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Here, we report the experimental observation of a dynamical quantum phase transition in a strongly
interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a
superconducting circuit platform, exhibits a dissipation-driven localization transition. Signatures of the
transition in the homodyne signal and photon number reveal this transition to be from a regime of classical
oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum
phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum
simulator, whose well-controlled coherent and dissipative dynamics is suited to the study of

quantum many-body phenomena out of equilibrium.
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An understanding of the physics of systems far from
equilibrium [1] encompasses deep issues of fundamental
importance such as dissipation, decoherence, emergence of
classicality from intrinsically quantum systems [2], sym-
metry breaking and bifurcations, and how equilibrium is
itself established [3—6]. Unraveling this intricate physics is
essential to making sense of the world around us, which is
fundamentally nonequilibrium and yet displays complex
emergent structure. Much of the important recent progress
in experimental condensed matter physics has explored the
equilibrium regime of strongly correlated synthetic matter
(e.g., ultracold atoms in optical lattices [7]), but it has been
a long-standing goal to understand what new phenomena
may arise as these systems are pushed away from equi-
librium. With the rapid technological advances in solid-
state quantum optics [8,9], it is now becoming possible to
experimentally study strongly correlated photons, and to
build model systems whose open nature gives rise to rich
emergent behavior. Interaction with an environment has
been argued to provide a mechanism for the emergence of
classical behavior [2] from a quantum system. It is also
possible, as our work explicitly demonstrates, that dis-
sipation into an environment can qualitatively change this
picture, where initially classical dynamics crosses over into
one which is fundamentally quantum in nature.

Linear Josephson oscillations [10—14] and their anhar-
monic generalizations when interparticle interactions are
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relevant [15-17] have been observed for atomic Bose-
Einstein condensates (BECs) [18] and more recently in a
system of exciton polaritons [19]. At high density in such
BEC systems, the large interactions dominate the tunneling
and lead to macroscopic quantum self-trapping [20,21].

In this experiment, we explore a localization transition in
a dissipative photonic system [22] realized in the circuit
QED architecture [8,9], a solid-state realization of cavity
QED [23]. As a system supporting phase-coherent photonic
states and controlled nonlinearity (tunable in situ on
nanosecond time scales) reaching well into the strong-
coupling regime even at the single-photon level, it opens up
the possibility of experimental condensed matter physics
with strongly correlated photons. The flexibility in engi-
neering model Hamiltonians and environmental couplings
makes it an exemplary candidate for carrying out certain
classes of quantum simulations [24,25] of important but
difficult to study problems [26-31]. The dynamics of
polaritons in driven dissipative Jaynes-Cummings chains
have been studied theoretically, where a transition from
classical to nonclassical steady-state fields, with varying
interaction, tunneling and drive strengths, observable in the
density-density correlation functions, have been suggested
[32-34].

The physics of a single qubit coupled to a superconduct-
ing microwave resonator is well described by the Jaynes-
Cummings Hamiltonian (we choose units where 2727 = 1),

B¢ =vata+v,676 +g6ta+eat), (1)
with v, (v,) the bare cavity (qubit) frequency, g the qubit-
cavity coupling rate, &, &' representing the photon

annihilation and creation operators, and 6% the Pauli
pseudospin operators. The photon-qubit interaction induces
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an anharmonicity in the spectrum of the Jaynes-Cummings
Hamiltonian that leads to an effective on-site repulsion for
photons [30]. Multiple Jaynes-Cummings sites can be
coupled to form a lattice with various symmetries and
topologies [26,27,36-38]. Here, we study the smallest
nontrivial chain, coupling a pair of identical Jaynes-
Cummings sites through a photon hopping term (with rate
J, and subscript s = L/R specifying the left and right sites)
to form a dimer [22]:

H giner = Z HC — J(aj,ag + agay). (2)
s=L/R

Interaction with the environment is described through a
Markovian Lindblad master equation governing the
dynamics of the reduced density matrix of the dimer,

% = ilp. Homed) + > <gc[ai]> + (%E[?f,-}), (3)

i=L.,R

where the Liouvillian superoperator £[0] =20 p 0" —
O'0p—pOTO describes the cavity photon and qubit
relaxation rates at x and y, respectively. Dephasing for
our choice of qubits (transmons) can be made much weaker
than the above two channels [39,40], and hence is ignored
in our theoretical description.

We first discuss the semiclassical dynamics of the dimer
in the absence of dissipation (x = y = 0). This can be done
via the Heisenberg equations of motion and fully factoriz-
ing expectation values of spin-photon operator products,
yielding a set of eight coupled differential equations for
expectation values of the qubit and cavity field operators. A
useful representation is in terms of real and imaginary parts
of the cavity field R; = Re(a,), I, = Im(a,); with the
angles parametrizing the spin direction 7 on the qubit Bloch
sphere, 71, = [sin(6)cos(¢,),sin(d;)sin(¢,),cos(0,)], these
equations are

R, = —gsin(Qs) sin(¢,) — J15,
I, = =Jsin(8,) cos(,) + Ry, 4)

for the dynamics of the cavity (5 denotes the cavity opposite
to s), and

s = _Zg[Rs COS(¢$) — I Sin((ﬁs)] COt(es)v
és = _2g{RS Sin(¢s) + 1 COS(¢S)]’ (5)

for the qubits. In writing these equations, we assume the
qubits to be resonant with the respective cavity modes they
are coupled to (v, =v,), and work in the rotating
frame. We define the photon number on the left and right
as Ny = (21} JRAL /) the total photon number as their

sum N = N; + Ng, and the photon imbalance as
Z = (Np — Ng)/N. For special choices of initial condi-
tions, the dynamics can be restricted to certain

submanifolds of the phase space. One possible choice, I; =
R, =0 and ¢, =x/2, ¢, =0, leads to a set of four
coupled equations, which preserve this choice. This sub-
manifold contains the dynamics corresponding to an initial
condition with perfect imbalance (e.g., Z = 1 for Ry = VN
and I, =0 at t = 0).

In the absence of qubit-cavity interaction (g = 0), the
reduced set of equations can be solved exactly, giving rise
to harmonic coherent Josephson oscillations of the imbal-
ance at frequency v; = 2J. With increasing coupling g, the
oscillations become anharmonic. Solving the system of
differential equations numerically (subject to the initial
condition with Z = 1) shows that, at a classical critical
coupling [41],

g<' ~2.8JVN, (6)

the oscillation period diverges, exhibiting critical slowing-
down, and resulting in a sharp crossover between two
qualitatively different regimes of classical dynamical
behavior [22], signaling a dynamical phase transition.
For couplings beyond the critical value, the system local-
izes, with the initial photons trapped nearly entirely on a
single site, spontaneously breaking the left-right symmetry.
As the parameters g and J are fixed for a particular device,
it is helpful to recast the problem in terms of a correspond-
ing classical critical photon number N¢ ~ 0.13(g/J)? for a
given g/J. In the classical analysis, a dimer initialized with
a photon number N < N9 is expected to remain in the
localized regime (noting also that the numerical prefactor
determining the critical photon number is itself somewhat
sensitive to the initial state.)

We now discuss the full quantum dynamics of the dimer
in the absence of dissipation (y = x = 0). High-quality
microwave generators acting as classical coherent sources
prepare coherent states having nonzero homodyne
voltages, making it possible to monitor the system by
observing the homodyne quadratures I = (1/2)(a + a")
and Q = (i/2)(a" — &). [Throughout this paper, we define
the homodyne signal as & = (I)2 + (Q)?, whereas the
photon number is arrived at by averaging after squaring
the individual quadratures, i.e., (I> + Q%). Note that the
variables appearing in the classical equations of motion (4)
and (5) are the expectation values of the quadrature
operators.] In the limit ¢ — 0 with finite J, initializing
the system with a coherent state leads to oscillations of
coherent states between the two cavities with a fixed phase
difference of z/2. The oscillations here closely match the
expected classical behavior of two coupled oscillators.
Keeping ¢ finite and taking J — 0, the two Jaynes-
Cummings sites decouple, leading to the well-known
resonant collapse and revival phenomenon for a coherent
state interacting with a single qubit [23]. From the point of
view of the cavity, collapse and revival is a manifestation of
the formation of a Schrodinger cat state, as each component
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FIG. 1. Numerically simulated phase diagram. Quantum dynamics (without dissipation) of the homodyne signal in left (a) and
right (b) cavities, as a function of total photon number (logarithmic vertical axis, with color bar normalized by &;, the homodyne
signal of a coherent state with mean occupation of one photon), for the case where the system has been initialized into the
Z =1 imbalance state, photons in a perfect coherent state, and both qubits initially in the ground state. The parameters chosen
are as given in the text corresponding to the actual device used in the experiment. For photon numbers below the quantum
renormalized critical number N&, tunneling is dynamically suppressed and we observe collapse-revival oscillations with
period scaling as ¢, =+/N/g, as expected for decoupled single-site Jaynes-Cummings physics [23]. At very small photon
numbers, we see an “‘exiguous” regime where tunneling reappears. We also observe in this localized regime secondary revivals at
long times (also present in the unitary evolution of the single-site Jaynes-Cummings model), which would be washed out in the
presence of dissipation. The dynamics above the critical photon number displays Josephson-like oscillations with period
t; = (2J)7', becoming more linear with increasing photon number. We note that the critical number is marked by the coincidence
of two time scales, ¢, = t;. As the initial N increases, the revival period grows and ultimately matches that of the Josephson
oscillation time scale, yielding the critical photon number N¢" ~ g?/4J% ~ 2N¢!, consistent with where the transition is observed in
the simulation. Solving the dynamics at the upper limit shown necessitates the solution of the time-dependent Schrodinger equation
in a Hilbert space exceeding a dimension of size 10°. More details regarding the difficulty of such simulations can be found in the

Supplemental Material [45].

of the cat state accumulates a different phase due to the
interaction with the qubit [43,44]. The use of coherent
states emphasizes the stark contrast between the two
dynamical regimes—one characterized by classical oscil-
lations and a second one characterized by the spontaneous
formation of the quintessential macroscopic quantum
mechanical state, the Schrodinger cat, displaying collapse
and quantum revivals. These two regimes are demarcated
by a dynamical quantum phase transition, with the locali-
zation a manifestation of macroscopic quantum self-
trapping [16]. Here, we use the term dynamical quantum
phase transition to describe a situation where a qualitative
change occurs in the properties of the excited states as a
function of a Hamiltonian parameter (here, g/J), instead of
the ground state as in generic quantum phase transitions.
The consequence of such a structural change in excited
many-body states is reflected in the dynamics of appro-
priate observables after a quantum quench.

Inclusion of quantum fluctuations results in a renorm-
alization of the critical coupling to its quantum value ga"
(and likewise for the critical number to N¢"). In Fig. 1, we

show the numerically calculated quantum dynamics of the
homodyne signal £ for initialization of the left cavity with a
coherent state of the photon field of varying initial photon
numbers (the qubits start out in the ground state and the
right cavity in the vacuum state). We note that for the
homodyne signal, while the delocalized regime is charac-
terized by harmonic Josephson oscillations at frequency
v; =2J as for the imbalance Z, the localized regime is
marked by fast collapse-revival oscillations, the period of
which scales as 7, = v/N/g. In the localized regime, the
tunneling is dynamically suppressed and the dimer behaves
like two uncoupled Jaynes-Cummings sites. The transition
region around N&" displays multiscale oscillations. At very
small photon numbers, we find two further regimes
characterized by the reappearance of tunneling and secon-
dary revivals. The richness of the quantum dynamics
in the lower part of the figure is due to the finite nature
of the system, namely, small N and isolation from the
environment.

Figure 2 displays the time-averaged quantum expect-
ation value of the imbalance and its fluctuations as a
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FIG. 2. Time-averaged imbalance and quantum fluctuations of
the imbalance. The time-averaged imbalance for varying g/¢c, as
well as its quantum fluctuations (mean squared fluctuations), for
coherent states of five different mean photon numbers (red, 20;
green, 40; blue, 60; magenta, 100; black, 200). Here, the total
imbalance Z7 is the difference in the number of excitations on
each side (photon plus qubit excitation), normalized by the total
excitations N7 in the system. The classical prediction puts the
transition at g/¢%' = 1. The quantum fluctuations are largest in
the classically delocalized regime, and lead to a renormalization
of the expected quantum value of the critical coupling g
downwards (i.e., requiring smaller coupling to observe localiza-
tion if the total excitation number is held fixed), and hence
relocating the critical photon number N&" upwards. This is
reflected in the buildup of a finite imbalance in the region where
the classical analysis predicts no net imbalance, which is,
therefore, a quantum localized regime. We also observe that as
the number of excitations in the system is increased, the transition
gets sharper, suggesting the thermodynamic limit for this spa-
tially finite system is given by the limit of large excitation
number.

function of g, subject to the initialization described above.
With increasing N, the transition becomes sharper and
appears to asymptote at a gl that is smaller than the
classical value g¢'. The precise value of the renormalization
of the critical coupling, g&'/g<!, depends on the initial
quantum state. The crossover region is dominated by large
quantum fluctuations and, hence, is not amenable to a
simple mean-field description. A natural question to ask is,
what asymptotic limit gives the semiclassical result
described by a sharp transition at ¢&'? Our simulations
with larger qubit spin S (not shown here) indicate that the
appropriate semiclassical limit is (S, N) — oo.

The above arguments apply, however, to the conservative
case for which the dimer is isolated and the dynamics
conserves the total excitation number, Np =3, »6¢8; +
ala,. Below, we describe a dynamical phase transition that
is of a different nature and is particular to the dimer
connected to transmission lines, as studied in our exper-
imental setup. The dynamics of such an open Jaynes-
Cummings dimer described by the master equation (3) does
not conserve the total excitation number. As a consequence
of this, the photon number decays exponentially, and a

system initially prepared in the delocalized regime with
N; = N(t=0) > N" will, at a finite time, cross the phase
boundary and localize, breaking the left-right symmetry, as
predicted in Refs. [22]. We note that this is distinct from the
scenario described above where the transition occurs as a
function of parameters g/J in a system that conserves the
number of excitations. This transition also differs
from nonequilibrium dynamical transitions in the steady
state, e.g., when a drive parameter is varied [46-50].
Interestingly, dissipation drives the system from classical
behavior to quantum behavior, contrary to the standard
intuition that dissipation always renders systems more
classical (for previous work on a quantum to classical
transition in a circuit QED realization of single-site Jaynes-
Cummings physics in the presence of an effective temper-
ature, see Ref. [51]). The transition demonstrated in this
work stands in sharp contrast to atomic and polaritonic
BECs, for which the low-density dynamics is linear
[16,17,52], and where dissipation drives the system into
a delocalized classical state [21,53].

Our experimental circuit QED realization of the Jaynes-
Cummings dimer is presented in Figs. 3(a) and 3(b). Each
resonator of frequency v, = 6.34 GHz and linewidth x =
225 kHz is individually coupled to a transmon qubit
[39,40] with strength g = 190 MHz, providing a strong
effective photon-photon interaction. A coupling capacitor
allows photon hopping at rate J/ = 8.7 MHz. These param-
eters place the classical critical photon number at N = 62
and enable the observation of many periods of Josephson
oscillations (J > k). Crucially, at fixed mean initial photon
number in the localized phase, there exists an upper bound
for k beyond which the averaged revival signal is lost, and
the control afforded over dissipation in this architecture
allows us to place x well below this bound, allowing for a
good resolution of the quantum revival oscillations [23].

The device is operated in both the linear and nonlinear
regimes, tuned via external flux lines V; g. To initialize the
system [Fig. 3(c)], flux bias pulses shift both qubits far out
of resonance, removing photon-photon interactions and
allowing efficient population of the linear dimer modes
when driven by a coherent microwave tone Vg;,.(f) at
frequency v, modulated by a sinusoid of frequency J. Once
initialization is complete, and after a variable time delay z,
the nonlinearity is reintroduced by flux biasing the qubits
into resonance (this point is our origin of time ¢ = 0). The
delay allows arranging any desired imbalance (and
hence oscillation phase) at the beginning of the experiment.
Here, the imbalance oscillations cover the full range
—1 < Z < +1, unlike for BECs [20,21].

Calibrating the flux pulses requires locating bias points
leading to minimal photon-photon interactions (this corre-
sponds to the minimum of the qubit energy that gives the
smallest resonator Lamb shift) for preparation, as well as
resonance, where nonlinearity is largest. The low-lying
spectra at these bias points is presented in Fig. 4, together
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FIG. 3. Device layout and initialization routine. (a) Schematic
diagram of the experiment. The Jaynes-Cummings dimer is
composed of two coupled transmission-line resonators each
individually coupled to a transmon qubit. Intercavity coupling
J =287MHz and cavity-qubit coupling g = 190 MHz. The
resonators are driven and monitored via coupling to external
transmission lines. Initialization pulse V4. can be applied to the
left or right cavity to generate classical oscillations in the system,
while fast flux pulses V g control qubit energies at nanosecond
time scales. Right cavity quadratures are monitored via a
homodyne measurement. When V.. is applied to the right
cavity, a fast microwave switch is used to block the strong
reflected signal. (b) Optical micrograph of the device. (c) Initial-
ization routine pulse waveforms. Fast flux pulses V; z rapidly
detune both qubits to their minimum energies to turn off
photon-photon interactions. While qubits are detuned, either
the left or right cavity is driven with initialization pulse V. =
sin(2zv, 1) sin(2zJ1)®(—1)O(t + m/J), where m is an integer
and O is the Heaviside step function. Variable delay 7 after the
end of Vg, allows the photon-photon interactions to be turned
on at any point during the undriven linear oscillations, enabling
the preparation of any desired imbalance.

with the associated single-photon nonlinearities. We
develop a characterization technique useful for systems
with low dissipation that relies on the Jaynes-Cummings
nonlinearity, which leads to bistability with a sharp
transition to a bright state as an applied continuous
microwave tone is swept in power [57-59]. The threshold
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FIG. 4. Low-lying dimer spectra and nonlinearities. Spectra are
shown for the two flux bias points in the experiment, without
(a) and with (b) photon-photon interactions. The first (orange) and
second (blue) excitation manifolds are shown along with tran-
sitions (black), where transitions from the first to second excitation
manifold are the same frequency as the ground to first transitions
immediately below. (a) Effective photon-photon interactions can
be turned off by tuning qubits to their minimum energies. While
detuned, the qubits remain in their ground states and can be
ignored, resulting in a simplified spectrum of two cavities in
resonance. The J coupling creates two linear hybridized modes
with energies v, £ J, ideal for generating full linear oscillations
[Z(t) oscillates between +1]. Modulating V.. at J generates
sidebands resonant with each mode and explicitly sets the phase of
the resultant linear oscillations, generating an imbalanced coherent
state at + = 0. (b) Photon-photon interactions are generated by
tuning both qubits into resonance with the cavities. At this bias
point, the first excitation manifold has four polariton states at
energies v, + g+ J/2. Strong single-photon nonlinearities are
apparent, as no transitions to the second manifold match the
energies of the first manifold. Because of the form of the Jaynes-
Cummings Hamiltonian, all nonlinearities are photon number
dependent and lead to linear behavior at high excitation manifolds.

for this transition (above which the bright state
behaves linearly) is sensitive to the frequency difference
between the uncoupled mode being monitored and the
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nearest low-energy polariton mode, a useful proxy for
the strength of the induced nonlinearity. Such a mapping of
the two-dimensional qubit flux space identified the double
minimum and resonance points (see Supplemental
Material [45]).

The dynamics is observed by monitoring photons
escaping one of the cavities. After amplification, the signal
is mixed down with a local oscillator at v, to produce the 7
and Q quadratures, which are each sampled at 1 Gs/s.
Ensemble averaging over many trials (typically 10%)
produces the homodyne signal and photon number (defined
previously in terms of the individual quadratures).

If initialized with N; < N, (N, is taken to be the critical
photon number observed in the experiment), the system
localizes as soon as interactions are introduced, clearly
demonstrated by strong collapse and revival of the homo-
dyne signal [60,61]. These manifest as a series of lobes
with peaks at integer multiples of the revival time ¢, =
V/N/g and zeros at the midpoints between revivals, a
uniquely quantum aspect of decoupled single-site Jaynes-
Cummings physics. Observation of clean revivals, together
with an estimate of ¢ = 190 MHz, provides a metric for the
photon number in the cavity, which is then mapped back to
the drive power that created the localized state. A similar
calibration is done for the amplitude of the homodyne
signal. Exploiting the linearity of the system during
initialization, we calibrate the initial photon number
throughout the full range of drive power. Figure 5(a) shows
the revival signal for varying initial photon numbers below
the critical value, and 7z chosen to create a perfect initial
imbalance Z = —1, placing all photons in the monitored
cavity. A gap between clear Josephson oscillations (visible

4 haw ety L

-100

Time (ns)

FIG. 5.

(b)

for N; > 20) and clear revival dynamics (visible for
N; < 13) corresponds to the critical region where the
revival and Josephson oscillation time scales become
comparable. The inset presents a fit to the observed revival
times displaying the expected v/N dependence, which is
used in the calibration described above for both the initial
photon number N; as a function of initial power and &, the
homodyne signal amplitude of a coherent state with mean
photon number of 1. Figures 5(b) and 5(c) exhibit the
preparation of an arbitrary imbalance, where the revival
time shows a periodic variation along the vertical axis with
7 (period 1/2J) and a relative shift between the cavities
arising from the imbalance. At the values of = correspond-
ing to perfect imbalance (Z = =41), all photons are trapped
in a single cavity, and the absence of any measurable signal
at the other site provides strong evidence for lack of photon
tunneling.

For initial photon numbers N; > N,., the system is
placed in the delocalized phase. Figure 6(a) compares
the dynamics without and with interactions. The former
case displays quintessential linear behavior—exponential
decay at arate k = 225 kHz modulated by oscillations with
frequency 2J, proceeding well beyond N, into the noise
floor. Superposed is a typical example of the nonlinear
dissipation-driven classical to quantum transition, initially
displaying Josephson oscillations enveloped by an expo-
nential decay. The slightly faster effective decay rate
(k" = 265 kHz) can be attributed to small qubit dissipation
and dephasing (as verified by simulations), which play a
more significant role with the qubits in resonance and
satisfies the condition for strong single-photon nonlinearity
g>> K/, aregime not accessible to current exciton-polariton

50

50 100 150 200
Time (ns)

0 100 150 200 250

Time (ns)

Self-trapped regime. (a) Homodyne signal dynamics of the right cavity as a function of initial photon number and time. A 345-

ns (3/J) initialization pulse Vg, ending at r = 0 generates linear oscillations between the left and right cavities while photon-photon
interactions are off. The oscillations proceed for a time 7 such that a perfect imbalance (Z = —1) is established when interactions are
turned on. For N; < N, the system is localized and the right cavity displays fast collapse and revival oscillations while the left cavity
(not shown) remains empty. Inset: Fitting revival time 7, as a function of drive power to the expected /N dependence allows drive power
to be mapped to initial photon number (at ¢t = 0), as well as the calibration of &;, the homodyne signal of a coherent state with mean
occupation of one photon. (b),(c) Revival time variation as a function of 7 for V. applied to the left (left-hand panel) and right (right-
hand panel). As 7 is varied, the full range of imbalance is observed. Here, the same initialization scheme as in (a) is used with N; = 8§,
which produces the cleanest collapse and revival signature. When driving the right cavity, strong reflections during V4., give rise to
signal distortion during the dynamics (visible in the right-hand panel) that are mitigated by using a microwave switch.
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FIG. 6. Dissipation-driven transition and phase diagram. (a) Comparison of homodyne signal when photon-photon interactions are off
(red) and on (blue), with N; > N . The same initialization pulse V4;,. was used as in Fig. 5. With interactions off, the system undergoes
oscillations and exponential decay at rate kx, which can be observed for several microseconds. Significantly, the presence of interactions
causes superexponential decay of the homodyne signal as N approaches N, a signature of crossover into the localized regime. (b) The
time of onset of superexponential decay . shifts with initial photon number, as shown here for initialization pulses with varying drive
power lasting 11.5 us (100/J). The use of a long initialization pulse makes it possible to drive the system to very large initial photon
numbers (top to bottom: N; ~ 12000, 3800, 1100, 550, 40), but introduces complications (see Supplemental Material for more details
[45]). (c) Directly measuring the photon number (green) reveals that incoherent photons remain in the system after the homodyne signal
(blue) has undergone superexponential decay. Oscillations in the photon number can also be observed to die out, as critical slowing-
down constrains the envelope of oscillations, finally leaving only exponential decay. Here, V ;. is 1.15 us (10/J) and 7 =1 us.
Background voltages leading to distortion of the signal were removed from the photon number measurement. (d) Reconstructing the
phase diagram by monitoring the homodyne signal as a function of initial photon number and time. At high powers, the dynamical
transition from linear oscillations to localized behavior is marked by superexponential decay, while at low powers the collapse and
revival signatures of localized behavior are observed. A 345 ns (3/J), an initialization pulse Vg;,. ending at ¢t = 0 is used with
7 = 65 ns, corresponding to an initial imbalance Z =~ —0.6. Inset: Illustration of the phase diagram showing the different dynmical

regimes.

BECs [21]. The exponential decay of the oscillations later
gives way to a superexponential drop in homodyne signal, a
signature of the crossover from delocalized to localized
behavior: photon escape is a stochastic process, and for a
given trial the photon number falls below N, at a random
time, with an average time dependent on the initial photon
number. When approaching this point, the Josephson
oscillations become nonlinear, exhibiting a critical slow-
ing-down [22]. Oscillations of different trials within an
ensemble dephase with respect to each other, and individual
trials once localized exhibit very rapid collapse; thus,
ensemble averages of 7 and QO die out faster than exponen-
tially, and only trials where N(¢) > N_. continue to con-
tribute to the homodyne signal. Figure 6(b) shows the
observed homodyne dynamics for various initial photon
numbers, revealing the logarithmic dependence of the
critical time to reach the transition on the initial photon
number, 7, ~ Llog(N,/N.).

Unlike the homodyne signal, photon number measure-
ment is insensitive to the coherence of field in the
monitored cavity. Additionally, the dispersion between
individual trials arising from critical slowing-down does
not cause the photon number to decay superexponentially.
Figure 6(c) compares homodyne measurement to photon
number for the same initial condition. For short times, the
two signals match, demonstrating a high degree of coher-
ence within the ensemble. In contrast to the superexpo-
nential decay of the homodyne signal, we see an
exponential decay of the photon number.

The homodyne observation maps out a dynamical phase
diagram as a function of initial photon number N; and time,
as displayed in Fig. 6(d). An applied drive during an
initialization phase where photon-photon interactions are
off initiates Josephson oscillations. An undriven and
noninteracting region lasting a constant time ¢ follows,
continuing the oscillations, at the end of which the
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Simulated homodyne signal without and with dissipation. A comparison of the homodyne dynamics (shown on a logarithmic

scale, normalized to &;, the homodyne signal of a single-photon coherent state) without dissipation (red curve) and with (blue curve,
averaged over 1000 walks in a quantum trajectory simulation of the master equation). The initial state is a coherent one with a mean of
150 photons on the left, no photons on the right, and the qubits in the ground state. The unitary dynamics (no dissipation) exhibits
nonlinear oscillations due to the competition between intercavity tunneling and qubit coupling, in the delocalized regime not very far
above N&". As the tunneling is less sensitive to dissipative effects, the tendency is for dissipation to linearize the oscillations. The early
overshoot in the homodyne signal results from transient behavior in the initial dynamics of the system.

nonlinearity is rapidly switched on. For N; > N, there
exists a delocalized, interacting phase extending for a time
scaling logarithmically with N;, before crossing over into a
localized regime. These oscillations are the dominant
feature visible for initial photon numbers greater than
20. With an initialization such that N; < N, the system
immediately localizes as interactions are switched on,
maintaining the trial coherence and, hence, visibility of
the collapse and quantum revival in the homodyne signal.
These revivals can be seen as the very short time scale
features occurring below N; = 13.

We find that the experimentally observed critical photon
number (13 <N, <20) is at variance with the classical
prediction (N¢ ~ 62) and, moreover, with the full closed
quantum dynamics simulation (placing N¢" & 120, as seen
in Fig. 1). Another feature of the experimental data is the
regularity of oscillations close to the transition for N; % N,
which stands in contrast to the irregular oscillations in the
full quantum dynamics shown in Fig. 1. To understand
whether dissipation is behind these observations, we also
perform quantum trajectory simulations of the open dimer
[that effectively solves the master equation (3)]. Figure 7
compares quantum trajectory simulations of an initially
coherent state at photon number above N¢', without and
with dissipation. The presence of dissipation is found to
linearize the intercavity oscillations leading to a homodyne
signal that exhibits regular harmonic oscillations, as
observed in the experiments. The variance of the observed
critical number from the predicted value might arise from
the role of dissipation in the dynamical transition, fluctua-
tions in the initial state due to imperfections in preparation,
the effect of the higher transmon levels that may be
important in the early time dynamics (though the detuning
of the higher levels should suppress their contributions),
and the dynamics associated with quenching in the vicinity
of a critical point.

We demonstrate a nonequilibrium localization transition
in a strongly correlated open photonic system. Our delib-
erate choice of parameters places the transition in a region
at the margin of accessibility to classical simulation of the
quantum dynamics, providing a test of the reliability of this
architecture as a platform for quantum simulation of open
systems [62]. We expect that future experiments will build
on this work to explore the intricate dynamical behavior of
lattices when dissipation plays a fundamental role, and
which lie beyond what classical simulators can replicate.
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