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Recent developments have led to an explosion of activity on skyrmions in three-dimensional (3D) chiral
magnets. Experiments have directly probed these topological spin textures, revealed their nontrivial
properties, and led to suggestions for novel applications. However, in 3D the skyrmion crystal phase is
observed only in a narrow region of the temperature-field phase diagram. We show here, using a general
analysis based on symmetry, that skyrmions are much more readily stabilized in two-dimensional (2D)
systems with Rashba spin-orbit coupling. This enhanced stability arises from the competition between field
and easy-plane magnetic anisotropy and results in a nontrivial structure in the topological charge density in
the core of the skyrmions. We further show that, in a variety of microscopic models for magnetic exchange,
the required easy-plane anisotropy naturally arises from the same spin-orbit coupling that is responsible
for the chiral Dzyaloshinskii-Moriya interactions. Our results are of particular interest for 2D materials like
thin films, surfaces, and oxide interfaces, where broken surface-inversion symmetry and Rashba spin-orbit
coupling naturally lead to chiral exchange and easy-plane compass anisotropy. Our theory gives a clear
direction for experimental studies of 2D magnetic materials to stabilize skyrmions over a large range of
magnetic fields down to T ¼ 0.
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I. INTRODUCTION

Skyrmions first arose in the study of hadrons in high
energy physics [1], but these topological objects have
proved to be central in the study of chiral magnets [2–4],
in addition to a variety of other condensed matter systems,
including the quantum Hall effect [5–7] and ultracold
atoms [8–10]. There has been tremendous progress in
establishing exotic skyrmion crystal (SkX) phases, using
neutrons [11] and Lorentz transmission electron micros-
copy [12], in a variety of magnetic materials that lack bulk-
inversion symmetry, ranging frommetallic helimagnets like
MnSi [2,11] to insulating multiferroics [13]. Skyrmions
lead to unusual transport properties in metals like the
topological Hall effect [14–17]. They may be related to
non-Fermi liquid behavior [18–20] and could have poten-
tial applications in spintronics [2,21–23].
Spin-orbit coupling (SOC) in magnetic systems without

inversion gives rise to the chiral Dzyaloshinskii-Moriya
(DM) [24,25] interaction Dij · ðSi × SjÞ. This competes
with the usual Si · Sj exchange to produce spatially
modulated states like spirals and SkX.

The two-dimensional (2D) case is particularly interest-
ing. Even in materials that break bulk inversion, thin films
show enhanced stability [26,27] of skyrmion phases,
persisting down to lower temperatures. Inversion is nec-
essarily broken in 2D systems on a substrate or at an
interface, and this too may lead to textures arising from DM
interactions. Spin-polarized STM [28,29] has observed
such textures on magnetic monolayers deposited on non-
magnetic metals with large SOC.
Recently, there have been tantalizing hints of magnetism

at oxide interfaces like LaAlO3=SrTiO3 [30–33] and
GdTiO3=SrTiO3 [34]. The 2D electron gas at the interface
between two insulating oxides has a large and gate-tunable
Rashba SOC [35]. We have proposed [36] that broken
surface inversion and Rashba SOC at oxide interfaces
necessarily leads to chiral magnetic interactions, thus
leading to phases with spin textures [36,37].
With this motivation, we investigate 2D chiral magnets

with broken inversion in the z direction. Microscopically,
this leads to Rashba SOC. General symmetry consider-
ations imply that the form of the free energy for broken
surface inversion [see Eq. (3)] is quite different from that in
the usually studied case of noncentrosymmetric materials
with broken bulk inversion.
Our results are summarized in the T ¼ 0 phase diagram

in Fig. 1 as a function of perpendicular magnetic field H
and anisotropy A. For easy-axis anisotropy (A < 0), our 2D
results with broken z inversion turn out to be essentially the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 4, 031045 (2014)

2160-3308=14=4(3)=031045(10) 031045-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.4.031045
http://dx.doi.org/10.1103/PhysRevX.4.031045
http://dx.doi.org/10.1103/PhysRevX.4.031045
http://dx.doi.org/10.1103/PhysRevX.4.031045
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


same as those for the three-dimensional (3D) problem with
broken bulk inversion [3,27]. The easy-plane regime
(A > 0) in the 2D Rashba case leads to a surprise: We
find an unexpectedly large stable SkX phase. Skyrmions
not only gain DM energy but are also an excellent
compromise between the field and easy-plane anisotropy.
Moreover, we show that the skyrmions have a nontrivial
spatial variation of their topological charge density (see
Fig. 2) for A > 0.
Can such easy-plane anisotropy of the required strength

arise naturally in real materials? We present a microscopic
analysis of three exchange mechanisms—superexchange in
Mott insulators, and double-exchange and Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction in metals—
and show that the same SOC that gives rise to the DM
interaction D also leads to an easy-plane compass
anisotropy Ac. The compass term is usually ignored since
it is higher order in SOC than DM. We show, however, that
its contribution to the energy is comparable to that of DM,

with AcjJj=D2 ≃ 1=2 for all three mechanisms, where J is
the exchange coupling. This striking fact seems not to have
been clearly recognized earlier, possibly because these
microscopic mechanisms have been discussed in widely
different contexts using different notation and normaliza-
tions. We also discuss how additional single-ion anisotro-
pies enter the analysis.
Our results should serve as a guide for material param-

eters of 2D chiral magnets such that a large SkX region can
be probed experimentally. These results are of particular
relevance to magnetism at oxide interfaces, as discussed
above. We should also emphasize that our 2D results are
not necessarily restricted to monolayers. We discuss the
case of quasi-2D materials in Sec. V.

II. GINZBURG-LANDAU THEORY

The continuum free-energy functional F½m� ¼R
d2r F ðmÞ for the local magnetization mðrÞ of a 2D

chiral magnet in an applied field H is given by

F ¼ F isoðmÞ þ FDMðmÞ þ F anisoðmÞ −H:m: ð1Þ
The isotropic term (α ¼ x; y; z)

F iso ¼ F 0ðmÞ þ ðJ=2Þ
X
α

ð∇mαÞ2 ð2Þ
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FIG. 1. Skyrmion and T ¼ 0 phase diagram. (a) A skyrmion
configuration. (b) The anisotropy-field phase diagram with
ferromagnetic (FM), spiral, and skyrmion crystal (SkX) phases
for D=J ¼ 0.01 and AcJ=D2 ¼ 1=2, with A ¼ Ac þ As. Double
lines denote first-order transitions, while the single line is an
unusual first-order transition with a divergent length scale; see
text. The dashed lineH ¼ 2A separates the out-of-plane FM from
the tilted FM. For the FM, mz is shown in the color bar. Results
are obtained from a circular-cell variational calculation.
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FIG. 2. Internal structure of skyrmions. Skyrmion core struc-
ture from circular-cell calculation with D=J ¼ 0.01 and
AcJ=D2 ¼ 1=2. Here, LD ¼ ðJ=DÞa, where a is the microscopic
lattice spacing. (a, b) False color plots of mz (shown in the color
bar). (c, d) Angle-averaged topological charge density j2πrχðrÞj
and mzðrÞ (right axes). Panels (a) and (c) correspond to easy-axis
anisotropy AJ=D2 ¼ −0.5 and HJ=D2 ¼ 0.28. The skyrmion
core is conventional, with a single peak in the topological charge
density. Panels (b) and (d) are for easy-plane anisotropy
AJ=D2 ¼ 1.35 and HJ=D2 ¼ 1.96. Here, the core has a large
“transition” region (yellow-orange) from down (center) to up
(boundary) in m, leading to an unusual two-peak structure
for j2πrχj.
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consists of an F 0 that determines the magnitude of m
and a stiffness J that controls the gradient energy.
Microscopically, the stiffness is determined by the ferro-
magnetic exchange coupling. At T ¼ 0, we replace F 0

with the constraint m2ðrÞ ¼ 1. Rashba SOC, arising from
broken z inversion, leads to the DM term

FDM ¼ −D½ðmz∂xmx −mx∂xmzÞ
− ðmy∂ymz −mz∂ymyÞ�: ð3Þ

We will see below that this leads to “hedgehoglike”
skyrmions [Fig. 1(a)]. This form of FDM is dictated by
the DM vector Dij ∼ ẑ × r̂ij for Rashba SOC. In contrast,
broken bulk inversion with Dij ∼ r̂ij gives rise to the more
familiar DM term m · ð∇ ×mÞ that leads to “vortexlike”
skyrmions [38].
Rashba SOC also leads to the anisotropy term

F aniso ¼ ðAc=2Þ½ð∂xmyÞ2 þ ð∂ymxÞ2�
− Ac½ðmxÞ2 þ ðmyÞ2� þ AsðmzÞ2: ð4Þ

The Ac > 0 “compass” terms give rise to easy-plane
anisotropy, while the single-ion As term can be either
easy-axis (As < 0) or easy-plane (As > 0) type. We define
the length in units of lattice spacing a so that J, D, Ac, and
As all have dimensions of energy.
While the form of the free energy (1) follows from

symmetry, the microscopic analysis (described in Sec. IV)
gives insight into the relative strengths of various terms.
The origin of the DM and compass terms lies in Rashba
SOC, whose strength λ ≪ t, the hopping, in materials of
interest. Thus, we obtain a hierarchy of scales with the
exchange J ≫ D ∼ Jðλ=tÞ ≫ Ac ∼ Jðλ=tÞ2. Naively, one
might expect the compass term to be unimportant; however,
its contribution to the energyOðAcÞ is comparable to that of
the DM term OðD2=JÞ. While the DM term is linear in the
wave vector q of a spin configuration, its energy must be
Oðq2Þ. Thus, compass anisotropy, usually ignored in the
literature, must be taken into account whenever the DM
term is important.
We show below that AcJ=D2 ≃ 1=2 for a wide variety of

exchange mechanisms, independent of whether the system
is a metal or an insulator. We also discuss the origin and
strength of the single-ion As term. Note that the effective
anisotropy in model (1) is governed by A ¼ Ac þ As,
which is easy-axis type for A < 0 and easy-plane type
for A > 0.

III. PHASE DIAGRAM

We begin by examining the T ¼ 0 phase diagram for
fixed D ≪ J as a function of the magnetic field H ¼ Hẑ
and the dimensionless anisotropy AJ=D2, which we
explore by varying As with AcJ=D2 ¼ 1=2. We look for
variational solutions using analytical and numerical

approaches. Here, we focus on the SkX phase; the FM
and spiral phases are discussed in Appendix A.
A skyrmion [2] is a spin texture with a quantized

topological charge q ¼ ð4πÞ−1 R d2rm̂ · ð∂xm̂ × ∂ym̂Þ,
which is restricted to be an integer. For example, the
q ¼ −1 skyrmion in Fig. 1(a) is a smooth spin configu-
ration with the topological constraint that the central spin
points down while all the spins at the boundary point up.
The SkX state is a periodic array of skyrmions, often

described by multiple-Q spiral condensation [39,40]. We
use an “optimal unit-cell” approach, similar to Ref. [3],
where we impose the topological constraint for the center
and boundary spins within a unit cell. We then find the
optimal configuration within a single cell, whose size R is
also determined variationally.
We describe the results from a “circular-cell” ansatz,

which leads to an effectively one-dimensional (1D) (radial)
problem. This is computationally much simpler than the
full 2D conjugate-gradient minimization of Eq. (1). The 2D
and 1D methods lead to essentially identical phase
diagrams; see Appendix B. Here, we take a skyrmion
configuration

mskyrmionðrÞ ¼ sin θðrÞr̂þ cos θðrÞẑ ð5Þ

in a circular cell of radius R, with the topological constraint
θð0Þ ¼ π and θðRÞ ¼ 0. We minimize the energy (1) with
θðrÞ and the cell radius R as variational parameters. We
construct the SkX by a hexagonal packing of the optimal
circular cells and recalculate the energy with up spins
filling the space between the circles.
As a first step, we use the linear ansatz [3] θðrÞ ¼

πð1 − r=RÞ with skyrmion size R, a simple approximation
that has the great virtue of being analytically tractable. The
resulting phase diagram is shown in Appendix B (see
dotted lines in Fig. 3) rather than in the main text, so as not
to clutter up Fig. 1(b). We note here that this very simple
approximation already gives us our first glimpse of the
large SkX phase for easy-plane anisotropy, despite the fact
that it greatly underestimates the stability of the SkX phase.
Next, we obtain the phase diagram in Fig. 1(b) by

numerical minimization using the more general form of
Eq. (5) and discretizing θðrÞ on a 1D grid. This confirms
the qualitative observations from the linear approximation
and yields an even larger SkX phase on the easy-plane side.
Our 2D square-cell calculations essentially reproduce the
same phase diagram (see Fig. 3).

A. Easy-plane vs easy-axis anisotropy

Our results for the 2D phase diagram in the easy-axis
region (A < 0) are much the same as previous 3D studies
[3,27]. One might have thought that the perpendicular field
H and easy-axis anisotropy would both favor a skyrmion
since all of the spins are pointing up far from the center, but
then the FM state is even more favorable.
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The remarkable result in Fig. 1(b) is that the SkX phase
is much more robust for easy-plane anisotropy (A > 0). We
can understand this as follows. The twisted spins in the
skyrmion lower the DM contribution to the free energy as
compared to a ferromagnetic configuration. Furthermore,
the skyrmion is a better compromise between easy-plane
anisotropy and a field along ẑ than is a spiral configuration.
Thus, the large SkX region in the phase diagram is more or
less oriented around H ¼ 2A, the dashed line in Fig. 1(b)
that separates the “tilted FM” from the easy-axis FM.
The internal structure of a skyrmion gives further insight

into the stability of the SkX phase. In Fig. 2, we plot mzðrÞ
and the (angular-averaged) topological charge density
j2πrχðrÞj, where χðrÞ ¼ ½m · ∂xm × ∂ym�=4π. For the
easy-axis case, the skyrmion core shows a conventional
structure with a single peak in j2πrχj [see Figs. 2(a)
and 2(c)]. In contrast, easy-plane anisotropy can lead to
a nontrivial core with a double peak in j2πrχðrÞj [see
Figs. 2(b) and 2(d)]. As the spins twist from down at the
center [θð0Þ ¼ π] to all up at the boundary [θðRÞ ¼ 0], it is
energetically favorable to have an extended region where
θðrÞ≃ θtilt (see Appendix C), the best compromise
between the field and easy-plane anisotropy. As a result,
j2πrχj shows a two-peak structure in the topological charge
density.

B. Phase transitions

We next describe the various phase transitions within our
variational framework. The transitions between the spiral
state and FM or SkX states are first order (with a crossing of
energy levels), as is the SkX-to-tilted-FM transition for
H < 2A. These are all denoted by double lines in Fig. 1.
The SkX to easy-axis FM transition for H > 2A (denoted
by a single line) is also first order in our numerics, but with
the unusual feature that the optimal SkX unit cell size
diverges at this transition; see Appendix C. Another
interesting feature of Fig. 1 are the reentrant transitions
from FM → SkX → FM for AJ=D2 ≳ 1.

IV. MICROSCOPIC ANALYSIS OF EXCHANGE,
DM, AND ANISOTROPY

We next present a microscopic, quantum-mechanical
derivation of the phenomenological free energy (1)
and show that the parameter regime of interest arises
naturally for three very different exchange mechanisms—
superexchange, RKKY, and double exchange—in the
presence of SOC. Moriya’s original paper [25] considered
antiferromagnetic (AFM) superexchange with SOC, further
elaborated in a way relevant to our analysis in Ref. [41].
The RKKY interaction with SOC was first discussed for
spin glasses [42], and the relation between DM and
anisotropy was analyzed [43] in the context of quantum
dots. Double-exchange ferromagnets with SOC were ana-
lyzed in our recent work [36]. In all these cases, it was

found by explicit calculations that AcjJj=D2 ¼ 1=2 (in the
notation of this paper).
We sketch here a “unified” way of thinking about these

very different problems. We begin by summarizing the idea
of our approach, before presenting details of the derivation.
We start with a microscopic Hamiltonian H ¼ H0 þ Hint
for electrons, where H0 is a quadratic piece with the
electronic kinetic energy and the SOC term, while Hint
describes the interactions that give rise to magnetism. We
then proceed as follows. First, in order to derive an effective
low-energy Hamiltonian that describes magnetism, we
consider a two-site problem, which is adequate for sit-
uations where the magnetism can be ultimately described
by pairwise interactions between spins. Next, we transform
the original electrons by an SUð2Þ rotation which “gauges
away” the spin-orbit coupling. We can easily solve our
problem in the rotated basis since it now looks like the
standard quantum magnetism problem without SOC.
Finally, we transform back to the original physical electron
basis and thus obtain, in addition to the exchange inter-
action, the DM and anisotropy terms. Since all three
originate from a single interaction in the rotated basis,
there is a simple relation between the coefficients of the
exchange, DM, and anisotropy terms, namely, AcjJj=D2 ¼
1=2 (in the regime of weak SOC).
The quadratic piece in the microscopic Hamiltonian

H ¼ H0 þ Hint is of the form

H0 ¼ −tX
hiji;α

c†iαcjα − iλ
X
hiji;αβ

σαβ:d̂ijc
†
iαcjβ þ H:c: ð6Þ

Here, the operator c†iα (ciα) creates (destroys) an electron
with spin α at a site ri on a 2D square lattice. We consider,
for simplicity, hopping t between nearest neighbors hiji,
though our analysis can be easily generalized to a more
general dispersion. Here, σ are Pauli matrices and λ is
the strength of the Rashba SOC with d̂ij ¼ ẑ × rij=jrijj,
where rij ¼ ri − rj.
The interaction Hint can be chosen to model

several different situations. (i) Hubbard repulsion
Hint ¼ U

P
ini↑ni↓, with U ≫ t at half-filling, gives rise

to AFM superexchange with SOC. Here, niα ¼ c†iαciα is the
electron number operator. (ii) Coupling of conduction
electrons with a lattice of local moments Si via Hint ¼−JHPisi · Si leads to Zener double exchange with SOC.
Here, si ¼ ð1=2ÞPαβc

†
iασαβciβ and the Hund’s coupling

JH ≫ t. (iii) The Hint of (ii) with a Kondo coupling
jJKj ≪ t leads to an RKKY interaction between moments
mediated by electrons with SOC. As explained above, in all
three cases, the effective Hamiltonian can be derived by
considering pairwise interaction between spins. We discuss
(i) and (ii) below and relegate the RKKY case (iii) to
Appendix E.
To derive an effective low-energy Hamiltonian, we

consider a two-site problem with nearest-neighbor sites 1
and 2 and rewrite H0 for these sites as
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H0 ¼ −~tX
αβ

ðc†1α½eiϑσ:d̂12 �αβc2β þ H :c:Þ ð7Þ

with ~t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ λ2

p
and tanϑ ¼ λ=t. Next, we gauge away

the SOC with SUð2Þ rotations on the fermionic
operators at the two sites, via ~c1α ¼ ½e−iðϑ=2Þσ:d̂12 �αβc1β
and ~c2β¼½eiðϑ=2Þσ:d̂12 �αβc2β. Under this transformation, the
noninteracting part simply becomes H0 ¼ −~tPα ~c

†
1α ~c2α,

as if there were no SOC (which is, of course, hidden in the
parameter ~t and the transformed fermion operators).
We next discuss how the interaction terms transform

under this rotation. For the superexchange case (i), we find
Hint ¼ U

P
i¼1;2 ~ni↑ ~ni↓, where ~niα is the number operator

for rotated fermions. For the double-exchange case (ii), we
find Hint ¼ −JHPi¼1;2 ~si: ~Si, with ~si the spin operator for
the rotated fermions, and the local moments are trans-
formed as follows. ~S1 is given by

~S1 ¼ cosϑS1 − sinϑðS1 × d̂12Þ þ ð1 − cosϑÞðS1:d̂12Þd̂12;
ð8Þ

while ~S2 can be obtained by making the replacements
1 → 2 and ϑ → −ϑ in the above equation. A similar
relation holds between ~s1ð~s2Þ and s1ðs2Þ.
The transformed Hamiltonian H for the two-site prob-

lem in terms of rotated fermions is exactly the same as the
model without SOC. As a result, in case (i), superexchange
between ~s1 and ~s2 has the usual form JAFM ~s1:~s2, with
JAFM ¼ 4~t2=U. We now transform back to the original
spin variables and write the superexchange Hamiltonian as
a sum over all nearest-neighbor pairs to obtain HSE ¼
JAFM

P
hijisi · Rð2ϑd̂ijÞsj. Here, Rð2ϑd̂ijÞ is the orthogo-

nal matrix corresponding to a rotation by angle 2ϑ
about d̂ij.
The same argument applies for double-exchange case

(ii). Following Anderson-Hasegawa [44], in the limit
JH → ∞ and for large (classical) spins ~S of the local

moments, the effective exchange is −JF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~S1: ~S2=2S2

q
.

Here, S is the magnitude of the spin and JF ¼ κ~t, with κ a
constant that depends on the density of itinerant electrons.
Again going back to S’s and summing over pairs,
one obtains the double-exchange Hamiltonian HDE ¼
−JFPhiji½ð1þ Si · Rð2ϑd̂ijÞSj=S2Þ=2�1=2.
At low temperatures, the effective spin model for both

cases (i) and (ii) can be written in a common form [after
expanding the square root in case (ii) and a sublattice
rotation in case (i)]. We get

Heff ¼ −JX
i;μ

Si · Siþμ̂ − Ac

X
i

ðSyi Syiþx̂ þ Sxi S
x
iþŷÞ

−D
X
i

½ŷ · ðSi × Siþx̂Þ − x̂ · ðSi × SiþŷÞ�; ð9Þ

where μ̂ ¼ x̂; ŷ. Here, J ¼ ~J cos 2ϑ, with ~J ¼ JAFM
for superexchange and ~J ¼ JF for double exchange.

The SOC-induced terms are the DM term with D ¼
~J sin 2ϑ and the compass anisotropy Ac ¼ ~Jð1 − cos 2ϑÞ.
Since tan ϑ ¼ λ=t ≪ 1, we get the microscopic result AcJ=
D2 ≃ 1=2.
It is straightforward to derive the continuum free energy

(1) from the lattice model (9). The only term in Eq. (1) that
does not come from Eq. (9) is the phenomenological
anisotropy AsðmzÞ2 arising from single-ion or dipolar-
shape anisotropy [45]. In some cases, a simple estimate
of dipolar anisotropy is much smaller than the compass
term [36]. For moments with S < 2, the single-ion
anisotropy vanishes [46]. For larger-S systems, the single-
ion anisotropy is nonzero and can even be varied using
strain [27]. However, in no case can we ignore compass
anisotropy since its contribution to the energy is compa-
rable to DM, as already emphasized.

V. DISCUSSION

We now discuss two important issues: (a) the applicabil-
ity of our results with Rashba SOC to quasi-2D systems or
films with finite thickness, and (b) the differences between
the broken surface or z inversion, which has been our
primary focus here, and broken bulk inversion.
First, let us consider quasi-2D systems made of materials

that do not break bulk inversion. Chiral interactions then
arise only from Rashba SOC. It might seem, at first sight,
that the effects of surface-inversion breaking would be
restricted to very thin, possibly monolayer, samples.
However, it is known in the semiconductor literature that
Rashba SOC can be very strong even in films of thickness
of order a micron [47] because of strain effects. Thus, we
believe that the 2D results described in this paper are not
restricted as such to monolayer materials. The spatial
variation of the local magnetization mðrÞ will be transla-
tionally invariant in the z direction, and the SkX phase will
continue to show the large region of stability for in-plane
anisotropy shown in Fig. 1.
In systems with broken bulk inversion, a cone phase [48]

overwhelms both the SkX and FM in the easy-plane
anisotropy regime. The cone phase, with spin texture
varying along the field axis, gains energy because of a
DM term withDi;iþẑ∥ẑ. Such a term does not exist in 2D or
even in quasi-2D systems with Rashba SOC, where the DM
vector Dij ∼ ẑ × r̂ij lies in the xy plane.
Our phase diagram is thus completely different from that

of Ref. [48] for the case of in-plane anisotropy.
Reference [48] considers bulk-inversion breaking with
an m · ð∇ ×mÞ DM term and finds a stable cone phase
for A > 0. We, on the other hand, consider surface-
inversion breaking with Rashba SOC leading to the DM
term of Eq. (3) and find a large region where the SkX is
stable for A > 0.
An interesting question arises for a quasi-2D system,

such as a thin film, made of a material that breaks bulk
inversion. Now one has to take into account both
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Dresselhaus and Rashba terms arising from bulk and
surface-inversion breaking, respectively. We will show
elsewhere [49] that by tuning the relative strengths of
Rashba to Dresselhaus SOC, one can continuously
interpolate between the results presented here (only
surface-inversion broken) and those of Ref. [48] (only bulk-
inversion broken) with interesting evolution of skyrmion
chirality from hedgehoglike to vortexlike. Interestingly, the
data in Fig. 1 of Ref. [50] show a SkX phase in epitaxial
MnSi thin films for thickness ≲ðJ=DÞa.

VI. CONCLUSIONS

We have shown enhanced stability of skyrmions in 2D
for Rashba SOC when the effective anisotropy is easy-
plane type. The compass term Ac is intrinsically easy-plane
type, and we suggest that experiments should look for 2D
systems with suitable single-ion anisotropies As, or ways to
tune it, e.g., using strain, so as to enhance the SkX region.
In the future, it would be interesting to study the finite-
temperature phase diagram for 2D systems with easy-plane
anisotropy, and to understand electronic properties, like the
topological Hall effect and non-Fermi liquid behavior in
this regime.
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APPENDIX A: VARIATIONAL CALCULATION

We consider the FM, spiral, and SkX phases in turn. We
use A ¼ Ac þ As as the effective anisotropy and omit
additive constants in the energy, which are common to
all phases.
FM.—The energy for the FM state evaluated from

Eq. (1) is FFM ¼ AðmzÞ2 −Hmz, with a minimum FFM ¼
−H2=4A for H ≤ 2A and FFM ¼ A −H for H > 2A.
The corresponding magnetizations are mz ¼ H=2A and
mz ¼ 1, respectively.
For the A > 0 FM state, the easy-plane anisotropy

competes with the field along ẑ so that the magnetization
points at an angle θtilt ¼ cos−1ðH=2AÞ with respect to the z
axis for H ≤ 2A and eventually aligns with the field for
H > 2A. We denote the FM state for H ≤ 2A as the “tilted
FM.” The dashed line H ¼ 2A in Fig. 1(b) separates the
field-aligned FM from the tilted FM.
Spiral.—The simplest zero-field variational ansatz [36]

yieldsaFMgroundstate for jAjJ=D2>1.When jAjJ=D2<1,
theH ¼ 0groundstate is acoplanar spiralwith spins lying ina

plane perpendicular to the xy plane:mðrÞ ¼ sinðQ0:rÞQ̂0 þ
cosðQ0:rÞẑ, with Q0 ¼ ðD=JÞðcosφx̂þ sinφŷÞ.
We extend the simple spiral above to incorporate

more general 1D modulation described by mspiralðrÞ ¼
sin½θðQ0:rÞ�Q̂0 þ cos½θðQ0:rÞ�ẑ, where θ varies only along
Q̂0, chosen to be x̂ without loss of generality. In contrast to
the linear variation in the simplest ansatz, here θðxÞ is an
arbitrary function with mðxþ RÞ ¼ mðxÞ, where R is the
period. We numerically minimize Eq. (1) with the varia-
tional parameters θðxÞ and R. This more general 1D
periodic modulation stabilizes the spiral relative to FM
beyond jAjJ=D2 ¼ 1 to ≃1.25 at H ¼ 0 [see Fig. 1(b)].
With the general 1D periodic modulation, mðxÞ ¼

sin θðxÞx̂þ cos θðxÞẑ, the free energy is

Fsp ¼
1

R

Z
R

0

dx½ðJ=2Þð∂xθÞ2 −D∂xθ

þ Acos2θ −H cos θ�; ðA1Þ

where ∂xθ ¼ ð∂θ=∂xÞ. We use conjugate gradient mini-
mization with respect to the size R and the function θðxÞ,
which is discretized on a 1D grid. We use the periodic
boundary condition θðRÞ ¼ θð0Þ þ 2πn, where n is an
integer. This form allows for a spiral solution with a net
magnetization mz in the presence of a perpendicular
magnetic field.
The more restrictive (linear) variational ansatz θðxÞ ¼

2πðx=RÞ is equivalent to the previously studied case [36]
and is analytically tractable. In this case, the energy of the
spiral can be easily evaluated by minimizing with respect to
R. This gives the spiral pitch R ¼ Rsp ¼ 2πðJ=DÞ and the
energy Fsp ¼ −D2=2J þ A=2.
Skyrmion crystal.—In the main paper, we have discussed

the method used to construct a hexagonal SkX solution
using the circular-cell ansatz with a rotationally symmetric
form of Eq. (5) in the text.
To qualitatively understand the stability of SkX over FM

and spiral states, one can use a simple linear ansatz θðrÞ ¼
πð1 − r=RÞ and minimize the energy by choosing an
optimal R. This leads to the solution Rsk ≈ πJ=D for the
optimal skyrmion cell size, with the energy given by

Fsk ¼
−π2

2½π2 þ γ þ logð2πÞ − Cið2πÞ�
D2

J
þ A

2
− 4

π2
H

≃ −0.4009
D2

J
þ A

2
− 4

π2
H: ðA2Þ

Here, CiðxÞ ¼ − R
∞
x dt cos t=t is the cosine integral and γ is

the Euler constant. The result for Fsk makes it clear that
SkX gains energy from both DM and Zeeman terms.
For the more general θðrÞ variation within the circular-

cell ansatz, we need to numerically minimize
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Fsk ¼
2

R2

Z
R

0

rdr½eJ þ eD þ eC þ eS −H cos θ�; ðA3Þ

with

eJ ¼
J
2

��∂θ
∂r

�
2

þ sin2θ
r2

�

eD ¼ −D
�∂θ
∂r þ

sin 2θ
2r

�

eC ¼ Accos2θ þ
Ac

8

�
cos θ

�∂θ
∂r

�
− sin θ

r

�
2

eS ¼ Ascos2θ:

We need to find the optimal cell size R and optimal values
of θðrÞ, which we discretize on a 1D grid in the radial
direction. We have carried out 1D conjugate gradient
minimization using Mathematica on a laptop, using grids
of up to 250 points.

APPENDIX B: 2D MINIMIZATION

To check the validity of the circular-cell ansatz, we have
also performed a full 2D minimization by discretizing the
GL functional (1) over a square grid. For the 2D calcu-
lation, we used up to 100 × 100 grids with polar and

azimuthal angles (θðrÞ;ϕðrÞ) ofmðrÞ at each grid point as
variational parameters. The 2D conjugate gradient calcu-
lations are done using a Numerical Recipes [51] subroutine
in C on a local cluster of computers. This 2D minimization
is much more computationally intensive than the 1D
calculation for the circular-cell ansatz.
The 2D square-cell result shown in Fig. 3 for the phase

diagram is essentially the same as that obtained from the
circular-cell calculation [see Fig. 1(b)]. We show in Fig. 4
the internal structure of the skyrmion as calculated from the
full 2D square-cell minimization. This figure should be
compared with the results from a circular-cell calculation in
Fig. 2. Note that the parameters used here are slightly
different from those used in Fig. 2; however, the nontrivial
structure of the skyrmion core in the easy-axis case—the
two-peak structure in the topological charge density
j2πrχðrÞj—is qualitatively similar to that in the circular-
cell calculations.

APPENDIX C: SKYRMION CELL SIZE
AND CORE RADIUS

It is conventional to define the “core radius” of a
skyrmion from the maximum of jdmz=drj. For the
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FIG. 3. T ¼ 0 anisotropy-field phase diagram from a linear
ansatz and 2D square-cell calculation. The phase diagram shown
here is obtained as a result of a full 2D variational calculation,
distinct from the effectively 1D variational calculation shown in
Fig. 1(b). The symbols and parameters used are exactly the same
as described in the caption for Fig. 1(b). Note that the 2D square-
cell calculation and the 1D variational calculation, although quite
different in their computational complexity, nevertheless lead to
essentially identical results for the overall phase diagram. The
dotted boundaries shown here are obtained from the simplest
“linear” variational ansatz for SkX described in text.
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FIG. 4. Internal structure of the skyrmion from 2D square-cell
calculation. We show the skyrmion core structure with D=J ¼
0.01 and AcJ=D2 ¼ 1=2 obtained from a full 2D variational
calculation, which should be compared with circular-cell results
shown in Figs. 2(a) and (b). False color plots of mz are shown in
the color bar. (c, d) Angle-averaged topological charge density
j2πrχðrÞj and mzðrÞ (right axes). Panels (a) and (c) correspond to
easy-axis anisotropy AJ=D2 ¼ −0.5 and HJ=D2 ¼ 0.3. Panels
(b) and (d) are for easy-plane anisotropy AJ=D2 ¼ 1.2 and
HJ=D2 ¼ 1.1. Note that the parameters used here are slightly
different from those used in Fig. 2; however, the nontrivial
structure of the skyrmion core in the easy-axis case is qualita-
tively similar to that in the circular-cell calculations.
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rotationally symmetric ansatz, Eq. (5) in the main
text, dmz=dr ¼ j2πrχðrÞj.
In Fig. 5, we show the optimal skyrmion cell size R� and

core radii as a function of the field for (a) easy-axis
anisotropy with AJ=D2 ¼ −0.5 and (b) easy-plane
anisotropy with AJ=D2 ¼ 1.35. As described in the main
paper, and shown in Fig. 2, there is only one length scale
associated with skyrmion core size for the easy-axis case,
whereas two length scales appear for the easy-plane side,
near the reentrant region of the SkX phase diagram.
The inner core radius, denoted Rc and Rc1 in Figs. 5(a)

and 5(b), respectively, is found to be essentially constant as
a function of H; it is fixed by the competition between
ferromagnetic and DM terms to a value of order J=D. On
the other hand, the optimal skyrmion cell size R� can have
nontrivial variation with H. For instance, in Fig. 5(a), we
see that R� diverges at the phase boundary between the SkX
and out-of-plane FM in the easy-axis case. In this case, the
skyrmion spins change from down to up on the length scale
Rc and then remain up out to R�. We next discuss the

implications of the divergence of R� for the nature of the
phase transition.

APPENDIX D: PHASE TRANSITION FROM
SKX TO EASY-AXIS FM

The optimal cell size diverges with R� → ∞ as H → H−
c

as one approaches the phase boundary (shown as a full line
in the phase diagrams in Figs. 1 and 3). We note that R�,
which determines the wave vector for the SkX Bragg spots,
is not a correlation length. Nevertheless, a divergent length
scale raises the following question: Is this transition
continuous or first order?
To determine the order of the transition, we need to know

whether the SkX and FM energy densities approach each
other with zero relative slope (continuous transition) or a
finite slope difference (first-order transition), as a function
of field H (at fixed anisotropy). While this is hard to nail
down numerically without a careful finite-size scaling
analysis, the following argument is instructive.
We focus on the energy-density difference between the

SkX and FM,

ΔE ≡ ΔE=L2 ¼ ðEsk − EfmÞ=L2; ðD1Þ
in the thermodynamic limit L → ∞. We can write the SkX
energy density as

Esk

L2
¼ Ec

�
Rc

R�

�
2

þ Efm

�
1 −

�
Rc

R�

�
2
�
; ðD2Þ

where Ec is the energy density of the skyrmion core of size
Rc and Efm is that of the FM. We thus obtain

ΔE ¼ ½Ec − Efm�ðRc=R�Þ2: ðD3Þ
Approaching the transition h ¼ ðH −HcÞ=Hc → 0−,

the only singular quantity in Eq. (D3) is

R� ∼ h−ν� : ðD4Þ
All other quantities on the right-hand side of Eq. (D3) are
smooth functions of h. Thus, we obtain

ΔE ≈ FðhÞh2ν� ; ðD5Þ
where FðhÞ is a smooth polynomial with Fð0Þ ≠ 0 since we
do not expect ðEc − EfmÞ to vanish, in general, for h ¼ 0.
The difference in the slopes of the energy density is then

given by

∂ΔE
∂h ¼ F0ðhÞh2ν� þ 2ν�FðhÞh2ν�−1: ðD6Þ

For h → 0, the first term vanishes, but the behavior of the
second term depends on ν�. If ν� ¼ 1=2, we get a finite
slope difference in Eq. (D6) and thus a first-order transition
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FIG. 5. Skyrmion length scales. We show plots of the H
dependence of the optimal skyrmion cell radius R� and the core
radii defined by the location of the maxima of jdmz=drj. For the
ansatz of Eq. (5) in the text, dmz=dr ¼ j2πrχðrÞj. (a) In the easy-
axis region, both R� and the core radius Rc are finite at the spiral-
to-SkX phase boundary, but R� diverges while Rc remains finite
at the SkX-to-FM transition. The vertical dashed lines indicate
phase transitions from the SkX to the spiral state (at small H) and
to the FM (at large H). (b) In the easy-plane region, there are two
core radii corresponding to the two maxima in j2πrχðrÞj. These
inner and outer core radii Rc1 and Rc2, and the cell radius R� all
remain finite at the two phase transitions out of the SkX phase.
Here, the vertical dashed lines indicate SkX-FM transitions.
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from the energy perspective, despite a divergent length
scale. However, if ν� > 1=2, then we would get a continu-
ous transition. Within a variational or mean-field calcu-
lation, one might expect ν� ¼ 1=2, although this is not
entirely clear since R� is not a correlation length associated
with an order parameter.

APPENDIX E: RKKY INTERACTIONS
WITH SOC

Here, we discuss the case of RKKY [46] interaction
between local moments embedded in a metallic host
described by Eq. (3) in the text. In this case, the magnetic
exchanges [43], namely, the isotropic, DM, and compass,
between two moments at r1 and r2 turn out to be
J12 ¼ ~Jðr12Þ cos 2ϑ12, D12 ¼ ~Jðr12Þ sin 2ϑ12, and A12 ¼
~Jðr12Þð1 − cos 2ϑ12Þ. Here, r12 ¼ r2 − r1, ϑ12 ¼ kRr12,
with kR≡ðλ=taÞ and ~JðrÞ≃−ðJ2Ka2=4π2tÞ sin ð2kFrÞ=r2.
This result is obtained [43] for kFr12 ≫ 1, where kF is the
Fermi wave vector, and by approximating 2D tight-binding
energy dispersion by a parabolic band, as appropriate for
low density of conduction electrons. Evidently, for λ ≪ t
and k−1F ≪ r12 ≪ k−1R , the ratio A12J12=D2

12 ≃ 1=2 is main-
tained. We consider a set of moments that are regularly
distributed on a square lattice with a spacing a such that the
ratio AJ=D2 ≃ 1=2 for nearest-neighbor exchanges. If we
neglect the longer-range part of the RKKY, then we obtain
the effective spin Hamiltonian (9) of the main text.
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