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Physics and information are intimately connected, and the ultimate information processing devices will
be those that harness the principles of quantum mechanics. Many physical systems have been identified as
candidates for quantum information processing, but none of them are immune from errors. The challenge
remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we
develop an architecture based on a simple module comprising an optical cavity containing a single
negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in
a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for
quantum information processing. In principle, all processes in the architecture can be deterministic, but
current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables
large-scale quantum information processing with existing technology.
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I. INTRODUCTION

Quantum computers promise to surpass even the fastest
classical computers, but the task of building a quantum
computer presents a significant challenge. Even if they are
precisely engineered, all known quantum systems suffer
from decoherence and dephasing [1]. If this noise is
sufficiently weak and not too strongly correlated, then it
can be suppressed with quantum error correction [2]. The
role of quantum computer architecture is to integrate
quantum error correction with feasible experimental tech-
nology, to find a path to a reliable and scalable quantum
computer. In this context, of the many physical systems
identified as candidates for quantum information process-
ing [1], the negatively charged nitrogen-vacancy (NV−)
center in diamond [3–5] features a number of desirable
properties [6–12]. For example, the NV− center possesses
both a nuclear spin and an electron spin—the nuclear spin
can serve as a memory to store quantum information for
relatively long times [13], and the electron spin can be
coupled to a photon to serve as a flexible interface with
other NV− centers [14]. The experimental feasibility of
this system has been well established in recent years.
Experiments have demonstrated individual electron and

nuclear spin initialization, manipulation, and measurement
[9,15–24], long-lived nuclear memories [13], a coherent
interface between an electron spin and an optical field [14],
entanglement between two remote electron spins [25], and
optical cavities containing NV− centers [26–28]. State-
dependent reflectivity has been demonstrated with atoms
[29], though not yet with NV− centers. At the same time,
new techniques for quantum error correction have lessened
experimental requirements [30–32].
Here, we develop a quantum computer architecture

based on a simple module comprising an optical cavity
containing a single NV− center in diamond. Modules are
connected by photons propagating in a fiber-optical
network. The cavities mediate interactions between the
photons and the electron spins, enabling entanglement
distribution and readout. The electron spins are coupled
to nuclear spins, which constitute long-lived quantum
memories where quantum information is stored and proc-
essed. Aside from modules connected by optical fibers,
other elements of the architecture are single-photon detec-
tion devices and classical control lines. These elements are
laid out in a regular two-dimensional array, with sufficient
connectivity between modules to enable topological
cluster-state error correction [33–35]. This arrangement
is independent of the size of the network. At a circuit level,
we find the maximum tolerable error per elementary
quantum gate to be approximately 0.73%. However, by
analyzing the architecture at the physical level, we also
estimate how well each component of the module must
operate for the system to meet this threshold and be truly

*nemoto@nii.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 4, 031022 (2014)

2160-3308=14=4(3)=031022(12) 031022-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.4.031022
http://dx.doi.org/10.1103/PhysRevX.4.031022
http://dx.doi.org/10.1103/PhysRevX.4.031022
http://dx.doi.org/10.1103/PhysRevX.4.031022
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


scalable. The results of this analysis indicate that the
architecture is consistent with present technology and
might be achievable in the near future.
Quantum computer architectures have been proposed

for several other solid-state systems, including supercon-
ducting qubits [36], electronic spins [37], and quantum
dots [37–40]. Each of these physical systems has particular
properties, which requires architectures to be tailored. For
instance, quantum dots do not generally have nuclear
spins that can be used as quantum memories, so an
alternative approach must be considered [41].
Regardless, the electron spin entanglement distribution
schemes used in our approach can be applied to quantum
dots and those already proposed in quantum dots can be
applied to our case [42–50].

II. FUNDAMENTAL BUILDING BLOCKS

Our approach can be adapted to a variety of promising
physical systems, such as ions, neutral atoms, and quantum
dots [51–55], and for this reason, we begin with a general
description of the fundamental module. However, to show
that the module can form the basis of a truly scalable
architecture, we focus on a concrete implementation using
NV− centers.
We begin our description of the architecture with an

entanglement scheme based on the state-dependent reflec-
tivity of a module consisting of an atom-cavity system
[44,46,56], as depicted in Fig. 1.We can describe the emitter
as a four-level system with transitions j0i → j0Ei and
j1i → j1Ei, each with a frequency ω0 and ω1 ¼ ω0 þ δ,
respectively. The probability for a photon to be reflected by
a module with cooperativity C and the cavity tuned to the
interrogation frequency ω is given by [57]

PR ¼ 1 − 1þ 4Cþ ðδ=γÞ2
1þ 4Cþ 4C2 þ ðδ=γÞ2 : ð1Þ

Here, γ is the amplitude decay rate of the interrogated
transition, while δ ¼ ω1 − ω0 is the detuning of cavity and
interrogation light from that transition. We assume a cavity
with matched mirrors, in which case an impinging photon
will be reflected by the module with high probability if the
emitter is in the ground state j0i and the cooperativity is
C ≫ 1. In the case of large detuning, ðδ=γÞ2 ≫ ðC2; C; 1Þ,
the cavity is effectively empty and the reflection probability
approaches PR → 0. In the simplest variant of our entan-
glement scheme (Fig. 1), we place two such modules at the
output ports of a 50:50 beam splitter and prepare each
emitter in an equal superposition of the ground states j0i and
j1i. A single photon is then sent onto the beam splitter. If it is
subsequently detected at the “dark” port of the beam splitter,
the emitters are projected onto themaximally entangled state

jSi ¼ 1ffiffiffi
2

p ðj1ij0i − j0ij1iÞ; ð2Þ

with success probability p ¼ η2PR=8, where the collection
efficiency η2 includes the effects of inefficient sources and
detectors (we provide full derails in the Supplemental
Material [58] and also refer the interested reader to a
textbook discussion of a similar scheme [56]). This prob-
ability may appear to be low; however, the generated
entangled state has extremely high fidelity (>99%) and is
robust to imperfections (see Supplemental Material [58]).
For instance, imbalance in the cavity reflection coefficients
slightly reduces the success probability but does not degrade
the fidelity of the resulting state.
The low success probability of the implementation can

be simply overcome using a repeat-until-success approach
to establish an entanglement link with high probability
[45,59]. We show in the following sections that the scheme
not only exhibits high fidelity in the presence of physical
imperfections, but also, unlike other approaches, does not
involve any catastrophic errors.
In addition, the module enables (near) perfect non-

demolition measurement of the qubit state. For an archi-
tecture for quantum computation, we require a second qubit
in the cavity to act as a quantum memory. Ideally, the
coupling between our four-level system and this memory
qubit can be switched on and off as required. This allows
the four-level system to be reused for entanglement
creation, now with a third module. By repeating this
process with additional modules, we can generate a cluster
state suitable for fault-tolerant quantum computation. In the
following, we detail this architecture by describing a full
implementation using single NV− centers in microcavities
connected in a photonic network.

0

0

FIG. 1. Schematic representation illustrating the module and
the entanglement distribution scheme. The module contains an
optical cavity with a four-level system. The entanglement
distribution scheme is based on a Michelson interferometer
where two modules are connected via an optical fiber
[7,8,44,46]. A single photon comes in from the right port and
is conditionally reflected at each module depending on the state
of the emitter. Erasing the path information at the beam splitter
followed by detection at the dark port projects the system to the
singlet Bell state.
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III. DIAMOND MODULE

We now turn our attention to a concrete implementation:
a fiber-connected optical cavity containing a single NV−
center, of which the energy levels are depicted in Fig. 2(a).
The lowest three electron spin states, jms ¼ 0;�1i≡
j0;�1i form the spin-1 3A2 manifold, which has a zero-
field splitting of 2.87 GHz. With an externally applied
magnetic field Bz ∼ 20 mT along the NV− axis (this
suppresses non-spin-preserving spin transitions that appear
for magnetic fields with components perpendicular to the
NV− axis), our electron spin qubit levels j0i and j þ 1i are
far detuned from the j − 1i energy level and thus form an
excellent qubit. The isotope 15N will be utilized as a spin-
1=2 nuclear memory [60]. Next, the optical transitions
between one of the 3A2 magnetic sublevels jii and the 3E
levels jMii coupled to the cavity field can be represented by
ℏgms;i

P
i¼1;…;6½a†jiihMij þ ajMiihij�, where gms;i are the

coupling constants between the transitions and field, a† (a)
are the field’s creation (annihilation) operators and Mi are
the energy eigenstates, in order of ascending energy, within
the 3E manifold. These transitions are fully resolved at
temperature below 8 K [61] and have been shown to be
Fourier transform limited below 2 K [62]. Our architecture

will, therefore, be fully functional at an easily accessible
temperature of 4 K. At zero strain, they are given by the
basis states fM1;…;6g ¼ fE2; E1; Ex; Ey; A1; A2g, neglect-
ing a small mixture of the Ex;y and E1;2 states due to
spin-spin interaction. The basis states Ex and Ey have
electronic spin zero, while the others (A1;2 and E1;2) are
equal superpositions of spin �1 [14,63]. For our scheme,
we apply an electric field in the x direction (Ex) to lift the
degeneracy of the spin-zero states in the excited-state
manifold. This greatly reduces the sensitivity to rogue strain
or electric field influences in the y direction and, thus, makes
the system more robust. Ex can be adjusted at each site to
bring different NV− centers to the same resonance fre-
quency. We choose j0Ei ¼ jExi þ ϵ and j1Eij ¼ jM5i ¼
0.98jA1i þ 0.17jA2i þ ϵ, where ϵ represents negligible
contributions from other basis states. For this setting, we
find δ ¼ 2π × 2.71 GHz, which is far greater than the
homogeneous optical half-width of the chosen transitions,
γ ¼ 2π × 11 MHz. We note that, although the NV− is not
a simple four-level system [Fig. 2(a)], all other allowed
transitions are detuned even farther from the excitation
frequency ω and can be neglected. Thus, we have the
properties required for entanglement distribution based on

(a) (b)

FIG. 2. NV− center is shown as a definite example of the artificial atom to realize the module. Its energy level structure for a low-
temperature, low-strain sample [14,64] is illustrated in (a). A static magnetic field of approximately 20 mT is used to separate the
ms ¼ �1 levels. The NV− center possesses both an electron spin and a 15N nuclear spin, which will be used to store and grow a cluster
state for quantum information processing. Panel (b) illustrates how the storage of entanglement in the nuclear spins is achieved. The
protocol works as a repeat-until-success scheme for entangling the remote electron spins using a single photon–based Michelson
interferometer. The successful event is the detection of a photon at the dark port. Once this has been achieved, the electrons are entangled
with the nuclear spins followed by measurement of the electron spins to disentangle them. This allows our entanglement of the electron
spins to be transferred to the nuclear spins [7]. Otherwise, the electron and nuclear spins will be decoupled completing the entangling
cycle, only the electron spin reinitiated, and the protocol started again.
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state-selective reflection using the NV− center electron spin
states j0i and j þ 1i.

A. Quantum nondemolition detection

The conditional reflection of a photon from a module
allows us to perform a quantum nondemolition (QND)
measurement of the NV− state [52] (see Supplemental
Material [58]). The measurement sequence consists of a
photon measurement followed by a qubit flip and a second
photon measurement. For the photon measurement, a single
photon is sent to a module, and will be reflected and
detected if the NV− center is in the state j0i, and lost
otherwise. The qubit flip is achieved by a microwave π
pulse. A photon detection would be expected with certainty
for one of the photon measurements under ideal conditions,
while the absence of a detection event would indicate
leakage of the NV− center from the qubit subspace to the
j − 1i state. The destructiveness of this measurement
depends on the probability of exciting the NV− center
and the subsequent spin-flip probability. The measurement
needs to undergo several repetitions to make up for finite
photon collection efficiency, thereby increasing the spin-
flip probability. Nonetheless, we find that, even when
taking into account all known adverse effects in the
NV− center, it is possible to achieve a measurement error
rate of ϵQND ¼ 0.1% even for a finite collection efficiency
of η2 ¼ 0.8, which is sufficient for fault-tolerant compu-
tation (see Sec. V). A working cooperativity C ¼ 20 is
sufficient, which is realistically achievable with currently
available microcavity technology [65,66]. The error rate
can be reduced further by increasing C, but at much larger
cooperativities the nonzero spin-flip probability for each
measurement limits the QND detection. The threshold for
fault-tolerant quantum computation is reached at C ¼ 2.8
for a detection efficiency η2 ¼ 0.8.

B. Remote entanglement

We begin by initializing each electron spin to j0i
followed by rotating to 1ffiffi

2
p ðj0i þ j þ 1iÞ using a polarized

driving field in a few nanoseconds. A single-photon pulse is
then sent onto the interferometer [Fig. 2(b)] and the dark
port monitored. We repeat this procedure until the entan-
glement is heralded by the successful detection of a photon
at the dark port. In such a situation, we have the electron
spins in the entangled state 1ffiffi

2
p ½j0ij þ 1i − j þ 1ij0i� (see

Supplemental Material for details [58]). This is made
possible by the good cycling properties of the NV−
transition j0i → jExi [14]. We note, furthermore, that the
deionization process NV− → NV0, and the resulting
dynamical spectral diffusion, is rendered impossible by
using only one single-photon excitation in the interferom-
eter at a time [6].
In the NV− implementation of our module, the nuclear

spin is a long-lived quantum memory that will, in our

architecture, be designated to store one node of a cluster
state [67]. Our scheme creates entanglement between the
electrons of the two NV− centers [7,8,44,46]. The transfer
of the entanglement to the nuclear spin memories [9] is
done through the Ising component of the hyperfine cou-
pling (A∥ ∼ 3.03 MHz [68]), which is tuned by the external
magnetic field of B ∼ 20 mT to give a conditional phase on
the state of the two spins. The amount of entanglement
oscillates in time from zero to maximum. At time τ, setting
π points of the oscillation, the effective gate becomes a
controlled-phase gate, while at the 2π point it gives identity.
The hyperfine coupling is always present but is effectively
turned off while the electron spin is in the polarized state
j0i [9].
Putting this together, the complete nuclear spin entan-

glement protocol begins with both electron spins and both
nuclear spins polarized in their ground states (achieved via
the quantum nondemolition measurement). The electron
spin is then rapidly rotated to the j þ 1i state via a π=2 Y
rotation, and a rf pulse of frequency ν ¼ A∥ − Bgnμn þ
A2⊥=ð2Dþ 2BgeμeÞ ∼ 3 MHz is applied to rotate the
nuclear spin by π=4. The electron spin is then rotated back
to its ground state j0i. This has prepared the nuclear spin
into the jnþi state. We then rotate the electron back into the
jþi state to attempt an electron-electron bond via the
optical transitions. The hyperfine coupling turns on when
the photonic entangling protocol is initiated by the electron
spin rotation, but a spin-echo-like sequence can be used to
disentangle the electron and nuclear spins at any time we
require. If the gate has succeeded, we perform a π=4 Y
rotation on one of two electron spins and wait until the
hyperfine interaction maximally entangles the electron and
nuclear spins within each node. A π=4 Y rotation is then
performed on the electron spin of each module followed by
its measurement in the computational basis. This completes
the transfer of the entangled link to the nuclear spins. If the
entanglement distribution has failed, the protocol will be
repeated until a success is heralded, as illustrated in
Fig. 2(b). We note that it is not necessary to reinitialize
the nuclear spin prior to each attempt as our next attempt
begins at the 2π point of the hyperfine interaction where the
electron and nuclear spins are decoupled (further informa-
tion is given in the Appendix and the Supplemental
Material [58]). This is one of the key elements to extend
the generation of the Bell state to general cluster states.

IV. SHARING ENTANGLED STATES BETWEEN
THREE MODULES

The next step is to extend our cluster of two nuclear spin
qubits to three (by adding one). We begin with an entangled
pair stored in the nuclear spins of modules A and B as
shown in Fig. 3. A new entanglement bond on the electron
spins in modules B and C is created using the same repeat-
until-success protocol, though only the nuclear spin in C
will be initialized. Once the entanglement between the
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electronic qubits is created, the entanglement will be
transferred to the nuclear spins using the hyperfine cou-
pling described previously.
However, this time, the nuclear spin in module B is in

use, carrying information established at a previous time in
the protocol. In general, for the protocol to be useful, it
must allow us to preserve with high fidelity the existing
entanglement stored in the nuclear spins (in this case, A
and B), while using the electron spins to create entangle-
ment with additional modules (C). However, due to the
permanent hyperfine coupling, photon loss occurring at
random times may induce decoherence in the states stored
in the nuclear spins. By introducing a time-sequenced
entangling procedure, we can suppress this decoherence.
Furthermore, by using spin-echo-like sequences to decou-
ple the electron spins from their surrounding environment,
we may extend their coherence time. The clock for the
hyperfine coupling sequence starts when the photonic
entangling protocol is initiated (that is, when the electron

spin is rotated out of a polarized j0i state). If the entangling
protocol fails, the system waits until the spin-echo
sequence decouples the electron and nuclear spins. At this
point, the nuclear system recovers coherence and the
information stored on the nuclear spin remains untouched
until the protocol succeeds. This process is illustrated in
Fig. 3. Once the new entangling bond is established,
indicated by a heralding signal, we again wait until the
spin echo decouples the electron and nuclear spins. We then
perform a single π=4 Y rotation on one of the two electron
spins and wait until the hyperfine interaction maximally
entangles the electron and nuclear spins within each the
nodes. An X-basis measurement is performed on each
electron (via a π=4 Y rotation and computational basis
readout) to transfer the new bond to the nuclear system.

A. Cluster states

Repeating this with additional modules, we can generate
an arbitrary cluster state. To illustrate this, we depict in

Repeat until success

Electron
initialization

Cluster state stored 
in nuclear spin memories

Succeeded

a bit of information 
for correction

Electron measurement

a bit of information 
for correction

Electron measurement

(a)

(b)

A B C

FIG. 3. The repeat-until-success protocol is accurately time sequenced. This is required by the nature of the coupling, as entanglement
between the electron spin and nuclear spin oscillates. Upon failure, we wait until the 2π point in the entangling cycle, where the nucleus
and electron are decoupled. The nuclear spin is consequently protected from feedback errors through the hyperfine coupling by
accurately timing the reinitialization of the electron spins. When the distribution of entanglement between two electrons succeeds, the
entanglement bond will be transferred to the nuclear spins by waiting until a π point where the electron and nuclear spins are maximally
entangled.
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Fig. 4 the sequence of operations for creating a cross cluster
composed of five nuclear spins.
We are particularly interested in generating the

three-dimensional topological cluster state [illustrated in
Fig. 5(a)] capable of supporting fault-tolerant quantum
computation [33,34]. Topological models of error correc-
tion [69,70] exhibit relatively high tolerance to errors and
are particularly well suited to architectures due to their
simple underlying structure [12,39,40,71,72]. The topo-
logical cluster state is particularly useful in the context of
our repeat-until-success protocol, as it is inherently robust
against missing bonds, which will be heralded. These
missing bonds can be processed in the classical interpre-
tation of measurement results, without any modification to
the quantum circuit [35]. To prepare the topological cluster
state, each physical qubit is entangled with its four nearest
neighbors; hence, a dagger-shaped cluster state is the
fundamental unit, independent of the size of the network,
highlighted by the blue bond in Fig. 5(b). Four entangling
steps are required to create this fundamental state with five
modules.

V. BENCHMARKING THE PHOTONIC
ARCHITECTURE

To process quantum information with a three-
dimensional topological cluster state, the state is consumed

(a)

AB

C

D

E

(b)

AB

C

D

E
(c)

AB

C

D

E
(d)

A

B

C

D

E

(e)

A

B

C

D

E
( f )

AB

C

D

E
(g)

AB

C

D

E

(h)

AB

C

D

E
(i)

AB

C

D

E
(j)

AB

C

D

E

Electron Spin
Unentangled Nuclear Spin

Entangled Nuclear Spin

Electron Spin Entangled Link Nuclear Spin Entangled Link

Cluster state 
stored in nuclear 
spin memories

FIG. 4. Illustration of the sequence of operation to create a
cluster state of five nuclear spin qubits. The scheme uses the
repeat-until-success approach to create entanglement between
two electron spins, before transferring upon success such en-
tanglement to the corresponding nuclear spins.

(a)

(b)

(c)

z (Time)

x

y

y

x

FIG. 5. Three-dimensional topological cluster state and module connectivity in a two-dimensional plane. (a) The topological cluster
state cluster is a resource for fault-tolerant quantum computation. However, the whole state is not required at all times during the
computation. Instead, only two layers of the cluster state need to be prepared and stored at any given time. (b) The physical unit cell
composed of two layers. The back layer contains eight connected qubits arranged in a square (orange), while the front layer has five
qubits arranged in a cross (blue). The two layers are connected by controlled-phase gates (green). Measurement of the front layer of the
cluster will teleport the current state of the computer to the back layer, at which point the physical qubits we just measured can be
reconnected in accordance with the geometry of the cluster state, and the information can be teleported back again. In this way, the two
physical layers execute the even and odd temporal steps of the computation, allowing an arbitrarily deep computation to be performed
with a fixed number of physical qubits. (c) A compact layout of modules on a two-dimensional plane.
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by measurements on physical qubits in sequential two-
dimensional layers, where one axis is defined as the
temporal axis. These measurements create and manipulate
encoded qubits defined by defects [33,73]. As the compu-
tation proceeds by measuring one layer at a time, the whole
topological cluster state is not required to be constructed
initially. Only two successive layers need to be prepared and
stored at any given time, allowing us to concentrate on only
two physical layers of modules. The current state of the
computer is teleported back and forth between these two
layers, which are refreshed and recycled to generate the
entire topological cluster. Taking the center of each cell
[in Fig. 5(b)], we initiate a sequence of gates to generate
the dagger-shaped cluster state throughout the lattice,
which generates one layer of the topological cluster state
(see Supplemental Material [58]). The two layers of the
module network are flattened to a two-dimensional plane, as
shown in Fig. 5(c). This pattern repeats to an arbitrarily large
cross section.
At a circuit level, we are interested in the threshold error

rate, below which the architecture becomes fault tolerant
[33,74]. The projective measurement of the nucleus (via the
electron-nucleus hyperfine interaction) allows us to com-
bine measurement and reinitialization of the nuclear qubit
in a single step. Therefore, the depth of the quantum circuit
to prepare the topological cluster state is reduced from six
steps to five. We find that this reduction increases the error

threshold to 0.73% [see Fig. 6(a)]. Given this threshold,
our target error rate for the five relevant gates is ∼0.1%, as
this is sufficiently far below the threshold to allow
significant suppression of errors using a practical number
of modules [73].
The target error rate does not tell us much until it is

decomposed into each physical component. Each gate
consists of several physical steps and involves several
sources of errors. In our case, these sources are parametrized
by the nuclear and electron spin decoherence times, electron
measurement efficiency, electron rotation efficiency, and
timing error. As described, the sequence to generate an
entangling bond is probabilistic, and the protocol repeats
until success. Given that we require bonds to succeed with
probability P ¼ 99.9%, if the success probably of a single
attempt is pc ¼ η2PR=8, the number of attempts we require
is s ¼ logð1 − PÞ=logð1 − pcÞ. For pc ¼ 0.0625, s ¼ 107.
We consider the error rate for each gate to be the worst-case
scenario, as heralded failure can be significantly higher than
the error rate for unheralded errors [35].
The required fidelity for each physical parameter is

shown in Fig. 6(b). Each curve is plotted assuming it is
the only nonzero error, except for possible errors arising
from the absorption of photons by the NV− node (see
Supplemental Material [58]). The green region in Fig. 6(b)
is the target for each parameter for an operational computer
(though parameters in the yellow region still lead to gates
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FIG. 6. Fault-tolerant thresholds and required component error rates. (a) Numerical simulation of topological error correction [74].
The logical error rate is plotted as a function of the physical error rate for various code sizes (distances d), where we assume that all gates
and measurements are operating at the same error rate. Each point corresponds to at least 104 trials. The value of the physical error rate at
the intersection gives the threshold (in this case, approximately 7.3 × 10−3). For physical error rates below this threshold, the logical
error rate can be reduced arbitrarily by increasing the code distance. (b) The required fidelity (1-error probability) for each physical
parameter. In the Supplemental Material [58] details of the error calculations are shown for various physical parameters. The dots on the
lines show the current best accuracy reported, all of which already meet the required accuracy, 99.27%. For a realistic implementation,
the gate fidelity should be above 99.9%, corresponding to the green region in the plot. Electronic and nuclear spin coherence times are
already in this regime, and the remaining parameters may soon meet the desired accuracy given the rapid development of quantum
control of such systems. The fidelity does not converge to unity due to imperfections in the NV− center.
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below the threshold). For the architecture to be fault
tolerant, these errors need to be combined (see
Supplemental Material [58]). Electron and nuclear
decoherence is already sufficiently low [13,75–77], while
the other parameters still need improvement. However, it is
important to note that the required improvements are less
than 1 order of magnitude, and are not limited by any
currently known fundamental limitations of the NV−
system itself.
Assuming that the threshold condition is met, perfor-

mance is mostly dependent on the computational cycle
time, which is limited by the time taken to establish all of
the electron-electron connections. For bond connections
with P ¼ 99.9%, the total time required to create a nuclear-
nuclear bond is 3.5 μs, assuming pc ¼ 6.25%. This time
could be reduced by lowering the required connection
efficiency and exploiting the robustness of the topological
code to missing bonds [35]. The quantum circuit takes five
steps to construct each cross-sectional layer of the topo-
logical cluster state. Hence, a unit cell of the cluster is
prepared every ∼30 μs. To implement an algorithm on
the computer, we create pairs of defects in the cluster. The
volume of cluster allocated to pairs of defects represents the
degree of error correction, parametrized by the distance
between defects d. For a logical error rate pL ≤ 10−18,
d ≥ 32 is required [73]. Therefore, a logical cell requires
V ¼ ð5d

4
Þ3 ¼ 403 cluster cells. To perform a logical CNOT

gate requires a cluster volume 2 × 2 in cross section and
two logical cells in temporal depth. Hence, it takes 3.4 ms
for pc ¼ 6.25% (a clock frequency of ∼295 Hz). This rate
can be further improved by better optical efficiencies, but is
ultimately limited by the hyperfine interaction of the NV−
node used for nuclear spin operations. If we assume a
deterministic electron-electron connection, a logical CNOT
gate would take approximately 960 μs (∼1 kHz) as the
system becomes rate limited by nuclear measurement
(see Supplemental Material [58]).

VI. CONCLUSION

As we have seen, a simple module can form the basis of a
scalable quantum computer architecture. The architecture is
naturally distributed, and hence is applicable to quantum
communication [78]. Such a network may be local or global,
with local networks connected by quantum communication
channels. In this case, the distance between the modules may
become orders of magnitude larger. The time delay due to
the communication distance may be mitigated by the long-
lived memory inside the module. With increased distance
between modules, photon loss would increase, reducing the
success probability of the entangling protocol. However,
long-distance communication does not necessarily require
P ¼ 99.9%. Instead, with P ¼ 99.0%, the number of
attempts can be reduced to s ¼ 71 for pc ¼ 6.25%.
We find that physical requirements of our architecture

are broadly consistent with present technology. However,

while technological developments might further help to
meet these requirements, physical requirements may be
found to be less stringent with a more sophisticated
adaptive error analysis.
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APPENDIX: DIAMOND MODULE OPERATIONS

The key to our architecture is the physical system
implementing the module. How well the NV− center could
faithfully realize the module dictates the requirements for
physical parameters.

A. Description of the NV− center

The dynamics of the NV− center, consisting of the
electron spin-1 3A2 manifold and the nuclear spin-1=2
system, can be described by the Hamiltonian
H ¼ He þHn þHe−n. The electron spin’s ground-state
Hamiltonian is given by [79,80]

He ¼ ℏðDS2z þ E½S2x − S2y� þ geμBBSzÞ;

which represents a zero-field splitting (D=2π¼ 2.87GHz),
a strain-induced splitting (typically E=2π ∼ 1–10 MHz),
and a magnetic field–induced splitting (geμBB), where μB is
the Bohr magneton and ge ¼ 2.0 is the g factor. In this
Hamiltonian, Sz; Sx; Sy are the usual spin-1 operators. With
an externally applied magnetic field B ∼ 20 mT, our
electron spin qubit levels j0i and j þ 1i are far detuned
from the j − 1i energy level, supporting our electron spin
qubit. The effects of the strain-induced splitting present
in CVD diamond are made negligible by the large applied
magnetic field. The nuclear spin Hamiltonian Hn ¼−ℏgnμnBIz represents a magnetic field–induced splitting
of the 15N nuclear spin, where μn is the nuclear magneton
and gn ¼ −0.566 is the nuclear g factor. Iz is the usual Pauli
Z spin-1=2 operator.
The hyperfine coupling between the electron and the

nuclear spins is given by [68]

He−n ¼ ℏA∥SzIz þ
ℏA⊥
2

ðSþI− þ S−IþÞ;

where S� (I�) are the electron spin (nuclear spin) raising
and lowering operators, respectively. This coupling
includes an Ising part with coupling strength A∥=2π ∼
3.03 MHz and an exchange part with coupling constant
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A⊥=2π ∼ 3.65 MHz [68]. With B ∼ 20 mT, the exchange
coupling is far off resonance, resulting only in a small
dispersive phase shift. This results in a natural controlled-

phase gate that operates on a time scale τ ∼ π=½A∥ þ A2⊥
2λ �∼

165 ns, where λ is the difference in the Larmor frequencies
between the electron and nuclear spin levels.
An external microwave or rf driving of amplitude Ω0 is

used to perform the electron and nuclear spin rotations. The
driving Hamiltonian can be expressed as

Hd ¼ ℏΩ0 cos ðωdtþ ϕÞ
�
Sx − gnμn

geμB
Ix

�
;

where the frequency ωd is chosen appropriately to deter-
mine whether we drive the electron or nuclear spin, with ϕ
representing an initial phase offset. By using a polarized
field, electron spin rotations can be achieved with high
fidelity in at most a few nanoseconds. The nuclear spin
operations are much slower due to the weak gyromagnetic
ratio but can be achieved (with high fidelity) in a few
microseconds by using the hyperfine coupling to enhance
the natural nuclear spin splitting.

B. Entangling nuclear spins in more detail

We consider, in a little more detail, the establishment of
entanglement between the two nuclear spins. We assume
the overall system is initialized in their restrictive ground
states (both electron and nuclear spins). The electron spins
are rotated to the j þ 1i state and a π rotation performed on
the nuclear spins to prepare them in the jnþi state. The
electron spins can then be rotated back to the j0i state
where they are effectively decoupled from the nuclear
spins. To begin the entanglement protocol, we now rotate
the electron spins to the jþi state and interact them with the
photon entering the Michelson interferometer. Two pos-
sible events occur. Either a photon is detected at the dark
port or it is not. Let us deal with this second event first.

1. Unsuccessful detection at the dark port

In the situation where the photon has not been detected at
the dark port, it has either gone out the bright port or been
loss somewhere in the circuit. Given that we do not know
which of these two detreminal events occurred, each of our
electron spins is left in an indeterminate state (say, ρ ¼
1
2
½j0ih0j þ j þ 1ihþ1j�). Let us focus on only one of the

electron and nuclear spins now. The always-on hyperfine
controlled Z (CZ) coupling means the electron and nuclear
spins are attempting to interact with one another. In such a
case, we can show that the electron and nuclear spin evolve
as

1

2
½j0ih0j þ j þ 1ihþ1j� ⊗ jnþihnþj →
1

2
j0ih0j ⊗ jnþihnþj þ

1

2
j þ 1ihþ1j ⊗ jnθihnθj; ðA1Þ

where jnθi ¼ 1ffiffi
2

p ½jn0i þ eiA∥tjn1i�, with A∥ the parallel

component of the hyperfine interaction and t the time
since the electron and nuclear spin state entangling. Thus, it
seems that the decoherence in our electron spin has caused
us to lose coherence in the nuclear spin. However at A∥t ¼
2π point, the electron and nuclear spins naturally decouple
(the same effect can be achieved using a spin-echo
sequence on the electron spin). When they are decoupled,
we reinitialize the electron spin in the jeþi to restart the
entangling protocol again, or in the j0i state for the next
attempt whenever required.

2. Successful detection at the dark port

Upon a successful detection event (and also assuming a
spin-echo sequence has been used to keep the electron and
nuclear spins decoupled), our combined electron-nuclear
spin system can be represented as

1ffiffiffi
2

p ½j0ij þ 1i − j þ 1ij0i�jnþijnþi: ðA2Þ

We then perform a π=4 rotation on the first electron
spin and wait for the CZ-based hyperfine interaction
to maximally entangle the electron and nuclear spins
(this occurs at A∥t ¼ π). This results in the state

1

2
ðj þ 10−i þ j − 11−i − j − 00þi − j þ 01þiÞ; ðA3Þ

using the notation convention je1; e2; n1; n2i. Finally, a π=4
Y rotation is performed on the electron spins of each
module before their measurement in the computational
basis. This results in the combined nuclear spin state (up to
Pauli corrections that are classically tracked)

1

2
½jn0ijn−i þ jn1ijnþi�; ðA4Þ

that is, a two qubit nuclear spin cluster.

C. Coherence properties

It is critical to mention the coherence properties of our
electron-nuclear spin as this can vary significantly. Here,
we assume that a single 15NV− center is created on
isotopically pure (99.9þ 12C) diamond substrate [75]
and that our module will operate at low temperature
(4–20 K) rather than at room temperature. In such a case,
it has been reported that T1 of the electron spin is greater
than 1 s, while T�

2 ∼ 90 μs [76,77] with T2 much longer
[75]. The nuclear spin T1 and T2 are at least 0.2 s at present
[13]. The limiting coherence parameter in this design is the
T�
2 of the electron spin during the 165 ns controlled-phase

gate. However, with Gaussian decay having the form
exp½−ð2t=T�

2Þ2�, the error associated with this is small in
principle (< 10−5) [75].
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