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To control a quantum system via feedback, we generally have two options in choosing a control scheme.
One is the coherent feedback, which feeds the output field of the system, through a fully quantum device,
back to manipulate the system without involving any measurement process. The other one is measurement-
based feedback, which measures the output field and performs a real-time manipulation on the system
based on the measurement results. Both schemes have advantages and disadvantages, depending on the
system and the control goal; hence, their comparison in several situations is important. This paper considers
a general open linear quantum system with the following specific control goals: backaction evasion,
generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of
which have important roles in quantum information science. Some no-go theorems are proven, clarifying
that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is
shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The
key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of
controllability and observability properties or transfer functions of linear systems, which are consistent with
their standard definitions.
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I. INTRODUCTION

Should we perform measurement or not? This question
appears to be critical in quantum physics, particularly in
quantum information science. For quantum computation,
for instance, it is of essential importance to study differences
between the conventional closed-system approach and the
measurement-based one (i.e., the so-called one-way com-
putation). This paper focuses on a specific aspect of this
abstract and broad question: we consider feedback control
problems. That is, for a given open system (plant), we want
to engineer another system (controller) connected to the
plant so that the plant or the whole system behaves in a
desirable way. The fundamental question is then, in our case,
as follows: should we measure the plant or not, for engineer-
ing a closed-loop system?More precisely, in the former case,
we measure the plant’s output and engineer a classical
controller that manipulates the plant using the measurement
result—this is called the measurement-based feedback (MF)
approach. In the latter case, we do not measure it, but rather
connect a fully quantum controller directly to the plant

system in a feedback manner—this is called the coherent
feedback (CF) approach.
A typical example is shown in Fig. 1: the plant is an open

mechanical oscillator coupled to a ring-type optical cavity,
and the control goal is to minimize the energy of the
oscillator, or equivalently to cool the oscillator towards
its motional ground state. As mentioned above, there are
two feedback control strategies. One is the MF controller
[Fig. 1(a)] that measures the output field Ŵout

1 by, for
instance, a homodyne detector, then, using the continuous-
time measurement results yðtÞ, it produces the control
signal uðtÞ for modulating the input field Ŵ2. The other
option is the CF control [Fig. 1(b)], where we construct
another fully quantum system that feeds the output field
Ŵout

1 back to the input field Ŵ2, without involving any
measurement component. The question is then how to
design a MF or CF controller that cools the oscillator most
effectively.
Controller synthesis for a quantum system is, in general,

nontrivial, but researchers’ long-standing efforts have built
a solid mathematical framework for dealing with those
problems. For the MF case, actually there exists a quantum
feedback control theory [1–3] that was developed based on
the quantum filtering [4–6] together with the classical
control theory [7–9]. In fact, the above-described cooling
problem can be formulated as a quantum linear quadratic
Gaussian feedback control problem and explicitly solved
[1,10–13]. Also, the theory has been applied to various
control problems in quantum information science, such as
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error correction [14–16]. Notably, experimentation of
MF control is now within the reach of current technologies

]17–20 ]. CF control, on the other hand, has a relatively
young history though its initial concept was found in
Ref. [21] back in 1994, but recently it has attracted
increasing attention, leading as a result to development
of the basic control theory [22–25] and applications
[26–29]. Some experimental demonstrations of CF control
[30–33] also warrant special mention; in fact, one of the
main advantages of CF is in its experimental feasibility
compared to the MF approach.
Let us return to our question: which controller, MF or

CF, is better? Now, note that a CF controller is a fully
quantum system whose random variables are, in general,
represented by noncommutative operators, while a MF
controller is a classical system with commutative random
variables. Hence, from a mathematical viewpoint, the class
of MF controllers is completely included in that of CF
controllers. Thus, our question is as follows: in what
situation is a CF controller better than a MF controller?
Actually, there have been several studies exploring answers
to this question [12,13,21,34,35]; most of these studies
discussed problems of minimizing a certain cost function
such as energy of an oscillator or the time required for state
transfer. In particular, in Refs. [12,13], the authors studied
the problem discussed in the second paragraph of this
section and clarified that a certain CF controller outper-
forms any MF controller when the total mean phonon

number of the oscillator is in the quantum regime; in other
words, the two types of controllers do not show a clear
difference in their performance for cooling, in a classical
situation. This, in a broader sense, implies that a CF
controller would outperform a MF controller only in a
purely quantum regime. Consequently, our question can be
regarded as a special case of the fundamental problem in
physics asking in what situation a fully quantum device
(such as a quantum computer) outperforms any classical
one (such as a classical computer).
In an effort to shed new light on the above-mentioned

fundamental problem, this paper attempts to clarify a
boundary between the CF and MF controls for specific
control problems. The control goal is not a minimization
of a cost function, but we consider the following
three: (i) realization of a backaction evasion (BAE)
measurement, (ii) generation of a quantum nondemolished
(QND) variable, and (iii) generation of a decoherence-free
subsystem (DFS). The following are brief descriptions
of these notions in the input-output formalism [36,37].
First, if a measurement process is subjected to only a
single-noise quadrature (shot noise) and not to its conjugate
(backaction noise), then it is called the BAE measurement
[38,39]; as a result, BAE may beat the so-called standard
quantum limit (SQL) and enable high-precision detection
for a tiny signal, such as a gravitational wave force. Next,
a QND variable is a physical quantity that can be measured
without being disturbed [40]; more precisely, it is not
affected by an input probe field but still appears in the
output field, which can thus be measured repeatedly. Lastly,
a DFS is a subsystem that is completely isolated from the
surrounding environment; that is, it is a subsystem whose
variables are not affected by any input probe or environment
field, and further, they do not appear in the corresponding
output fields. Hence, a DFS can be used for quantum
computation or memory [41,42]. These three notions play
crucial roles especially in quantum information science;
thus, their realizations are of essential importance. Indeed,
in the literature we find some feedback-based approaches
realizing BAE [43–45], QND [46], and DFS [47–49].
Another feature of this paper is that we focus on general

open linear quantum systems [1,36,37]. This is a wide class
of systems containing, for instance, optical devices [50],
mechanical oscillators [12,13,43–45,51–57], and large
atomic ensembles [58–62]. Linear systems are typical
continuous-variable systems [63,64], which are applicable
to several continuous-variable quantum information proc-
esses in both the Gaussian case [65,66] and the non-
Gaussian case [67–69]. In both classical and quantum
cases, for linear systems, the so-called controllability and
observability properties can be well defined; further, those
properties have equivalent representations in terms of a
transfer function, which explicitly describes the relation
between input and output. In fact, a main advantage of
focusing on linear systems is that we can have systematic

FIG. 1. Example of (a) measurement-based feedback and
(b) coherent feedback, for cooling a mechanical oscillator.
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characterizations of BAE, QND, and DFS in terms of the
controllability and observability properties or transfer
functions, which are consistent with the standard defini-
tions found in the literature. Figure 2 is an at-a-glance
overview of those characterizations, showing unification of
the notions. Indeed, this is the key idea to obtain all the
results in this paper.
Therefore, our problem is, for a given open linear

system, to design a CF or MF controller to realize BAE,
QND, or DFS. For this problem, the results summarized in
Table 1 are obtained. That is, no MF controller can achieve
any of the control goals for general linear systems (there are
two kinds of general configurations for feedback control, as
indicated by “type” in Table 1). In contrast to these no-go
theorems, for every category in the table, we can find an
example of a CF controller achieving the goal. From the
viewpoint of the above-mentioned fundamental question
regarding the differences of the ability of quantum and
classical devices, therefore, these results imply that BAE,

QND, and DFS are the properties that can only be realized
in a fully quantum device.
This paper is organized as follows. Section II reviews

some useful facts in classical linear systems theory and
describes a general linear quantum system with some
examples. In Sec. III, we discuss the three control goals,
BAE, QND, and DFS, in the general input-output formal-
ism and give their systematic characterizations in terms of
the controllability-observability properties and also transfer
functions; again, these new characterizations are a special
feature of this paper. Then the proofs of the no-go theorems
are given in Secs. IV and V, each of which are devoted to
the proofs for the type-1 and the type-2 MF control
configuration, respectively. Sections VI and VII demon-
strate systematic engineering of a CF controller achieving
the control goal. In particular, in the type-2 case, we study a
Michelson’s interferometer composed of two mechanical
oscillators, which is used for gravitational wave detection.
The notations used are as follows. For a matrix A, the

kernel and the range are defined by KerðAÞ ¼ fxjAx ¼ 0g
and RangeðAÞ ¼ fyjy ¼ Ax;∀xg, respectively. The com-
plement of a linear space X is denoted by X c. ∅ means the
null space. In this paper, we do not use the terminology
“observable” to represent a measurable physical quantity
(i.e., a self-adjoint operator), because it has a different
meaning in systems theory; a physical quantity is called
a “variable,” e.g., a QND variable rather than a QND
observable.

II. PRELIMINARIES: LINEAR SYSTEMS THEORY
AND LINEAR QUANTUM SYSTEMS

A. Linear systems theory

A standard form of classical linear systems is given by

dx
dt

¼ Axþ Bu; y ¼ Cx: ð1Þ

xðtÞ ∈ Rn is a vector of n c-number variables. uðtÞ and yðtÞ
are vectors of real-valued input and output signals, respec-
tively. A;B, and C are real matrices with appropriate
dimensions. In this paper, the following three questions
are important: (i) which components of x can be controlled
by u, (ii) which components of x can be observed from y,
and (iii) in what condition does u not appear in y?
The answers are briefly described below. See Refs. [7–9]
for more detailed discussion.
The first problem can be explicitly solved by examining

the following controllability matrix:

Cu ¼ ½B;AB; A2B;…; An−1B�: ð2Þ

Indeed, this matrix fully characterizes the controllable and
uncontrollable variables with respect to (w.r.t.) uðtÞ. To see

this fact, suppose m ¼ dimRangeðCuÞ < n and let fdð1Þi g

FIG. 2. Systematic characterizations of BAE, QND, and DFS,
represented by the set of vectors v ∈ R2n, where the correspond-
ing quantum variables are given by v⊤x̂. KerðC⊤• Þc and
RangeðO⊤

• Þ denote the controllable and observable subspaces,
respectively. The colored region represents the set of QND
variables (middle) and the set of variables in a DFS (right).

TABLE I. The no-go theorems (left column). For both “types”
of control configurations, no MF controller can achieve the
control goals; i.e. realization of BAE measurement, generation of
a QND variable, and generation of a DFS. On the other hand, we
find a CF controller achieving the task (right column) in every
category.
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and fdð2Þi g be independent vectors spanning RangeðCuÞ and
RangeðCuÞc, respectively. Further, let us define T1 ¼
½dð1Þ1 ;…; dð1Þm � and T2 ¼ ½dð2Þ1 ;…; dð2Þn−m�. Then, as ACu is

spanned by fdð1Þi g, there exists a matrix A11 satisfying
AT1 ¼ T1A11. On the other hand, AT2 is, in general,
spanned by all the vectors; i.e., AT2 ¼ T1A12 þ T2A22.
Note also that there exists a matrix B1 satisfying B ¼ T1B1.
These relations are summarized in terms of the invertible
square matrix T ¼ ½T1; T2� as

AT ¼ T

�
A11 A12

0 A22

�
; B ¼ T

�
B1

0

�
:

Thus, the dynamics of x0 ¼ T−1x is given by

dx0

dt
¼

�
A11 A12

0 A22

�
x0 þ

�
B1

0

�
u: ð3Þ

Clearly, x02 ¼ V⊤
2 x is free from u, where ½V1; V2�⊤ ¼ T−1;

in particular, due to V⊤
2 T1 ¼ 0, the uncontrollable variable

x02 is characterized by RangeðV2Þ ¼ KerðC⊤u Þ. Also, the
controllable one, x01 ¼ V⊤

1 x, is defined in RangeðV1Þ ¼
KerðC⊤u Þc. Hence, we call these sets the uncontrollable
subspace and the controllable subspace, respectively [70].
The following fact is especially useful in this paper: the
system has an uncontrollable variable r ¼ v⊤x if and only
if (iff)

v ∈ KerðC⊤u Þ ⇔ v⊤AkB ¼ 0; ∀ k ≥ 0: ð4Þ
The answer to the second question is obtained in a

similar fashion. Let us define the observability matrix:

Oy ¼ ½C⊤; A⊤C⊤; ðA2Þ⊤C⊤;…; ðAn−1Þ⊤C⊤�⊤: ð5Þ

Assume dimKerðOyÞ ¼ l < n. Then, there exists a linear
transformation x → x0 ¼ ½x01⊤; x0⊤2 �⊤, with x02 ∈ Rl, such
that the system equations are of the following form:

dx0

dt
¼

�
A11 0

A21 A22

�
x0 þ

�
B1

B2

�
u; y ¼ ½C1; 0�x0: ð6Þ

Thus, x01 and x
0
2 constitute the observable and unobservable

subsystems w.r.t. y, respectively. The variables are repre-
sented by x01 ¼ U⊤

1 x with RangeðU1Þ ¼ RangeðO⊤
y Þ and

x02 ¼ U⊤
2 xwith RangeðU2Þ ¼ RangeðO⊤

y Þc; as in the above
case, we call these subspaces the observable subspace and
the unobservable subspace, respectively. In particular,
there always exists a coordinate transformation such that
r ¼ v⊤x is unobservable if and only if

v ∈ KerðOyÞ ⇔ CAkv ¼ 0; ∀ k ≥ 0: ð7Þ
The above two facts readily lead to the answer to the

third question; that is, there is no subsystem that is

controllable w.r.t. u and observable w.r.t. y, which is
algebraically represented by

KerðC⊤u Þc∩RangeðO⊤
y Þ ¼ ∅ ⇔ CAkB ¼ 0; ∀ k ≥ 0:

ð8Þ

Note that this is further equivalent to RangeðCuÞ⊆KerðOyÞ,
which particularly implies CT1 ¼ 0, with T1 defined below
Eq. (2). Hence, we have

y ¼ Cx ¼ CTT−1x ¼ C½T1; T2�x0 ¼ ½0; CT2�x0;

where x0 ¼ T−1x. Together with Eq. (3), we now see that u
acts only on x01 ¼ V⊤

1 x while x01 is not visible from y;
accordingly, u does not appear in y.
The above conditions (4), (7), and (8) can be represented

in terms of a transfer function. Let us define the Laplace
transformation of a time-varying signal zðtÞ by

z½s�≔
Z

∞

0

zðtÞe−stdt; ReðsÞ > 0:

In the Laplace domain, Eq. (1) is represented by sx½s� ¼
Ax½s� þ Bu½s� and y½s� ¼ Cx½s�, which consequently yield

y½s� ¼ Ξu→y½s�u½s�; Ξu→y½s� ¼ CðsI − AÞ−1B:

Thus, the signal flow from u to y is explicitly characterized
by the transfer function Ξu→y½s�. We then readily see from
the polynomial expansion of Ξu→y½s� w.r.t. s that the
condition (8) is equivalent to

Ξu→y½s� ¼ 0; ∀ s: ð9Þ

Likewise, Eqs. (4) and (7) are, respectively, equivalent to

Ξu→x0
2
½s� ¼ 0; ∀ s and Ξx0

2
→y½s� ¼ 0; ∀ s: ð10Þ

B. Linear quantum systems

In this paper, we consider a general open system
composed of n oscillators with canonical conjugate pairs
q̂i and p̂i ði ¼ 1;…; nÞ. Let us collect them into a single
vector as x̂ ¼ ½q̂1; p̂1;…; q̂n; p̂n�⊤. Then, the canonical
commutation relation (CCR) q̂ip̂j − p̂jq̂i ¼ iδij (we
assume ℏ ¼ 1) is represented by

x̂x̂⊤ − ðx̂x̂⊤Þ⊤ ¼ iΣn;

Σn ¼ diagfσ;…; σg;

σ ¼
�

0 1

−1 0

�
: ð11Þ

Σn is a 2n × 2n block diagonal matrix; we often omit the
subscript n. The system is driven by the Hamiltonian
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Ĥ ¼ x̂⊤Gx̂=2;

where G ¼ G⊤ ∈ R2n×2n. Further, it couples to
environment or probe fields through the Hamiltonian
Ĥint ¼ i

P
jðL̂jÂ

�
j − L̂�

j ÂjÞ, where L̂j ¼ c⊤j x̂ (cj ∈ C2n,

j ¼ 1;…; m). Also, Âj is the annihilation operator on
the jth field, which under the Markovian approximation
satisfies ½ÂiðtÞ; Â�

jðt0Þ� ¼ δijδðt − t0Þ; i.e., it is the white
noise operator. Then, the Heisenberg equations of q̂j and p̂j

are summarized to the following linear equation [1,36,37]:

dx̂
dt

¼ Ax̂þ ΣnC⊤ΣmŴ: ð12Þ

The coefficient matrices are given by A ¼ ΣnðGþ
C⊤ΣmC=2Þ ∈ R2n×2n (the second term is the Ito correction
term) and

C ¼
ffiffiffi
2

p
½Reðc1Þ; Imðc1Þ;…;ReðcmÞ; ImðcmÞ�⊤ ∈ R2m×2n:

Also, we define Ŵ ¼ ½Q̂1; P̂1;…; Q̂m; P̂m�⊤, where

Q̂j ¼ ðÂj þ Â�
jÞ=

ffiffiffi
2

p
; P̂j ¼ ðÂj − Â�

jÞ=
ffiffiffi
2

p
i: ð13Þ

Further, the field variables change to

Ŵout ¼ Cx̂þ Ŵ: ð14Þ

The set of equations (12) and (14) is the most general form
of open linear quantum systems.
All the 2m elements of the vector Ŵout in Eq. (14) cannot

be measured simultaneously, because they do not commute
with each other. In fact, without introducing additional
noise fields as explained below, we can measure only, at
most, half of them; that is, the output equation associated
with a linear measurement, which is realized by a homo-
dyne detector, is of the form

y ¼ M1Ŵ
out ¼ M1Cx̂þM1Ŵ; ð15Þ

whereM1 is am × 2m real matrix satisfyingM1ΣmM⊤
1 ¼ 0

and M1M⊤
1 ¼ I. Actually, all the elements of yðtÞ are

classical signals commuting with each other as well as with
those of yðt0Þ for all times t; t0; i.e.,

½yiðtÞ; yjðt0Þ� ¼ 0; ∀i; j; ∀t; t0:
Let us further introduce ȳ ¼ M2Ŵ

out with matrix M2 such
that M⊤ ¼ ½M⊤

1 ;M
⊤
2 � is a symplectic and orthogonal

matrix, which as a result leads to

M2ΣmM⊤
2 ¼ 0; M2M⊤

2 ¼ I; M1ΣmM⊤
2 ¼ I;

M1M⊤
2 ¼ 0; M⊤

1 M1 þM⊤
2 M2 ¼ I: ð16Þ

The elements of ȳ correspond to the canonical conjugate
operators to those of Eq. (15); i.e., the CCR yðtÞȳ⊤ðt0Þ −
ðȳðt0Þy⊤ðtÞÞ⊤ ¼ iδðt − t0ÞI holds.
If we want to measure all the quadratures of Ŵout, it is

still possible by introducing additional noise fields V̂ ¼
½Q̂0

1; P̂
0
1;…; Q̂0

m; P̂
0
m�⊤ and performing homodyne measure-

ment on the joint fields composed of Ŵout and V̂; that is, the
output equation is given by

y ¼ M1

"
Ŵout

V̂

#
¼ M1

�
C

0

�
x̂þM1

�
Ŵ

V̂

�
; ð17Þ

where, in this case, M1 is with the size 2m × 4m and it
satisfiesM1Σ2mM⊤

1 ¼ 0 andM1M⊤
1 ¼ I. We thus have 2m

measurement outcomes, though they are subjected to the
additional noise. Note that, by simply replacing C and Ŵ
by ½C⊤; 0�⊤ and ½Ŵ⊤; V̂⊤�⊤, this dual homodyne detection
scheme can be represented by Eqs. (12) and (15). Hence, in
what follows, without loss of generality, we use Eq. (15) to
represent the most general linear measurement.

C. Examples

(i) A simple open linear system is an empty optical cavity
with two input and output fields, depicted in Fig. 3(a).
The system equations are given by

dâ
dt

¼ −ðκ1 þ κ2Þâ − ffiffiffiffiffiffiffi
2κ1

p
Â1 −

ffiffiffiffiffiffiffi
2κ2

p
Â2;

Âout
1 ¼

ffiffiffiffiffiffiffi
2κ1

p
âþ Â1; Âout

2 ¼
ffiffiffiffiffiffiffi
2κ2

p
âþ Â2:

FIG. 3. Examples of open linear quantum systems. (a) Optical
cavity with two input and output fields, (b) mechanical oscillator
coupled to an optical cavity, and (c) Michelson’s interferometer
with two identical oscillators.

COHERENT VERSUS MEASUREMENT FEEDBACK: LINEAR … PHYS. REV. X 4, 041029 (2014)

041029-5



â is the annihilation operator of the cavity mode. Âj and
Âout
j are the white noise operators of the jth incoming and

the outgoing optical fields, respectively. κj is the coupling
strength between â and the jth field, which is proportional
to the transmissivity of the coupling mirror. In this paper,
we express the variables in the quadrature form, which in
this case are defined as x̂ ¼ ½q̂; p̂�⊤, with q̂ ¼ ðâþ â�Þ= ffiffiffi

2
p

and p̂ ¼ ðâ − â�Þ= ffiffiffi
2

p
i. Also, Ŵj ¼ ½Q̂j; P̂j�⊤, with the

field quadratures (13). Then, the above system equations
are rewritten as

dx̂
dt

¼ −ðκ1 þ κ2Þx̂ −
ffiffiffiffiffiffiffi
2κ1

p
Ŵ1 −

ffiffiffiffiffiffiffi
2κ2

p
Ŵ2;

Ŵout
1 ¼

ffiffiffiffiffiffiffi
2κ1

p
x̂þ Ŵ1; Ŵout

2 ¼
ffiffiffiffiffiffiffi
2κ2

p
x̂þ Ŵ2:

Typically, this system works as a low-pass filter [50]; that
is, for the noisy input field Ŵ1, the corresponding mode-
cleaned output field Ŵout

2 is generated, which will be used
later for, e.g., some quantum information processing.
To attain this goal, Ŵout

1 is measured to detect the error
signal for locking the optical path length in the cavity. Note
that Ŵ2 is a vacuum field. That is, in this case, the two
input-output fields have different roles.
(ii) The mechanical oscillator shown in Fig. 3(b) can also

be modeled as a linear system. This system is composed of
a mechanical oscillator with mode ðq̂1; p̂1Þ and a cavity
with mode â2 ¼ ðq̂2 þ ip̂2Þ=

ffiffiffi
2

p
. The cavity couples to a

probe field Ŵ ¼ ½Q̂; P̂�⊤. After linearization, the system
equation of x̂ ¼ ½q̂1; p̂1; q̂2; p̂2�⊤ is obtained as:

dx̂
dt

¼

2
6664

0 1=m 0 0

−mω2 0 κ 0

0 0 −γ 0

κ 0 0 −γ

3
7775x̂ −

ffiffiffiffiffi
2γ

p
2
6664
0 0

0 0

1 0

0 1

3
7775Ŵ;

Ŵout ¼
ffiffiffiffiffi
2γ

p �
0 0 1 0

0 0 0 1

�
x̂þ Ŵ:

m and ω are the mass and the resonant frequency of the
oscillator. κ is the coupling constant between the oscillator
and the cavity field, which is proportional to the strength of
radiation pressure force. γ is the coupling constant between
the cavity and the probe field. As indicated from the
equations, it is possible to extract some information about
the oscillator’s behavior by measuring the probe output
field Ŵout. A typical situation is that the oscillator is pushed
by an external force F̂ with unknown strength; we attempt
to estimate this value by measuring Ŵout. The oscillator’s
motion is usually much slower than that of the cavity field;
thus, we can adiabatically eliminate the cavity mode and
have a reduced dynamical equation of only the oscillator:

dx̂
dt

¼
"

0 1=m

−mω2 0

#
x̂þ

ffiffiffi
λ

p "
0

1

#
Q̂þ

"
0

1

#
F̂;

Ŵout ¼
"
Q̂out

P̂out

#
¼

ffiffiffi
λ

p "
0 0

1 0

#
x̂þ

"
Q̂

P̂

#
; ð18Þ

where λ ¼ 2κ2=γ represents the strength of the direct
coupling between the oscillator and the probe field. This
equation clearly shows that only P̂out contains the infor-
mation about the oscillator and, accordingly, F̂; thus, P̂out

should be measured, implying M1 ¼ ½0; 1� in Eq. (15).
(iii) The last example is the Michelson’s interferometer

composed of two identical mechanical oscillators with mass
m and resonant frequency ω, depictd in Fig. 3(c). This is the
simplest configuration among various schemes that are
expected to have capability of direct detection of a gravi-
tational wave (GW) [38,39,56,57]. A basic detection mecha-
nism is as follows. A coherent light field Ŵ1 is injected into
the left input port (bright port), while in the other port (dark
port) the input Ŵ2 is set to be a vacuum. If a gravitational
wave comes, one arm shrinks while the other one extends,
thereby the oscillators experience tiny force along opposite
directions, F̂ and −F̂. As a result, the dynamics of the two
oscillators can be modeled by the combination of Eq. (18):

dx̂
dt

¼

2
6664

1=m

−mω2

1=m

−mω2

3
7775x̂

þ

2
6666664

0ffiffiffi
λ

p

0ffiffiffi
λ

p

3
7777775
Q̂1 þ

2
6666664

0ffiffiffi
λ

p

0

− ffiffiffi
λ

p

3
7777775
Q̂2 þ

2
6666664

0

1

0

−1

3
7777775
F̂;

"
Ŵout

1

Ŵout
2

#
¼

ffiffiffi
λ

p
2
6664

0 0

1 1

0 0

1 −1

3
7775x̂þ

�
Ŵ1

Ŵ2

�
: ð19Þ

We rewrite this equation in terms of the common modes
q̂01 ¼ ðq̂1 þ q̂2Þ=

ffiffiffi
2

p
; p̂0

1 ¼ ðp̂1 þ p̂2Þ=
ffiffiffi
2

p
and the differen-

tial modes q̂02 ¼ ðq̂1 − q̂2Þ=
ffiffiffi
2

p
; p̂0

2 ¼ ðp̂1 − p̂2Þ=
ffiffiffi
2

p
. Then

these two modes are decoupled and the force F̂ appears only
in the dynamics of x̂02 ¼ ½q̂02; p̂0

2�⊤, which is exactly the same
as Eq. (18):

dx̂02
dt

¼
"

0 1=m

−mω2 0

#
x̂02 þ

ffiffiffi
λ

p "
0

1

#
Q̂2 þ

"
0

1

#
F̂;

Q̂out
2 ¼ Q̂2; P̂out

2 ¼
ffiffiffi
λ

p
q̂02 þ P̂2: ð20Þ

Thus, ideally, by measuring P̂out
2 , we can detect F̂.
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III. SYSTEM THEORETIC CHARACTERIZATION
OF BAE, QND, DFS

The problem considered in this paper is to design a
MF or CF controller connected to the plant system so that
the plant or the whole closed-loop system achieves a certain
control goal. We consider the following three goals:
realization of BAE measurement, generation of a QND
variable, and generation of a DFS. Actually, there are a lot
of works investigating their mathematical characterizations,
physical realizations, and applications, especially in quan-
tum information science. This section shows system
theoretic characterizations of these notions in terms of
controllability and observability properties or transfer
functions, in a consistent way with the standard definitions.

A. BAE

The idea of BAE originally comes from the research for
GW detection. The Michelson’s interferometer described in
Sec. II C is the simplest system for this purpose, and we
now know from Eq. (20) that the measurement output y ¼
P̂out
2 ¼ ffiffiffi

λ
p

q̂02 þ P̂2 would offer some information about F̂.
The issue is that, in addition to the unavoidable noise P̂2

called the shot noise, the output y contains the conjugate
Q̂2, which is called the backaction (BA) noise, as seen
explicitly in the Laplace domain:

y½s� ¼
ffiffiffi
λ

p

mðs2 þ ω2Þ ð
ffiffiffi
λ

p
Q̂2½s� þ

ffiffiffi
2

p
F̂½s�Þ þ P̂2½s�:

The slight change of the oscillator’s position due to the
GW effect ĝ is defined in the Fourier domain s ¼ iΩ as
F̂½iΩ� ¼ −mLΩ2ĝ½iΩ�, where L is the optical path length in
the interferometer. Hence, under the assumption Ω ≫ ω,
the normalized signal containing ĝ is given by

~y½iΩ� ¼ y½iΩ�
2

ffiffiffi
λ

p
L
¼ ĝ½iΩ� þ

ffiffiffi
λ

p

mLΩ2
Q̂2½iΩ� þ

1

2
ffiffiffi
λ

p
L
P̂2½iΩ�:

The noise power of ~y is bounded from below by the
following SQL:

S½iΩ� ¼ hj~y − ĝj2i ¼ λ

m2L2Ω4
hjQ̂2j2i þ

1

4λL2
hjP̂2j2i

≥ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjQ̂2j2ihjP̂2j2i
4m2L4Ω4

s
≥

1

2mL2Ω2
¼ SSQL½iΩ�: ð21Þ

The last inequality is due to the Heisenberg uncertainty
relation hjQ̂2j2ihjP̂2j2i ≥ 1=4. (For the simple notation, the
power spectrum is defined without involving the delta
function.) The SQL appears because the output y contains
the BA noise Q̂2 in addition to the shot noise P̂2. Thus,
towards high-precision detection of ĝ, a special system
configuration should be devised so that y is free from Q̂2.

That is, we need BAE. In fact, if BAE is realized, then by
injecting a P̂2-squeezed light field into the dark port, we
can possibly reduce the noise power below the SQL and
may have a chance to detect ĝ; for some specific configu-
rations achieving BAE, see Refs. [38,39,52,56,57].
The above discussion can be generalized for Eqs. (12)

and (15). Let us assume that the signal to be detected is
contained in the output (15):

y ¼ M1Ŵ
out ¼ M1Cx̂þM1Ŵ ¼ M1Cx̂þ Q̂: ð22Þ

Hence, Q̂ ¼ M1Ŵ is the shot noise, which must appear in
y. The BA noise is then given by the conjugate P̂ ¼ M2Ŵ.
Note that these are vectors of operators: Q̂ ¼ ½Q̂1;…; Q̂m�⊤
and P̂ ¼ ½P̂1;…; P̂m�⊤. The matrices M1 and M2 satisfy
several conditions [Eq. (16)]; in particular, M⊤

1 M1 þ
M⊤

2 M2 ¼ I holds and leads to Ŵ ¼ M⊤
1 Q̂þM⊤

2 P̂.
Hence, Eq. (12) is rewritten as

dx̂
dt

¼ Ax̂þ ΣnC⊤ΣmM⊤
1 Q̂þ ΣnC⊤ΣmM⊤

2 P̂: ð23Þ

BAE is realized if the output (22) does not contain the BA
noise P̂. (We do not consider the so-called variational
measurement approach, in which case M1 is frequency
dependent.) In the language of linear systems theory, as
stated in Eq. (8), this condition means that there is no
subsystem that is controllable w.r.t. P̂ and observable
w.r.t. y; i.e.,

BAE∶ KerðC⊤̂
P
Þc∩RangeðO⊤

y Þ ¼ ∅; ð24Þ

where CP̂ is the controllability matrix generated from
ðA;ΣnC⊤ΣmM⊤

2 Þ and Oy is the observability matrix gen-
erated from ðA;M1CÞ. Further, again as described in
Eq. (8), the condition (24) is equivalent to

M1CAkΣnC⊤ΣmM⊤
2 ¼ 0; ∀ k ≥ 0: ð25Þ

Under this condition, the system equations (22) and (23)
are represented in a transformed coordinate by

d
dt

"
x̂01
x̂02

#
¼

"
A11 0

A21 A22

#"
x̂01
x̂02

#
þ
"
B11

B21

#
Q̂þ

"
0

B22

#
P̂;

y ¼ ½C1; 0�
"
x̂01
x̂02

#
þ Q̂;

showing that actually there is no signal flow from P̂ to y.
It is also obvious from this equation that, similar to the
classical case (9), the equivalent characterization to
Eq. (24) in terms of the transfer function is given by
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BAE∶ ΞP̂→y½s� ¼ 0; ∀ s: ð26Þ
Finally, note that achieving the above BAE condition (24)
or (26) itself does not necessarily mean the improvement of
signal sensitivity; actually, in the case of GW force sensing
discussed in Sec. VII B, we need squeezing of the input
field in addition to the BAE property for realizing such
operational improvement.

B. QND

Next, to see the idea of QND variables, here we study the
atomic ensemble trapped in a cavity [1,20,71,72] shown in
Fig. 4. The atoms couple with a probe polarized light field,
via the Faraday interaction. In terms of the total energy
operator Ĵz and its conjugates Ĵx and Ĵy, which satisfy the
CCRs, e.g., ĴyĴz − ĴzĴy ¼ iĴx, the ideal dynamics of the
atomic ensemble is described by

d
dt

2
64
Ĵx
Ĵy

Ĵz

3
75 ¼

2
64

−M=2 − ffiffiffiffiffiffiffi
2M

p
P̂ 0ffiffiffiffiffiffiffi

2M
p

P̂ −M=2 0

0 0 0

3
75
2
64
Ĵx
Ĵy

Ĵz

3
75: ð27Þ

P̂ is the phase quadrature of the input field’s noise operator
corresponding to the polarization, and M represents the
coupling strength between the atoms and the field. In this
setting, the amplitude quadrature of the output field should
be measured, giving the following measurement output
equation:

y ¼ Q̂out ¼
ffiffiffiffiffiffiffi
2M

p
Ĵz þ Q̂:

From these two equations, we find that, through the
Faraday interaction, the polarization of the probe field
rotates depending on the total energy Ĵz, but Ĵz itself
does not change; that is, Ĵz is a QND variable that can
be measured without being disturbed. Typically, M is
relatively small, and then the system variables obey a
skew-Hermitian dynamics, implying that they preserve
Ĵ2x þ Ĵ2y þ Ĵ2z . Hence, in the large ensemble limit and in
the short time period, the dynamics is constrained in the
tangent space of this super sphere with radius J ¼ N=2
(N is the number of atoms). In particular, let us set Ĵx to be a
constant J rather than the operator-valued variable. Then
the system variables are given by the usual CCR pairs q̂ ¼
Ĵy=

ffiffiffi
J

p
and p̂ ¼ Ĵz=

ffiffiffi
J

p
satisfying q̂ p̂−p̂ q̂ ¼ i, and the

above system dynamics can be simplified to the following
linear equation:

d
dt

�
q̂
p̂

�
¼ ffiffiffi

μ
p �

1

0

�
P̂; y ¼ ffiffiffi

μ
p

p̂þ Q̂;

where μ ¼ 2MJ. Clearly, p̂ is not disturbed by the noise
while it appears in the output signal; thus, p̂ is a QND
variable. A merit of QNDmeasurement is in the application
to state preparation: if a QND variable exists, it is some-
times possible to deterministically stabilize its eigenstate by
feedback [1], which can be highly nonclassical, such as a
spin-squeezed state [20,71].
As in the BAE case, we have a general characterization

of the linear system (12) and (15) having a QND variable.
Let r̂ ¼ v⊤x̂ be a QND variable with v ∈ R2n. Then, by
definition, r̂ must not be affected by the input field
Ŵ, while it appears in the output signal (15), y ¼
MCx̂þMŴ. This means that, in the language of linear
systems theory, r̂ ¼ v⊤x̂ is uncontrollable w.r.t. Ŵ and
observable w.r.t. y. Thus, the iff condition for a QND
variable to exist is given by

QND∶ KerðC⊤̂
W
Þ∩RangeðO⊤

y Þ ≠ ∅; ð28Þ
and the vector v lives in this intersection. Here, CŴ and Oy
are the controllability and observability matrices of the
system (12) and (15). Note that the condition v ∈ KerðC⊤̂

W
Þ

can be explicitly represented by

v⊤AkΣnC⊤ ¼ 0; ∀ k ≥ 0: ð29Þ
Now, let us collect QND variables into a single vector x̂02.
Then, as described in Sec. II A, x̂02 constitutes an uncon-
trollable subsystem w.r.t. Ŵ, which can be clearly seen in
the transformed coordinate:

d
dt

"
x̂01
x̂02

#
¼

"
A11 A12

0 A22

#"
x̂01
x̂02

#
þ
"
B1

0

#
Ŵ;

y ¼ ½C1; C2�
"
x̂01
x̂02

#
þMŴ:

Note C2 ≠ 0 due to the observability condition. Hence, x̂02
is free from Ŵ, while it appears in y. Remarkably, x̂02 obeys
the closed dynamics dx̂02=dt ¼ A22x̂02; thus, x̂

0
2 is a gener-

alization of a standard QND variable, which is usually
considered to be static [i.e., x̂02ðtÞ ¼ x̂02ð0Þ, ∀ t]; see
Ref. [73] for further detailed discussion. The above
equation now enables us to obtain the equivalent condition
to Eq. (28) in terms of the transfer functions:

QND∶ ΞŴ→x̂0
2
½s� ¼ 0; ∀ s and Ξx̂0

2
→y½s� ≠ 0; ∃ s:

ð30Þ
C. DFS

The idea of the third control goal, generation of a DFS,
can be clearly seen from Ref. [61], which studies a quantum
memory served by an atomic ensemble in a cavity. Each

FIG. 4. Atomic ensemble under continuous measurement via
Faraday rotation. PBS denotes a polarizing beam splitter.
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atom has Λ-type energy levels, constituted by two meta-
stable ground states ðjsi; jgiÞ and an excited state jei. The
state transition between jei and jgi is naturally coupled to
the cavity mode â1 with strength g

ffiffiffiffi
N

p
(N denotes the

number of atoms), while the jsi↔jei transition is induced
by a classical magnetic field with time-varying Rabi
frequency ωðtÞ. The system variables are the polarization
operator â2 ¼ σ̂ge=

ffiffiffiffi
N

p
and the spin-wave operator â3 ¼

σ̂gs=
ffiffiffiffi
N

p
, where σ̂• is the collective lowering operator; in a

large ensemble limit, they can be well approximated by
annihilation operators. Consequently, the system dynamics
is given by

d
dt

2
64
â1
â2
â3

3
75 ¼

2
64

−κ ig
ffiffiffiffi
N

p
0

ig
ffiffiffiffi
N

p −iδ iω

0 iω� 0

3
75
2
64
â1
â2
â3

3
75 −

2
64

ffiffiffiffiffi
2κ

p

0

0

3
75Â;

Âout ¼
ffiffiffiffiffi
2κ

p
â1 þ Â; ð31Þ

where κ denotes the cavity decay rate and δ is the detuning
between the cavity center frequency and the jsi↔jei
transition frequency. This system works as a quantum
memory in the following way. First, a state to be stored is
carried by an appropriately shaped optical pulse on the
input field Â, and it is transferred to the metastable state jsi;
the Rabi frequency ωðtÞ is suitably designed throughout
this writing process. In the storage stage, the classical
magnetic field is turned off; i.e., ωðtÞ ¼ 0. It is seen from
Eq. (31) that the spin-wave operator â3 is then completely
decoupled from the fields Â and Âout; that is, â3 constitutes
a linear DFS, and ideally its state is perfectly preserved.
In the language of systems theory, this DFS is uncontrol-
lable w.r.t. Â and unobservable w.r.t. Âout. Note that â3 is
not a variable on the so-called decoherence-free subspace,
which, however, has the same abbreviation. In general, if
the system’s Hilbert space can be decomposed to
ðH1 ⊗ H2Þ⊕H3 and H1 is free from external noise, then
it is called the DF subsystem, and particularly when
dimH2 ¼ 1, it is called the DF subspace [41,42]; now
we are dealing with the case where â3 and ðâ1; â2Þ live in
H1 and H2, respectively, while dimH3 ¼ 0. For other
examples of such an infinite dimensional DFS, see
Refs. [53–55,69,74–76].
The above fact reasonably leads to a general characteri-

zation of the system (12) and (14) that contains a DFS. By
definition, a DFS is completely decoupled from the probe
or environment field, so it is not affected by Ŵ and also it
does not appear in Ŵout. In the language of systems theory,
a variable contained in the DFS is uncontrollable w.r.t. Ŵ
and unobservable w.r.t. Ŵout. Thus, the iff condition for a
DFS to exist is given by

DFS∶ KerðC⊤̂
W
Þ∩RangeðO⊤̂

WoutÞc ≠ ∅; ð32Þ

where CŴ and OŴout are the controllability and observ-
ability matrices of the system (12) and (14). In particular, as
seen in Eqs. (4) and (7), there always exists a coordinate
transformation such that r̂ ¼ v⊤x̂ is a variable of the DFS
iff the vector v ∈ R2n is contained in the intersection
KerðC⊤̂

W
Þ∩KerðOŴoutÞ; that is, it satisfies

v⊤AkΣnC⊤Σm ¼ 0; CAkv ¼ 0; ∀ k ≥ 0: ð33Þ
(A convenient method to construct such v is given in
Ref. [76].) Then, as in the QND case, by collecting all
variables in the DFS into a single vector x̂02, we find that the
system equations can be transformed to

d
dt

"
x̂01
x̂02

#
¼

"
A11 0

0 A22

#"
x̂01
x̂02

#
þ
"
B1

0

#
Ŵ;

Ŵout ¼ ½C1; 0�
"
x̂01
x̂02

#
þ Ŵ:

Thus, x̂02 obeys the closed dynamics dx̂02=dt ¼ A22x̂02;
especially if A22 ¼ 0, the state of x̂01 is kept unchanged,
and the DFS works as a memory. Lastly, the condition for
x̂02 to be a variable in the DFS is given in terms of the
transfer functions by

DFS∶ ΞŴ→x̂0
2
½s� ¼ 0; Ξx̂0

2
→Ŵout ½s� ¼ 0; ∀ s: ð34Þ

Note here again that the condition (32) or (34) is only a
necessary requirement for the system to have a good
memory architecture, and it itself does not lead to the
improvement of memory retrieval fidelity. To realize a
high-quality quantum memory process, in addition to
engineering such a DFS, we need a sophisticated method
for transferring an input state to the memory part. For
instance, by suitable pulse shaping of the input wave packet,
lossless state transfer to a general linear DFS and accordingly
perfect memory fidelity can be achieved [69].

IV. NO-GO THEOREMS: TYPE-1 CASE

In this paper, we study a general linear system having
multiple input and multiple output fields. The first essential
question is about which input and output fields should be
used for feedback. We define the type-1 control as a
configuration where at most all the input and output fields
can be used for this purpose. Note that, if the system has
single input-output channel, such as the one shown in
Sec. II C (ii), the control configuration must be of type 1.
Figure 5 illustrates the general configuration of type-1 MF
control. That is, at most all the plant’s output fields can be
measured, and the measurement results yðtÞ are then
processed in a classical system (controller) that produces
a control signal uðtÞ. From the standpoint of comparing MF
and CF, we assume that the control is carried out by
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modulating the input probe fields, which can be physically
implemented using an electric optical modulator on the
optical field; in the type-1 case, hence, at most all of the
plant’s input fields can be modulated using the control
signal uðtÞ. This section studies the type-1 MF control and
shows the no-go theorems given in the left-hand column of
Table I.

A. Closed-loop system with type-1 MF

As described above, the MF control is carried out by
modulating the input probe fields. This mathematically
means that the input field is replaced by Ŵ þ u, where
u ¼ ½u1;…; u2m�⊤ is a vector of classical control signals
representing the modulation. Hence, our plant system is
now given by

dx̂
dt

¼ Ax̂þ ΣnC⊤ΣmðŴ þ uÞ; ð35Þ

Ŵout ¼ Cx̂þ Ŵ þ u: ð36Þ

Note that the output field is directly controlled. (In what
follows, we omit the subscript of Σ• for notational sim-
plicity.) The output signal is obtained by measuring Ŵout:

y ¼ M1Ŵ
out ¼ M1Cx̂þ Q̂þM1u; ð37Þ

where Q̂ ¼ M1Ŵ withM1 the symplectic matrix defined in
Sec. II B. Also, the conjugate noise operator is given by
P̂ ¼ M2Ŵ; these matrices satisfy the conditions (16).
The controller is a classical system that processes the

measurement result yðtÞ and produces the control signal
uðtÞ. The dynamical equation of this system can be
generally represented by

dxK
dt

¼ AKxK þ BKy; u ¼ CKxK; ð38Þ

where ðAK; BK; CKÞ are the parameter matrices to be
designed. xK is the vector of the controller’s variables,
and its dimension is also a parameter; hence, there is a great
amount of freedom in engineering the controller. Note that
the matrices are not necessarily of full rank, meaning that in
this case some output fields are not measured or some input
fields are not modulated. Combining all the above

equations, we have the closed-loop (quantum-classical
hybrid) dynamics of x̂e ¼ ½x̂⊤; x⊤K �⊤ as follows:

dx̂e
dt

¼
"

A ΣC⊤ΣCK

BKM1C AK þ BKM1CK

#
x̂e þ

"
ΣC⊤Σ
BKM1

#
Ŵ;

ð39Þ
y ¼ ½M1C;M1CK�x̂e þ Q̂: ð40Þ

Hence, Q̂ is the shot noise. Equation (39) can be expressed
in terms of the quadratures Q̂ and P̂ as

dx̂e
dt

¼
"

A ΣC⊤ΣCK

BKM1C AK þ BKM1CK

#
x̂e

þ
"
ΣC⊤ΣM⊤

1

BK

#
Q̂þ

"
ΣC⊤ΣM⊤

2

0

#
P̂; ð41Þ

due to Ŵ ¼ M⊤
1 Q̂þM⊤

2 P̂. We aim to find a set of
matrices ðAK; BK; CK;M1;M2Þ that achieves the control
goals described in Sec. III, but as shown below, it is
impossible to accomplish those tasks.

B. BAE

Suppose that BAE holds for the closed-loop dynamics
(41) with output (40); that is, the condition
(24) holds for this system, which is now KerðC⊤̂

P
Þc∩

RangeðO⊤
y Þ ¼ ∅. (Equivalently, the transfer function of

the closed-loop system satisfies ΞðfbÞ
P̂→y

½s� ¼ 0, ∀ s.) This is

further equivalent, as implied by Eq. (25), to

½M1C;M1CK�
�

A ΣC⊤ΣCK

BKM1C AK þ BKM1CK

�k�ΣC⊤ΣM⊤
2

0

�

¼ 0; ∀ k ≥ 0: ð42Þ
First, the case k ¼ 0 leads to M1CΣC⊤ΣM⊤

2 ¼ 0. Then,
using this condition, we find that the case k ¼ 1 yields
M1CAΣC⊤ΣM⊤

2 ¼ 0. This further allows us from the case
k ¼ 2 to have M1CA2ΣC⊤ΣM⊤

2 ¼ 0. Repeating the same
procedure, we eventually obtain

M1CAkΣC⊤ΣM⊤
2 ¼ 0; ∀ k ≥ 0:

This is exactly the BAE condition for the original plant
system (22) and (23); i.e.,

dx̂
dt

¼ Ax̂þ ΣC⊤ΣM⊤
1 Q̂þ ΣC⊤ΣM⊤

2 P̂;

y ¼ M1Cx̂þ Q̂:

Equivalently, the transfer function of the original plant

system satisfies ΞðoÞ
P̂→y

½s� ¼ 0, ∀ s. Thus, the contrapositive

of this result yields the following theorem.

FIG. 5. General configuration of the type-1 MF control.
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Theorem 1: If the original plant system does not have
the BAE property, then any type-1 MF control cannot
realize BAE for the closed-loop system.

C. QND

First of all, let us consider the case where the closed-loop
system (39) and (40) has a QND variable r̂. This should be
“purely quantum,” meaning that r̂ is composed
of only the quantum variables x̂ ¼ ½q̂1; p̂1;…; q̂n; p̂n�⊤;
hence, it is of the form r̂ ¼ v⊤x̂ ¼ ~v⊤x̂e, with
~v ¼ ½v⊤; 0⊤�⊤. As described in Eq. (28), this means
~v ∈ KerðC⊤̂

W
Þ∩RangeðO⊤

y Þ, with CŴ and Oy the control-
lability and observability matrices of the system (39) and
(40). To prove the no-go theorem, the following two facts
are useful. First, ~v ∈ KerðC⊤̂

W
Þ means that

½v⊤; 0⊤�
�

A ΣC⊤ΣCK

BKM1C AK þ BKM1CK

�
k
�
ΣC⊤Σ
BKM1

�
¼ 0;

for all k ≥ 0. It follows from a similar procedure as in the
BAE case that this is equivalent to v⊤AkΣC⊤Σ ¼ 0,
∀k ≥ 0; i.e., v ∈ KerðC⊤̂

W
Þ with CŴ the controllability

matrix of the original plant system (12) and (15).
Second, ~v ∈ KerðOyÞ is expressed by

½M1C;M1CK�
�

A ΣC⊤ΣCK

BKM1C AK þ BKM1CK

�
k
�
v
0

�
¼ 0;

for all k ≥ 0. This is equivalent to M1CAkv ¼ 0, ∀ k ≥ 0,
meaning that v ∈ KerðOyÞ for the original plant system.
Now we prove the theorem. Suppose that the original

plant system (12) and (15) does not have a QND variable;
hence, for any variable r̂ ¼ v⊤x̂, the vector v satisfies v ∈
KerðC⊤̂

W
Þc or v ∈ RangeðO⊤

y Þc for the original plant sys-
tem. In particular, since the unobservability property does
not depend on the choice of a specific coordinate, the latter
condition is equivalently converted to v ∈ KerðOyÞ. But as
proven above, these two conditions are equivalent to ~v ∈
KerðC⊤̂

W
Þc or ~v ∈ KerðOyÞ for the closed-loop system; that

is, the closed-loop system does not have a QND variable of
the form r̂ ¼ v⊤x̂ ¼ ~v⊤x̂e. Thus, the following result is
obtained.
Theorem 2: If the original plant system does not have a

QND variable, then any type-1 MF control cannot generate
a QND variable in the closed-loop system.

D. DFS

Finally, we prove the no-go theorem for generating a
DFS via the type-1 MF control. Let us assume that the
closed-loop dynamics (39) with the output field

Ŵout ¼ ½C;CK�
�
x̂
xK

�
þ Ŵ

contains a DFS composed of “purely quantum” variables of
the form r̂ ¼ v⊤x̂ ¼ ~v⊤x̂e. Then, it follows from the state-
ment below Eq. (32) that ~v ∈ KerðC⊤̂

W
Þ and ~v ∈ KerðOŴoutÞ

hold. As proven in the QND case, the first condition
equivalently leads to v ∈ KerðC⊤̂

W
Þ for the original plant

system (12) and (14). Also, in almost the same way, we can
prove that the second condition is equivalent to v ∈
KerðOŴoutÞ for the original plant system. These two con-
ditions on vmean that the original plant system (12) and (14)
has a DFS; thus, the contraposition yields the following
theorem.
Theorem 3: If the original plant system does not have a

DFS, then any type-1 MF control cannot generate a DFS in
the closed-loop system.

V. NO-GO THEOREMS: TYPE-2 CASE

In the type-1 case, it is assumed that at most all the plant’s
output fields can be used for feedback control and they are
equally evaluated. For example, in the type-1 BAE case, the
BA noise P̂ must not appear in all the elements of y. But it is
sometimes more reasonable to give different roles to the
output fields; such a control schematic in the MF case is
illustrated in Fig. 6, which we call the type-2 control
configuration. In this case, at most all the components of
Ŵout

1 can be used for feedback control, while those of Ŵout
2

are for evaluation; that is, they will be measured to extract
some information about the system or will be kept untouched
for later use. For instance, we attempt to design a MF control
based on the measurement of Ŵout

1 , so that the BA noise
does not appear in the measurement output of Ŵout

2 .
However, we see that such a MF control strategy does
not work to achieve any of the control goals. That is, in this
section, the type-2 no-go theorems in Table I will be proven.

A. Closed-loop system with type-2 MF

As in the case of type-1 control, we study the situation
where the feedback control is performed by modulating the
input fields. The plant system driven by the modulated
fields obeys the following dynamical equation:

FIG. 6. General configuration of the type-2 MF control.
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dx̂
dt

¼ Ax̂þ ΣC⊤
1 ΣðŴ1 þ u1Þ þ ΣC⊤

2 ΣðŴ2 þ u2Þ;
Ŵout

1 ¼ C1x̂þ Ŵ1 þ u1; Ŵout
2 ¼ C2x̂þ Ŵ2 þ u2:

u1 and u2 are the vectors of control signals that represent
the time-varying amplitude of the input fields Ŵ1 and Ŵ2,
respectively. Note that, in general, the size of C1 and C2

need not to be equal. The output field Ŵout
1 is measured by

a set of dyne detectors, which yield

y ¼ MŴout
1 ¼ MC1x̂þMŴ1 þMu1:

M is the symplectic matrix, representing which quadratures
of Ŵout

1 are measured. The measurement result yðtÞ is sent
to a classical feedback controller of the form

dxK
dt

¼ AKxK þ BKy; u1 ¼ CK1xK; u2 ¼ CK2xK:

Note that u2 is allowed to contain the direct term from
y, i.e., u2 ¼ CK2xK þDKy, but this modification does
not change the results shown below; thus, for simpli-
city, we assume DK ¼ 0. Combining all the above equa-
tions, we end up with the closed-loop dynamics of
x̂e ¼ ½x̂⊤; x⊤K �⊤:

dx̂e
dt

¼
�

A ΣC⊤
1 ΣCK1 þ ΣC⊤

2 ΣCK2

BKMC1 AK þ BKMCK1

�
x̂e

þ
�
ΣC⊤

1 Σ
BKM

�
Ŵ1 þ

�
ΣC⊤

2 Σ
0

�
Ŵ2: ð43Þ

There are two kinds of output signals of the system. One is
yðtÞ, which is used for feedback control. Because of the
direct control term, it is now of the form

y ¼ ½MC1;MCK1�x̂e þMŴ1: ð44Þ

The other one is used for evaluation, which is obtained by
measuring the second output field Ŵout

2 :

z ¼ M1Ŵ
out
2 ¼ ½M1C2;M1CK2�x̂e þ Q̂; ð45Þ

where we have defined Q̂ ¼ M1Ŵ2.

B. BAE

The goal of BAE is to evade the BA noise so that it does
not appear in the output signal (45). Now Q̂ ¼ M1Ŵ2 is the
unavoidable shot noise and P̂≔M2Ŵ2 is the BA noise,
where the matrices satisfy Eq. (16). Note that the noise term
of the closed-loop system (43) can be expressed by

noise term of Eq: ð43Þ

¼
�
ΣC⊤

1 Σ
BKM

�
Ŵ1 þ

�
ΣC⊤

2 ΣM⊤
1

0

�
Q̂þ

�
ΣC⊤

2 ΣM⊤
2

0

�
P̂:

Also, the original system without control is given by

dx̂
dt

¼ Ax̂þ ΣC⊤
1 ΣŴ1 þ ΣC⊤

2 ΣðM⊤
1 Q̂þM⊤

2 P̂Þ;
y ¼ MC1x̂þMŴ1; z ¼ M1C2x̂þ Q̂: ð46Þ

We start with the assumption that BAE holds for the
closed-loop system (43) and (45). In terms of the transfer

function, this means that ΞðfbÞ
Ŵ1→z

½s� ¼ 0 and ΞðfbÞ
P̂→z

½s� ¼ 0

are satisfied for all s, for this system [see Eq. (26)]. Thus,
the Laplace transform of zðtÞ is given by

z½s� ¼ ΞðfbÞ
Q̂→z

½s�Q̂½s� þ ΞðfbÞ
P̂→z

½s�P̂½s� þ ΞðfbÞ
Ŵ1→z

½s�Ŵ1½s�
¼ ΞðfbÞ

Q̂→z
½s�Q̂½s�:

Let us now focus on the Laplace transform of yðtÞ:

y½s� ¼ ΞðfbÞ
Q̂→y

½s�Q̂½s� þ ΞðfbÞ
P̂→y

½s�P̂½s� þ ΞðfbÞ
Ŵ1→y

½s�Ŵ1½s�:

Both z½s� and y½s� are vectors of classical numbers, hence,
all of their components commute with each other; i.e.,
zy⊤ − ðyz⊤Þ⊤ ¼ 0 holds. Then, since in the Laplace
domain the CCRs are represented by ½Q̂j; P̂k� ¼ δjki=2s,

½Q̂j; Q̂k� ¼ 0, and ½Q̂j; Ŵ1;k� ¼ 0, we have

zy⊤ − ðyz⊤Þ⊤

¼ ΞðfbÞ
Q̂→z

Q̂P̂⊤ðΞðfbÞ
P̂→y

Þ⊤ − ½ΞðfbÞ
P̂→y

P̂Q̂⊤ðΞðfbÞ
Q̂→z

Þ⊤�⊤

¼ ΞðfbÞ
Q̂→z

½Q̂P̂⊤ − ðP̂Q̂⊤Þ⊤�ðΞðfbÞ
P̂→y

Þ⊤

¼ i
2s

ΞðfbÞ
Q̂→z

ðΞðfbÞ
P̂→y

Þ⊤ ¼ 0:

But Eq. (45) clearly indicates that ΞðfbÞ
Q̂→z

½s� is invertible for
all s; hence, we conclude ΞðfbÞ

P̂→y
½s� ¼ 0, ∀ s. This equiv-

alently leads to the following set of equalities:

½MC1;MCK1�
�

A ΣC⊤
1 ΣCK1 þ ΣC⊤

2 ΣCK2

BKMC1 AK þ BKMCK1

�k

×

�
ΣC⊤

2 ΣM⊤
2

0

�
¼ 0; ∀ k ≥ 0:

Like the proof in the type-1 case, we have

MC1AkΣC⊤
2 ΣM⊤

2 ¼ 0; ∀ k ≥ 0; ð47Þ
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which implies that the original system (46) satisfies

ΞðoÞ
P̂→y

½s� ¼ 0, ∀ s. Now, the BAE condition ΞðfbÞ
P̂→z

½s� ¼ 0,

∀ s is expressed in the state space representation by

½M1C2;M1CK2�
�

A ΣC⊤
1 ΣCK1 þ ΣC⊤

2 ΣCK2

BKMC1 AK þ BKMCK1

�k

×

�
ΣC⊤

2 ΣM⊤
2

0

�
¼ 0; ∀ k ≥ 0:

Then, using Eq. (47), we deduce

M1C2AkΣC⊤
2 ΣM⊤

2 ¼ 0; ∀ k ≥ 0:

Hence, for the original system (46), the transfer function

from P̂ to z is zero; i.e., ΞðoÞ
P̂→z

½s� ¼ 0, ∀ s.

We finally prove ΞðoÞ
Ŵ1→z

½s� ¼ 0, ∀ s. The above result

implies zðoÞ½s� ¼ΞðoÞ
Ŵ1→z

½s�Ŵ1½s�þΞðoÞ
Q̂→z

½s�Q̂½s�. Moreover,

from Eq. (47), we have ΞðoÞ
P̂→y

½s� ¼ 0, ∀ s, which leads to

yðoÞ½s� ¼ ΞðoÞ
Ŵ1→y

½s�Ŵ1½s� þ ΞðoÞ
Q̂→y

½s�Q̂½s�. Then, since both
yðoÞ½s� and zðoÞ½s� are c-numbers, we have

yðoÞzðoÞ⊤ − ðzðoÞyðoÞ⊤Þ⊤

¼ ΞðoÞ
Ŵ1→y

Ŵ1Ŵ
⊤
1 ðΞðoÞ

Ŵ1→z
Þ⊤

− ½ΞðoÞ
Ŵ1→z

Ŵ1Ŵ
⊤
1 ðΞðoÞ

Ŵ1→y
Þ⊤�⊤

¼ ΞðoÞ
Ŵ1→y

½Ŵ1Ŵ
⊤
1 − ðŴ1Ŵ

⊤
1 Þ⊤�ðΞðoÞ

Ŵ1→z
Þ⊤

¼ i
2s

ΞðoÞ
Ŵ1→y

ΣðΞðoÞ
Ŵ1→z

Þ⊤ ¼ 0:

Note now that ΞðoÞ
Ŵ1→z

½s� does not depend on the matrix M,

representing which quadratures of Ŵout
1 are measured. This

means that the above equality holds for other choices of
measurement, say, ~y ¼ ~MŴ1. Thus, we have

2
64ΞðoÞ

Ŵ1→y

ΞðoÞ
Ŵ1→~y

3
75ΣðΞðoÞ

Ŵ1→z
Þ⊤ ¼

�
M
~M

�
ΞðoÞ
Ŵ1→Ŵout

1

ΣðΞðoÞ
Ŵ1→z

Þ⊤ ¼ 0:

~M is chosen so that ½M⊤; ~M⊤� is invertible. Because

ΞðoÞ
Ŵ1→Ŵout

1

½s� is also invertible, ΞðoÞ
Ŵ1→z

½s� ¼ 0, ∀ s.

Together with the above result ΞðoÞ
P̂→z

½s� ¼ 0, ∀ s, this

means that BAE holds for the original plant system (46).
Consequently, we have the following result.
Theorem 4: If the original plant system does not have

the BAE property, then any type-2 MF control cannot
realize BAE for the closed-loop system.

C. QND

The idea for the proof is the same as that taken in the
type-1 case. Again, a QND variable is of the form
r̂ ¼ v⊤x̂ ¼ ~v⊤x̂e, with ~v ¼ ½v⊤; 0⊤�⊤. Now the closed-loop
system is given by (43), (44), and (45), showing that
it is subjected to the input noise field ½Ŵ⊤

1 ; Ŵ
⊤
2 �⊤ and it

generates the measurement outputs ½y⊤; z⊤�⊤. Thus, by
definition r̂ is a QND variable iff ~v ∈ KerðC⊤̂

W1
Þ∩KerðC⊤̂

W2
Þ

and ~v ∈ RangeðO⊤
y Þ∪RangeðO⊤

z Þ. The former condition
means that

½v⊤; 0⊤�
�

A ΣC⊤
1 ΣCK1 þ ΣC⊤

2 ΣCK2

BKMC1 AK þ BKMCK1

�k

×

�
ΣC⊤

1 Σ ΣC⊤
2 Σ

BKM 0

�
¼ 0; ∀ k ≥ 0:

This is equivalent to v⊤AkΣC⊤
1 Σ ¼ 0 and v⊤AkΣC⊤

2 Σ ¼ 0

for all k ≥ 0; that is, v ∈ KerðC⊤̂
W1

Þ∩KerðC⊤̂
W2

Þ holds for the
original plant system (46). (Note Ŵ2¼M⊤

1 Q̂þM⊤
2 P̂.)

Related to the latter condition, let us consider the condition
~v ∈ KerðOyÞ∩KerðOzÞ. This is expressed by

�
MC1 MCK1

M1C2 M1CK2

��
A ΣC⊤

1 ΣCK1 þ ΣC⊤
2 ΣCK2

BKMC1 AK þ BKMCK1

�k

×

�
v

0

�
¼ 0;

for all k ≥ 0, which equivalently leads to�
MC1

M1C2

�
Akv ¼ 0; ∀ k ≥ 0:

Thus, v ∈ KerðOyÞ∩KerðOzÞ holds for the original plant
system (46). From the same discussion as that in Sec. IV C
together with the above results, we obtain the following no-
go theorem.
Theorem 5: If the original plant system does not have a

QND variable, then any type-2 MF control cannot generate
a QND variable in the closed-loop system.

D. DFS

Let us assume that the closed-loop system (43) with the
output fields Ŵout

1 and Ŵout
2 , which now satisfy�

Ŵout
1

Ŵout
2

�
¼

�
C1 CK1

C2 CK2

��
x̂
xK

�
þ
�
Ŵ1

Ŵ2

�
;

contains a DFS. Equivalently, it contains a subsystem that
is uncontrollable w.r.t. Ŵ1 and Ŵ2 and unobservable
w.r.t. Ŵout

1 and Ŵout
2 . As before, a variable contained in

the DFS is of the form r̂ ¼ v⊤x̂ ¼ ~v⊤x̂e. Then, first, the
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uncontrollability condition leads to the same results as in
the QND case; i.e., v ∈ KerðC⊤̂

W1
Þ∩KerðC⊤̂

W2
Þ holds for the

original plant system (46). Further, it is immediate to see
that the unobservability condition yields C1Akv ¼ 0

and C2Akv ¼ 0 for all k ≥ 0. Consequently, v ∈
KerðC⊤̂

W1

Þ∩KerðC⊤̂
W2

Þ and v ∈ KerðOŴout
1
Þ∩KerðOŴout

2
Þ

hold for the original plant system. Thus, we have the
following result.
Theorem 6: If the original plant system does not have a

DFS, then any type-2 MF control cannot generate a DFS in
the closed-loop system.

VI. COHERENT FEEDBACK REALIZATIONS:
TYPE-1 CASE

Here, we turn our attention to the CF control and in what
follows we see that, as shown in Table I, it has a capability
of achieving the control goals, BAE, QND, and DFS. That
is, as mentioned in Sec. I, these are situations where a
quantum device has a clear advantage over a classical one.
This section is devoted to proving the results in the type-1
CF case.

A. Closed-loop system with type-1 CF

The plant system is given by Eqs. (12) and (14) with
input Ŵ and output Ŵout. In the type-1 control configu-
ration, as described in Sec. IV, at most all the components
of Ŵout can be used for feedback, and also at most all the
components of Ŵ can be controlled. A CF controller is
constructed by directly connecting another fully quantum
system to the plant system by a feedback way. This means
that, in the type-1 CF case, Ŵout is connected to the
controller’s input and the controller’s output is connected to
Ŵ, without involving any measurement process. The CF
control configuration satisfying this setting, which avoids
self-interaction of the fields, is depicted in Fig. 7. The
controller has two kinds of input-output fields, and its
system equation is given by

dx̂K
dt

¼ AKx̂K þ ΣC⊤
1 ΣŴ1 þ ΣC⊤

2 ΣŴ2;

Ŵout
1 ¼ C1x̂K þ Ŵ1; Ŵout

2 ¼ C2x̂K þ Ŵ2; ð48Þ

where AK ¼ ΣðGK þ C⊤
1 ΣC1=2þ C⊤

2 ΣC2=2Þ. The CF
control is constructed by

Ŵ2 ¼ Ŵout; Ŵ ¼ Ŵout
1 : ð49Þ

This condition imposes the size of C1 and C2 to be equal,
although they are not necessarily of full rank. Note that
more generally a scattering process from, e.g., Ŵout to Ŵ2

can be introduced, but here it is not necessary. Combining
Eqs. (12), (14), (48), and (49), we obtain the dynamical
equation of the closed-loop system:

dx̂e
dt

¼ Aex̂e þ ΣC⊤
e ΣŴ1; Ŵout

2 ¼ Cex̂e þ Ŵ1; ð50Þ

where x̂e ¼ ½x̂⊤; x̂⊤K �⊤, Ae ¼ ΣðGe þ C⊤
e ΣCe=2Þ, Ce ¼

½C;C1 þ C2�, and

Ge ¼
�
G C⊤ΣC1=2 − C⊤ΣC2=2
⋆ GK þ C⊤

1 Σ⊤C2=2þ C⊤
2 ΣC1=2

�
;

where ⋆ denotes the symmetric elements of Ge.

B. BAE

Let us assume that we can engineer a CF controller
satisfying C1 þ C2 ¼ 0. Then the closed-loop system (50)
takes the following form:

dx̂e
dt

¼
�

A ΣC⊤ΣC1

ΣC⊤
1 Σ⊤C ΣGK

�
x̂e þ

�
ΣC⊤Σ
0

�
Ŵ1;

Ŵout
2 ¼ ½C; 0�x̂e þ Ŵ1: ð51Þ

The structure of this equation shows that, notably, the
controller is directly coupled to the plant, yet there is no
direct interaction between the field and the controller. This
system configuration is called the direct interaction, mean-
ing that an additional quantum device is prepared and is
directly coupled to the plant system, not through input or
output fields; hence, the system (51) is a CF-based
realization of the direct interaction.
Here, we study the optomechanical oscillator described

in Sec. II C (ii), as a plant system. Since this system has one
input-output field, the control configuration must be of type
1. Also it is easy to verify that this system does not satisfy
BAE, and further, it does not have a QND variable. The
goal is to design a CF controller such that BAE is realized
for the closed-loop system toward high-precision detection
of the unknown force F̂. For this purpose, we take the CF
scheme described above, leading to Eq. (51). The controller
is single mode with variable x̂K ¼ ½q̂3; p̂3�⊤, and it has
two input fields Ŵ1 ¼ ½Q̂1; P̂1�⊤ and Ŵ2 ¼ ½Q̂2; P̂2�⊤. The
controller’s system matrices are chosen so that they satisfyFIG. 7. General configuration of the type-1 CF control.
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ΣC⊤
1 Σ⊤C ¼

�
0 0

0 g

�
; ΣGK ¼

� −ω
ω

�
;

which leads to

C1 ¼ −C2 ¼
gffiffiffiffiffi
2γ

p
�
0 0

1 0

�
; GK ¼

�−ω 0

0 −ω
�
:

ð52Þ
Physical implementation of the controller specified by
these matrices is discussed at the end of this subsection.
Together with the term F̂, which directly acts on p̂1, the
dynamics of the closed-loop system is given by

dx̂e
dt

¼ Aex̂e þ BeŴ1 þ bfF̂;

Ŵout
2 ¼ Cex̂e þ Ŵ1; ð53Þ

where

Ae ¼

2
66666666664

1=m 0

−mω2 κ

0 −γ 0

κ −γ g

0 −ω
g ω

3
77777777775
;

Be ¼ C⊤
e ;

Ce ¼
ffiffiffiffiffi
2γ

p �
0 1 0

0 1 0

�
;

bf ¼ ½0; 1; 0; 0; 0; 0�⊤:

Since Q̂out
2 does not contain any information about F̂, we

need to measure P̂out
2 , implying that the output signal is

given by y ¼ MŴout
2 ¼ P̂out

2 with M ¼ ½0; 1�; i.e.,
y ¼ cyx̂e þ P̂1 ¼

ffiffiffiffiffi
2γ

p
½0; 0; 0; 1; 0; 0�x̂e þ P̂1: ð54Þ

The set of equations (53) and (54) is exactly the same as
that of the modified optomechanical oscillator proposed by
Tsang and Caves [52], which is shown in Fig. 8(a).
Notably, this system realizes BAE measurement for
detecting F̂; in fact, with the choice g ¼ κ=

ffiffiffiffiffiffiffi
mω

p
, the

transfer function from the BA noise Q̂1 to the output y ¼
P̂out
2 takes zero:

y½s� ¼
ffiffiffiffiffi
2γ

p
κ=m

ðsþ γÞðs2 þ ω2Þ P̂1½s� þ
s − γ

sþ γ
F̂½s�:

Thus, by injecting a P̂1-squeezed light field (i.e., by
reducing the noise of P̂1), in principle, we can detect F̂
with better accuracy compared to the case without BAE.

A detailed investigation of this BAE scheme in a practical
setting was recently reported in Ref. [77].
Recall now that the system (53) and (54) is constructed by

a CF control. That is, in a constructive way, we have proven
that the type-1 CF control can realize BAE.
Lastly, let us consider an optical implementation of the

above CF controller. The form of C1 (or C2) in Eq. (52)
represents the so-called QND interaction of the controller
and the field Ŵ1 (or Ŵ2), which can be physically
implemented, though in a nontrivial way [78]. The con-
troller’s Hamiltonian specified by GK in Eq. (52) simply
expresses the optical phase shift. Consequently, a detuned
optical cavity coupled to two input-output fields via QND
interactions, illustrated in Fig. 8(b), is one possible physical
realization of the CF controller proposed here. Note that its
practical implementation is harder than that of the system
given in Ref. [52]. But apart from such difficulty, again,
what should be emphasized here is the fact that the type-1
CF control is capable of realizing BAE.

C. QND

Let us continue to examine the above CF-controlled
optomechanical oscillator (53) and (54); actually, we here
show that this system contains QND variables, by proving
Eq. (28), which is now KerðC⊤̂

W1
Þ∩RangeðO⊤

y Þ ≠ ∅.
First, if g ¼ κ=

ffiffiffiffiffiffiffi
mω

p
, the range of the controllability

matrix CŴ1
¼ ½Be; AeBe; A2

eBe� is spanned by the following
independent vectors:2

6666664

0

0

1

0

0

0

3
7777775
;

2
6666664

0

0

0

1

0

0

3
7777775
;

2
6666664

0

κ
0

0

0

g

3
7777775
;

2
6666664

κ=m
0

0

0

−gω
0

3
7777775
:

Note that Ak
eBeðk ≥ 3Þ no longer produces an independent

vector. Clearly,

v1 ¼ ½0;−g; 0; 0; 0; κ�⊤; v2 ¼ ½gω; 0; 0; 0; κ=m; 0�⊤
are contained in KerðC⊤̂

W1
Þ. Next, the kernel of the observ-

ability matrix Oy ¼ ½c⊤y ; A⊤
e c⊤y ;…�⊤ is spanned by

FIG. 8. (a) Direct interaction scheme achieving BAE for the
optomechanical oscillator, proposed by Tsang and Caves [52].
(b) Equivalent realization via the type-1 CF control.
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2
6666664

0

0

1

0

0

0

3
7777775
;

2
6666664

0

gω
0

0

0

κ=m

3
7777775
;

2
6666664

−g
0

0

0

κ
0

3
7777775
:

But they are orthogonal to both v1 and v2, meaning that v1
and v2 are contained in RangeðO⊤

y Þ. Consequently, we find
that v1, v2 ∈ KerðC⊤̂

W1
Þ∩RangeðO⊤

y Þ. Thus,

q̂0 ¼ v⊤1 x̂e ¼ −gp̂1 þ κp̂3;

p̂0 ¼ v⊤2 x̂e ¼ gωq̂1 þ
κ

m
q̂3

are uncontrollable w.r.t. Ŵ1 and observable w.r.t. y [see the
discussion around Eq. (28)]; that is, q̂0 and p̂0 are QND
variables generated by the CF control. Indeed, they are
subjected to the dynamical equation of the form

dq̂0

dt
¼ ω

m
ðg2m2ω2 þ κ2Þp̂0;

dp̂0

dt
¼ − ω

m
ðg2 þ κ2Þq̂0 þ F̂; ð55Þ

which clearly shows that ðq̂0; p̂0Þ are free from Ŵ1.
Here, an interesting by-product is obtained. It is easy to

see ½q̂0ðtÞ; p̂0ðtÞ� ¼ 0, ∀ t. Together with the fact that
ðq̂0; p̂0Þ are independent from other variables, this means
that they are essentially classical variables that are detect-
able from the output field. In general, if a quantum system
contains a subsystem whose variables are all commutative,
then it is called a classical subsystem [73]; thus, we now
find that the CF-controlled optomechanical system (53)
contains a classical subsystem (55).

D. DFS

To show that the type-1 CF control has the capability of
generating a DFS, let us return to the general closed-loop
system (50). Suppose now that the original plant system
(12) and (14) does not have a DFS, and further that
a quantum controller with parameters C1 ¼ C2 ¼ C=2
and GK ¼ G can be engineered. Hence, the plant and
the controller have the same number of modes. Then
Eq. (50) takes the following form:

dx̂e
dt

¼ Aex̂e þ BeŴ1;

Ŵout
2 ¼ Cex̂e þ Ŵ1;

Ae ¼
�

A ΣC⊤ΣC=2
ΣC⊤ΣC=2 A

�
;

Be ¼
�
ΣC⊤Σ
ΣC⊤Σ

�
;

Ce ¼ ½C;C�: ð56Þ

Now we prove that this system contains a DFS, i.e., a
subsystem that is uncontrollable w.r.t. Ŵ1 and unobserv-
able w.r.t. Ŵout

2 . First, for the vector ve ¼ ½v⊤;−v⊤�⊤ with
v an arbitrary 2n-dimensional real vector, we have

v⊤e Ak
eBe ¼ ½v⊤ðΣGÞk; −v⊤ðΣGÞk�

�
ΣC⊤Σ
ΣC⊤Σ

�
¼ 0;

for all k ≥ 0. Hence, ve ∈ KerðC⊤̂
W1

Þ holds with CŴ1
¼

½Be; AeBe; A2
eBe;…� the controllability matrix. Also,

CeAk
eve ¼ ½C;C�

� ðΣGÞkv
−ðΣGÞkv

�
¼ 0; ∀ k ≥ 0

holds, implying ve ∈ KerðOŴout
2
Þ, with OŴout

2
the observ-

ability matrix OŴout
2

¼ ½C⊤
e ; A⊤

e C⊤
e ;…�⊤. Consequently, ve

satisfies ve ∈ KerðC⊤̂
W1

Þ∩KerðOŴout
2
Þ. This means, as dis-

cussed above Eq. (33), that v⊤e x̂e ¼ v⊤x̂ − v⊤x̂K is uncon-
trollable and unobservable; hence, this is the variable of a
DFS generated by the CF control. Note that 2n independent

vectors ðv1;…v2nÞ can be taken to construct vðiÞe ¼
½v⊤i ;−v⊤i �⊤. Thus, this DFS is composed of 2n varia-
bles fv⊤i x̂ − v⊤i x̂Kgi¼1;…;2n.

VII. COHERENT FEEDBACK REALIZATIONS:
TYPE-2 CASE

In this section, we study the type-2 CF control for
realizing BAE, QND, and DFS. As in the type-1 case, a
specific system achieving each control goal is shown.

A. Closed-loop system with type-2 CF

As explained in Sec. V, the type-2 control means that two
roles are given to the output fields of the plant system: one
is for feedback control, and the other one is for evaluation.
Hence, the system to be controlled is

dx̂
dt

¼ Ax̂þ ΣC⊤
1 ΣŴ1 þ ΣC⊤

2 ΣŴ2;

Ŵout
1 ¼ C1x̂þ Ŵ1; Ŵout

2 ¼ C2x̂þ Ŵ2: ð57Þ

For designing a CF controller, there is some variation in its
structure. Here, we particularly consider the CF control
configuration illustrated in Fig. 9; that is, the controller has
a single kind of input-output field that is directly connected
to the plant’s input and output fields. For a general type-2
CF control configuration, see Ref. [22]. Note also that, in
our case, C1 and C2 are of the same size, although they are
not necessarily of full rank. Hence, the dynamics of the CF
controller is given by

dx̂K
dt

¼ AKx̂K þ ΣC⊤
KΣŴ3; Ŵout

3 ¼ CKx̂K þ Ŵ3;
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where AK ¼ ΣðGK þ C⊤
KΣCK=2Þ, and the feedback con-

nection is realized by

Ŵ3 ¼ SŴout
1 ; Ŵ2 ¼ Ŵout

3 :

Here, S is an orthogonal and symplectic matrix representing
a scattering process from Ŵout

1 to Ŵ3. Combining the above
equations yields the dynamical equation of the closed-loop
system;

dx̂e
dt

¼ Aex̂e þ ΣC⊤
e ΣSŴ1; Ŵout

2 ¼ Cex̂e þ SŴ1;

ð58Þ

where x̂e ¼ ½x̂⊤; x̂⊤K �⊤ and

Ae ¼ Σ½Ge þ C⊤
e ΣCe=2�;

Ce ¼ ½SC1 þ C2; CK�;

Ge ¼
�
Gþ ðC⊤

2 ΣSC1 þ C⊤
1 S

⊤Σ⊤C2Þ=2 ⋆
C⊤
KΣðSC1 − C2Þ=2 GK

�
;

where ⋆ denotes the symmetric elements of Ge.

B. BAE

To demonstrate that the type-2 CF is capable of realizing
BAE, here we study the Michelson’s interferometer as a
plant system, which is described in Sec. II C (iii) and
Fig. 3(c). The system is composed of two oscillators driven
by an unknown force F̂ along opposite directions. The
oscillators’ dynamical motion is described by Eq. (19),
which is specified by the following system matrices: G ¼
diagfmω2; 1=m;mω2; 1=mg and

C1 ¼
ffiffiffi
λ

p �
0 0

1 1

�
; C2 ¼

ffiffiffi
λ

p �
0 0

1 −1
�
:

This system works as a sensor for detecting the force F̂, but
as explained before, the noise power of the output signal is
bounded from below by the SQL (21). Hence, the purpose
here is to design a CF controller that realizes BAE and as a
result beats the SQL. Actually, the plant system has two

input-output ports; hence, it can be treated within the type-2
CF control framework.
Here, we consider the CF configuration described in the

previous subsection. That is, Ŵout
1 and Ŵ2 are optically

connected through CF. In particular, as a CF controller, we
take a single input-output optical cavity, whose dynamical
equation is specified by the following matrices,

GK ¼
�
α 0

0 β

�
;

CK ¼
ffiffiffiffiffi
2ϵ

p �
1 0

0 1

�
;

S ¼
�

0 1

−1 0

�
;

where ϵ is the coupling constant between the field and the
cavity mode. Later we set α ¼ β, which thus represents the
detuning. S represents a phase shift acting on the input
optical field in the form Â3 ¼ −iÂout

1 . Thus, the closed-loop
system is a 3-modes single input-output linear system,
depicted in Fig. 10.
With the above setup, the closed-loop system (58) takes

the following form:

dx̂e
dt

¼ Aex̂eþBeŴ
0
1þbfF̂;

Ŵout
2 ¼Cex̂eþ Ŵ0

1;

Ae ¼

2
66666666664

1=m 0 0

λ−mω2 λ
ffiffiffiffiffiffiffi
2λϵ

p

0 1=m 0

−λ −λ−mω2 − ffiffiffiffiffiffiffi
2λϵ

p

− ffiffiffiffiffiffiffi
2λϵ

p − ffiffiffiffiffiffiffi
2λϵ

p −ϵ β

0 0 −α −ϵ

3
77777777775
;

Be ¼ ΣC⊤
e Σ¼ ½b1;b2� ¼

2
666666664

0 0ffiffiffi
λ

p − ffiffiffi
λ

p

0 0

− ffiffiffi
λ

p − ffiffiffi
λ

p

− ffiffiffiffiffi
2ϵ

p
0

0 − ffiffiffiffiffi
2ϵ

p

3
777777775
;

bf ¼ ½0 1 0 −1 0 0 �⊤;

Ce ¼
�
c⊤1
c⊤2

�
¼
� ffiffiffi

λ
p

0
ffiffiffi
λ

p
0

ffiffiffiffiffi
2ϵ

p
0ffiffiffi

λ
p

0 − ffiffiffi
λ

p
0 0

ffiffiffiffiffi
2ϵ

p
�
;

Ŵ0
1 ¼ SŴ1 ¼ ½P̂1;−Q̂1�⊤: ð59Þ
Here, we seek the parameters ðα; β; ϵÞ that achieve BAE.

First, it is easy to see c⊤1 Ak
ebf ¼ 0, ∀ k ≥ 0, or equivalently

KerðC⊤̂
F
Þc∩RangeðO⊤̂

Qout
2

Þ ¼ ∅; that is, Q̂out
2 does not contain

any information about F̂. Thus, we measure

FIG. 9. General configuration of the type-2 CF control.
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y ¼ P̂out
2 ¼ c⊤2 x̂e − Q̂1; ð60Þ

implying that Q̂1 is the shot noise while P̂1 is the BA noise.
Thus, the parameters should be chosen so that the BAE
condition (24), i.e., KerðC⊤̂

P1
Þc∩RangeðO⊤

y Þ ¼ ∅, is satis-

fied, which is carried out by examining the equivalent
condition (25): c⊤2 Ak

eb1 ¼ 0, ∀ k ≥ 0. The case k ¼ 0 is
already satisfied. To see the case k ≥ 1, we focus on

Aeb1 ¼

2
666666664

ffiffiffi
λ

p
=m
0

− ffiffiffi
λ

p
=m

0

−ϵ ffiffiffiffiffi
2ϵ

p
α

ffiffiffiffiffi
2ϵ

p

3
777777775
; A2

eb1 ¼

2
666666664

0

−ðω2 þ 2ϵ2Þ ffiffiffi
λ

p

0

ðω2 þ ϵ2=2Þ ffiffiffi
λ

p

ðαβ þ ϵ2Þ ffiffiffiffiffi
2ϵ

p
0

3
777777775
;

where the parts proportional to b1 are subtracted. Then,
the condition is satisfied if we impose c⊤2 Aeb1 ¼ 0 and
A2
eb1 ∝ b1, which yield

λ

m
þ αϵ ¼ 0; ω2 þ 2ϵ2 ¼ αβ þ ϵ2:

In particular, we take the parameter α ¼ β < 0, implying
that the CF controller is an optical cavity with negative
detuning α. The parameters are then explicitly given by

ϵ ¼
ffiffiffi
2

p
λ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4 þ 4λ2=m2

pq ; α ¼ −λ
mϵ

: ð61Þ

When ω ≪ 1, they are approximated by
ffiffiffiffiffiffiffiffiffi
λ=m

p
and

− ffiffiffiffiffiffiffiffiffi
λ=m

p
, respectively. Actually, under the condition

(61), the output is described in the Laplace domain by

y½s� ¼ − s3 − ϵs2 þ ω2sþ ϵðω2 þ 2ϵ2Þ
ðs2 þ ω2Þðsþ ϵÞ Q̂1½s�

þ 2
ffiffiffi
λ

p

mðs2 þ ω2Þ F̂½s�;

which is free from the BA noise P̂1½s�. As expected, this
BAE measurement beats the SQL and enables high-
precision detection of F̂. To see this fact, we evaluate
the power spectrum density of the noise. As seen before, F̂
induces the oscillators’s position shift ĝ in the Fourier
domain s ¼ iΩ by F̂½iΩ� ¼ −mLΩ2ĝ½iΩ�. Then, under the
assumption ω ≪ Ω, the normalized signal is given by

~y½iΩ� ¼ y½iΩ�
2

ffiffiffi
λ

p
L
¼ ĝ½iΩ� − iΩ3 − ϵΩ2 − 2ϵ3

2
ffiffiffi
λ

p
LΩ2ðiΩþ ϵÞ Q̂1½iΩ�:

Using ϵ ¼ ffiffiffiffiffiffiffiffiffi
λ=m

p
, we obtain

S½iΩ� ¼ hj~y − ĝj2i ¼
�

λ

m2L2Ω4
þ 1

4λL2

�
hjQ̂1j2i;

which has the same form as that of the noncontrolled
scheme in Eq. (21), except that the BA noise is replaced by
the shot noise. Therefore, by injecting a Q̂1-squeezed light
field into the first input port (i.e., the bright port), we
can realize a broadband noise reduction below the SQL
(21) in the output noise power. We note again that, without
squeezing of the input field, the output noise power of the
CF-controlled interferometer having the BAE property
reproduces the SQL. This means that achieving BAE itself
does not necessarily result in the increased force sensitivity;
in fact, we need to combine the BAE property and
squeezing of the input.
Note that, while we have found a CF controller achieving

BAE for high-precision detection of F̂ below the SQL, the
result obtained here does not mean to emphasize that the
proposed schematic is an alternative configuration for
gravitational wave detection. Actually, the schematic is
very different from several effective methods, particularly
in that the second output port is no longer a dark port.
Hence, the amplitude component must be subtracted from
the output field, which, however, cannot be carried out
perfectly; thus, the above-described ideal detection of ĝ
below the SQL would be a difficult task in a practical
situation. Rather, the main purpose here is to prove the
capability of a type-2 CF controller for realizing BAE.
Also, as demonstrated above, it is remarkable that the
problem for designing BAE can be solved by a system
theoretic approach based on the controllability or observ-
ability notion. This approach might shed new light on the
engineering problems for gravitational wave detection.

FIG. 10. Michelson’s interferometer with type-2 CF. The CF
controller is an optical cavity with coupling constant ϵ and
detuning α. HWP denotes a half-wave plate.
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C. QND

Here, we see that the closed-loop system studied in the
previous subsection contains QND variables. Note that the
original interferometer does not have a QND variable.
First, we calculate the controllability matrix CŴ0

1
¼

½Be; AeBe; A2
eBe;…� with Ae and Be given in Eq. (59).

It was already seen that b1 generates a two-dimensional
subspace spanned by b1 and Aeb1, under the condition (61).
Now, by further imposing α ¼ β, we have A2

eb2 ¼ −ω2b2,
implying that RangeðCŴ0

1
Þ is spanned by

2
666666664

0ffiffiffi
λ

p

0

− ffiffiffi
λ

p

− ffiffiffiffiffi
2ϵ

p

0

3
777777775
;

2
666666664

0ffiffiffi
λ

p

0ffiffiffi
λ

p

0ffiffiffiffiffi
2ϵ

p

3
777777775
;

2
666666664

ffiffiffi
λ

p
=m

0

− ffiffiffi
λ

p
=m

0

−ϵ ffiffiffiffiffi
2ϵ

p

α
ffiffiffiffiffi
2ϵ

p

3
777777775
;

2
666666664

ffiffiffi
λ

p
=m

0ffiffiffi
λ

p
=m

0

β
ffiffiffiffiffi
2ϵ

p

−ϵ ffiffiffiffiffi
2ϵ

p

3
777777775
:

Hence, dimRangeðCŴ0
1
Þ ¼ 4. We take two independent

vectors v1 and v2 spanning KerðC⊤̂
W0

1

Þ, then v⊤1 x̂e and v⊤2 x̂e
are not affected by the input field Ŵ0

1. Moreover, these
variables appear in the output signal (60) as shown below.
Actually, we can prove that c2 and A⊤

e c2 are both
independent from the above four vectors, implying

RangeðCŴ0
1
Þ⊕spanfc2; A⊤

e c2g ¼ R6:

Thus, RangeðCŴ0
1
Þ∪RangeðO⊤

y Þ ¼ R6 holds, which further

leads to RangeðCŴ0
1
Þc⊆RangeðO⊤

y Þ. Consequently, we find
v1, v2 ∈ RangeðO⊤

y Þ, meaning that v⊤1 x̂e and v⊤2 x̂e appear
in y and thus they are QND variables. That is, the type-2 CF
controller described in Sec. VII B has the capability of
generating QND variables.

D. DFS

Lastly, we again study a general CF-controlled system
(58). Suppose that the plant system (57) satisfies C1 ¼
C2 ¼ C=2 and does not contain a DFS. Further, we choose
a type-2 CF controller with system matrices GK ¼ G and
CK ¼ C, which is directly connected to the plant (i.e.,
S ¼ I). Then Eq. (58) takes exactly the same form as
Eq. (56), which contains a DFS. Therefore, this type-2 CF
controller has the ability to generate a DFS.

VIII. CONCLUSION AND FUTURE WORKS

This paper gives some general answers to the question of
whether or not measurement should be involved in the
feedback structure for controlling a quantum system. That
is, for a general linear quantum system, we obtain the no-go
theorems stating that the control goal, realization of BAE,
QND, or DFS, cannot be achieved by any MF control; on

the other hand, for each control goal, we find an example of
CF control accomplishing the task. From the viewpoint that
MF is essentially a classical operation on the system while
CF is a fully quantum one, these results imply that BAE,
QND, and DFS are genuine quantum objectives that cannot
be realized by any feedback-based classical operation.
The key idea to obtain all the results is the following

system theoretic characterizations of BAE, QND, and DFS,
which are also summarized in Fig. 2:

BAE∶ KerðC⊤̂
P
Þc∩RangeðO⊤

y Þ ¼ ∅;
QND∶ KerðC⊤̂

W
Þ∩RangeðO⊤

y Þ ≠ ∅;
DFS∶ KerðC⊤̂

W
Þ∩RangeðO⊤̂

WoutÞc ≠ ∅:
Now, remember the following equivalent characterizations
in terms of transfer functions:

BAE∶ ΞP̂→y½s� ¼ 0; ∀ s;

QND∶ ΞŴ→x̂0
2
½s� ¼ 0; ∀ s and Ξx̂0

2
→y½s� ≠ 0; ∃ s;

DFS∶ ΞŴ→x̂0
2
½s� ¼ 0; ∀ s and Ξx̂0

2
→Ŵout ½s� ¼ 0; ∀ s:

Although in this paper these characterizations are not fully
used except in Sec. V B, they will serve as powerful tools in
quantum device engineering in a practical situation. In fact,
in reality, due to several experimental imperfections, it is
often the case that the controllability or observability matrix
becomes of full rank, and thus the perfect achievement
of the above geometric conditions cannot be expected.
Nonetheless, the functional approach based on the transfer
function allows us to obtain an approximate solution of
those problems. For instance, for the BAE case, even if
KerðC⊤̂

P
Þc∩RangeðO⊤

y Þ ¼ ∅ or equivalently ΞP̂→y½s� ¼ 0,
∀ s is never satisfied, an approximate BAE measurement
can be engineered by solving a minimization problem
∥ΞP̂→y½s�∥ → min. Actually, in the history of classical
control, the so-called geometric control theory was first
deeply investigated [8] pursuing, e.g., ideal disturbance
decoupling. Later, towards wider applicability of the
control theory, several functional approaches were devel-
oped [9]: the linear quadratic Gaussian control and H∞

control, which are, respectively, based on the minimization
of the H2 norm ∥ · ∥2 and the H∞ norm ∥ · ∥∞ of a transfer
function, are typical successful results. A notable fact is
that, as mentioned in Sec. I, recently quantum versions of
those classical feedback control methods have been deeply
developed. Therefore, a combination of the geometric and
functional approaches will constitute a new methodology in
the field of quantum control and information. Of course,
under the evaluation of minimizing a norm of a transfer
function, comparing MF and CF controls again becomes an
open problem.
Another important direction of future research is to

extend the results to the nonlinear case. Actually, the
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control goals, BAE, QND, DFS, are all essential as well in
nonlinear systems, such as optical devices with high-order
nonlinearity, photonic crystal arrays, and coupled qubits
networks. The strength of the input-output formalism
[36,37] is in that it is applicable to a very wide class of
such Markovian nonlinear systems. More precisely, for a
general system that couples with m probe or environment
fields, its variable X̂ðtÞ is governed by the following
quantum stochastic differential equation:

dX̂
dt

¼ i½Ĥ; X̂� þ
Xm
j¼1

�
L̂�
j X̂L̂j − 1

2
L̂�
j L̂jX̂ − 1

2
X̂L̂�

j L̂j

�

þ
Xm
j¼1

ð½X̂; L̂j�Â�
j − ½X̂; L̂�

j �ÂjÞ; ð62Þ

where Ĥ is the system Hamiltonian and L̂j is the coupling
operator. Also, the jth output field satisfies

Âout
j ¼ L̂j þ Âj: ð63Þ

In fact, the nonlinear atomic ensemble dynamics (27) is
obtained by setting Ĥ ¼ 0 and L̂ ¼ ffiffiffiffiffi

M
p

Ĵz in Eq. (62).
[Additionally, the linear system (12) and (14) corresponds
to the case Ĥ ¼ x̂⊤Gx̂=2 and L̂j ¼ c⊤j x̂.] Very importantly,
there exists a celebrated classical nonlinear systems and
control theory [79,80] that gives clear characterizations of
controllability and observability notions even for nonlinear
systems. Therefore, it is expected that, by taking a similar
approach to that shown in this paper, we can have a unified
formalism of BAE, QND, and DFS for a general quantum
nonlinear system (62) and (63). This should be very useful
for systematic engineering of a wider class of quantum
information processing devices, but, as in the case dis-
cussed in the previous paragraph, comparison of MF and
CF for nonlinear systems is also a nontrivial task. An
interesting result along this direction was recently reported
in Ref. [81]: for the problem of detecting a force driving a
linear oscillator, a MF has clear advantage over the non-
controlled system with an optimized estimator, only when
the oscillator contains some nonlinearity.
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APPENDIX DIRECT MEASUREMENT
FEEDBACK

In this paper, from the standpoint of comparing CF and
MF, we assume that a MF controller is given by a
dynamical system with internal variable xK and that the
control is carried out by modulating the plant’s input fields.

However, the control configuration is not limited to a
dynamical controller: the direct (or proportional) measure-
ment feedback developed by Wiseman [82] is indeed the
first proposal applying the classical feedback control in the
quantum domain. As discussed in the literature (e.g., see
Ref. [1]), an ideal MF control is actually effective in
controlling the system. What is most notable here is the fact
obtained in Ref. [46], clarifying that a direct MF can
produce a QND variable, unlike the dynamical controller.
Here, we review this result.
The plant system is an optical cavity containing a χ2

nonlinear crystal, and further, the cavity mode can be
directly controlled by a modulator. The output signal is
obtained by measuring the amplitude quadrature of the
output field. The system equations are then given by

dx̂
dt

¼
�−κ 0

0 0

�
x̂þ

�
1

0

�
u − ffiffiffi

κ
p �

Q̂

P̂

�
;

y ¼ ffiffiffi
κ

p
q̂þ Q̂;

where x̂ ¼ ½q̂; p̂�⊤ are the cavity mode quadratures, uðtÞ is
the control signal representing the amplitude modulation,
and κ is the coupling strength between the cavity and the
probe field. Note that this modulation effect does not
appear in the output. The direct feedback considered in
Ref. [46] is of the form u ¼ ffiffiffi

κ
p

y, which enables us to
modify the system dynamics so that x̂ evolves in time with
the following linear equation:

d
dt

�
q̂
p̂

�
¼ − ffiffiffi

κ
p �

0

1

�
P̂; y ¼ ffiffiffi

κ
p

q̂þ Q̂:

Clearly, q̂ is not disturbed by the noise while it appears in
the output signal, implying that we can measure q̂ without
disturbing it. That is, q̂ is a QND variable.
The above result means that the type-1 no-go theorem for

QND does not hold if an ideal direct MF can be employed.
However, we note a critical assumption that an ideal direct
MF controller has infinite bandwidth. Hence, we further
examine a practical case where the feedback circuit has a
finite bandwidth and its dynamics is given by

dxK
dt

¼ − 1

τ
xK þ 1

τ
y; u ¼ ffiffiffi

κ
p

xK; ðA1Þ

where τ represents the time constant and xK is the internal
variable of the circuit. Actually, the transfer function from y
to u is given by Ξy→u½s� ¼

ffiffiffi
κ

p
=ð1þ τsÞ, whose gain in the

Fourier domain is computed as

jΞy→u½iΩ�j2 ¼
κ

1þ τ2Ω2
:

The bandwidth is defined by ½−1=τ; 1=τ�, in which more
than half the power of the signal y is allowed to pass
through the circuit. This clearly shows that the MF is
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available only in the infinite bandwidth limit τ → þ0. We
can also see the finite bandwidth effect on the ideal QND
variable q̂ as follows: the combined system dynamics of the
cavity and the circuit is given by

d
dt

�
q̂
xK

�
¼

� −κ ffiffiffi
κ

pffiffiffi
κ

p
=τ −1=τ

��
q̂
xK

�
þ
�− ffiffiffi

κ
p
1=τ

�
Q̂;

which yields

ΞQ̂→q̂½s� ¼
− ffiffiffi

κ
p

τ

ðκτ þ 1Þ þ τs
:

Thus, actually, in the ideal limit τ → þ0, the variable q̂
becomes QND. In other words, a practical direct MF does
not generate a QND variable. Note that controlling via the
field modulation Q̂ → Q̂þ u together with the finite-
bandwidth MF controller (A1) is exactly the type-I MF,
meaning that the no-go theorem is applied to this practical
case. Rather, we should have an understanding that the
controller (A1) is an effective MF realizing an approxi-
mated QND variable in the scenario discussed in Sec. VIII.
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