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We study the dynamics of isolated interacting spin chains that are periodically driven by sudden
quenches. Using full exact diagonalization of finite chains, we show that these systems exhibit three distinct
regimes. For short driving periods, the Floquet Hamiltonian is well approximated by the time-averaged
Hamiltonian, while for long periods, the evolution operator exhibits properties of random matrices of a
circular ensemble (CE). In between, there is a crossover regime. Based on a finite-size scaling analysis and
analytic arguments, we argue that, for thermodynamically large systems and nonvanishing driving periods,
the evolution operator always exhibits properties of the CE of random matrices. Consequently, the Floquet
Hamiltonian is a nonlocal Hamiltonian with multispin interaction terms, and the driving leads to the
equivalent of an infinite temperature state at long times. These results are connected to the breakdown of
the Magnus expansion and are expected to hold beyond the specific lattice model considered.
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I. INTRODUCTION

Periodically driven systems have a long history. One
paradigmatic example is the kicked-rotor model of a particle
moving on a ring subjected to time-periodic “kicks” [1].
The behavior of such systems is very rich; e.g., they can
display interesting integrability-to-chaos transitions and
dynamical Anderson localization [2–4], and counterintuitive
effects such as dynamical stabilization [5,6], both in classical
and quantum mechanics. Moreover, it has recently been
shown that periodic perturbations can be used as a flexible
experimental knob [7–9] to realize synthetic matter, i.e.,
matter with specific engineered properties. Two outstanding
examples in this direction are the opening of a gap in
graphene by using light or carefully selected lattice phonons
[10–12] and the realization of the so-called Floquet topo-
logical insulator in a material that, in the absence of driving,
is topologically trivial [13,14].
With a few exceptions [15–26], recent studies mostly

focus on driving simple (often single-particle) Hamiltonians.
In some instances, it is known that the addition of interactions
qualitatively changes the physics; e.g., when two quantum
kicked rotors are coupled, the dynamical Anderson locali-
zation is suppressed and the (classical) diffusive behavior is
recovered [27,28]. Furthermore, recent studies often rely on
approximations that allow one to recast the effect of the
drive in, e.g., an effective hopping [29,30]. While these

approximations can work well for noninteracting systems,
their range of applicability for interacting quantum systems is
unclear. The validity of some of those approximations,
such as the use of average Hamiltonians, has been a topic of
interest because of its relevance to NMR experiments [31,32].
The goal in this paper is to understand the long-time

behavior of isolated interacting quantum systems periodi-
cally driven by sudden quenches. We focus on driving
finite spin chains, for which the Hilbert space is finite. By
considering chains of different lengths, we systematically
study the role of finite-size effects. Combining numerical
results and analytic arguments, we argue that finite chains
exhibit three distinct regimes, while in thermodynamically
large systems, only one regime survives and the system
approaches the equivalent of an infinite temperature state at
long times. In this regime, the Floquet Hamiltonian is a
nonlocal Hamiltonian that contains multispin interaction
terms. It is therefore qualitatively different from physically
realizable static Hamiltonians, which generally contain
only few-spin interaction terms. We argue that this regime
is generic to interacting quantum systems. Thus, our study
provides a paradigm to understand the long-time behavior of
isolated, periodically driven, interacting quantum systems.
The exposition is organized as follows. In Sec. II, we

review the Floquet theorem and present general analytic
arguments of relevance to our study. The numerical results
for the specific model considered are presented in Sec. III.
Section IV is devoted to a discussion of far-reaching
implications of our study. A summary of our results is
presented in Sec. V.

II. THEORETICAL ANALYSIS

The Floquet theorem states that the evolution operator of
any periodically driven system can be written as
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ÛðtÞ≡ P̂ðtÞe−iĤFt=ℏ; ð1Þ

where P̂ðtþ TÞ ¼ P̂ðtÞ is a periodic unitary operator that
reduces to the identity at stroboscopic times (tN ¼ NT,
with N an integer), and ĤF is the time-independent Floquet
Hamiltonian. It is clear that the factorization of the
evolution operator is not unique and, therefore, there is
some freedom in the definition of both the periodic operator
P̂ðtÞ and the Floquet Hamiltonian ĤF [33,34]. At strobo-
scopic times, Eq. (1) simplifies as the periodic operator
drops out. In particular, the exact evolution operator over a
single driving cycle can be written as

Ûcycle ¼ e−iĤFT=ℏ ¼
X
n

jϕnie−iθnhϕnj; ð2Þ

where jϕni and e−iθn are the eigenstates and eigenvalues of
Ûcycle. From Eq. (2), it follows that

ĤF ≡X
n

jϕniεnhϕnj; ð3Þ

where εn are the Floquet quasienergies. The nonuniqueness
of the factorization in Eq. (1) translates into the fact that the
Floquet quasienergy εn can be shifted by integers of ℏω,
where ω ¼ 2π=T. We note, however, that this freedom does
not affect the eigenstates jϕni or the eigenvalues e−iθn ¼
e−iεnT=ℏ of Ûcycle, which are the focus of our study.
Equation (2) resembles the standard unitary evolution

operator of a system described by a time-independent
Hamiltonian ĤF. However, this simplicity is deceptive.
For interacting systems, it is, in general, impossible to
obtain the Floquet Hamiltonian in a closed form, and one
has to rely on approximations. A commonly used approxi-
mation scheme is the Magnus expansion [34–36], which is
a series expansion in the driving period T. It allows one
to compute the Floquet Hamiltonian as ĤF ¼ P∞

n¼0 Ĥ
ðnÞ
F .

The first two terms in the Magnus expansion are

Hð0Þ
F ¼ 1

T

Z
T

0

dtĤðtÞ

Hð1Þ
F ¼ 1

2!Tiℏ

Z
T

0

dt1

Z
t1

0

dt2½Ĥðt1Þ; Ĥðt2Þ�; ð4Þ

where Ĥðtþ TÞ ¼ ĤðtÞ is the time-periodic Hamiltonian
of the system. The zeroth-order term Ĥð0Þ

F is simply the
time-averaged Hamiltonian, which we denote as Ĥave in
what follows. Higher-order terms contain nested commu-
tators of ĤðtÞ and multiple time-ordered integrals. The
Magnus expansion is guaranteed to converge to the exact
Floquet Hamiltonian for systems with a bounded energy
spectrum (such as the spin chain we consider here) and
sufficiently short driving periods, i.e., T ≤ Tc ¼ 2π=W,
where W is the bandwidth of ĤðtÞ (see Ref. [36] and
references therein). For interacting systems, the energy

bandwidth W is extensive, and therefore, the Magnus
expansion is guaranteed to converge only for T ≤ Tc ¼
const=V, where V is the volume of the system. We stress
that this condition is only a sufficient one. It is unknown
whether, for interacting systems in the thermodynamic
limit, the radius of convergence of the Magnus expansion is
finite. Our results suggest that this is, in general, not the
case and that the Magnus expansion in thermodynamically
large systems has a vanishing radius of convergence.
The Magnus expansion has several interesting properties

[35,36]. First, being an expansion for the Floquet
Hamiltonian, it ensures that the evolution operator is
unitary at any order in the expansion. This should be
contrasted with the well-known Dyson series [37], which
generates nonunitary evolution operators when truncated to
any finite order. Second, noticing that the commutator of
two local extensive operators is local and extensive, we see
that the Floquet Hamiltonian is local and extensive in
each order of the Magnus expansion. Therefore, when the
Magnus expansion converges, the Floquet Hamiltonian is a
local extensive Hamiltonian with few-body interactions.
Hence, it exhibits the usual properties of experimentally
realizable time-independent Hamiltonians [20]. However,
when the Magnus expansion does not converge, the Floquet
Hamiltonian can be qualitatively different from experimen-
tally relevant static Hamiltonians; i.e., it can be “unphysical”
with nonlocal multibody interactions.
To study properties of the Floquet Hamiltonian in regimes

where the Magnus expansion might not converge, we follow
the approach presented in Ref. [31]. We introduce a generic
bounded time-periodic local Hamiltonian ĤðτÞ defined on a
finite-dimensional Hilbert space

ĤðτÞ ¼ Ĥave þ fðτÞÂ; ð5Þ

where τ≡ t=T is the rescaled time, fðτÞ is an arbitrary
time-periodic function with zero average, Ĥave is the time-
averaged Hamiltonian, and Â is a sum of local few-body
operators. jnðτÞi and ϵnðτÞ are the instantaneous eigenfunc-
tions and eigenenergies of ĤðτÞ:

ĤðτÞjnðτÞi ¼ ϵnðτÞjnðτÞi:

The Schrödinger equation reads

∂τÛðτÞ ¼ T
ĤðτÞ
iℏ

ÛðτÞ ð6Þ

and is formally solved by

ÛðτÞ ¼ T exp
�
T
Z

τ

0

dτ0
Ĥðτ0Þ
iℏ

�
≡ exp

�
T
ĤeffðτÞ
iℏ

�
; ð7Þ

where T ensures that the exponential is time ordered.
The last equality defines an effective Hamiltonian ĤeffðτÞ.
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The instantaneous eigenstates and eigenvalues of the
evolution operator ÛðτÞ are

ÛðτÞjϕnðτÞi ¼ e−iθnðτÞjϕnðτÞi: ð8Þ

From Eqs. (2) and (7), one can see that Ûðτ ¼ 1Þ ¼ Ûcycle
and, correspondingly, Ĥeffðτ ¼ 1Þ≡ ĤF. This justifies
using the same notation for the eigenvectors and eigenvalues
appearing in Eqs. (2) and (8). Substituting Eq. (7) into the
Schrödinger equation (6) leads to [31] (see also Appendix A)

iℏ
T
ð1 − e−iðθnðτÞ−θmðτÞÞÞhϕnðτÞj∂τjϕmðτÞi
¼ hϕnðτÞjĤðτÞjϕmðτÞi: ð9Þ

We note that this equation is exact since it corresponds to a
rewriting of the Schrödinger equation.
Remarkably, evaluating Eq. (9) at τ ¼ 1 allows one to

connect the structure of the eigenstates of Ûcycle (and of
ĤF) to the statistics of the folded phases, i.e., the phases θn
defined in ½−π; πÞ. This connection can be made by
analyzing under which circumstances the left-hand side
and right-hand side (RHS) are not identically zero. For
example, when the eigenstates of ĤF exhibit eigenstate
thermalization [38–44], the RHS of Eq. (9) is generically
nonzero. This occurs because Ĥðτ ¼ 1Þ is taken to be a sum
of local few-body operators [38–42]. Therefore, the spec-
trum of Ûcycle is expected to display repulsion, i.e.,
e−iðθn−θmÞ ≠ 1 or equivalently θn ≠ θm. On the other hand,
if ĤF is noninteracting (or integrable), then the RHS of
Eq. (9) can be zero for a large fraction of pairs of states
[41,42] and there does not need to be repulsion. In this case,
the spectrum of Ûcycle can exhibit highly degenerate phases
separated by finite gaps.
We should stress that, for T > Tc ¼ 2π=W, repulsion in

the spectrum of Ûcycle is incompatible with ĤF ¼ Ĥave.
This does not follow from Eq. (9). It becomes apparent
because, for ĤF ¼ Ĥave, θn ¼ θaven , where θaven is obtained
by folding Tϵaven =ℏ in ½−π; πÞ, and ϵaven are the eigenvalues
of Ĥave. Since energies ϵaven that are far apart are not
expected to be correlated with each other, the (folded)
phases θn will not exhibit repulsion. The same reasoning
leads to the conclusion that, for T > Tc, phase repulsion is
incompatible with ĤF being an extensive operator with
few-body interactions. Actually, repulsion in the phases of
Ûcycle for T > Tc hints that Ûcycle should exhibit properties
of random matrices belonging to circular ensembles (CEs)
[45–50]. CEs are the equivalent of Gaussian ensembles
(GEs) for unitary matrices. In CEs, the phases display
repulsion and the eigenstates are essentially random
vectors.
Two remarks are in order. First, while it is believed that

eigenstate thermalization and chaos (or level repulsion in
the spectrum) come together in many-body interacting
systems [38–40,43,44], there is no proof that this is always

the case. Our analysis based on Eq. (9) does not constitute a
proof that this is the case for ĤF. However, it is a step in the
right direction. As long as Ĥðτ ¼ 1Þ is a sum of local
operators and T is small, Eq. (9) allows us to make a
connection between eigenstate thermalization and the
presence of level repulsion in the spectrum. Second, phase
repulsion in the Floquet spectrum is not unique to interact-
ing systems. It can appear in chaotic single-particle driven
systems (see, for example, Ref. [49]) for specific param-
eters of the driving protocol [4]. For example, in kicked
systems, the dynamics of the Floquet eigenvalues for
varying kicked strength can be mapped to the dynamics
of interacting quasiparticles, i.e., the “Pechukas gas,” and
the phase repulsion in the Floquet spectrum can be inferred
from the equilibrium properties of this fictitious gas [49].
What we expect to be different in driven interacting
quantum systems is that phase repulsion will be robust
to changes in the driving protocol.
We should also stress that the presence of level repulsion

in the spectrum of Ûcycle, for nonvanishing values of T in
thermodynamically large systems, is an unbiased indicator
of the breakdown of the Magnus expansion. This is
because, as explained before, when the Magnus expansion
converges, ĤF is a local extensive Hamiltonian with few-
body interactions. This is incompatible with having phase
repulsion for driving periods T > Tc ¼ const=V, and Tc
vanishes with increasing system size.

III. NUMERICAL RESULTS

We now turn to numerical simulations of a realistic
many-body system. Specifically, we use full exact diago-
nalization to study a spin-1=2 chain with periodic boundary
conditions and the Hamiltonian

ĤðtÞ ¼ ½J þ fðtÞδJ�Ĥnn þ J0
X
j

σzjσ
z
jþ2;

Ĥnn ¼
X
j

�
σzjσ

z
jþ1 −

1

2
ðσxjσxjþ1 þ σyjσ

y
jþ1Þ

�
; ð10Þ

where σαj , α ¼ x; y; z, is the Pauli matrix for the jth spin,
and fðtÞ is a periodic function with zero average,

fðtÞ≡
�
1 for N < t

T < N þ 1
2

−1 for N þ 1
2
< t

T < N þ 1.
ð11Þ

The Hamiltonian Ĥnn in Eq. (10) is relevant to nuclear
magnetic resonance experiments in solids [51]. The next-
nearest neighbor coupling J0 can be considered to be a
phenomenological parameter that accounts for interactions
that break the integrability of the spin-1=2 XXZ chain.
We restrict our calculations to the sector with total
quasimomentum k ¼ 0, magnetization mz ¼ 1=3, and par-
ity p ¼ þ1. For the four system sizes considered in our
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study, L ¼ 15, 18, 21, and 24, the number of states in that
sector are D ¼ 111, 561, 2829, and 15581, respectively.
The Hamiltonian parameters are selected to be J ¼ 1,

δJ ¼ 0.2, and J0 ¼ 0.8. They have been chosen to ensure
that the average Hamiltonian is nonintegrable and that it
exhibits eigenstate thermalization and quantum chaos
[38–44]. This is tested in Fig. 1, where we show the
probability distribution PðrÞ, with r being the ratio of two
consecutive energy gaps [52–54], in the spectrum of Ĥave:

r ¼ minðsn; snþ1Þ
maxðsn; snþ1Þ

∈ ½0; 1�; sn ¼ ϵnþ1
ave − ϵnave: ð12Þ

The distribution PðrÞ is related to the level spacing
distribution PðsÞ in that they both measure the level
repulsion in the spectrum, which is a standard quantum
chaos indicator [4]. However, the distribution PðrÞ is
simpler to compute since it does not require the unfolding
of the spectrum, which is known to be nontrivial [55,56].
In Fig. 1, we compare PðrÞ to the predictions for the
Gaussian orthogonal ensemble (GOE) and Poisson statis-
tics (POI) [54]:

PGOEðrÞ ¼
27

4

rþ r2

ð1þ rþ r2Þ5=2 ; PPOIðrÞ ¼
2

ð1þ rÞ2 :

We notice that PðrÞ is well approximated by PGOEðrÞ and
converges to the GOE prediction with increasing system
size. This can be seen in the inset, in which the error

error ¼
Z

1

0

drjPðrÞ − PGOEðrÞj

is shown to decrease as the system size increases.
The presence of level repulsion is clearly seen as r → 0,

where PGOEðrÞ vanishes while PPOIðrÞ remains finite.
The difference between those distributions is reflected in
the average value of r:

hriGOE ≈ 0.535898; hriPOI ≈ 0.386294: ð13Þ

As shown in Refs. [52,53], hri encodes information about
level repulsion. It has been used as a sensitive and practical
probe of the many-body localization transition [57–62].
Given our driving protocol [see Eq. (11)], the exact time-

evolution operator over one cycle is

Ûcycle ¼ e−i
T
2ℏĤþe−i

T
2ℏĤ− ¼

X
n

jϕnie−iθnhϕnj; ð14Þ

where Ĥ� corresponds to Eq. (10) for fðtÞ ¼ �1. Using
exact diagonalization, we obtain the eigenvectors jϕni and
the phases θn, which we define in the interval ½−π; πÞ.
In what follows, we study how the properties of the

time-evolution operator change as a function of the driving
period T. We use indicators based on the phases (Sec. III A)
and on the eigenvectors (Sec. III B) of Ûcycle. These two
indicators suggest that Ûcycle shares properties with matri-
ces from the circular ensemble for nonvanishingly small
values of T in thermodynamically large systems. This
causes the system to approach, independent of the initial
conditions, the equivalent of an infinite temperature state at
long times (Sec. III C).

A. Phase repulsion

We are first interested in understanding the properties of
the phases θn as a function of the driving period T. We also
want to find the relation between those phases and the
phases θaven , which would be obtained if ĤF ¼ Ĥave. To this
end, we use the equivalent of PðrÞ in our setup. We define r
as the ratio of two consecutive phase gaps:

r ¼ minðδn; δnþ1Þ
maxðδn; δnþ1Þ

∈ ½0; 1�; δn ¼ θnþ1 − θn: ð15Þ

We stress that “phase gaps” are obtained by first ordering
the phases in ½−π; πÞ and then computing the difference
between consecutive values.
In Fig. 2, we show the average value of r vs T for the

exact phases θn (indicated by hri) and the phases θaven
(indicated by hravei). We compare them with the predic-
tions of the COE, the GOE, and POI. The COE and GOE
predictions in Fig. 2 have been computed for a finite-size
matrix. While the COE and GOE results obtained in those
calculations are different, they are expected to coincide in
the thermodynamic limit (see Appendix B).
In Fig. 2, note the vertical dotted lines that mark

T1 ¼ 2πℏ=W, T2 ¼ πℏ=σ, and T3 ¼ 2πℏ=σ, where W ¼
ϵmax
ave − ϵmin

ave is the bandwidth and σ is the variance of the

0 0.2 0.4 0.6 0.8 1
r

0

0.5

1

1.5

2

P
(r

)

L=18
L=21
L=24
POI
GOE

15 18 21 24
L

0

0.2

0.4

0.6 error

FIG. 1. Probability distribution PðrÞ for the ratio of two
consecutive energy gaps in the spectrum of Ĥave [see
Eq. (12)] together with the GOE and POI predictions. (Inset)
The error distance between PðrÞ and the GOE prediction
decreases quickly with an increasing system size.
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spectrum of Ĥave for L ¼ 24. The variance σ is computed as
the width of the best Gaussian fit to the density of states of
Ĥave. We note that W ∝ L and σ ∝

ffiffiffiffi
L

p
scale differently

with the system size L. The periods T1, T2, and T3 separate
four regimes in which hri and hravei exhibit distinct
behaviors. (i) For T < T1, hri is independent of T, identical
to hravei, and close to the GOE prediction. (ii) For
T1 < T < T2, hri and hravei are very close to each other
and decrease with increasing T. (iii) For T2 < T < T3, hri
increases towards the COE prediction while hravei
decreases towards the POI prediction. (iv) For T > T3,
hri is again independent of T and close to the COE
prediction, while hravei is close to and continues approach-
ing the POI prediction.
In Fig. 3, we show the full distribution PðrÞ for both θn

and θaven for the largest system size considered (L ¼ 24) for
the periods T1, T2, and T3 (defined above). We also
compare them with the GOE, COE, and POI predictions.
These plots show that, for T1 and T3, the numerical results
for the exact phases, θn, are virtually indistinguishable from
the GOE and COE predictions, respectively. On the other
hand, the phases θaven are clearly described by Poisson
statistics for T3. For T2, the results for both θn and θaven are
in between GOE/COE and POI. Note that T1 ∝ L−1,
T2 ∝ L−1=2, and T3 ∝ L−1=2 all collapse to zero in the
thermodynamic limit.

B. Eigenvectors’ information entropy

The properties of the eigenvectors of Ûcycle provide
further evidence of the different regimes seen in Fig. 2.
Specifically, we study how the eigenvectors of Ûcycle differ
from those of Ĥave as T is increased. We write the former in
terms of the latter,

jϕni ¼
XD
m¼1

cnmjmavei;

where jmavei are the eigenstates of Ĥave, Ĥavejmavei ¼
ϵavem jmavei, and D is the dimension of the Hilbert space. We
then compute the (Shannon) information entropy [43,44]

Sn ¼ −
XD
m¼1

jcnmj2 ln jcnmj2; ð16Þ

which measures the number of states jmavei that contribute
to each jϕni. When ĤF ¼ Ĥave, Sn ¼ 0. As ĤF deviates
from Ĥave, Sn grows and is expected to saturate to the COE
prediction Sn ≈ lnð0.48DÞ, provided Ûcycle exhibits proper-
ties of matrices from the circular ensemble.
In Fig. 4, we show the average entropy hSi ¼

ðPD
n¼1 SnÞ=D normalized by the COE prediction. Note that

0 1 3 5 6T
1

T
2

T
3

Period T

0.386
0.4

0.45

0.5

0.536
0.55

〈 r
 〉 

, 〈
 r

av
e
〉

L=18
L=21
L=24
GOE
COE
POI

FIG. 2. Average value of r vs T. The values of hri (symbols)
and hravei (dashed lines) are compared to the COE, GOE, and
POI predictions. The COE and GOE predictions are expected to
coincide in the thermodynamic limit (see Appendix B). Vertical
dotted lines depict the periods T1 ¼ 2πℏ=W, T2 ¼ πℏ=σ, and
T3 ¼ 2πℏ=σ (see text).

0 0.2 0.4 0.6 0.8 1
r

0

0.5

1

1.5

2

0.5

1

1.5

2

0.5

1

1.5

2

P
(r

)
P

(r
)

P
(r

)

Exact
Have
GOE
COE
POI

(a) T=T
1

(c) T=T
3

(b) T=T
2

FIG. 3. Distribution PðrÞ for the periods T ¼ T1, T2, and T3

shown in Fig. 2. We compare the exact phases obtained from the
exact diagonalization of Ûcycle (indicated by red circles) and
the phases one obtains if ĤF ¼ Ĥave (indicated by squares), with
the GOE, COE, and POI predictions (lines).
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hSi grows monotonically with increasing T and that the
curves shift to the left (smaller periods) as the system size
increases. The variance hðSn − hSiÞ2i1=2 is smaller than the
size of the symbols used in Fig. 4. This makes it apparent
that, on average, different eigenstates jϕni delocalize the
sameway in the basis fjmaveig. Contrary to hri in Fig. 2, hSi
in Fig. 4 is still changing for T ≥ T3. However, the COE
prediction is reached for longer periods. This is not surpris-
ing since indicators based on the eigenvectors are known to
suffer from stronger finite-size effects than level statistics
indicators [43,44].

C. Heating towards infinite temperature

The fact that Ûcycle shares properties with matrices from
the COE has important consequences for how the system
adsorbs energy. To show it, we compute the expectation
value of Ĥave at long times (t ¼ NT for N → ∞). This can
be done using the so-called diagonal ensemble [41,42]

hĤaveiðt ¼ NTÞ ¼ hψ0jðÛ†
cycleÞNĤaveðÛcycleÞN jψ0i

≈
X
n

jhψ0jϕnij2hϕnjĤavejϕni; ð17Þ

where jψ0i is the initial state. If Ûcycle is COE like, all its
eigenstates are close to random vectors and the eigenstate
expectation values of few-body observables (such as Ĥave)
are almost n independent. As a result, the evaluation of
Eq. (17) gives the same result one would obtain in a system
at infinite temperature, and this occurs independently of
the initial state selected. Instead, if ĤF ¼ Ĥave, the system
does not absorb energy under driving.
In Fig. 5, we show the energy absorbed at long timesQ vs

the period T. We have normalized Q so that −1 corresponds
to no energy absorption and 0 corresponds to the final energy
being equal to that at infinite temperature:

Q ¼ hĤaveiðt → ∞Þ − hĤaveiβ¼0

hĤaveiβ¼0 − hĤaveiðt ¼ 0Þ : ð18Þ

The initial state is taken to be in thermal equilibrium
(with respect to Ĥave) with β ¼ 0.5. Namely, jψ0ihψ0j ¼
Z−1P

me
−βEave

m jmaveihmavej, where Z is the partition
function. Figure 5 shows that, with increasing T, Q
approaches zero as expected. In addition, the value of T
at which Q saturates (close) to zero decreases with increas-
ing system size.
As discussed above, the system reaching the equivalent

of an infinite temperature state at long times can be traced
back to the fact that, when Ûcycle shares properties with
matrices of the COE, the expectation value of few-body
observables is nearly independent of the specific Floquet
eigenstate. This can be seen in the inset in Fig. 5, in which
we plot the expectation values hϕnjĤavejϕni vs θn for
L ¼ 24 and T ¼ 6.
An understanding of how those eigenstate expectation

values behave for different values of T can be gained from
Fig. 6. There, we report results for six different values of T.
For short periods, the Floquet eigenstates jϕni are closely
related to the eigenstates of Ĥave, and the simple relation

θn ¼
T
ℏ
hϕnjĤavejϕni

holds [see Fig. 6(a)]. We note that the phases θn might or
might not span the entire “Floquet Brillouin zone,” i.e.,
½−π; πÞ, depending on the value of the period T. This can
also be seen in Fig. 6(a). For intermediate periods, there is a
crossover regime in which the relation between θn and
hϕnjĤavejϕni is progressively lost with increasing T [see
Fig. 6(b)]. For long periods T, the eigenstate expectation
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FIG. 4. Average entropy of the eigenstates hSi vs the period
T. hSi= lnð0.48DÞ crosses over from zero to the COE predic-
tion, which is reached earlier as L increases. The variance
hðSn − hSiÞ2i1=2 is smaller than the size of the symbols used.
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FIG. 5. Absorbed energy. (Main) Absorbed energy at long
(infinite in our calculation) times Q [see Eq. (18)] vs the driving
period T. The initial state is a thermal state (with respect to Ĥave)
with β ¼ 0.5. (Inset) Expectation values hϕnjĤavejϕni vs the
exact phases θn for L ¼ 24 and T ¼ 6.
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values hϕnjĤavejϕni approach an n-independent value; i.e.,
they are not related to the values of the Floquet phases θn
[see Fig. 6(c)]. Increasing the period beyond the ones
reported in Fig. 6 further decreases the eigenstate-to-
eigenstate variation of hϕnjĤavejϕni, as one can realize
by comparing the results in Fig. 6(c) with those in the inset
in Fig. 5.

IV. DISCUSSION

Our numerical results for finite systems indicate that
ĤF ¼ Ĥave for small values of T (T ≲ T1 in our study),
while Ûcycle shares properties with matrices of the COE for
large values of T (T ≳ T3 in our study). In addition, there is
a crossover regime (for intermediate periods T1 ≲ T ≲ T3)
in which some of the indicators used smoothly interpolate
between the values obtained in the previous two regimes.
In the intermediate regime, a drive may lead to states in
which the average energy in a cycle fluctuates between
consecutive cycles or becomes stationary but not equal to
that of a system at infinite temperature. This could
potentially be seen in current experiments with periodically
driven ultracold atomic systems.

As we discussed in Sec. II, when the Magnus expansion
converges, ĤF is a local extensive Hamiltonian with few-
body interactions, which is incompatible with the phases of
the eigenvalues of Ûcycle exhibiting level repulsion for
nonvanishing values of T in thermodynamically large
systems. Therefore, the fact that we see an onset of
COE properties for Ûcycle when T ≳ T3 ∝ 1=

ffiffiffiffi
L

p
indicates

that the radius of convergence of the Magnus expansion
is vanishingly small in thermodynamically large systems.
As a result, for nonvanishingly small values of T, thermo-
dynamically large systems reach the equivalent of an
infinite temperature state at long driving times. Also, since
the Floquet Hamiltonian ĤF cannot be extensive with
few-body interactions, one realizes that these systems offer
a natural platform to investigate unique phenomena that
may occur at intermediate times as a result of long-range
many-body interactions in ĤF.
Remarkably, the Magnus expansion is guaranteed to

converge only for T ≤ T1 ∝ 1=L [34,36], when the Floquet
phases do not wrap around the “first Brillouin zone,” i.e.,
θn ∈ ½−π; πÞ. Our results for hri, showing that hri decreases
approaching the POI prediction when T increases for T ≲
T2 (see Fig. 2), suggest instead that the radius of con-
vergence of the Magnus expansion is ∼T2 ∝ 1=

ffiffiffiffi
L

p
. This

means that, for T1 < T ≲ T2, the Magnus expansion
converges despite the fact that the Floquet phases wrap
around the “first Brillouin zone.” When the Magnus
expansion converges, one can “unwrap” the Floquet phases
θn, which can be unambiguously defined in the “extended
Brillouin zone,” i.e., θn ∈ ð−∞;∞Þ [see Fig. 6(a)], so that
the relation θn ¼ Tεn=ℏ holds and both θn and the Floquet
quasienergy εn [see Eq. (3)] are extensive. When the
Magnus expansion fails [20], it is not possible to unam-
biguously unwrap the Floquet phases, which are therefore
only defined in the first Brillouin zone [see Fig. 6(c)].
Therefore, the breaking of the Magnus expansion coincides
with the transition from a description in the extended
Brillouin zone to one in the first Brillouin zone.
We expect that our results, in particular, the presence of

the two limiting behaviors described above for short and
long driving periods, will be valid beyond the specific
model considered. In fact, at sufficiently short driving
periods, the Magnus expansion is guaranteed to converge
for any system with a bounded spectrum, and therefore
ĤF ≈ Ĥave. On the other hand, the same way that generic
nonintegrable systems are expected to thermalize under
unitary dynamics independently of the initial state selected
[38–42], periodically driven generic nonintegrable systems
are expected to heat up towards the equivalent of an infinite
temperature state independently of the initial conditions.
This expectation can be traced back to the second law of
thermodynamics. Actually, if the driving period is longer
than all relaxation time scales, then the system relaxes and
effectively starts each driving cycle from a stationary state.
It can be proven rigorously that, during any dynamical
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FIG. 6. Expectation values hϕnjĤavejϕni vs the exact phases θn
folded in ½−π; πÞ for L ¼ 24 and different driving periods T.
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process that starts from a stationary state, the properly
defined entropy can only increase [63]. Hence, at long
times, the system reaches a state of maximum entropy, i.e.,
the equivalent of an infinite temperature state. This, in turn,
requires Ûcycle to have properties of the circular ensemble
of a random matrix.
We note, however, that there are specific classes of

models that escape this general expectation. In those
systems, ĤF is a well-behaved local Hamiltonian over a
finite range of driving periods. Examples are as follows:
(i) driven Hamiltonians that commute at different times,
½ĤðτÞ; Ĥðτ0Þ� ¼ 0, which lead to ĤF ¼ Ĥave independently
of T, (ii) fictitious time dependence that can be removed by
a proper choice of the reference frame [12], and (iii) special
cases in which multiple commutators of ĤðτÞ generate a
finite algebra [20,64]. In the presence of strong quenched
disorder, interacting quantum systems can become non-
ergodic. These systems, which are known as many-body
localized (MBL), do not exhibit thermalization under
unitary dynamics [57–62,65]. Currently, it is unknown
whether MBL systems that are driven periodically in time
by a global perturbation follow the general expectation
discussed here (heat up indefinitely) or not [66]. The case
of a MBL system driven periodically in time by local
perturbations was studied in Ref. [26], where they were
shown not to heat up indefinitely.
As discussed above, when theMagnus expansion does not

converge, and Ûcycle exhibits properties of random matrices
of the circular ensemble, the system is expected to heat up
towards the equivalent of an infinite temperature state at long
times. We should stress, however, that the heating rate might
be very small [31] and negligible on the time scale of a
particular experiment. If this is the case, then the experiment
could be described using the Magnus expansion truncated
after the first few orders [67]. Moreover, at long times, the
coupling between the system and the environment may
become important and the system could approach a non-
equilibrium steady state [68,69] in which the energy
absorbed from the driving is balanced by the energy
dissipated into the environment [33]. Therefore, the obser-
vation of the equivalent of an infinite temperature state
requires a separation of time scales [34]: τheating ≪ τbath,
where τ−1heating is the heating rate and τbath is the time scale at
which the coupling to the bath becomes important.

V. SUMMARY

In summary, we have studied the long-time behavior of
an isolated interacting spin chain that is periodically driven
by sudden quenches. For finite systems, we found three
possible regimes. For short driving periods, ĤF converges
to the time-averaged Hamiltonian Ĥave, while for long
periods the evolution operator Ûcycle has properties of
matrices of the COE of random matrix theory. For
intermediate periods, there is a crossover regime. We have

provided evidence that, for thermodynamically large
systems, the only regime that occurs for nonvanishing
driving periods is the one in which Ûcycle exhibits proper-
ties of random matrices of the COE. This results in the
system heating up to the equivalent of an infinite temper-
ature state at long times. Furthermore, we argued that in
this regime, ĤF cannot be an extensive Hamiltonian with
few-body interactions.
Our findings for periodically driven systems are the equiv-

alent of eigenstate thermalization for out-of-equilibrium
many-body systems with time-independent Hamiltonians.
While eigenstate thermalization ensures that thermalization
occurs for generic interacting systems, the fact that the
evolution operator in a periodically driven generic interacting
system shares properties with matrices in the COE ensures
that such systems thermalize to infinite temperature at
long times.
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up, leading to the equivalent of an infinite-temperature
state, in agreement with our results.

APPENDIX A: DERIVATION OF EQ. (9)

For completeness, we report the derivation of Eq. (9).
Our presentation closely follows Ref. [31]. By plugging the
ansatz (7) into the Schrödinger equation (6), one obtains

∂τ exp

�
T
ĤeffðτÞ
iℏ

�
¼ T

ĤðτÞ
iℏ

exp

�
T
ĤeffðτÞ
iℏ

�
:

Using the mathematical identity

∂τ exp ½B̂ðτÞ� ¼
Z

1

0

dαðexp½αB̂ðτÞ�

× ∂τB̂ðτÞ exp ½ð1 − αÞB̂ðτÞ�Þ

to compute the derivative of an exponential operator [note
that this expression is required because ĤeffðτÞ at different
times may not commute] results in

Z
1

0

dα

�
exp

�
αT

ĤeffðτÞ
iℏ

�
∂τĤeffðτÞexp

�
ð1−αÞT ĤeffðτÞ

iℏ

��

¼ ĤðτÞexp
�
T
ĤeffðτÞ
iℏ

�
:
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Multiplying both sides in the equation above by
exp ½−TðĤeffðτÞ=iℏÞ� from the right, one gets

Z
1

0

dα

�
exp

�
αT

ĤeffðτÞ
iℏ

�
∂τĤeffðτÞ

× exp

�
−αT

ĤeffðτÞ
iℏ

��
¼ ĤðτÞ: ðA1Þ

We now close this equation between the exact (time-
dependent) eigenstates of HeffðτÞ,

ĤeffðτÞjϕnðτÞi ¼ εnðτÞjϕnðτÞi; ðA2Þ

and perform the integration over α to obtain

iℏ
T
e

T
iℏðεnðτÞ−εmðτÞÞ − 1

εnðτÞ − εmðτÞ
hϕnðτÞj∂τĤeffðτÞjϕmðτÞi

¼ hϕnðτÞjĤðτÞjϕmðτÞi: ðA3Þ

To obtain Eq. (9), we substitute in Eq. (A3) the generalized
Hellmann-Feynman theorem

hϕnðτÞj∂τĤeffðτÞjϕmðτÞi
¼ ðεmðτÞ − εnðτÞÞhϕnðτÞj∂τjϕmðτÞi: ðA4Þ

We note that, while Eq. (A3) depends on the convention
used in the definition of the Floquet quasienergy in
Eq. (A2), the final equation (9) can be written exclusively
in terms of the phase factors e−iðT=ℏÞϵnðτÞ ¼ e−iθnðτÞ, which
are independent of the convention used in the definition
of εnðτÞ.

APPENDIX B: PHASE REPULSION IN
CIRCULAR ENSEMBLES

Here, we derive the probability distribution PðrÞ in
different ensembles. In Gaussian ensembles (GEs), r is
the ratio of consecutive energy gaps [see Eq. (12)], while in
the CEs, r is the ratio of consecutive phase gaps [see
Eq. (15)]. The distribution PðrÞ has been shown to be a
sensitive and practical probe [52–54] of the integrability-to-
chaos transition [4]. For the GEs, the distribution PðrÞ has
recently been calculated [54] starting from the joint dis-
tribution of the eigenvalues of a 3 × 3 random matrix. We
do the calculation for a 3 × 3 random matrix in the CEs.
The joint distribution for the phases in the circular

orthogonal ensemble (COE), the circular unitary ensemble
(CUE), and the circular symplectic ensemble (CSE) are
[45–50]

ρðθ1; � � � ; θnÞ ¼
1

Zn;β

Y
1≤k<j≤n

jeiθk − eiθj jβ

Zn;β ¼ ð2πÞn Γðβn
2
þ 1Þ

½Γðβ
2
þ 1Þ�n ;

and β ¼ 1, 2, 4 for COE, CUE, and CSE, respectively. For a
3 × 3 matrix, the expression simplifies to

ρðθ1; θ2; θ3Þ ¼
23β

Z3;β

���� sin
�
θ1 − θ2

2

�����
β

×

���� sin
�
θ1 − θ3

2

�����
β
���� sin

�
θ2 − θ3

2

�����
β

;

where θi ∈ ð0; 2πÞ [this follows from the normalization
∭ 2π

0 dθ1dθ2dθ3ρðθ1; θ2; θ3Þ ¼ 1]. We choose one of the six
possible orderings of the angles, θ1 ≤ θ2 ≤ θ3, define the
variable of interest in one of the three possible ways
δð~r − ðθ2 − θ1Þ=ðθ3 − θ2ÞÞ, and perform the change of
variables x ¼ θ2 − θ1, θ2, y ¼ θ3 − θ2 to obtain

FIG. 7. Transformation between θ1, θ2, θ3 and x, θ2, z.
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FIG. 8. The distribution PðrÞ in the Gaussian and circular
ensembles of random matrix theory and for a sequence of Poisson
distributed random numbers. The label POI refers to Poisson,
while the labels OE, UE, and SE refer to orthogonal, unitary, and
symplectic ensembles, respectively. Continuous lines depict
results for the Gaussian ensembles, while dotted lines depict
results for the circular ensembles.
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Pð~rÞ ¼ 2π6

3

23β

Z3;β

Z
2π

0

dx
Z

2π−x

0

dyδ

�
~r −

x
y

�

×

�
sin

x
2
sin

y
2
sin

xþ y
2

�
β

; ðB1Þ

where the factor of 2π comes from the integration
R
2π
0 dθ2,

the factor of 6 comes from the choice of the ordering, and
the factor of 3 comes from the choice of the observable. We
also used the identity sinð2π − x − y=2Þ ¼ sinðxþ y=2Þ.
The limits of integration in Eq. (B1) come from the fact that
0 ≤ xþ y ≤ 2π (see Fig. 7).
In Eq. (B1), ~r ∈ ð0;∞Þ, and it is different from the r

introduced in Eqs. (12) and (15), which is defined in [0, 1].
Luckily, the relation between Pð~rÞ and PðrÞ is a simple one,
PðrÞ ¼ 2Pð~rÞΘð1 − ~rÞ [54]. Using Mathematica, we have
performed the integration in Eq. (B1) exactly to obtain
PðrÞ. For example, the distribution for the COE is

PCOEðrÞ ¼
2

3

�
sinð2πrrþ1

Þ
2πr2

þ 1

ðrþ 1Þ2 þ
sinð 2π

rþ1
Þ

2π

−
cosð 2π

rþ1
Þ

rþ 1
−
cosð2πrrþ1

Þ
rðrþ 1Þ

�
:

For brevity, we do not present the expressions for the CUE
and CSE.
In Fig. 8, we plot the distributions PCOEðrÞ, PCUEðrÞ, and

PCSEðrÞ and compare them with the corresponding dis-
tributions for the GEs [PGOEðrÞ, PGUEðrÞ, and PGSEðrÞ] and
the distribution for a Poisson sequence of random numbers,
PPOIðrÞ. The distributions for the CE and the corresponding
GE are very close for 3 × 3 matrices and are expected to
coincide in the thermodynamic limit. In fact, the phases in
the CEs are expected to have the same local fluctuation
properties as the eigenvalues of the corresponding Gaussian
ensembles (GEs) [50]. In Table I, we report the average
value of r for all the distributions considered.
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