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The charged environment within a dense plasma leads to the phenomenon of ionization-potential
depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial
importance for modeling atomic processes occurring within dense plasmas. Several theoretical models
have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently,
first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where
their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt.
Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll.
This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the
IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this
parameter-free model, we can accurately and efficiently describe the experimental Al data and validate
the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties
within dense plasmas with wide-ranging applications to studies on warm dense matter, shock
experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with
x-ray free-electron lasers.
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I. INTRODUCTION

The dense plasma state is a common phase of matter in
the Universe and can be found in all types of stars [1] and
within giant planets [2,3]. Dense plasmas are commonly
created during experiments involving high-power light
sources such as, e.g., the National Ignition Facility [4]
and recently developed x-ray free-electron lasers (XFELs)
LCLS (USA) [5] and SACLA (Japan) [6]. In dense
plasmas, free electrons stay in close vicinity to the ions.
The ions then can no longer be treated as isolated species,
as the screening by the dense environment shifts their
atomic energy levels, leading to a reduction of the ioniza-
tion potentials. This effect is known as ionization-potential
depression (IPD). Quantitative predictions of this effect
are of crucial importance for a correct understanding and
accurate modeling of any atomic processes occurring
within a dense plasma environment [7], i.e., for studies
on warm dense matter [8,9], shock experiments [10,11],
planetary science [12,13], inertial confinement fusion
[14,15], and nonequilibrium plasmas created with

XFELs [16,17]. Several theoretical models have been
developed to describe the IPD effect. An early development
was the model proposed by Ecker and Kröll (EK) [18] for
strongly coupled plasma, later extended to the weakly
coupled regime by Stewart and Pyatt (SP) [19] (for more
examples, see Ref. [20]). However, until recently there
were no experimental data available to verify the accuracy
of these models whose predictions sometimes differed
extensively.
First experiments on the screening effect of plasma on

atoms embedded in the plasma were performed at LCLS
[21–23]. XFELs provide radiation of extremely high
peak brightness and pulse duration shorter or comparable
with the characteristic times of the electron and ion
dynamics within irradiated systems. The dense electronic
systems can quickly thermalize via electron-electron colli-
sions and impact ionization processes [17]. Because of the
ultrashort pulse duration (typically tens of femtoseconds),
only a thermalized electron plasma is probed while
the ions still remain cold. This provides access to the
properties of a solid-density material at a temperature of
105–106 K (≈10–100 eV). Specifically, the experiments in
Refs. [21–23] measured K-edge thresholds and Kα emis-
sions from solid-density aluminum (Al) plasma. They have
been followed by another experiment at the high-power
Orion laser [24,25]. This experiment investigated K-shell
emissions from hot dense Al plasma. Both experimental
teams tried to describe their findings with the EK and SP
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models. In the first experiment, a disagreement of the
measured K edges with the extensively used SP model was
claimed. A modified EK model was proposed to fit the
experimental data [22,26]. However, the data from the
experiment on hot dense Al plasma [24] could be described
only with the SP model. The EK model was found to be in
clear disagreement with these data.
This controversy shows a strong need for a rigorous and

consistent theoretical approach able to calculate the IPD
effect for plasmas in different coupling regimes. Here, we
propose such an approach: a two-step Hartree-Fock-Slater
(HFS) method. This model derives the electronic structure
of an ion embedded in the electron plasma from the finite-
temperature approach [27], assuming thermalization of
bound electrons within the free-electron plasma. It can
also treat individual electronic configurations of plasma
ions, which enables a description of discrete transitions. In
this paper, we demonstrate that this model successfully
describes laser-irradiated Al solids under the conditions of
the LCLS [21–23] and Orion laser [24,25] experiments.
Furthermore, we gain an improved understanding of the
validity of the widely used EK and SP models.

II. TWO-STEP HARTREE-FOCK-SLATER MODEL

In the first step, we apply the thermal HFS approach for a
given finite temperature. Here, we assume that the electrons
are fully thermalized. In general, XFEL radiation induces
nonequilibrium dynamics of electrons, for instance, in
carbon-based materials exposed to hard x rays [28]. For
the solid-density Al plasma studied in the recent experiment
[21], the incident photon energy is near the ionization
threshold, ejecting electrons with low kinetic energy.
Because of the high density and low kinetic energy, electron
cross sections are large, so that electrons equilibrate rapidly
within the ultrashort pulse duration. For example, in the Al
plasma considered here, the energy of a photoelectron is less
than 270 eVand the highest energy of an Auger electron is
about 1.4 keV. With a kinetic energy in this regime, the
estimated time scale of electron thermalization is a few
femtoseconds for diamond [29] and is expected to be shorter
for solid Al due to higher impact ionization cross sections.
Therefore, we assume that the electrons are thermalized
within the pulse duration of tens of femtoseconds.
The standard Hartree-Fock and HFS approaches [30,31]

treat electronic structure at zero temperature (T ¼ 0 eV).
They use the Ritz variational principle for the ground-
state energy. Recently, Thiele et al. [32] proposed an
extension of the standard HFS model, including plasma
environment effects through the Debye screening (see also
Refs. [33–35]). However, this model is not applicable to
plasmas with low temperature, where the Debye screening
approximation breaks down [20]. Also, it is intrinsically
inconsistent to combine the T ¼ 0 eV approach with
Debye screening for a plasma with a nonzero electron
temperature. To overcome this inconsistency, the electronic

structure has to be derived from a finite-temperature
approach. Such a finite-temperature Hartree-Fock approach
was proposed by Mermin [27].
Here, we use the average-atom model [36], which is a

variant of the finite-temperature approach. Basically, it
predicts average orbital properties and occupation numbers
at a given temperature. There have been various implemen-
tations of the average-atom approach. Depending on their
treatment of the electronic structure of atoms, they can be
categorized as quantum-mechanical approaches, such
as the HFS method or local density approximation (LDA)
[36–47], or semiclassical approaches, such as the Thomas-
Fermi method [36,48–50]. There are also implementations
with simplified superconfigurations [46,47,51–53] and with
the screened hydrogenicmodel [53–56]. The atomic potential
within a plasma is usually based on the muffin-tin approxi-
mation [36–41,50] or an extended model including ion-ion
correlation [42,43,45,49]. These average-atom models have
been applied to calculate physical quantities within plasmas,
such as lowering of the ionization energy [43], photoabsorp-
tion processes [39,51], and scattering processes [41,57]. Our
average-atom implementation presented here is based on the
quantum-mechanical approach with the muffin-tin approxi-
mation [38–41], but it benefits from a numerical grid
technique, which will be discussed in detail later.
The major distinction of our proposed method from

previous average-atom models is not only the different
numerical method. In this paper, we develop a simple model
to retrieve more complete information from the average-
atom approach. We propose a two-step model: an average-
atom calculation as the first step and a fixed-configuration
calculation as the second step. From the average-atom
approach, we obtain a grand-canonical ensemble at a given
temperature with a simple electronic mean field associated
with all possible configurations. Using this information, we
then calculate improved mean fields for selected configura-
tions of interest. Note that our two-step model is relatively
inexpensive, in comparison with polyatomic density-
functional calculations, and is easily applicable to any atomic
species. This two-step model is described in detail in the
three following subsections.

A. Hartree-Fock-Slater calculation
with a muffin-tin-type potential

To describe the electronic structure in a solid or a plasma,
we employ a muffin-tin-type potential [58] as depicted in
Fig. 1. Influenced by the free electrons and neighboring
ions, the atomic potential is lowered in comparison to that
in an isolated atom. The sphere surrounding an atom is
defined by the Wigner-Seitz radius rs. If the solid consists
of a single atomic species, then rs ¼ ð3=4πniÞ1=3, where ni
is the number density of ions in the solid. Here, we assume
that the positions of the ions are fixed. Therefore, the
Wigner-Seitz radius does not change during the calculation.
We assume charge neutrality such that the ionic charge
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density outside the Wigner-Seitz sphere is compensated by
the electron density. The net charge inside the Wigner-Seitz
sphere is also zero on average, so that the potential outside
is constant. We use this muffin-tin-type model for all of our
calculations.
Our implementation of the muffin-tin potential differs

from the original model suggested by Slater [58] and its
quantum-mechanical implementations [38–41]. First, the
constant potential outside the atomic sphere is self-
consistently calculated in our model, whereas it is set to
zero in other previous implementations [38–41,58]. We refer
to this constant potential as the muffin-tin flat potential εs.
Second, we calculate both bound- and continuum-state wave
functions with the same atomic potential, using numerical
grids with a sufficiently large radius far from rs. This makes
our method distinct from other implementations where a
continuum state outside rs is usually given as a plane wave
and special boundary conditions for both bound and
continuum states are required.
With the muffin-tin flat potential, we may consider

different ionization processes in a solid or a cluster
[59,60]. The ionization energy is defined as the energy
needed to transfer an electron to the continuum level
located at ε ¼ 0, which corresponds to the binding energy
measured with photoelectron spectroscopy. In a solid or a
cluster, this process would be called outer ionization.
On the other hand, there is already a continuum of states
starting at εs, when the muffin-tin-type potential is
imposed. It defines excitation into the continuum for
εs ≤ ε ≤ 0, which would be called inner ionization.
In metals like aluminum, the conduction band can be
described by this continuum above εs and inner ionization
is a transfer of an electron bound to an atom (narrow band)
into the conduction band. Figure 1 schematically depicts
outer-ionization and inner-ionization processes for the
muffin-tin-type potential.
We solve the effective single-electron Schrödinger equa-

tion with the muffin-tin-type potential (atomic units are
used unless specified otherwise),

�
− 1

2
∇2 þ VðrÞ

�
ψðrÞ ¼ εψðrÞ; ð1Þ

where the potential is the HFS potential inside rs and is
constant outside rs,

VðrÞ ¼
�− Z

r þ
R
r0≤rs d

3r0 ρðr0Þ
jr−r0j þ Vx½ρðrÞ� for r ≤ rs

VðrsÞ for r > rs;
ð2Þ

where Z is the nuclear charge, ρðrÞ is the electronic density,
and Vx is the Slater exchange potential,

Vx½ρðrÞ� ¼ − 3

2

�
3

π
ρðrÞ

�
1=3

: ð3Þ

We use a spherically symmetric electronic density,
ρðrÞ → ρðrÞ, so VðrÞ is also spherically symmetric. The
potential for r > rs is given by the constant value of
VðrsÞ, fulfilling the continuity condition at the boundary
r ¼ rs. This constant potential defines the muffin-tin flat
potential, εs ¼ VðrsÞ.
For an isolated atom without the plasma, we use the

original HFS potential, which is Eq. (2) without applying
the Wigner-Seitz radius and the muffin-tin flat potential,

VatomðrÞ ¼ −Z
r
þ
Z

d3r0
ρðr0Þ
jr − r0j þ Vx½ρðrÞ�: ð4Þ

In contrast to plasmas and solids, the long-range potential
in the isolated atom is governed by the Coulomb potential
[¼ −ðQþ 1Þ=r], where Q is the charge of the atomic
system. However, it is well known that the original HFS
potential does not have this proper asymptotic behavior
due to the self-interaction term [61]. To obtain the proper
long-range potential for both occupied and unoccupied
orbitals, we apply the Latter tail correction [62]. Thus,
the unscreened HFS potential for an isolated atom is
given by Eq. (4) and replaced by −ðQþ 1Þ=r only when
VatomðrÞ > −ðQþ 1Þ=r.
The orbital wave function ψðrÞ is expressed in terms

of the product of a radial wave function and a spherical
harmonic,

ψnlmðrÞ ¼
unlðrÞ
r

Ym
l ðθ;ϕÞ; ð5Þ

where n, l, and m are the principal quantum number,
the orbital angular momentum quantum number, and the
associated projection quantum number, respectively. The
radial wave function unlðrÞ is solved by the generalized
pseudospectral method [63,64]. Plugging Eq. (5) into
Eq. (1), we obtain the radial Schrödingier equation for a
given l,

εs

0
ε

rs

outer ionization

inner ionization

FIG. 1. Schematic diagram of an atomic model in a solid or a
plasma. The purple dotted curve is the isolated atomic potential,
the green dashed curve is the crystalline potential, and the black
thick curve is the muffin-tin-type potential. The muffin-tin flat
potential is denoted as εs and the Wigner-Seitz radius is rs.
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�
− 1

2

d2

dr2
þ lðlþ 1Þ

2r2
þ VðrÞ

�
unlðrÞ ¼ εnlunlðrÞ: ð6Þ

The Hamiltonian and radial wave function in Eq. (6) are
discretized on a nonuniform grid for 0 ≤ r ≤ rmax. Note
that the boundary conditions are unlð0Þ ¼ unlðrmaxÞ ¼ 0,
and no additional boundary condition at rs is imposed.
After diagonalizing the discretized Hamiltonian matrix,
one obtains not only bound states (ε < εs) but also a
discretized pseudocontinuum (ε ≥ εs). With a sufficiently
large radius rmax, the distribution of these pseudocontin-
uum states becomes dense enough to imitate continuum
states [65–67].
Figure 2 shows some pseudocontinuum states as well as

bound states (2s and 2p) of Al at zero temperature. The
dense horizontal lines above εs are all pseudocontinuum
states. Here, we use rmax ¼ 100 a.u., which is much larger
than rs ¼ 2.99 a.u. from the Al solid density (2.7 g=cm3).
The number of grid points for r is 200 and the number of
partial waves is 31 (0 ≤ l ≤ 30). With these computational
parameters, we obtain 6200 radial eigenstates. In the
metallic Al case, only 3 states (1s, 2s, and 2p) are bound
states. All other eigenstates constitute a pseudocontinuum.
We keep these computational parameters for all calcula-
tions throughout the paper.
The numerical grid technique we use here attains

advantageous simplicity in continuum-state calculations.
One can transform the integration over positive energy into
a summation over discrete states. There is no separation of
the inside and outside regions, and, therefore, no boundary
condition at the Wigner-Seitz radius is needed. In contrast,
other implementations of the muffin-tin model involve
special boundary conditions at rs. For example, Johnson
et al. [39,41] used the condition that the wave functions in
the inner sphere are continuously connected to those in the
outside region, and Sahoo et al. [40] enforced the derivative
of the wave function to vanish at the Wigner-Seitz radius.

Note that different boundary conditions at rs lead to
different electronic structures, as pointed out in Ref. [41].

B. First step: Average-atom calculation

The first step of our two-step HFS approach is an
average-atom model calculation with the muffin-tin-type
potential in Eq. (2). We treat the electronic system using
a grand-canonical ensemble at a finite temperature T (in
units of energy). The electronic density ρðr; TÞ is then
constructed by

ρðr; TÞ ¼
X
p

jψpðrÞj2 ~npðμ; TÞ; ð7Þ

where p indicates the one-particle state index, i.e.,
p ¼ ðn; l; m;msÞ, where ms is the spin quantum number
and p runs over all bound and continuum states. Here,
f ~npðμ; TÞg are fractional occupation numbers according to
the Fermi-Dirac distribution with a chemical potential μ,

~npðμ; TÞ ¼
1

eðεp−μÞ=T þ 1
; ð8Þ

where εp is the orbital energy for a given spin orbital p. The
average number of electrons Nelec within the Wigner-Seitz
sphere,

Nelec ¼
Z
r≤rs

d3r ρðr; TÞ; ð9Þ

is fixed to Nelec ¼ Z to ensure charge neutrality. This
condition serves as a constraint to determine the chemical
potential at the given temperature [39–41]. In order to
determine μ, one must find the root of the following
equation:

Nelec −
X
p

�Z
r≤rs

d3rjψpðrÞj2
�
~npðμ; TÞ ¼ 0: ð10Þ

With μ obtained from Eq. (10), ρðr; TÞ is constructed from
Eq. (7). With ρðr; TÞ, the updated atomic potential, as well
as εs, is obtained from Eq. (2). Then, orbitals fψpðrÞg and
orbital energies fεpg are calculated, using the new poten-
tial. Again, a new μ is obtained from Eq. (10). This self-
consistent field (SCF) procedure is performed until the
results converge. Note that there are only three input
parameters in the calculation: element species (Z), temper-
ature (T), and solid density via the Wigner-Seitz radius (rs).
All other quantities, such as orbitals, orbital energies, ρ, μ,
and εs, are determined self-consistently.
Regarding the exchange potential at a finite temperature,

various implementations have been proposed [36,68–72],
but no unanimous expression has been identified. Perrot
and Dharma-wardana [69] proposed a parametrization
of the thermal exchange potential based on the LDA.

ε2s

ε2p

εs
0

 0  3  6  9  12  15  18

ε

r

FIG. 2. Plots of bound- and continuum-state energies of Al at
zero temperature, obtained by diagonalization of the discretized
Hamiltonian matrix. Some bound- and continuum-state wave
functions are also plotted. The maximum radius is rmax ¼
100 a.u. used in the calculation.
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Rozsnyai [36] proposed an interpolation between the zero-
temperature Slater potential and the high-temperature limit.
In the present calculations, we use the same potential as
used in the zero-temperature calculation given by Eq. (3).
Note that our approach can be easily combined with any
type of exchange potential. We discuss the dependence on
different thermal exchange potentials in Sec. III.

C. Second step: Fixed-configuration calculation

The second step in our two-step HFS approach is a fixed-
configuration calculation for bound electrons in the pres-
ence of the free-electron density. Within the average-atom
model, one cannot obtain orbital energies of individual
electronic configurations associated with different charge
states. Instead, orbital energies in the average-atom model
represent averaged quantities for an averaged configuration
with fractional occupational numbers. However, in a
fluorescence experiment, for instance, one can see discrete
transition lines corresponding to individual charge states
[21], which are not accessible within the average-
atom model. In order to describe individual electronic
configurations within a plasma environment, we propose a
fixed-configuration scheme.
With the grand-canonical ensemble, one can calculate

the probability distribution [73] of all possible bound-state
configurations (see Appendix A for details),

P½nb� ¼
Ybound
b

e−ðεb−μÞnb=T

1þ e−ðεb−μÞ=T
; ð11Þ

where ½nb� ¼ ðn1;…; nBÞ indicates the fixed bound-state
configuration and B is the number of bound one-electron
states. Here, b runs over all bound states (1 ≤ b ≤ B) and
nb is an integer occupation number (0 or 1) in the bound-
electron configuration. The probability of finding the
charge state Q is given by the sum of all associated
bound-state configurations,

PQ ¼
XQ
½nb�

P½nb�: ð12Þ

Here, ½nb� runs over all possible bound-state configurations
satisfying

P
bound
b nb ¼ Z −Q.

From the probability distributions in Eqs. (11) and (12),
one can choose one bound-electron configuration from
the grand-canonical ensemble and perform a single SCF
calculation with this fixed configuration. For example,
it is possible to choose the most probable configuration
associated with the most probable charge state. The Kα
transition energy calculated from this configuration gives
one discrete line in the x-ray emission spectrum. Different
configurations contribute to different transition lines, so
measurement of these lines maps out the distribution of all
possible configurations and charge states.

Here, we focus on individual bound-electron configu-
rations. Even though the bound-state electronic structure
is influenced by the presence of the plasma electrons, we
assume that it is not sensitive to detailed free-electron
configurations in the plasma. Therefore, once we choose
one bound-electron configuration, we calculate the free-
electron density as an average of all possible free-electron
configurations for the given bound-electron configuration
(see Appendix B),

ρfðr; TÞ ¼
Xcontinuum

p

jψpðrÞj2 ~npðμ; TÞ; ð13Þ

which turns out to be independent of the bound-electron
configuration selected. This free-electron density is self-
consistently obtained in the first step and is kept fixed in
the second step. The bound-electron density is constructed
with a fixed electron configuration,

ρbðrÞ ¼
Xbound
b

jψbðrÞj2nb: ð14Þ

Then, the total electron density is constructed as the sum of
the bound- and free-electron densities,

ρðrÞ ¼ ρbðrÞ þ ρfðr; TÞ: ð15Þ

With this total electron density, we perform a HFS
calculation using a microcanonical ensemble. In this case,
ρb is self-consistently updated, whereas ρf remains fixed
during the SCF procedure. This approach allows the bound
electrons in a given configuration to adjust to the presence
of the plasma electrons.

III. APPLICATIONS OF TWO-STEP
HFS MODEL TO ALUMINUM PLASMAS

In this section, we apply the two-step HFS model to
laser-irradiated Al solid [21,22,24]. The two-step procedure
is carried out as follows. First, we perform a finite-
temperature HFS calculation to determine the temperature
needed to achieve a certain average charge state within
the plasma. We then use the free-electron density ρfðr; TÞ
obtained from the finite-temperature calculation to perform
a fixed-configuration HFS calculation for the given charge
state to determine the energy of the 1s orbital and the
energy of the energetically lowest p orbital above 2p
(always referred to as 3p, whether it is bound or not). Both
the first and second steps of our two-step HFS model are
implemented as an extension of the XATOM toolkit [74,75],
which can calculate any atomic element and any electronic
configuration within a nonrelativistic framework. All cal-
culations are performed with the computational parameters
stated in Sec. II B and are fully converged.
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A. Al plasmas at low temperature
calculated in the first step

In order to benchmark our calculations, we apply our
average-atom model (the first step of our two-step
approach) to Al solid (T ¼ 0 eV) and low-temperature
Al plasma (T ≤ 10 eV). In our average-atom model, we
self-consistently determine all orbital energies, the muffin-
tin flat potential, and the chemical potential. The Fermi
level is the position of the chemical potential μ at
T ¼ 0 eV. The muffin-tin flat potential εs represents the
lower limit of the delocalized states, corresponding to the
lowest occupied state in the conduction band. Therefore,
if one defines the Fermi energy relative to the beginning
of the conduction band, it is given by εF ¼ μ − εs in our
calculation. For T > 0 eV, the K-shell inner-ionization
energy is defined by the difference between the muffin-
tin flat potential and the 1s orbital energy, EK ¼ εs − ε1s,
employing the zeroth-order approximation for the HFS
energy, which is similar to Koopmans’ theorem for the
Hartree-Fock method. For the Al solid at T ¼ 0 eV, the
inner-ionization energy is given by EK ¼ μ − ε1s, because
orbitals below the Fermi level are fully occupied and there
are no transitions into those orbitals. As the temperature
increases, the chemical potential becomes lower than the
muffin-tin flat potential and the occupation numbers in the
continuum states follow the thermal Boltzmann distribution
for the given plasma temperature. For instance, the occu-
pation number in 3s and 3p is ∼0.46 at T ¼ 10 eV and
∼0.18 at T ¼ 30 eV. In this way, for T > 0 eV the
continuum states above the muffin-tin flat potential become
available for electronic transitions.
Taking into account the HFS approximation and the

muffin-tin approximation, our calculations provide reason-
able electronic structures for metallic states. For Al at
T ¼ 0 eV and solid density (2.7 g=cm3), the average
charge Q̄ is þ3, indicating that only ten electrons are
bound as 1s2, 2s2, and 2p6. The other three electrons,
which would be 3s23p1 in an isolated atom, are then
already in the continuum, i.e., within the conduction band.
Therefore, our model can mimic the electronic structure of
the metal. With our method, we find εF ¼ 8.0 eV. The
experimental Fermi energy is 11.7 eV [76]. Our method
calculates EK ¼ 1538.1 eV at T ¼ 0 eV, while the exper-
imental binding energy of the K shell relative to the Fermi
level is 1559.6 eV [77].
For T > 0 eV, Table I compares our results with avail-

able theoretical data. All energies in our calculations
are subtracted by εs in order to compare with previous
calculations [39,40] where εs is set to zero. We find that, for
T ≤ 10 eV at solid density, the average charge of Al is þ3
andM shells (3s and 3p) are not bound. Our finding agrees
with the comment in Ref. [41], but disagrees with the
results in Ref. [40], where 3s is bound in this low-
temperature regime. In Table I, we list energy levels of
the Al plasma at T ¼ 10 eV in comparison with Ref. [40].

The different prediction for M-shell binding is ascribed to
the different boundary condition as discussed in Ref. [41].
At T ¼ 5 eV and density of 0.27 g=cm3, we compare our
results with Ref. [39]. The discrepancy in this case is
entirely due to the different exchange potential. If we use
the same LDA potential as used in Ref. [39] (VLDA

x ¼ 2
3
Vx),

then we obtain the same results for all energy levels and the
averaged charge state.

B. Connection between the first and second steps:
Bound-electron configuration and

free-electron density

As discussed in Sec. II C, we choose certain fixed
configurationsbasedon theprobabilitydistributionofcharge
states and bound-electron configurations. Figure 3 shows the
charge-state distribution for T ¼ 30–500 eV, calculated
using Eq. (12). As T increases, the charge-state distribution
moves toward higher charge states, resulting in higher Q̄.
From the first step, it is alsopossible to calculate probabilities
for all possible bound-electron configurations associated
with individual charge states. For example, Table II shows

TABLE I. Electronic structure of Al metal and Al plasma. All
energies in our present calculations are subtracted by εs, in order
to compare with other theoretical data. Al solid density is n∘i ¼
2.7 g=cm3 and Q̄ is the average charge state. Energies are in eV.

T ¼ 10 eV, ni ¼ n∘i T ¼ 5 eV, ni ¼ 0.1n∘i
Level Present Ref. [40] Present Ref. [39]

1s −1530.1 −1495.0 −1547.3 −1501.8
2s −102.5 −101.2 −119.6 −108.3
2p −64.9 −63.9 −82.0 −71.0
3s � � � −6.3 −8.6 −7.0
3p � � � � � � −2.5 −1.5
μ −1.5 � � � −11.1 −10.4
Q̄ þ3.01 þ2.38 þ1.34 þ1.49
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bound-electron configurations at T ¼ 80 eV, whose prob-
ability is greater than 0.01, calculated using Eq. (11). These
probability distributions of charge states and bound-electron
configurations provide detailed information about the
ensemble and enable us to perform the second step of our
two-step approach. InTable II,we also listK-shell ionization
energies (¼ εs − ε1s) and Kα transition energies
(¼ ε2p − ε1s), calculated from the second step. Individual
configurations provide different ionization energies and
transition energies, which cannot be captured by averaged
orbital energies from only the average-atom approach. Note
that the ground-state configuration is usually not the most
probable configuration for given charge states, illustrating
the importance of detailed electronic structures of individual
configurations. In our calculation, 3s and 3p are bound at
T ¼ 80 eV, and they are included in the bound-electron
configuration. However, those M-shell electrons do not
considerably alter the 1s–2p transition lines. For example,
EKα ¼ 1512.8 eV for Al7þ 1s22s12p3 is similar to
1511.6 eV for Al6þ 1s22s12p33p1 and 1511.3 eV for
Al6þ 1s22s12p33s1 (see Table II). To compare calculated

Kα lines with experimental results, it is plausible to assign
them according to the superconfiguration of K and L shells
only, as suggested in Refs. [21,23].
The free-electron density is obtained from the first step

of the two-step model. Figure 4 shows the free-electron
density ρfðr; TÞ for different electronic temperatures
(T ¼ 30–500 eV), calculated using Eq. (13). The density
plot is normalized such that the integration of the density
within rs yields one. This free-electron density is self-
consistently optimized in the presence of the central
nucleus and bound electrons; thus, its distribution is highly
nonuniform. As expected, the free-electron density tends to
be more uniformly distributed within the Wigner-Seitz
sphere at higher temperatures. For comparison, a constant
and normalized density is also plotted with a dashed line in
Fig. 4. The shape of the free-electron density at T ¼ 30 eV
is attributed to the nodal structure of the 3p orbital in the
continuum.

C. Ionization potential depression in
Al plasmas: LCLS experiment

As shown in the previous subsection, from the first
step for a given temperature we determine (a) probabilities
of all individual electronic configurations associated with
different charge states and (b) the free-electron density. For
the LCLS conditions (T ¼ 10–80 eV) corresponding to
the strongly and moderately coupled plasma regimes, the
average charge state, the most probable charge state, and
the most probable configuration of this charge state are
listed in Table III.
Figure 5(a) shows the resulting 3p (or the lowest-energy

p state in the continuum) orbital energies and the muffin-tin
flat potential calculated by the two-step HFS scheme with
the free-electron density, and Fig. 5(b) shows the 1s orbital
energies with and without the plasma, as a function of the
charge state. All those energies are lowered as the charge
state increases. Note that the 3p energy lies right at the
threshold to the continuum; i.e., it is not bound to a single

TABLE II. Probability distribution of bound-electron configu-
rations at T ¼ 80 eV. Configurations are listed when their
probability is greater than 0.01, and the probability is calculated
from the first step. K-shell ionization energy (EK) and Kα
transition energy (EKα) are calculated from the second step of
our two-step HFS model. EK and EKα are in eV.

Q Configuration Probability EK EKα

þ5 1s22s12p43s03p1 0.0193 1618.3 1497.7
1s22s22p33s03p1 0.0187 1623.1 1500.3
1s22s22p43s03p0 0.0174 1578.7 1486.7

þ6 1s22s12p33s03p1 0.0376 1658.1 1511.6
1s22s12p43s03p0 0.0349 1618.3 1497.7
1s22s22p33s03p0 0.0339 1623.1 1500.3
1s22s22p23s03p1 0.0205 1663.5 1514.5
1s22s12p33s13p0 0.0139 1656.0 1511.3

þ7 1s22s12p33s03p0 0.0681 1666.3 1512.8
1s22s12p23s03p1 0.0413 1705.4 1527.8
1s22s22p23s03p0 0.0371 1671.9 1515.8
1s22s02p33s03p1 0.0189 1699.3 1524.5
1s22s02p43s03p0 0.0175 1660.9 1509.9
1s22s12p23s13p0 0.0153 1705.4 1527.9
1s22s22p13s03p1 0.0120 1711.7 1531.2

þ8 1s22s12p23s03p0 0.0747 1718.7 1530.0
1s22s02p33s03p0 0.0342 1712.3 1526.7
1s22s12p13s03p1 0.0241 1758.5 1546.5
1s22s22p13s03p0 0.0217 1725.1 1533.4
1s22s02p23s03p1 0.0207 1751.6 1542.9

þ9 1s22s12p13s03p0 0.0437 1775.1 1549.6
1s22s02p23s03p0 0.0375 1768.0 1545.9
1s22s02p13s03p1 0.0121 1808.2 1564.1

þ10 1s22s02p13s03p0 0.0219 1827.4 1568.1
1s22s12p03s03p0 0.0106 1835.2 1572.1
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atom. The only exception is Al7þ, where 3p lies ∼3.4 eV
below the threshold. For an isolated atom or ion, calculated
in the unscreened HFS approach, the threshold energy to
the continuum is constant (ε ¼ 0) for all charge states. For a
solid, the threshold energy to the continuum (εs) decreases
by 5 eV from Al IV to Al VIII. Lowering of the 1s binding
energies due to the plasma environment (44–107 eV) is
much larger than the lowering of the threshold energy
(11–16 eV). For T > 0 eV, the difference between the thresh-
old energy to the continuum in Fig. 5(a) and the 1s orbital
energy inFig. 5(b) gives theK-shell ionizationpotential. Inour
approach, both the 1s orbital energy and the threshold energy
are modified by the plasma environment.
In the LCLS experiment on Al plasma [22], Kα

fluorescence was detected and spectrally resolved as a
function of the incoming photon energy. In this way, the

incident-photon-energy threshold for the formation of a
K-shell hole is determined for each energetically resolvable
charge state. AK-shell hole can be created for T > 0 eV by
inner ionization or photoexcitation into the 3p orbital if 3p
is bound. Figure 6 shows the calculated K-shell ionization
thresholds (photoexcitation for Al7þ), in comparison with
the experimental results [22]. We also plot the K-shell
ionization thresholds for the unscreened HFS method
(isolated ions) and the average-atom model. For Al7þ,
the resonant excitation into 3p is below the ionization
threshold by just ∼3.4 eV, which may not be resolvable
due to the LCLS energy bandwidth of ∼7 eV in experiment
[21]. As shown in Fig. 6, the two-step HFS calculation
yields good agreement with the experimental data.
However, the average-atom model alone fails in reproduc-
ing experiment, especially for high charge states. In experi-
ment, each discrete fluorescence line selects only one
charge state and the K-shell threshold is assigned to this
specific charge state. The fixed-configuration scheme in
our two-step model properly describes this selection of
the K-shell threshold, whereas the average-atom model
with the configuration averaging does not. All calculated
energies were shifted by þ21.5 eV, according to the
difference between the inner-ionization energy calculated
at T ¼ 0 eV (1538.1 eV) and the experimental binding
energy (1559.6 eV) [77]. This constant energy shift is a
model assumption for comparing our results to the exper-
imental data. Note that the absolute accuracy of HFS
binding energies is typically about 1%. Clearly, in order
to improve the description, one would require a treatment
of the electronic structure beyond the mean-field level.
However, it may be anticipated that such an approach
would be much less efficient than the present HFS theory.
On the other hand, the error bar in the two-step HFS model
in Fig. 6 indicates variation from different thermal
exchange potentials used in our calculations. We test the

TABLE III. Average charge state Q̄, the most probable charge
state Qmp, and the most probable bound-electron configuration
Cmp for a given temperature T from the first step of two-step HFS
calculation. Note that Cmp is the ground configuration for a given
charge state, except Al7þ at T ¼ 80 eV.

T Q̄ Qmp Cmp

10 þ3.01 þ3 1s22s22p6

30 þ3.95 þ4 1s22s22p5

40 þ4.83 þ5 1s22s22p4

60 þ5.67 þ6 1s22s22p3

80 þ6.87 þ7 1s22s12p3
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thermal exchange potentials of Perrot and Dharma-wardana
[69] and Rozsnyai [36], following the same two-step
procedure as described in Sec. II, and find that the maximum
deviation from the results with the zero-temperature potential
is about 12 eV.
By taking the difference of the ionization potentials with

and without the plasma environment, we can examine the
lowering of the ionization potentials not only for K-shell
electrons but also for electrons in other subshells. For
individual bound orbitals of Al ions, we obtain the IPD
shown in Fig. 7(a). For isolated atoms, the ionization
potential is given by −ε∘j, where ε∘j is the jth orbital energy
from the unscreened HFS calculation. For atoms in the
plasma for T > 0 eV, the inner-ionization potential is
calculated by εs − εj, where both εs and εj are obtained
from the two-step HFS calculation. Since the plasma
screening affects each orbital differently, it is expected
that IPDs for individual orbitals are different. Our results
show that the IPD for 1s is higher than the IPD of 2s and 2p
by ∼3 eV, but there is almost no difference in the IPDs for
orbitals with the same principal quantum number (2s and
2p). This trend is similar to that observed in Ref. [32] for
the Debye-screened HFS model.
Figure 7(b) depicts a comparison of various theoretical

IPD models. The results of the Stewart-Pyatt model and the
modified Ecker-Kröll model are taken from Ref. [22]. The
original EK model [18] and the SP model [19] for lowering
of the ionization energy have been widely used in the past
decades and are implemented in several codes, e.g., FLYCHK
[78] or LASNEX-DCA [79]. Ecker and Kröll [18] have
described lowering of the ionization potential as being
due to the presence of an electric microfield. In their model,

there is no difference among the IPDs of individual
orbitals, and the ionization potential is considered as the
difference between the ground-state energy of the charge
state Q and that of the charge state (Qþ 1), which
corresponds to the outermost-shell ionization potential in
our calculations (2p for the Al plasma). A modified version
of the EK model (mEK) has been proposed in Refs. [22,26]
by employing an empirical constant to fit the experimental
data. Figure 7(b) shows that neither the mEK model nor
the SP model is close to our two-step HFS approach.
In Fig. 8, we show the peak positions of the Kα

fluorescence lines for Al IV up to Al VIII. The experimental
data are taken from Ref. [22]. The transition energies are
calculated from the differences of the 2p and 1s orbital
energies in the fixed-configuration scheme. The fixed
bound-electron configuration associated with a given
charge state is chosen from Table III. All calculated
energies are shifted by þ21.5 eV, according to the differ-
ence between the Al IV transition energy calculated with the
average-atom model at T ¼ 0 eV (1464.9 eV) and the
experimental transition line (1486.4 eV) [77]. The error bar
in the two-step HFS model shows variation from usage of
different thermal exchange potentials, and the maximum
deviation is about 2 eV. Our results show small deviations
(< 5.7 eV) from the experimental transition energies. Here,
we show transition energies for only one configuration
associated with a given charge state. However, different
configurations, as listed in Table II at T ¼ 80 eV, would
give rise to different transition lines. For instance, the
ground configuration (1s22s22p2) of Al VIII at T ¼ 80 eV
gives a fluorescence line of þ3 eV higher in energy than
the most probable configuration (1s22s12p3).

D. Al plasmas at high temperature and
high density: Orion experiment

Our two-step scheme is applicable not only in the
strongly coupled plasma regime but also in the weakly
coupled plasma regime. Recently, Hoarty et al. [24,25]
used the high-power Orion laser to create compressed Al
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plasmas with high temperature and measured Lyβ and Heβ
lines to diagnose the created Al plasmas. In Fig. 9, the two-
step model calculations show that the 3p state of com-
pressed Al merges with the continuum (ε ≥ εs) as the Al
density increases. The electronic temperature is 700 eV,
close to the Orion experimental condition [24]. For the
bound-electron part in the second step, the H-like Al is
calculated with the exact one-electron potential and the
He-like Al is calculated with the exact Hartree-Fock
potential. For such a high temperature, the plasma
electron density contributes to only the direct Coulomb
interaction [36].
When the solid density d is greater than ∼12 g=cm3, the

3p state of H-like Al is no longer bound, so the Lyβ line
would disappear. Likewise, the Heβ line would disappear
after d > 10 g=cm3. Our results are consistent with the
experimental finding of no n ¼ 3 transitions occurring at
d > 8–10 g=cm3. When we use different thermal exchange
potentials [36,69], the merging point of 3p becomes ∼8
and ∼11 g=cm3 for Heβ and Lyβ, respectively. The SP
model predicts delocalization of n ¼ 3 levels for
d > 11.6 g=cm3, whereas the EK model prediction is
found to be in clear disagreement with the experimental
data [24].

IV. CONCLUSION

In this work, we extend the standard HFS approach for
calculating atomic energy levels for ions embedded in a
plasma, taking into account plasma screening. Our two-step
HFS model includes (i) the average-atom model to obtain
the free-electron density at a given temperature and (ii) the
fixed-configuration model taking into account the free-
electron density. Our current analysis focuses on Al
plasmas created by the LCLS [21,22] and Orion laser
[24], covering both strongly and weakly coupled plasma
regimes. Our two-step HFS results on the K-shell threshold
energies of different charge states within Al plasma are in
good agreement with the LCLS experimental data [21,22].

References [21,22] measured fluorescence threshold ener-
gies that were then used to extract IPDs by combining
the data with a specific theory model describing the
unscreened ionization potentials. Thus, the estimated
IPDs relied on the theory of the unscreened case, which
hinders direct comparison with IPDmodels. In contrast, our
model computes the energy shifts of all individual orbitals
with and without plasma screening, thus providing IPDs
in an internally consistent manner. Our calculated valence
IPDs lie between the SP and mEK models. Hence, we
cannot confirm that the performance of the mEK model is
superior to that of the SP model, as suggested in Ref. [22].
Moreover, in the high-temperature regime, our prediction
for the 3p state is in good agreement with the SP model
and reproduces Orion experimental data [24]. These results
show that, with our proposed two-step HFS approach, a
reliable and relatively inexpensive calculation of atomic
properties within plasmas can be performed for both
weakly and strongly coupled plasmas. We, therefore,
expect that our model will be a useful tool for describing
new data from plasma spectroscopy experiments.
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APPENDIX A: PROBABILITY DISTRIBUTIONS
OF CHARGE STATES AND

CONFIGURATIONS

The partition function of the grand-canonical ensemble
for fermions is given by

Y ¼ Trfe−βðĤ−μN̂Þg

¼
Xall
fnpg

e−β
P

p
ðεp−μÞnp

¼
Y∞
p¼1

ð1þ e−βðεp−μÞÞ; ðA1Þ

where β ¼ 1=T is the inverse of the temperature,
fnpg ¼ ðn1; n2;…Þ, and np is the occupation number of
the pth one-electron state. Here, p includes all bound and
continuum one-electron states, and the summation runs
over all possible configurations fnpg. For fermions, np is
either 0 or 1. Then, the probability of finding one specific
configuration fnpg is
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Pfnpg ¼
1

Y
e−β

P
p
ðεp−μÞnp ¼

Y∞
p¼1

e−βðεp−μÞnp
1þ e−βðεp−μÞ

: ðA2Þ

We consider a fixed configuration, more precisely, a
fixed bound-electron configuration ½nb� ¼ ðn1;…; nBÞ,
where B is the number of the bound states. A general
Fock-space configuration consistent with the fixed bound-
electron configuration is

fnb; np0 g ¼ ðn1;…; nB; nBþ1;…Þ: ðA3Þ

Here, nb for 1 ≤ b ≤ B is a fixed occupation number,
while np0 is either 0 or 1 for p0 ≥ Bþ 1. The probability
of finding the fixed configuration ½nb� is calculated by
summing over all such configurations fnb; np0g,

P½nb� ¼
X

fnpg¼fnb;np0 g
Pfnpg

¼ 1

Y

YB
b¼1

e−βðεb−μÞnb
Xall
fnp0 g

Y∞
p0¼Bþ1

e−βðεp0−μÞnp0

¼
Q

B
b¼1 e

−βðεb−μÞnb Q∞
p0¼Bþ1

ð1þ e−βðεp0−μÞÞQ
B
b¼1 ð1þ e−βðεb−μÞÞQ∞

p0¼Bþ1
ð1þ e−βðεp0−μÞÞ :

In the above calculation, since the occupation numbers in
the bound states are fixed, they can be factored out and the
remaining parts in the numerator and the denominator are
canceled out. Thus, the probability reduces to

P½nb� ¼
YB
b¼1

e−βðεb−μÞnb
1þ e−βðεb−μÞ

; ðA4Þ

which corresponds to Eq. (11). This is for spin orbitals b;
i.e., nb is either 0 or 1. For practical purposes, we express
the probability in terms of subshells,

P½ni� ¼
QNb

i¼1ð4liþ2
ni

Þe−βðεi−μÞniQNb
i¼1 ð1þ e−βðεi−μÞÞð4liþ2Þ ; ðA5Þ

where i is the subshell index, Nb is the number of bound
subshells, and ½ni� ¼ ðn1;…; nNb

Þ. For the ith subshell,
εi is the orbital energy, li is the orbital angular momentum
quantum number, and ni is the occupation num-
ber (0 ≤ ni ≤ 4li þ 2).
The probability of finding the charge state Q is given

by summing over all possible configurations associated
with Q,

PQ ¼
XQ
½nb�

P½nb� ¼
XQ
½nb�

YB
b¼1

e−βðεb−μÞnb
1þ e−βðεb−μÞ

; ðA6Þ

where ½nb� satisfies
P

B
b¼1 nb ¼ Z −Q. This is Eq. (12). It

is straightforward to verify
P

QPQ ¼ 1. The average charge
state Q̄ is given by

Q̄ ¼
X
Q

QPQ

¼
X
Q

XQ
½nb�

�
Z −XB

p¼1

np

�YB
b¼1

e−βðεb−μÞnb
1þ e−βðεb−μÞ

¼ Z −XB
b¼1

~nbðμ; TÞ; ðA7Þ

which is used to calculate Q̄ in Tables I and III.

APPENDIX B: DETERMINATION OF
FREE-ELECTRON DENSITY

Here, we calculate the total electron density for a fixed
bound-electron configuration, ½nb� ¼ ðn1;…; nBÞ. The
total density is chosen by averaging densities over all
configurations fnb; np0g that have ½nb� in common:

ρ½nb� ¼
X

fnpg¼fnb;np0 g
ρfnpgwfnpg; ðB1Þ

where wfnpg is a statistical weight,

wfnb;np0 g ¼
e−β

P
p
ðεp−μÞnp

P
fnpg¼fnb;np0 ge

−βP
p
ðεp−μÞnp

¼
Y∞

p0¼Bþ1

e−βðεp0−μÞnp0

1þ e−βðεp0−μÞ
: ðB2Þ

The total density for fnpg decomposes into bound-electron
and free-electron densities,

ρfnpg ¼
XB
b¼1

jψbðrÞj2nb þ
X∞

p0¼Bþ1

jψp0 ðrÞj2np0 : ðB3Þ

Plugging Eqs. (B2) and (B3) into Eq. (B1), we evaluate the
total density for ½nb�. The bound-electron density for ½nb� is
then

ρb;½nb� ¼
�XB

b¼1

jψbðrÞj2nb
� Xall

fnp0 g

Y∞
p0¼Bþ1

e−βðεp0−μÞnp0

1þ e−βðεp0−μÞ

¼
XB
b¼1

jψbðrÞj2nb; ðB4Þ

and the free-electron density for ½nb� is given by
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ρf;½nb� ¼
Xall
fnp0 g

� X∞
p0¼Bþ1

jψp0 ðrÞj2np0

� Y∞
p0¼Bþ1

e−βðεp0−μÞnp0

1þ e−βðεp0−μÞ

¼
X∞

p¼Bþ1

jψpðrÞj2
1

eβðεp−μÞ þ 1
: ðB5Þ

Therefore, the total electron density for configuration ½nb�
is determined from the average-atom calculation (the first
step of our two-step approach) with the grand-canonical
ensemble,

ρ½nb� ¼ ρb;½nb� þ ρf;½nb� ðB6Þ

¼
XB
b¼1

jψbðrÞj2nb þ
X∞

p¼Bþ1

jψpðrÞj2 ~npðμ; TÞ: ðB7Þ

In the second step of our two-step approach, we separate
out the free-electron density ρf;½nb�, which yields
Eq. (13).
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