

iRi

R†
iRi

;

ðC6Þ

and

GiðzÞ≡ Πi
1

N

X
k

1

z − ϵk þ μ − ΣðzÞΠi ðC7Þ

is the GA approximation for the coherent part of the local
Green’s function.
Within the above definitions, it can be readily shown that

Eqs. (C3) and (C4) can also be represented as

1

N

�X
k
ΠifðRϵkR† þ λþ η − μÞΠi

�
ba

¼
�
1

2
þ 1

R†
i

T
X

n
GiðznÞ

1

Ri

�
ba

; ðC8Þ

1

N

�
1

Ri

X
k
ΠiRϵkR†fðRϵkR† þ λþ η− μÞΠi

�
αa

¼
�
T
X

n
½ðzn þ μ− ΣiðznÞÞGiðznÞ−Πi�

1

Ri

�
αa
: ðC9Þ

Note that the evaluation of Eqs. (C8) and (C9) only requires
knowledge of the local Green’s functions Gi of the
correlated sites [see Eq. (C7)]. As we will show, the
operation to compute Gi at given Σi relates to the embed-
ding procedure of DMFT [9].
We observe that the computational time necessary to

calculate Eq. (C7) scales as the square of the number of
correlated atoms. On the contrary, Eqs. (32)–(35) require
the diagonalization of ϵk, whose computational time scales
as the cube of the number of total atoms (correlated and
not). Consequently, Eqs. (C8) and (C9) can be preferable
if the unit cell contains many atoms and/or if only a few
orbitals are correlated.

APPENDIX D: APPLICATION TO
IMPURITY MODELS

In the previous section, we discussed our method to
solve the GA equations for a generic Hubbard model.
Let us now consider a generic impurity Anderson model
(IAM),

ĥ ¼
X
l

ela
†
l al þ

X
la

Valffiffiffi
n

p b†aal þ H:c:þ Ĥloc½fb†ag; fbag�;

ðD1Þ

where Ĥloc is the Hamiltonian of the impurity, which
includes both the interaction and the one-body component.
The purpose of this section is to solve ĥ within the GA in
the grand-canonical ensemble.
We observe that any IAM can be viewed as a Hubbard

model, with no translational invariance and where only
the impurity site is correlated. In this special case, the GA
equations derived in the previous section reduce to

T
X
n

�
1

R† GðznÞ
1

R

�
ba

¼ 0 ∀ a ≠ b; ðD2Þ

�
1

2
þ T

X
n

1

R† GðznÞ
1

R

�
ba

¼ n0ab; ðD3Þ

�
T
X

n
ΔðznÞGðznÞ

1

R

�
αa

¼ Daα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0aað1 − n0aaÞ

q
; ðD4Þ

n0aa − 1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0aað1 − n0aaÞ
p

�X
α

DaαRaα þ c:c:

�
δab − ½λþ λc�ab ¼ 0;

ðD5Þ

Ĥemb½D;D†; λc�jΦi ¼ EcjΦi; ðD6Þ

½F ð1Þ�αa ≡ hΦjĉ†αf̂ajΦi − ½R�aα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0aað1 − n0aaÞ

q
¼ 0; ðD7Þ

½F ð2Þ�ab ≡ hΦjf̂bf̂†ajΦi − n0ab ¼ 0; ðD8Þ

where

Ĥemb½D;D†; λc�≡ Ĥloc þ
X
aα

ð½D�aαĉ†αf̂a þ H:c:Þ

þ
X
ab

½λc�abf̂†bf̂a; ðD9Þ

ΔαβðzÞ ¼
X
l

VαlV
†
lβ

n
1

z − el
ðD10Þ

is the hybridization function,

GðzÞ ¼ 1

z − ΔðzÞ − ΣðzÞ ðD11Þ

is the coherent part of the impurity Green’s function, and

ΣðzÞ≡−z I −R†R
R†R

þ 1

R
ðλþ ηÞ 1

R† ðD12Þ

is the Gutzwiller self-energy of the impurity (that also
includes the on-site energies in our notation).
Note that the impurity quasiparticle Green’s function that

corresponds to Eq. (D11) is given by
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GqpðzÞ≡ 1

R† GðzÞ
1

R
¼ 1

z −RΔðzÞR† − λ − η
: ðD13Þ

As for the Hubbard model, the above equations can be
solved as follows. (i) Given ðR; λÞ, we use Eq. (D2) to
compute the Lagrange multipliers η and the corresponding
impurity Green’s function G, which determines n0 through
Eq. (D3), D through Eq. (D4), and λc through Eq. (D5).
(ii) Thereafter, we solve the embedding Hamiltonian
[see Eq. (D6)] to compute jΦi, which determines the left
members of Eqs. (7) and (8). Equations (7) and (8) are
verified if and only if ðR; λÞ is the correct set of variational
parameters, satisfying the vector equation

ðF ð1Þ½R; λ�;F ð2Þ½R; λ�Þ ¼ 0: ðD14Þ
Note that, since we have used G in Eqs. (D2)–(D4), the

GA equations depend explicitly only on the hybridization
function ΔðzÞ and on the impurity Hamiltonian Ĥloc.
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