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Quantum electromechanical systems offer a unique opportunity to probe quantum noise properties in
macroscopic devices, properties that ultimately stem from Heisenberg’s uncertainty relations. A simple
example of this behavior is expected to occur in a microwave parametric transducer, where mechanical
motion generates motional sidebands corresponding to the up-and-down frequency conversion of
microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to
be unequal. We measure this fundamental imbalance in a microwave transducer coupled to a radio-
frequency mechanical mode, cooled near the ground state of motion. We also discuss the subtle origin of
this imbalance: depending on the measurement scheme, the imbalance is most naturally attributed to the
quantum fluctuations of either the mechanical mode or of the electromagnetic field.
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I. INTRODUCTION

A fascinating aspect of quantum measurement is that the
outcome of experiments and the apparent nature of the object
under study depend critically on the properties of both the
system and the measurement scheme [1]. An excellent
illustration is found when considering measurements of
the quantum harmonic oscillator. When measured with an
ideal energy detector, the observed signals will demonstrate
energy-level quantization [2,3]; however, if measured
instead with an ideal position detector, no evidence of
quantized energy levels is found and the measured signals
appear to be those of a very cold, classical oscillator [4,5].
The details of the measurement are as essential to the
apparent nature of the system under study as the properties
of the system itself—succinctly expressed by Roy Glauber,
“A photon is what a photodetector detects” [6].
To describe the measured noise of quantum systems, it is

often useful to make use of so-called quantum noise
spectral densities, which, in general, are not symmetric
functions of frequency: Sxxð−ωÞ ≠ SxxðþωÞ, where SxxðωÞ
is the spectral density of the observable xðtÞ, defined as the
Fourier transform of hx̂ðtÞx̂ð0Þi [7]. For a quantum har-
monic oscillator, the negative- and positive-frequency sides

of this spectral density describe the ability of the system to
emit or absorb energy. In the ground state, there is no ability
for the harmonic oscillator to emit energy, so that
Sxxð−ωmÞ ¼ 0. It can, however, absorb energy, and as a
result, SxxðþωmÞ ¼ ð4=γmÞx2ZP, where xZP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
is the amplitude of zero-point fluctuations for a mechanical
oscillator with mass m, resonance frequency ωm, and
damping rate γm. More generally, for a mechanical oscil-
lator in a thermal state with an occupation factor n̄m, the
spectral densities follow Sxxð−ωmÞ ¼ ð4=γmÞx2ZPn̄m and
SxxðþωmÞ ¼ ð4=γmÞx2ZPðn̄m þ 1Þ [3]. This asymmetric-
in-frequency motional noise spectrum was first measured
in atomic systems prepared in quantum ground states of
motion [8–10], where the motional sideband absorption
and fluorescence spectra were detected via photodetection.
Analogous quantum noise effects can also be studied in

macroscopic mechanical systems, using electromechanical
and optomechanical devices prepared and probed at quan-
tum limits [5,11–13]. These systems exhibit the Raman-
like processes of the up- and down-conversion of photons,
resulting from the parametric coupling between mechanical
motion and electromagnetic modes of a resonant cavity; the
rates of these processes should naturally mirror the asym-
metry in the mechanical quantum noise spectral density
Sxxð�ωmÞ. Recent experiments in optomechanics have
demonstrated this expected imbalance between up- and
down-converted sidebands [14,15]. Here, we demonstrate
the analogous physics in a quantum circuit, where it is
now microwave photons (not optical photons) that probe
the mechanical motion.
We also address a subtlety about these measurements

that originates from their use of linear detection of the
scattered electromagnetic field: they measure the field
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amplitude (e.g., via heterodyne detection). This scheme is
in contrast to measurements employing direct photodetec-
tion, where one filters the output light and counts photons
associated with a motional sideband. Although the pre-
dicted and measured motional sideband asymmetries
obtained using either detection method are identical
[14–16], the interpretation is more nuanced when one
employs linear field detection. As discussed by Khalili
et al. [16], the asymmetry in this case can be fully attributed
to the detector, namely, the presence of a precisely tuned
correlation between the backaction noise generated by the
measurement device and its imprecision noise (see
Appendix B). We provide a simple exposition of this
physics using standard input-output theory, which lets us
easily track the scattering of incident vacuum fluctuations.
In the case of linear detection of the cavity output field, the
imbalance is naturally attributed to the input electromag-
netic field fluctuations (classical and quantum); the intrinsic
quantum fluctuations of the mechanical mode contribute
equally to the up- and down-converted spectra. In contrast,
in experiments that employ direct photodetection, the
asymmetric quantum noise of the mechanical motion
directly contributes to the imbalance of the output spectrum
(in addition to any contribution from excess classical
fluctuations in the input electromagnetic fields). After a
brief discussion of these theoretical issues, we present
measurements of the imbalance in a microwave-frequency
electromechanical device.

II. THEORY

We begin with the Hamiltonian of our electromechanical
system

Ĥ ¼ ℏωcâ†âþ ℏωmb̂
†b̂þ ℏg0â†âðb̂þ b̂†Þ; ð1Þ

where â ðâ†Þ is the annihilation (creation) operator of the
microwave resonator mode with frequency ωc, b̂ ðb̂†Þ is the
annihilation (creation) operator of the mechanical resonator
with frequency ωm, and g0 is the parametric coupling
strength between the two modes.
We consider the standard regime of a cavity strongly

driven at frequency ωp, where dissipation is treated as per
standard input-output theory [17]; we also consider a two-
sided cavity, which corresponds to our experimental setup.
Writing the cavity and mechanical fields in terms of
their classical and quantum parts â ¼ e−iωptðāþ d̂Þ and
b̂ ¼ b̄þ ĉ, we linearize to obtain the following
Heisenberg-Langevin equations:

_̂d ¼ −
�
iΔþ κ

2

�
d̂ − iGðĉþ ĉ†Þ −

X
σ¼R;L

ffiffiffiffiffi
κσ

p
d̂σ;in;

_̂c ¼ −
�
iωm þ γm

2

�
ĉ − iGðd̂þ d̂†Þ − ffiffiffiffiffi

γm
p

ĉin;

where Δ ¼ ωc − ωp, G ¼ g0jāj, and κ ¼ κL þ κR (γm) is
the microwave- (mechanical-) resonator damping rate. The
operators d̂σ;inðtÞ and ĉinðtÞ describe noise incident on
the microwave and mechanical resonator, respectively, and
satisfy

hd̂σ;inðtÞd̂†σ0;inðt0Þi ¼ ðnthσ þ αÞδσ;σ0δðt − t0Þ;
hd̂†σ;inðtÞd̂σ0;inðt0Þi ¼ nthσ δσ;σ0δðt − t0Þ;

hĉinðtÞĉ†inðt0Þi ¼ ðnthm þ βÞδðt − t0Þ;
hĉ†inðtÞĉinðt0Þi ¼ nthmδðt − t0Þ:

Here, nthm (nthσ ) denotes the amount of thermal fluctuations
incident on the mechanical resonator (microwave resonator
from port σ), and α and β describe the quantum vacuum
fluctuations driving the microwave and mechanical reso-
nators, respectively; we have α ¼ β ¼ 1, consistent with
the uncertainty relations and the canonical commutation
relations of the noise operators. In what follows, we keep α
and β unspecified in order to clearly track the contributions
of both mechanical and electromagnetic vacuum noise to
the measured noise spectrum.
We include multiple bath temperatures (nthσ ) to describe

the various sources of heating in microwave circuits.
Compared to optical cavities which are passively cooled
well into the ground state (<104K), microwave cavities can
have significant thermal occupation even at temperatures
reached in the dilution refrigerator. Filtering on the input
and output transmission lines suppresses incident room-
temperature noise; however, other issues may remain, like
internal dissipation in the cavity [18] or thermal noise from
refrigerator components. Additionally, there are other
issues common to both microwave and optical systems,
such as source-phase noise [19] and cavity-frequency jitter
[20]. Whatever the source, noise in the system can be
generalized into two categories based on how the noise
contributes to the measured signal, either by radiating
directly into the cavity (nthL ) or by radiating into both the
cavity and detector (nthR ). For this experiment, nthR describes
noise generated from a hot circulator on the output line
while nthL describes all other significant noise sources.
We further specialize to the case where a single micro-

wave-cavity drive is applied at ωp ¼ ωc − Δ with Δ either
�ωm, and consider the up- and down-converted sidebands
generated by the mechanical motion. For simplicity,
we ignore any internal loss of the cavity, consider the
system to be in the sideband-resolved regime (κ ≪ ωm),
and also consider the limit of a weak cooperativity,
γopt ¼ 4G2=κ ≪ γm. This last condition implies that the
backaction effects on the mechanics are minimal: the
mechanical linewidth and temperature are set by its
coupling to its intrinsic dissipative bath.
There are several ways one could now measure the

outgoing field d̂R;out from the cavity and the corresponding
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power spectrum of its fluctuations. One general approach is
to first measure the time-dependent quadrature amplitudes
of the output field and then use these elements to calculate a
power spectrum. We do this in our experiment by using a
linear amplifier to measure the voltage associated with the
outgoing field. In optics setups, it can be instead done using
heterodyne detection, where one interferes the outgoing
field with a reference beam. (This approach was used in
Refs. [14,15].) In both cases, one calculates the power
spectrum from classical representations of quadrature
amplitudes and is thus equally sensitive to absorption
and emission of photons from this field. One thus neces-
sarily measures a symmetrized amplitude power spectral
density, which here takes the form

S̄II;tot½ω� ¼
1

2

Z
dthÎtotðtÞÎtotð0Þ þ Îtotð0ÞÎtotðtÞieiωt; ð2Þ

with the amplitude of the output field Îtot ¼ d̂R;out þ d̂†R;out
and where d̂R;out ¼ d̂R;in þ ffiffiffiffiffi

κR
p

d̂. The output spectrum
near the cavity resonance for the two choices of drive
detuning are found to be

S̄II;tot½ω�jΔ¼þωm
¼ S̄0 þ

κR
κ

γoptγm
ðγm
2
Þ2 þ ðω − ωcÞ2

×

��
nthm þ β

2

�
−
�
ntheff þ

α

2

��
; ð3Þ

S̄II;tot½ω�jΔ¼−ωm
¼ S̄0 þ

κR
κ

γoptγm
ðγm
2
Þ2 þ ðω − ωcÞ2

×

��
nthm þ β

2

�
þ
�
ntheff þ

α

2

��
; ð4Þ

where for Δ ¼ ωm (Δ ¼ −ωm), the up- (down-) converted
sideband is centered on the cavity resonance. The
noise floor for both cases is given by S̄0 ¼ α=2þ
nthR þ 4κRðnthc − nthR Þ=κ, and we have defined ntheff ¼ 2nthc −
nthR [where nthc ¼ ðκLnthL þ κRnthR Þ=κ is the effective cavity
thermal occupancy]. In Fig. 1(c), we illustrate the under-
lying components of this spectrum.
One sees explicitly that the sideband imbalance

S̄II;tot½ω�jΔ¼−ωm
− S̄II;tot½ω�jΔ¼þωm

is proportional to
(2ntheff þ α) and hence is entirely due to fluctuations in
the microwave fields driving the cavity. This interpretation
is true both when this noise is thermal and when it is purely
quantum (i.e., nthR ¼ nthL ¼ 0). These terms in the spectrum
result from the interference between the two ways the
incident field noise can reach the output: either by directly
being transmitted through the cavity or by first driving the
mechanical resonator whose position then modulates
the amplitude quadrature of the outgoing microwaves.
(See Appendix A for further insights based on a scattering
approach.) This interference is the basic mechanism of
noise squashing, which in the case of thermal noise was

previously observed in a microwave-cavity-based electro-
mechanical system [4]. This mechanism can also be fully
described using a general linear measurement forma-
lism [16], where it is attributed to the presence of
correlations between the backaction and imprecision
noises of the detector, correlations that are out of phase
and have magnitude ℏ=2 in the zero-temperature limit.
Interestingly, this precise value plays a special role in

(a)

(b) (c)

FIG. 1. Comparison between linear detection and photodetec-
tion. (a) Pump scheme. We consider a single microwave cavity
(dotted line) pumped at ωc � ðωm þ δÞ (green bars). The up-
converted (red bar) and down-converted (blue bar) motional
sidebands are placed tightly within the cavity linewidth. For
figure clarity, the occupations of the microwave and mechanical
modes are assumed to be zero. (b) Linear detection. The quantum
contribution from the symmetrized motional noise S̄xx is present
in both sidebands. Microwave shot noise (brown band) and
amplifier noise (beige band) combine to form the imprecision
noise S̄II . This measurement is sensitive to noise correlation
between the microwave and mechanical modes (S̄IF), which
results in asymmetric squashing (red region) and antisquashing
(blue region) of the noise floor. (c) Photodetection. Normal-
ordered detection is sensitive to the asymmetric motional noise
spectrum Sxx. The detector is not sensitive to microwave shot
noise, and the noise floor (SII) is from detector nonidealities
(beige band), analogous to dark counts for a photodetector.
Although the source is different, the sideband imbalance is
identical in both photodetection and linear detection. For math-
ematical descriptions of SII and SIF, refer to Appendix B.
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the theory of quantum limits on linear amplification [7].
(See Appendix B for more details.)
The above calculation also shows that both thermal and

zero-point force noise emanating from the mechanical bath
(i.e., terms ∝ nthm þ β=2) contribute symmetrically to
Eqs. (3) and (4) and hence play no role in determining
the asymmetry of the sidebands. In the weak-cooperativity
limit, it is the mechanical bath that almost entirely deter-
mines the mechanical oscillator fluctuations. This suggests
that the sideband asymmetry observed using linear detection
of the scattered field is not directly probing the asymmetric
quantum noise spectrum of the mechanical mode.
An alternate measurement strategy to amplitude detec-

tion [which leads to Eq. (2)] is to first filter the output signal
to a narrow bandwidth around a frequency ω and then
perform direct photodetection. One is thus measuring
power directly without first measuring field amplitudes,
and in a manner that is only sensitive to the absorption of
photons. As a result, such a measurement is described by
the normal-ordered spectrum

SNII;tot½ω� ¼
Z

dthd̂†R;outð0Þd̂R;outðtÞieiωt; ð5Þ

with output spectra given by

SNII;tot½ω�jΔ¼þωm
¼

�
S̄0 −

α

2

�

þ κR
κ

γoptγm
ðγm
2
Þ2 þ ðω − ωcÞ2

ðnthm − ntheffÞ;

ð6Þ

SNII;tot½ω�jΔ¼−ωm
¼

�
S̄0 −

α

2

�

þ κR
κ

γoptγm
ðγm
2
Þ2 þ ðω − ωcÞ2

ðnthm þ β þ ntheffÞ:

ð7Þ
Note that when one sets α ¼ β ¼ 1, the asymmetry of these
normal-ordered spectra SNII;tot½ω�jΔ¼−ωm

− SNII;tot½ω�jΔ¼þωm

is identical to that obtained from the linear measurement
[where spectra are calculated using Eq. (2)]. In this case,
however, the asymmetry is naturally attributed to both the
mechanical quantum fluctuations β and to the thermal
microwave fluctuations described by ntheff ; this is illustrated
in Fig. 1(b). Note that in ideal direct photodetection (i.e., no
incident thermal fluctuations on the cavity), one cannot
attribute the zero-temperature sideband asymmetry to a
correlation between backaction-driven position fluctua-
tions and imprecision noise, as there is no imprecision
noise floor.
While the above simple calculations suggest that the

sideband asymmetries measured using linear detection
versus direct photodetection have different origins, it is
no accident that the magnitudes of the asymmetry are the

same in both schemes. This follows directly from the fact
that the canonical commutation relation of the output field
is the same as the input field ½d̂R;outðωÞ; d̂†R;outðω0Þ� ¼
αδðωþ ω0Þ. It necessarily follows that the spectra in
Eqs. (2) and (5) will differ only by a frequency-independent
noise floor of magnitude α=2 [16,19]. If one assumes this
commutation relation, then one can legitimately say that
both spectra essentially measure the same thing. However,
on a formal level, this reasoning involves an additional
assumption on the value of β: if β ≠ α, then the output
commutator would not be the same as the input commu-
tator; see Appendix A.
Having explored the interpretation subtleties associated

with sideband asymmetry, we now turn to presenting our
main result: the experimental observation of this imbalance
in a microwave-cavity-based electromechanical system.

III. RESULTS

Our system is composed of a superconducting
microwave resonator, also referred to as a “cavity,” where
the resonance frequency is modulated by the motion of a
compliant membrane [13]. This frequency modulation
leads to the desired parametric coupling between
microwave field and mechanical motion [Fig. 2(a)].
Measurements of the cavity response below 100 mK yield
the resonance frequency ωc ¼ 2π × 5.4 GHz, total loss
rate κ ¼ 2π × 860 kHz, output coupling rate κR ¼ 2π×
450 kHz, and input coupling rate κL ¼ 2π × 150 kHz. The
capacitor top gate is a flexible aluminum membrane
(40 μm × 40 μm× 150 nm) with a fundamental drumhead
mode with resonance frequency ωm ¼ 2π × 4.0 MHz and
intrinsic loss rate γm ¼ 2π × 10 Hz at 20 mK. Motional
displacement of the top gate modulates the microwave-
resonance frequency with an estimated coupling rate
of g0 ¼ ð∂ωc=∂xÞxZP ¼ 2π × 16 Hz.
In Fig. 2(c), we present a schematic of the measurement

circuit. Tunable cavity filters at room temperature reduce
the source-phase noise to the thermal noise level at 300 K;
cryogenic attenuators further reduce the noise down to the
shot noise level [4]. A pair of microwave switches at the
device stage selects between the device or a bypass
connection for high precision noise floor calibration of
the cryogenic amplifier. The output signal passes through
two cryocirculators at approximately 100 mK, followed by
a cryogenic high-electron-mobility transistor amplifier
(HEMT) at 4.2 K, and finally to room-temperature circuits
for analysis. The occupation factor of the microwave
resonator nthc , which is expected to thermalize below
5 × 10−3 at temperatures below 50 mK, can be increased
and controlled by the injection of microwave-frequency
noise from amplified room-temperature Johnson noise.
From careful measurements of the noise power emanating
from the cavity at zero pumping compared to power spectra
with the bypass switched in place, we conclude that there is
a small contribution to nthc due to thermal radiation from the
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isolated port of the cryogenic circulators, given by the
occupation factor nthR ¼ 0.25� 0.03 [21]. Since performing
this experiment, we have reduced the temperature of the
circulator and have decreased the output-port occupation
below measurement sensitivity levels (nthR ≤ 0.03).
When a single microwave tone is applied to the device at

ωp, the parametric coupling converts mechanical oscilla-
tions at ωm to up- and down-converted sidebands at
ωp � ωm. In this experiment, we apply microwave tones
at frequencies near ωc � ωm and at powers given by the
mean number of photons in the resonator np. The micro-
wave resonance suppresses motional sidebands outside of
the linewidth, and we consider only the contributions of
signals converted to frequencies near ωc. These sidebands
are the Lorentzian components of the noise spectra of
Eqs. (3) and (4), which for the remainder of the paper are
denoted by plus and minus signs, respectively.
Throughout the measurement, we simultaneously apply

three microwave tones. We place a cooling tone at ωc −
ωm − δc to control the effective mechanical damping rate γM
and mode occupation n̄m via backaction cooling [22,23].
Two additional probe tones, placed at ωc � ðωm þ δÞ,
produce up- and down-converted sidebands symmetrically
detuned from the cavity center [Fig. 3(a)]. The detunings are
chosen to ensure no interference between the sidebands

(δc ¼ 2π × 30 kHz, δ ¼ 2π × 5 kHz) so that we may con-
sider the probe sidebands as independent measurements of
the dressed mechanical mode.
There are several differences between the theory model

developed above and the experimental realization described
here. In practice, we measure the mechanical sidebands
produced in a two-port microwave resonator with limited
sideband resolution and a noisy output port, and in the
presence of multiple injected tones with a range of
detunings and powers. From further analysis of the exper-
imental configuration (see Appendix A 2), we estimate
corrections to Eqs. (3) and (4) that are ≪ 1 and far below
the measurement resolution of our system.
To convert the motional sideband powers into equivalent

mechanical occupation ðn̄mÞ, we turn off the cooling tone
and measure the probe sidebands (δ ¼ 2π × 500 Hz) with
low optical damping (nþp ¼ n−p ≃ 5 × 102) and high
mechanical occupation set by the cryostat temperature.
Such low pump powers ensure that the mechanical side-
band signals are dominated solely by the intrinsic thermal
noise of the mechanical mode; other effects such as
dynamical backaction, cavity-noise interference, or
mechanical bath heating are negligible in this regime
[20,21]. Regulating the temperature to calibrated levels
between 20 and 200 mK, we calculate the integrated noise

(a) (b)

(c)

Red probe

Blue probe

Filter cavity

N
oi

se
 in

je
ct

io
n

analyzer

FIG. 2. Device, calibration, and measurement scheme. (a) Electron micrograph of the measured device. A suspended aluminum (gray
areas) membrane patterned on silicon (blue background) forms the electromechanical capacitor. It is connected to the surrounding spiral
inductor to form a microwave resonator. Out of view, coupling capacitors on either side of the inductor couple the device to input and
output coplanar waveguides. (b) Motional sideband calibration. The cryostat temperature is regulated while the mechanical mode is
weakly probed with microwave tones set at ωc þ ωm þ δ (blue) and at ωc − ωm − δ (red), with detunings δ ¼ 2π × 500 Hz. The
observed linear dependence provides the calibration between the normalized sideband power and the mechanical occupation factor.
Insets: Up-converted motional sideband spectra collected at 20 mK (top) and 200 mK (bottom), with Δω ¼ ω − ðωc − δÞ. (c) Schematic
of the microwave-measurement circuit.
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power under the sideband Lorentzians P�
m, normalized by

the respective microwave-probe power transmitted through
the device P�

thru. In the limit of high thermal occupation, the
normalized power is directly proportional to n̄m [24]. As we
vary the cryostat temperature T, we compare the normalized
power to the thermal occupation factor ½expðℏωm=kBTÞ − 1�−1
[Fig. 2(b)]. A linear fit yields the conversion factors for the
up-converted (nþm) and down-converted (n−m) sidebands:
nþm ¼ ð9.9� 0.2Þ × 108Pþ

m=P
þ
thru and n−m ¼ ð5.4� 0.1Þ×

108P−
m=P−

thru. The factor of approximately 2 between cali-
bration factors at the two pump detunings is due to the
presence of a parasitic bypass channel in the microwave
circuit that allows pump signals toweakly transmit across the
input and output ports of the device while completely
bypassing themicrowave resonator. (See Sec. 4 of Ref. [21].)
Further detuning the probe tones (δ ¼ 2π × 5 kHz) and

turning on the cooling tone (δc ¼ 2π × 30 kHz), we
explore the sideband ratio n−m=nþm over various mechanical
and microwave occupations. To reduce n̄m to values
approaching 1, we increase the cooling-tone power up to
ncoolp ¼ 4 × 105. For sideband characterization, the probe-
tone powers are set to n−p ¼ nþp ¼ 105 in order to achieve
sufficient measurement sensitivity and the probe sideband
spectra are analyzed using the conversion factors described
above. The imbalance between n−m and nþm is clearly evident
in the noise spectra [Fig. 3(b)].
As further demonstration of the asymmetry with respect

to ntheff , we plot the ratio n−m=nþm as a function of nþm in
Fig. 3(c). Each curve corresponds to one setting of injected
microwave noise. The data show excellent agreement to the
expected ratio n−m=nþm ¼ 1þ ð2ntheff þ 1Þ=nþm. This relation-
ship highlights the combined effect of quantum and
classical noise in Eqs. (3) and (4). By fitting each curve
to a two-parameter model aþ b=nþm, we find an average

constant offset a ¼ 0.99� 0.02 for all curves, accurately
matching the model and confirming our calibration tech-
niques. Fitting for b, the data indicate ntheff , spanning 0.71 to
4.5, with uncertainty all within �0.09 quanta.
To quantify the contributions due to quantum fluctua-

tions and classical cavity noise, we fix the cooling-tone
power at ncoolp ¼ 4 × 105 (γM ¼ 2π × 360 Hz) and measure
the imbalance n−m − nþm as we sweep ntheff . At each level, we
measure the average noise-power density η over a 250-Hz
window centered at ωc and away from any motional
sideband. Over this range, η contains two contributions:
the noise radiating out of the microwave resonator, propor-
tional to ntheff , and the detector noise floor, set by the noise
temperature of the cryogenic amplifier (TN ≈ 3.6 K). We
directly measure the detector noise floor by switching from
the device to an impedance-matched bypass connection and
measure the noise-power density η0 over the same window
with matching detected tone powers.
In Fig. 3(d), we plot the sideband imbalance against the

noise floor increase Δη ¼ η − η0, which is expected to
follow n−m − nþm ¼ 2ntheff þ 1 ¼ 4λΔηþ 1, where λ is the
conversion factor for Δη in units of cavity quanta nthc . The
data clearly follow a linear trend with a slope of
λ ¼ ð2.7� 0.1Þ × 10−1 ðaW=HzÞ−1. More importantly,
we observe an offset of 1.2� 0.2, in excellent agreement
with the expected quantum imbalance of þ1 from the
quantum fluctuations of the microwave field.
As an additional check, we also consider the sideband

average ðnþm þ n−mÞ=2 as a function of Δη. Averaging
Eqs. (3) and (4), we see that the resulting occupation n̄m þ
ðβ=2Þ does depend on ntheff due to the coupling between the
mechanical and microwave modes, n̄m ¼ ðγm=γtotÞnthmþ
ðγopt=γtotÞð2nthc þ αÞ þ ðγcoolopt =γtotÞnthc , where γopt (γcoolopt ) is
the optical coupling rate for the individual probe (cooling)

nth
eff

n+
mn−

m −

+ n+
mn−
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FIG. 3. Sideband asymmetry. (a) Pump scheme. Three tones are placed about the microwave resonance. Two probe tones generate up-
converted (red) and down-converted (blue) sidebands. An additional tone (green) cools the mechanical mode. (b) Sideband spectra.
S̄II;tot½ω�measured at ntheff ¼ 0.60 (blue) and 2.5 (orange) with n̄m ¼ 5.3 and 7.1, respectively. (c) Sideband asymmetry. The ratio n−m=nþm
versus nþm is plotted for increasing noise injection. (d) Sideband imbalance (blue) and sideband average (red) versus the measured noise
increase Δη. Sideband imbalance n−m − nþm and average ðn−m þ nþmÞ=2 exhibit a linear trend with Δη. The imbalance at Δη ¼ 0 is the
quantum imbalance due to the squashing of fluctuations of the microwave field.
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tones. Accounting for this so-called backaction heating of
the mechanical mode [13,22], we recover λ¼ð2.5�0.2Þ×
10−1 ðaW=HzÞ−1, consistent with the imbalance results
above.
Notably, the average sideband occupation does contain

contributions from mechanical zero-point fluctuations.
Future experiments could infer the mechanical quantum
contribution of ðβ=2Þ with a method to independently
calibrate n̄m to high accuracy, for example, with a passively
cooled high-frequency mechanical mode thermalized to a
primary low-temperature thermometer.
In summary, we report the quantum imbalance between

the up- and down-converted motional sideband powers in a
cavity-electromechanical system measured with a symmet-
ric, linear detector. We show that for linear detection of the
microwave field, the imbalance arises from the correlations
between the mechanical motion and the quantum fluctua-
tions of the microwave field. For normal-ordered detection
of the microwave field, however, the imbalance arises
directly from the quantum fluctuations of the mechanics.
By further assuming that the output microwave field
satisfies the canonical commutator, which also determines
the quantum fluctuations of the mechanical mode, the
measurement can be interpreted as performing either
symmetric or normal-ordered detection regardless of the
type of detector utilized. In either interpretation, the
imbalance in motional sideband power stems from two
components: the quantum fluctuations of the internal fields
and the classical thermal noise from the environment. Once
the classical contribution is reduced or calibrated to well
below the quantum noise level, sideband imbalance pro-
vides a quantum-calibrated thermometer for mesoscopic
mechanical systems.
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Note added.—Recently, two other groups have reported
similar asymmetry measurements [25,26]. Both groups
have used linear measurement schemes and are subject
to the same interpretation issues described here.

APPENDIX A: INPUT-OUTPUT THEORY

In this section, we give a framework to calculate the
output-noise spectrum of an opto- or electromechanical
system with arbitrary pump configuration by utilizing the

input-output theory. As a first example, we analyze an ideal
(without intrinsic losses) two-port opto- or electromechani-
cal system with a single pump tone either at frequency
ωp ¼ ωc − ωm or ωp ¼ ωc þ ωm and discuss the origin of
the sideband asymmetry in the output-noise spectrum. We
then use this method to study the system in our experiment,
i.e., a two-port electromechanical system with three pumps
(two balanced detuned tones and a cooling tone).
We start with the standard Hamiltonian of an opto- or

electromechanical system

Ĥ ¼ ℏωcâ†âþ ℏωmb̂
†b̂þ ℏg0â†âðb̂þ b̂†Þ

þ Ĥdrive þ Ĥdiss; ðA1Þ

where â (â†) is the annihilation (creation) operator of the
cavity field. b̂ (b̂†) is the annihilation (creation) operator of
the phonon, and g0 is the coupling strength between the
cavity and the mechanical oscillator. We assume an external
driving, described by Ĥdrive, which is applied on the input
port on the left side of the cavity. The optical and the
mechanical systems are both coupled to dissipative baths,
described by Ĥdiss, giving rise to the decay rates γm for the
mechanical and κ for the optical systems. The total cavity
linewidth κ consists of the contributions from the different
decay channels, namely, the right (R) and the left (L) ports,
as well as from intrinsic losses (I) inside the cavity,
i.e., κ ¼ κR þ κL þ κI .
For large pumping fields, we may split the fields into

classical and quantum components â → āþ d̂ and
b̂ → b̄þ ĉ, where d̂ and ĉ describe the quantum fluctua-
tions of the cavity photon and the phonon. By using
input-output theory and neglecting the second-order con-
tributions from the quantum fluctuations, the linearized
quantum Langevin equations are

_̂d ¼ −iω0
cd̂ −

κ

2
d̂ − ig0āðtÞ½ĉþ ĉ†� −

X
σ∈L;R;I

ffiffiffiffiffi
κσ

p
d̂σ;in;

ðA2aÞ

_̂c ¼ −iωmĉ −
γm
2
ĉ − ig0½ā�ðtÞd̂þ āðtÞd̂†� − ffiffiffiffiffi

γm
p

ĉin;

ðA2bÞ

where ω0
c ¼ ωc þ gðb̄þ b̄�Þ≃ ωc. Including the possibil-

ity of multiple drives at frequencies ωn, we obtain āðtÞ ¼P
nāne

−iωnt as the driving field inside the cavity, with
ān ¼ ffiffiffiffiffi

κL
p

αn=½ðκ=2Þ − iðωn − ωcÞ�. Without loss of gen-
erality, we take ān to be real. In Eqs. (A2), d̂σ;in describes
the input fluctuations to the cavity from channel σ with
damping rate κσ , and ĉin describes the input fluctuations to
the mechanical oscillator. The input field operators satisfy
the following commutation relations:
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½d̂σ;inðtÞ; d̂†σ0inðt0Þ� ¼ ασδσσ0δðt − t0Þ;
½ĉinðtÞ; ĉ†inðt0Þ� ¼ βδðt − t0Þ;

hd̂†σ;inðtÞd̂σ0inðt0Þi ¼ nthσ δσσ0δðt − t0Þ;
hĉ†inðtÞĉinðt0Þi ¼ nthmδðt − t0Þ; ðA3Þ

where ασ ¼ β ¼ 1, nthσ is the photon occupation in port σ,
and nthm ¼ 1=½expðℏωm=kBTÞ − 1� is the thermal occupa-
tion factor of the bath responsible for the intrinsic
mechanical dissipation. The total thermal occupation of
the cavity is the weighted sum of the contributions from
different channels nthc ¼ P

σðκσ=κÞnthσ . Note that the rela-
tions in Eq. (A3) are only valid if we deal with frequencies
close to cavity resonance.

1. Single tone

We start with the case of a single pump tone at frequency
ωp ¼ ωc − Δ, where the drive detuning Δ is chosen to

either be �ωm; our goal is to make the origin of the
asymmetry between the spectra measured for these two
cases clear. For maximum clarity, we also consider the
good-cavity limit ωm ≫ κ and work within the rotating-
wave approximation (RWA). In this limit, we can describe
the relevant spectra in terms of a 3 × 3 scattering matrix,
involving the fields D̂þð−Þ ≡ ðd̂R; d̂L; ĉð†ÞÞT , where the plus
sign (minus sign) refers to a driving on the red (blue)
sideband, i.e., Δ ¼ �ωm. By using the input-output rela-
tions d̂σ;out ¼ d̂σ;in þ ffiffiffiffiffi

κσ
p

d̂σ and ĉout ¼ ĉin þ ffiffiffiffiffi
γm

p
ĉ and

solving the corresponding quantum Langevin equations,
we obtain in frequency space (working in a rotating frame
at the cavity frequency) [27]

D̂�
out½ω� ¼ s�½ω�D̂�

in½ω�: ðA4Þ

For frequencies close to the cavity resonance (i.e.,
jω − Δj ≪ κ), the scattering matrix s½ω� is

s�½ω� ¼

0
BBBBB@

h
1 − 2κR

κ � κR
κ

γopt
N�½ω�

i h
− 2

ffiffiffiffiffiffiffi
κLκR

p
κ �

ffiffiffiffiffiffiffi
κLκR

p
κ

γopt
N�½ω�

i ffiffiffiffiκR
κ

p i ffiffiffiffiffiffiffiffiffi
γmγopt

p
N�½ω�h

− 2
ffiffiffiffiffiffiffi
κLκR

p
κ �

ffiffiffiffiffiffiffi
κLκR

p
κ

γopt
N�½ω�

i h
1 − 2κL

κ � κL
κ

γopt
N�½ω�

i ffiffiffiffiκL
κ

p i ffiffiffiffiffiffiffiffiffi
γmγopt

p
N�½ω�ffiffiffiffiκR

κ

p i ffiffiffiffiffiffiffiffiffi
γmγopt

p
N�½ω�

ffiffiffiffiκL
κ

p i ffiffiffiffiffiffiffiffiffi
γmγopt

p
N�½ω�

h
1 − γm

N�½ω�
i

1
CCCCCA: ðA5Þ

Here, the denominator N�½ω� describes the mechanical
response including optical damping or antidamping:

N�½ω� ¼−iðω ∓ ωmÞþ
γm� γopt

2
; γopt¼

4G2

κ
; ðA6Þ

with G ¼ g0āp being the many-photon optomechanical
coupling rate.
Our interest is in the output field leaving the right port

of the cavity and hence in the first row of s�½ω�. For a
weak optomechanical cooperativity, we can ignore the
modification of the mechanical damping by the cavity
and approximate γm � γopt ≃ γm. The only remaining
differences in the first row of sþ versus s− are in the
overall sign of the mechanical contributions (terms ∝ γopt)
in the elements s11 and s12. These elements describe how
the incident microwave fluctuations show up in the
output; the sign difference of the mechanical term directly
mirrors the fact that for the red- (blue-) detuned drive, the
cavity provides positive (negative) optical damping on
the mechanics. Note, finally, that for weak coupling, the
coefficient s13 describing the transmission of mechanical
bath fluctuations to the output is identical for both choices
of drive detuning.
The normal-ordered noise spectral density and the

symmetrized noise spectral density of the output field on
the right side of the cavity are defined as

SNII;tot½ω� ¼
Z

dthd̂†R;outð0Þd̂R;outðtÞieiωt;

S̄II;tot½ω� ¼
1

2

Z
dthfÎðtþ t̄Þ; Îðt̄Þgieiωt; ðA7Þ

where ÎðtÞ ¼ d̂R;outðtÞ þ d̂†R;outðtÞ and all operators are lab
frame output operators. In the definition of the symmetrized
correlator, the bar indicates an average over the center-of-
mass time t̄, which implies that we only characterize the
stationary aspects of the output noise. The above definition
is consistent with the symmetrized noise spectral density
measured by a classical voltage-spectrum analyzer, as used
in the experiment. In the simple RWA theory presented in
the main text, the symmetrized correlation function is
explicitly independent of t̄. This is no longer true when
one considers non-RWA corrections, or multi-tone driving
(although the t̄-dependent terms remain extremely small for
relevant parameters).
A further simplification arises from the fact that we

focus on frequencies near the cavity-resonance frequency
(i.e., ω≃ ωc in the lab frame). For such frequencies, terms
in the spectra involving the output operator d̂†R;outðtþ t̄Þ
will not contribute, as these operators only have spectral
weight at negative frequencies in the lab frame (see, e.g.,
Appendix D in Ref. [7].) We can thus replace fÎðtþ t̄Þ;
Îðt̄Þg by fd̂R;outðtþ t̄Þ; d̂†R;outðt̄Þg in the definition of the
symmetrized spectrum.
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Having established the definition of the noise spectra, we
now return to our rotating frame, where the cavity frequency
is situated at ω ¼ Δ. By using the correlators defined in
Eq. (A3), we can calculate these noise spectral densities and
express them in terms of the elements of the scattering
matrix [Eq. (A5)]. We obtain for the symmetrized spectra

S̄II;tot½ω�jΔ¼�ωm
¼ js�11½ω�j2

�
nthR þ αR

2

�

þ js�12½ω�j2
�
nthL þ αL

2

�

þ js�13½ω�j2
�
nthm þ β

2

�
; ðA8Þ

while the normal-ordered spectra take the form

SNII;tot½ω�jΔ¼þωm
¼ jsþ11½ω�j2nthR þ jsþ12½ω�j2nthL

þ jsþ13½ω�j2nthm; ðA9aÞ
SNII;tot½ω�jΔ¼−ωm

¼ js−11½ω�j2nthR þ js−12½ω�j2nthL
þ js−13½ω�j2ðnthm þ βÞ: ðA9bÞ

Note crucially that for a given drive detuning, the
scattering-matrix elements appear identically in both
the symmetrized and normal-ordered spectra. The only
difference is how these elements are weighted by the
input noise. For the symmetrized spectra, it is always the
symmetrized bath noise that enters (i.e., nthσ þ 1=2),
irrespective of the drive detuning. In the normal-ordered
case, we see that the only contribution from vacuum
noise is from the mechanical bath, and only for the case
of a blue-detuned drive. We also note that the form of the
symmetrized spectra given above could be obtained from
a completely classical set of Langevin equations, as the
input-noise correlators enter the same way for both
detunings. This is not true for the normal-ordered case,
as the effective mechanical bath correlator is different for
Δ ¼ ωm versus Δ ¼ −ωm.
Setting αR ¼ αL ≡ α for clarity, the imbalance of the

spectra (i.e., the difference between the output spectra
for the two choices of detuning) δS ¼ SjΔ¼−ωm

− SjΔ¼ωm

become

δS̄II;tot ¼ fjs−11j2 − jsþ11j2g
�
nthR þ α

2

�
þfjs−12j2 − jsþ12j2g

�
nthL þ α

2

�
þ fjs−13j2 − jsþ13j2g

�
nthm þ β

2

�
;

δSNII;tot ¼ fjs−11j2 − jsþ11j2gnthR þ fjs−12j2 − jsþ12j2gnthL þ fjs−13j2 − jsþ13j2gnthm þ js−13j2β: ðA10Þ

We have omitted writing the explicit frequency dependence of the elements of s� for clarity.
Finally, we insert the explicit elements of the scattering matrix in Eq. (A5) into the expressions for the different output

spectra derived above. The symmetrized noise in the rotating frame becomes

S̄II;tot½ω�jΔ¼þωm
¼ S̄0 þ

κR
κ

γmγopt

ðω − ωmÞ2 þ γ2tot
4

�
nthm − ntheff þ

β − αR
2

−
γopt
γm

½nthc − nthR � −
κL
κ

�
2þ γopt

γm

��
αL − αR

2

��
;

S̄II;tot½ω�jΔ¼−ωm
¼ S̄0 þ

κR
κ

γmγopt

ðωþ ωmÞ2 þ γ2tot
4

�
nthm þ ntheff þ

β þ αR
2

−
γopt
γm

½nthc − nthR � þ
κL
κ

�
2 −

γopt
γm

��
αL − αR

2

��
; ðA11Þ

where we define ntheff ¼ 2nthc − nthR , γtot ¼ γm � γopt, and the noise floor

S̄0 ¼
αR
2
þ nthR þ 4κR

κ
ðnthc − nthR Þ þ

2κR
κ

ðαL − αRÞ: ðA12Þ

For the normal-ordered spectra, we obtain

SNII;tot½ω�jΔ¼þωm
¼ S̄0 −

αR
2
þ κR

κ

γmγopt

ðω − ωmÞ2 þ γ2tot
4

�
nthm − ntheff −

γopt
γm

½nthc − nthR �
�
; ðA13Þ

SNII;tot½ω�jΔ¼−ωm
¼ S̄0 −

αR
2
þ κR

κ

γmγopt

ðωþ ωmÞ2 þ γ2tot
4

�
nthm þ ntheff þ β −

γopt
γm

½nthc − nthR �
�
: ðA14Þ
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If one assumes the case of a weak optomechanical
cooperativity, γtot ≃ γm, takes αL ¼ αR, and transforms
back into the lab frame, we recover the spectral densities
given in the main text; see Eqs. (3), (4), (6), and (7).
It is also useful to characterize the asymmetry of the

Δ ¼ �ωm spectra in terms of the total integrated weight of
the mechanical feature. Defining δI ¼ R ðdω=2πÞδS½ω�
and taking γopt ≪ γm, we find

δĪ II;tot ¼
κR
κ
γopt

�
2ntheff þ

κR
κ
αR þ κL

κ
αL

�
;

δIN
II;tot ¼

κR
κ
γopt½2ntheff þ β�: ðA15Þ

Besides classical noise squashing, we thus see that the
asymmetry of the symmetrized spectra (corresponding to

the linear field measurement) are most naturally inter-
preted as being due to the contribution of fluctuations of
the incident microwave fields, whereas the asymmetry in
the normal-ordered spectra is most naturally attributed to
the fluctuations of the mechanical oscillator.
Finally, note that the output spectra are linked via the

commutation relation of the output field, which must be the
same as those of the corresponding input field:

½d̂R;outðωÞ; d̂†R;outðΩÞ� ¼ αRδðωþ ΩÞ:

Calculating the commutator using the scattering matrix in
Eq. (A5) and keeping αL, αR, and β unspecified, we obtain
for both detuning cases

½d̂R;outðωÞ; d̂†R;outðΩÞ�jΔ¼�ωm
¼ δðωþΩÞ

�
αR þ 4κRκL

κ2
ðαL − αRÞ

� κR
κ

γmγopt

ðω ∓ ωmÞ2 þ γ2tot
4

��
β −

κL
κ
αL −

κR
κ
αR

�
∓ κL

κ

�
1� γopt

γm

�
ðαR − αLÞ

��
: ðA16Þ

We thus see that preserving the commutation relation
of the output R fields requires, in general, αL ¼ αR ¼ β.
The fact that the commutator of the output field is a
constant means that for any detuning, the symmetrized
spectrum will be equal to the normal-ordered spectrum plus
a frequency-independent noise background.

2. Two balanced detuned tones with cooling

In our actual experiment, we have a two-port electro-
mechanical system that we pump during our measurement
simultaneously with three microwave tones. These tones
are all detuned from the cavity resonance, and in a frame
rotating at the cavity frequency ωc, the drive Hamiltonian
reads

Ĥdrive ¼
X
ν¼∓

aνðâeiνðωmþδÞt þ â†e−iνðωmþδÞtÞ

þ acoolðâe−iðωmþδcÞt þ â†eiðωmþδcÞtÞ: ðA17Þ

The first term describes the two balanced detuned tones:
one is in the amount of δ detuned below the red side-
band (ν ¼ −), and the other one is with the same
amount detuned above the blue sideband (ν ¼ þ). The
second term corresponds to the cooling tone, which we
assume to be sufficiently detuned below the red sideband
(δc > δ ≫ γm), so that the cooling tone acts independently
from the probe tones; see the next section for further
discussions.

Now, we start with the driving scheme in Eq. (A17) and
the standard Hamiltonian in Eq. (A1), which we rotate in a
frame at the cavity frequency and the mechanical frequency
ωm. Additionally, we perform a rotating-wave approxima-
tion as usual, where we neglect nonresonant processes
(ωm ≫ κ). As before, we use input-output theory to include
the dissipative environment and derive the quantum
Langevin equations for the fluctuation operators of the
microwave (mechanical) d̂ ðĉÞ system. By solving these
Langevin equations for the noise operator ĉ½ω� of the
mechanical oscillator, we can derive the symmetrized
noise spectral density of the mechanical motion
ðx̂ ¼ ½ĉþ ĉ†�xZPÞ:

S̄xx½ω� ¼
1

2

Z
dteiωthfx̂ðtÞ; x̂ð0Þgi

¼ γM

ω2 þ γ2tot
4

��
nthM þ 1

2

�
þ γ−opt þ γþopt

γM

�
nthc þ 1

2

��
x2ZP;

ðA18Þ
with the total damping γtot ¼ γM þ γþopt − γ−opt, where the
γ�opt ¼ 4G2

�=κ corresponds to the optical (anti-)damping
induced by the red(blue) tone. The optical damping γcoolopt ,
associated with the cooling tone at ω ¼ ωc − ωm − δc, is
included in the enhanced mechanical linewidth
γM ¼ γm þ γcoolopt , as well as in the modified mechanical
occupation nthM ¼ ðγmnthm þ γcoolopt nthc Þ=γM.
In the calculation of the output spectra, we assume that

the anti-Stokes sideband created by the red tone and the
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Stokes sideband created by the blue tone can be treated
independently. The distance between the two sidebands in
frequency space is 2δ; thus, for δ ≫ γtot, we have two well-
separated Lorentzians and we can neglect a direct coupling

of the drives in the Langevin equations; see the next section
for further discussions. The noise in the output field near
the Stokes sideband (ω ¼ ωþ δ) and the anti-Stokes
sideband (ω ¼ ω − δ) becomes

d̂R;out½ω ∓ δ� ¼
�
1 −

2κR
κ

� κR
κ

γ�opt
−iωþ γtot

2

�
d̂R;in½ω ∓ δ� −

�
2 ∓ γ�opt

−iωþ γtot
2

�X
σ̄∈L;I

ffiffiffiffiffiffiffiffiffi
κRκσ̄

p
κ

d̂σ̄;in½ω ∓ δ�

þ i

ffiffiffiffiffi
κR
κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
γMγ

�
opt

q
−iωþ γtot

2

ĉð†Þin;tot½ω� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−optγ

þ
opt

q
−iωþ γtot

2

X
σ∈L;I;R

ffiffiffiffiffiffiffiffiffi
κRκσ

p
κ

d̂†σ;in½ω ∓ δ�; ðA19Þ

with the effective mechanical input noise

ĉð†Þin;tot½ω� ¼
ffiffiffiffiffiffi
γm
γM

r
ĉð†Þin ½ω�

∓ i

ffiffiffiffiffiffiffiffiffi
γcoolopt

γM

s X
σ∈L;I;R

ffiffiffiffiffi
κσ
κ

r
d̂ð†Þσ;in½ω ∓ δc�; ðA20Þ

where we again use the input-output relation d̂R;out ¼
d̂R;in þ ffiffiffiffiffi

κR
p

d̂ and approximate the susceptibility of
the cavity as χc½ω� ¼ ½−iðω ∓ δðcÞÞ þ κ=2�−1 ≃ 2=κ.
The structure of the output-noise operator is similar to
the single-tone setup; see the first row in Eq. (A5),
although, here, we have also a contribution from the
cooling tone and a coupling to d̂†σ;in, arising from the fact
that the mechanical oscillator sees both drives and thus
mediates an indirect coupling between the two sidebands.
With the noise correlators and commutation relations
given in Eq. (A3) and setting ασ ¼ β ¼ 1, the sym-
metrized noise spectral densities are

S̄II;tot½ω − δ� ¼ S̄0 þ
κR
κ

γtotγ
þ
opt

ω2 þ γ2tot
4

½n̄m − ntheff �; ðA21aÞ

S̄II;tot½ωþδ� ¼ S̄0þ
κR
κ

γtotγ
−
opt

ω2þ γ2tot
4

½n̄mþntheff þ1�; ðA21bÞ

with the averaged mechanical occupation

n̄m ¼ γM
γtot

nthM þ γ−opt
γtot

ðnthc þ 1Þ þ γþopt
γtot

nthc ðA22Þ

and the noise floor S̄0 as defined in Eq. (A12). The
normal-ordered noise spectral densities yield

SNII;tot½ω − δ� ¼ S̄0 −
1

2
þ κR

κ

γtotγ
þ
opt

ω2 þ γ2tot
4

½n̄m − ntheff �; ðA23aÞ

SNII;tot½ωþ δ� ¼ S̄0−
1

2

þ κR
κ

γtotγ
−
opt

ω2þ γ2tot
4

�
n̄mþntheff þ

γM
γtot

þ γþopt− γ−opt
γtot

�
:

ðA23bÞ

For equal coupling strengths Gþ ¼ G−, the amount of
optical damping and antidamping is the same, i.e.,
γþopt ¼ γ−opt ¼ γopt, and thus, the total damping contains
only the enhanced mechanical linewidth γtot ¼ γM. For
the case Gþ ≠ G−, the asymmetries in terms of their
integrated weights become

δĪ II;tot ¼ δIN
II;tot

¼ κR
κ
fn̄m½γ−opt − γþopt� þ ðntheff þ 1Þγ−opt þ ntheffγ

þ
optg:

ðA24aÞ
Thus, the observed sideband asymmetry of the sym-
metrized spectrum and the sideband asymmetry for the
normal-ordered spectrum coincide. For balanced optical
damping rates γþopt ¼ γ−opt, we obtain the expected result
for the asymmetry, which scales with 2ntheff þ 1.

3. Effects of asymmetric parameters, the cooling tone,
and the next-sideband contributions

In our main analysis, we assumed that the direct
coupling between the cavity fields at the two mechan-
ically generated sidebands near the cavity resonance is
negligible. By this, we mean that the Lorentzian-shaped
resonance around ωc − δ (lab frame), created due to the
drive on the red sideband, does not overlap with the one
created from the drive on the blue sideband at frequency
ωc þ δ. Within this approximation, we could derive two
independent noise spectral densities, one valid for
frequencies close to the Stokes sideband [Eq. (A21b)]
and the other for frequencies close to the anti-Stokes
sideband [Eq. (A21a)]. From these expressions, it
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follows that the width of each Lorentzian is given by the
total damping rate γtot. Thus, the detuning of the control
lasers from the sideband frequencies should fulfill the
condition δ ≫ γtot. Briefly, we want to confirm the

validity of this condition by calculating the complete
RWA solution. In this case, the noise in the output field
near the cavity resonance becomes (G− ¼ Gþ and
rotating frame)

d̂R;out½ω� ¼ d̂R;in½ω� −
ffiffiffiffiffi
κR

p
χc½ω�

X
σ∈R;L;I

ffiffiffiffiffi
κσ

p
d̂σ;in½ω� −

ffiffiffiffiffi
κR
κ

r
γoptðχm½ω − δ� − χm½ωþ δ�Þ

X
σ∈R;L;I

ffiffiffiffiffi
κσ
κ

r
ðd̂σ;in½ω� þ d̂†σ;in½ω�Þ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κR
κ
γMγopt

r
ðχm½ωþ δ�ĉin;tot½ωþ δ� þ χm½ω − δ�ĉ†in;tot½ω − δ�Þ; ðA25Þ

with the susceptibilities for the mechanical oscillator
χm½ω� ¼ ½−iωþ ðγM=2Þ�−1 and the microwave cavity
χc½ω� ¼ ½−iωþ ðκ=2Þ�−1. Note that near the Stokes and
anti-Stokes sideband, i.e., for frequencies around ω ∼�δ,
the mechanical susceptibility shows up as χm½ω� and

χm½ω� 2δ�; by neglecting the contribution from
χm½ω� 2δ�, we recover Eq. (A19), describing two inde-
pendent resonances at ω ∼�δ.
For simplicity, we focus on the symmetrized noise

spectral density, which in this case yields

S̄II;tot½ω� ¼ S̄0 −
4κR
κ

γ2opt½ðω − δÞðωþ δÞ þ γ2M
4
�

½ðωþ δÞ2 þ γ2M
4
�½ðω − δÞ2 þ γ2M

4
�

�
nthc þ 1

2

�
þ κR

κ

γMγopt

ðωþ δÞ2 þ γ2M
4

ðn̄m − ntheffÞ

þ κR
κ

γMγopt

ðω − δÞ2 þ γ2M
4

ðn̄m þ ntheff þ 1Þ

¼ S̄0 þ S̄mix
II;tot½ω� þ S̄ASII;tot½ω� þ S̄SII;tot½ω�: ðA26Þ

Here, we have written the noise spectral density in a
frame rotating at the cavity resonance frequency. This
expression contains both Lorentzians near the anti-Stokes
(AS) and Stokes (S) sidebands, as well as the noise floor
S̄0 and a mixing term S̄mix

II;tot½ω�. Figure 4(a) shows a plot
of this output spectrum for the parameters used in the
experiment. Both resonances are clearly separated and
each well described by the spectra calculated without a
coupling of the fields (dashed red and dotted blue lines).
By decreasing the detuning δ, the distance between the
peaks decreases and they start to overlap. Without any
detuning, we end up with a Lorentzian at the cavity
resonance, with an integrated weight containing solely
the mechanical bath.
To study the influence of the detunings, we compare the

symmetrized output spectrum [Eq. (A26)] to the single

Lorentzian approximations S̄SðASÞII;tot ½ω�. For simplicity, we
focus on the maxima at the Stokes and anti-Stokes side-
bands and subtract the noise floor. We end up with the
ratios

S̄II;tot½�δ� − S̄0

S̄SðASÞII;tot ½�δ�
¼ 1þ 1

½4δγM�2 þ 1

�
nthM − nthopt þ 1∓1

2

nthM þ nthopt þ 1�1
2

�
;

ðA27Þ

with nthopt ¼ γopt
γM

ð2nthc þ 1Þ � ntheff . From this expression, we

see that the corrections to S̄SðASÞII;tot ½ω� (second term in the
equation above) vanish as expected, if δ ≫ γM; see Fig. 4(b).
Hence, in this regime, we can describe our spectra as
two individual resonances. Note that the actual chosen
detuning in the experiment lays clearly in the regime where
both peaks are well separated; see Figs. 4(a) and 4(b).
Moreover, we want to discuss briefly the influence of the

cooling tone. So far, we have worked with an effective
mechanical input noise [see Eq. (A20)], where only the
mechanical system is directly coupled and affected by the
cooling tone. This has led to a reduced mechanical
occupation nthM and an increased mechanical linewidth
γM, which we use to derive the output spectra close to
the Stokes and anti-Stokes sidebands. Thus, we treat the
cooling tone as part of the mechanical bath without any
direct effect on the noise spectrum.
In practice, Raman processes associated with the cooling

tone, although very nonresonant, could also contribute
directly to the measured spectrum. These contributions are
not simply additive, and to verify that they do not affect the
sideband asymmetry in our experiment, we extend our
theoretical description and include additional processes due
to the cooling tone. We start from the time-dependent, and
therewith not exactly solvable, interaction Hamiltonian
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Ĥint ¼ d̂†ĉeiδtðGþGce−iΔctÞ þ d̂ĉ†e−iδtðGþ GceiΔctÞ
þG½d̂†ĉ†e−iδt þ d̂ ĉ eiδt�; ðA28Þ

with the relative detuning Δc ≡ δ − δc. Here, sidebands are
created at multiples of Δc, and thus, the resulting system
of Langevin equations has to be truncated. In Fig. 4(d), we
show results for the symmetrized output spectrum, includ-
ing contributions from the next sidebands at �Δc. The
detuning of the cooling tone is chosen to be δc ¼ 6δ, as in
the experiment. The additional peak at ω − ωc ¼ −δc is
well separated from the Stokes and anti-Stokes peaks at
ω − ωc ¼∓ δ. Hence, a measurement of the asymmetry
around these probe sidebands should not be crucially
affected by the cooling peak.
To quantify this effect, we plot in Fig. 4(e) the deviations

Δn�m
n�m

¼ n�m − n�m;0

n�m
; ðA29Þ

where n�m ðn�m;0Þ corresponds to the areas of the sidebands
with (without) the additional contributions from the cooling
tone. The numerical results show that the deviations are
small for appropriate detuning δc; e.g., for the experimental
parameter set, they are in the order of Δnþm=nþm ∼ 10−3 and
Δn−m=n−m ∼ 10−5. In comparison to the asymmetry of the
sidebands, which can be estimated to be at the order of
2ntheff þ 1, these deviations are negligible.
Finally, we want to briefly comment on the influence of

higher-order mechanical sidebands. The general linearized
interaction Hamiltonian for our setup reads

Ĥint ¼ Gþ½e−iδtd̂ĉ† þ eiδtd̂†ĉ� þ G−½eiδtd̂ ĉþe−iδtd̂†ĉ†�
þ ĤCR;

ĤCR ¼ Gþ½eið2ωmþδÞtd̂†ĉ† þ e−ið2ωmþδÞtd̂ ĉ�
þ G−½eið2ωmþδÞtd̂ĉ† þ e−ið2ωmþδÞtd̂†ĉ�; ðA30Þ

where the counterrotating terms in ĤCR describe the
strongly nonresonant Stokes and anti-Stokes processes
generated by the two control lasers. The coupling strengths
G� contain the drive amplitudes, as usual, but we assume
again that they can be different in magnitude, which leads
to a total mechanical damping of γopt ¼ γM þ γþopt − γ−opt
with γ�opt ¼ 4G�=κ. Note that for the system to be stable,
the total damping has to be positive, which roughly
translates into the condition Gþ > G−.
The inclusion of the counterrotating terms leads to a

time-dependent problem, which cannot be solved exactly.
In principle, ĤCR generates an infinite number of sidebands
at multiples from �ωm. If one is not too far from the
resolved-sideband limit, a perturbative approach keeping
track of only the leading-order sidebands created by ĤCR is
sufficient. Figure 4(c) depicts the deviations of the maxi-
mum of the symmetrized spectral density as a function of
ωm=κ, including the next sidebands at frequencies
ω ¼ ωc � 2ωm. As expected, when one even modestly
approaches the resolved-sideband regime, i.e., ωm > κ, the
contributions from the counterrotating terms are negligible.
Moreover, for the given experimental setup, we are far in
the resolved-sideband regime, as indicated in the graph.

FIG. 4. Effects of asymmetric parameters, the cooling tone, and the next-sideband contributions. The dotted blue (dashed red) lines
correspond to the results for the (anti-)Stokes sideband at ω − ωc ¼ þδ (−δ). (a) Symmetrized output spectra as a function of frequency,
for experimental parameters. The solid gray line (area) shows the non-RWA result, which exhibits two peaks at ω ¼ ωc � δ. The dashed
red and dotted blue lines correspond to two independent noise spectral densities, one valid for frequencies close to the anti-Stokes
sideband [Eq. (A21a)] and the other one for frequencies close to the Stokes sideband [Eq. (A21b)], which each accurately describe the
resonant peaks at ω − ωc ¼∓ δ. (b) Influence of the detuning parameter δ on the output noise. For δ ≫ γtot ¼ γM, the results from the
twin peak spectrum, i.e., from Eq. (A26), coincide with the single-peak approximations (dashed and dotted gray lines). (c) Effect of next-
sideband contributions on the noise maximum. The gray lines include a 1% mismatch of the coupling strengths. (d) Symmetrized output
spectra for zero-temperature baths with (solid light green line) and without (dashed black line) direct contributions from the cooling tone
(experimental parameters). See the text for details. (e) Influence of the detuning δc of the cooling beam on the sidebands. Plotted is
Δn�m=n�m ¼ ðn�m − n�m;0Þ=n�m, where n�m;0 ðn�mÞ corresponds to the sideband’s weight without (with) direct contributions from the cooling
tone. Experimental parameters: ωm=ð2πÞ ¼ 4 MHz, γM=ð2πÞ ¼ 360 Hz, γm=ð2πÞ ¼ 10 Hz, δ=ð2πÞ ¼ 5 kHz, δc=ð2πÞ ¼ 30 kHz,
κ=ð2πÞ ¼ 870 kHz, κR=ð2πÞ ¼ 450 kHz, κL=ð2πÞ ¼ 155 kHz, and γopt=ð2πÞ ¼ 100 Hz. For the cavity baths, we assume nthR ¼ nthL ¼
0.3 and nthc ¼ 0.24, and for the mechanical bath, we assume nthM ¼ 10.
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APPENDIX B: LINEAR-RESPONSE THEORY

In this Appendix, we briefly review the linear response
approach to understand the sideband asymmetry observed
using linear field detection; this explanation was first
discussed in Ref. [16]. For linear field detection, the
observed asymmetry can be fully attributed to noise
correlations in the detector (in this case, the driven cavity),
correlations that could exist classically. We generalize the
discussion of Ref. [16] to include thermal noise driving the
cavity, showing that the same backaction-imprecision
correlations allow one to understand the squashing of
thermal noise seen in previous experiments [4]. We also
show that the particular value of the backaction-imprecision
correlator, required to account for the zero-temperature
sideband asymmetry, plays a special role in the linear-
response approach to quantum measurements [7,28]: it is
precisely the value needed to ensure there is no additional
constraint on the detector’s symmetrized noise correlators
besides what would exist classically.
Following Ref. [7], the general linear response approach

starts by assuming a linear coupling between the detector
and the observable to be measured (in this case, x̂, the
mechanical position):

Ĥint ¼ −Ax̂ F̂ : ðB1Þ

Here, F̂ is the detector quantity that couples to the
measured system and plays the role of a backaction force.
In our optomechanical case, we have F̂ ¼ −ðg=xZPÞâ†â. A
is a dimensionless coupling constant that we will use to
track the order at which Ĥint appears in expressions; we will
set it to one at the end of the calculation.
Next, consider the detector-output observable Î.

We assume that this quantity responds linearly to the
mechanical position

hÎ½ω�i ¼ −AχIF½ω�hx̂½ω�i; ðB2Þ

where χIF½ω� is the response coefficient or “forward gain”
of the detector; it is given by a standard Kubo formula. We
are interested in understanding the fluctuations of the
detector output. Quantum linear response theory tells us
that these fluctuations can be completely understood within
an equivalent classical stochastic model [7,28], where we
now replace the operators ÎðtÞ, F̂ðtÞ, and x̂ðtÞ by classical
random variables. The fluctuations of the output in this
model are written as

δItot½ω� ¼ δI½ω� − AχIF½ω�ðδx0½ω� þ AδxBA½ω�Þ: ðB3Þ

The first term here represents the intrinsic fluctuations of
the output in the absence of any coupling to the
mechanics (the imprecision noise). δx0½ω� describes the
position fluctuations of the mechanics in the absence of

any backaction, whereas δxBA½ω� describes the additional
backaction-driven fluctuations of the mechanical resona-
tor. δx0½ω� is due to the intrinsic mechanical dissipation.
Assuming this dissipation to be in thermal equilibrium,
these fluctuations are described by the spectral density

Sxx;0½ω�≡ hjδx0½ω�j2i ¼ −ℏImχxx½ω� coth βℏω=2
≃ −ℏImχxx½ω�ð1þ 2nthmÞ; ðB4Þ

where χxx½ω� is the mechanical force susceptibility

χxxðωÞ ¼
1=m

ðω2 − ω2
mÞ þ iωγm

: ðB5Þ

Similarly, the backaction-driven position fluctuations are
described by

Sxx;BA½ω�≡ hjδxBA½ω�j2i ¼ jχxx½ω�j2SFF½ω�: ðB6Þ

The spectral densities of the output fluctuations are then
given by

SII;tot½ω� ¼ SII½ω� þ A2jχIF½ω�j2
�
Sxx;0½ω� þ A2Sxx;BA½ω�

− 2Re

�
χxx½ω��

SIF½ω�
χIF½ω�

��
ðB7Þ

¼ SII½ω� þ jχIF½ω�j2ðSxx;eff ½ω�Þ: ðB8Þ

Here, SIF½ω� is the spectral density that describes any
possible correlations between the intrinsic imprecision-
noise contribution to the output (δI½ω�) and the back-
action-force noise driving the mechanics (δF½ω�). In the
quantum theory, an identical expression to the above
holds, except all classical noise spectral densities SAB½ω�
describing the detector, are replaced by the corres-
ponding symmetrized quantum noise spectral densities
S̄AB½ω� [7]:

S̄AB½ω� ¼
1

2

Z
∞

−∞
dthfÂðtÞ; B̂ð0Þgi: ðB9Þ

For our optomechanical system, the needed detector-
correlation functions are easily computed from the linear-
ized Heisenberg-Langevin equations. As in the main text,
we assume a two-sided cavity and measure the quantity Î
defined below Eq. (A7). One finds

χIF½ω� ¼ −i
ffiffiffiffiffi
κR

p
G

xZP
ðχc½ω� − χc½−ω��Þ; ðB10Þ

S̄II½ω� ¼
X
ν¼�

fj1 − κRχc½νω�j2½ð1=2Þ þ nthR �

þ κRκLjχc½νω�j2½ð1=2Þ þ nthL �g; ðB11Þ
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S̄FF½ω� ¼
G2

x2ZP
ðjχc½ω�j2 þ jχc½−ω�j2Þ

X
σ¼L;R

κσ½ð1=2Þ þ nthσ �;

ðB12Þ

S̄IF½ω� ¼ −
ffiffiffiffiffi
κR

p
G

xZP

X
σ¼L;R

ðΛσ½ω� þ Λσ½−ω��Þ½ð1=2Þ þ nthσ �;

ðB13Þ

where for the cross-correlator, we have introduced the
functions

ΛR½ω� ¼ −ð1 − κRχc½ω�Þχc½ω��; ðB14Þ

ΛL½ω� ¼ −κLjχc½ω�j2: ðB15Þ
We are again interested in the symmetrized output

spectrum of the detector in a narrow range (in the order
of γm) near the cavity resonance frequency, for a drive
detuning Δ ¼ �ωm; as always, we consider the good-
cavity limit ωm ≫ κ. Over this range of frequencies, we can
neglect the frequency dependence of the cavity correlators
and evaluate them on resonance (i.e., ω ¼ Δ in the rotating
frame). Of particular interest is the cross-correlator. One
finds

S̄zF½Δ�≡ S̄IF½Δ�
χIF½Δ�

≃ ∓ iℏ

��
2κR
κ

− 1

�
½ð1=2Þ þ nthR �

þ
�
2κL
κ

�
½ð1=2Þ þ nthL �

�
ðB16Þ

¼∓ iℏ

�
1

2
þ 2nthc − nthR

�
; ðB17Þ

where the minus sign (plus sign) corresponds to the drive
detuning Δ ¼ þωm (Δ ¼ −ωm).
We see that S̄zF is purely imaginary and changes sign for

the two choices of detuning; in contrast, one can confirm
that jχIFj, S̄II, and S̄FF at resonance are the same for
Δ ¼ �ωm. It immediately follows that the asymmetry
between the spectra obtained at Δ ¼ −ωm and Δ ¼ ωm
is entirely due to the detector backaction-imprecision
correlations described by S̄zF.
Returning to Eq. (B7) for the output spectrum, we further

note that for a sufficiently weak detector-system coupling,
the term Sxx;BA will be negligible to the term Sxx;0, as the
backaction term is second order in the coupling (i.e., ∝ A2).
However, the last correlation term remains significant: Its
contribution relative to Sxx;0 is independent of coupling
strength. In our case, where SIF=χIF ≡ SzF is purely
imaginary, we can combine the leading mechanical
contributions to the output spectrum as

Sxx;eff ½ω�≃ Sxx;0½ω� − 2Reðχxx½ω��SzFÞ
¼ −Imχxx½ω�ðℏ coth βℏω=2þ 2ImSzFÞ ðB18Þ

≃ −Imχxx½ω�½ℏð1þ 2nthmÞ þ 2 ImSzF�: ðB19Þ

We see that the mechanics will give rise to a Lorentzian
signature in the output spectrum but that the presence of
imaginary backaction-imprecision correlations modifies
the weight of the Lorentzian—it no longer simply reflects
the mechanical temperature. This modified weight results
in the well-known phenomenon of noise squashing.
Using Eq. (B17) for the cross-correlator, we see that this

linear response calculation reproduces the asymmetry
found earlier between spectra obtained for Δ ¼ �ωm.
This approach emphasizes the fact that the asymmetry
can be completely attributed to the detector, namely, the
presence of backaction-imprecision correlations. These
correlations are purely imaginary; the only difference
between the cases is the sign of the correlator. For
Δ ¼ ωm, the correlations are positive and serve to decrease
the weight of the mechanical Lorentzian; they completely
cancel the contribution if the mechanics is at zero temper-
ature. For Δ ¼ −ωm, they instead serve to increase the
mechanical contribution. In the absence of thermal cavity
noise, the effect of the noise correlations is to cause the
weight of the mechanical Lorentzian in the output spectrum
to have the expected form for phonon emission or absorp-
tion: For Δ ¼ ωm, we have the emission factor nthm, and for
Δ ¼ −ωm, we have nthm þ 1.
Besides classical noise squashing, we thus see that the

asymmetry can be interpreted in terms of a finely tuned
backaction-imprecision correlation. We stress that a com-
pletely classical detector could have an identical noise
correlation. Nonetheless, this value of correlation plays an
extremely special role in the theory of quantum limits on
linear quantum detectors and amplifiers [7]. Quantum
limits on such detectors (e.g., on their added noise or
noise temperature) follow from a fundamental Heisenberg-
like inequality on their noise properties at each frequency.
These inequalities take the form

S̄zz½ω�S̄FF½ω�− jS̄zF½ω�j2 ≥
ℏ2

4

�
1þΔ

�
2S̄zF½ω�

ℏ

��
; ðB20Þ

where

Δ½y� ¼ j1þ y2j − ð1þ jyj2Þ
2

: ðB21Þ

We have defined S̄zz½ω� ¼ S̄II½ω�=jχIF½ω�j2 and have spe-
cialized to the case relevant here, where the reverse gain of
the detector vanishes. Note that for any complex number y,
1þ Δ½y� ≥ 0, and hence, in general, the rhs of the inequal-
ity in Eq. (B20) is nonzero. This property means that, in
general, quantum mechanics makes it impossible for the
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detector backaction and imprecision noises to be perfectly
correlated [i.e., the lhs of Eq. (B20) cannot, in general, be
zero]. This represents a purely quantum constraint on the
detector’s noise properties. In the case where S̄zF is purely
real (or 0), the rhs simply reduces to ðℏ=2Þ2.
In contrast, if S̄zF is purely imaginary, the rhs of

Eq. (B20) can be reduced below ℏ2=4. One easily
finds that it achieves the minimum value of 0 when
S̄zF ¼ �iℏ=2. Thus, for this special choice of cross-
correlation, quantum mechanics does not forbid a perfect
correlation between the detector’s backaction and impre-
cision noises. This special value is precisely what was
found above for our cavity optomechanical detector at zero
temperature (at the cavity resonance, with a drive detuning
Δ ¼ �ωm, and in the good-cavity limit); see Eq. (B17).
Thus, not only does this special value of cross-correlation
yield an imbalance between theΔ ¼ �ωm output spectra in
just the way expected for quantum emission or absorption,
it also implies that there is no additional Heisenberg
constraint on the detector-noise properties. As discussed
in Sec. IVA 4 of Ref. [7], this means that, in principle,
one could make the added noise of this position detector
strictly zero. As is also discussed in this reference, this
vanishing does not constitute a violation of the quantum
limit on position detection or amplification. One can
demonstrate that in this case, the detector does not provide
any amplification of the mechanical motion: the dimen-
sionless power gain of the detector is, at most, order 1 (see
Appendix I 2 of Ref. [7]). As there is no amplification,
quantum mechanics does not require any added noise.
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