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Quantum methods allow us to reduce communication complexity of some computational tasks, with
several separated partners, beyond classical constraints. Nevertheless, experimental demonstrations of this
have thus far been limited to some abstract problems, far away from real-life tasks. We show here, and
demonstrate experimentally, that the power of reduction of communication complexity can be harnessed to
gain an advantage in a famous, immensely popular, card game—bridge. The essence of a winning strategy
in bridge is efficient communication between the partners. The rules of the game allow only a specific form
of communication, of very low complexity (effectively, one has strong limitations on the number of
exchanged bits). Surprisingly, our quantum technique does not violate the existing rules of the game (as
there is no increase in information flow). We show that our quantum bridge auction corresponds to a biased
nonlocal Clauser-Horne-Shimony-Holt game, which is equivalent to a 2 → 1 quantum random access code.
Thus, our experiment is also a realization of such protocols. However, this correspondence is not complete,
which enables the bridge players to have efficient strategies regardless of the quality of their detectors.
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I. INTRODUCTION

Quantum information science breaks the limitations of
conventional information transfer, cryptography, and com-
putation. Communication complexity problems (CCPs) [1]
were shown to have quantum protocols, which outperform
any classical counterparts. In CCPs, two types can be
distinguished. The first type minimizes the amount of
information exchange necessary to solve a task with
certainty [2–4]. The second type maximizes the probability
of successfully solving a task with a restricted amount of
communication [4–6]. Such studies aim, e.g., at the speed-
up of a distributed computation by increasing the commu-
nication efficiency or at an optimization of very-large-scale
interaction (VLSI) circuits and data structures [7].
Fundamentally, there exist connections between quan-

tum CCPs, quantum games, and tests of the foundations of
quantum mechanics. It has been shown that for every CCP,
there is a corresponding quantum game and vice versa.
Furthermore, it has also been proven that for every Bell
inequality and for a broad class of protocols, there always
exists a multiparty CCP for which the protocol assisted by
quantum states that violate the Bell inequality is more

efficient than any classical protocol [6,8]. However, in
contrast with cryptography, the existing demonstrations of
quantum protocols reducing communication complexity
are abstract problems and have no practical applications.
Our aim is to apply quantum correlations in protocols
related to a well-known real-life task. The task that we are
considering here is playing the card game of (duplicate)
bridge.
The essence of a successful game of bridge is efficient

communication between the partners. Because of the rules
of the game, the form and the amount of information
exchanged between the partners are severely restricted. We
show that using the quantum resources, the players can
increase their winning probability. What is important is that
our protocol does not require any change in the rules of the
game (or perhaps the very existence of it would force a
change in the rules so as to add a missing point: no quantum
reduction of communication complexity is allowed during
the game). In order to use our scheme, the players need to
share an entangled state and locally measure its subsys-
tems. Such a procedure is not against the rules of the World
bridge Federation [9], and it is not a method of transferring
information (no “Bell-telephone” rule). Our aim is to show
that one can exploit the difference between the quantum
and the classical resources in CCPs, in which there are strict
limits on the amount of communication, to gain an
advantage in bridge. So, whenever the rules governing a
real-life situation put a limit on the amount of communi-
cation, it should also be specified whether quantum
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resources are allowed or not since the quantum protocols,
which outperform the classical counterparts, are within the
reach of the current state-of-the-art technology, as shown
by our experiment. We present an experimental realization
of a quantum bridge protocol, in which the quantum
resources provide an advantage over the classical.

II. BRIDGE

Bridge is one of the world’s most popular card games. It
is played by two competing pairs of players called partner-
ships. The game consists of several deals, each progressing
through two phases: the auction (called bidding) and
playing the hand (called trick-taking). While playing the
hand is pretty straightforward and not much different from
other card games, it is the auction that makes this game
special.
In both phases of bridge, efficient communication is of

vital importance for the partnership. This is even more true
in the tournament version of the game—duplicate
bridge, which is recognized by the International Olympic
Committee as a sport. There, a larger group of partnerships
play against each other, with prearranged hands to reduce
the factor of chance to a minimum. What counts in this
variation is earning more points with a given hand than the
other partnerships. This is done by winning the optimal
contract and by a flawless play. To find the optimal
contract, both partners need to exchange information about
their hands. This is done during the auction by bidding.
Each bid gives the other player some information, but, as in
all auctions, the next bid has to be higher. This means that
the more information is exchanged, the higher the contract
will be and the more difficult to make. In order to optimize
the communication between the partners during the auction
phase, various communication protocols have been
devised. A short description of duplicate bridge is given
in Appendix A. More can be found in any of the numerous
books on this subject (see, e.g., Ref. [10]).
In this paper, we aim to show that there are quantum

communication strategies that outperform the classical ones
in the game of bridge. Unfortunately, there is no best
classical strategy. We have contacted Tommy Gullberg, a
World Life Master in duplicate bridge, author of many
articles and books about the game, who told us the
following: “A professional player plays with a strategy
of his own preference since he finds it optimal. Thus, if you
go to a professional tournament, you will encounter a wide
range of different strategies, all with some strengths and
some weaknesses, since there clearly is no such thing as an
optimal classical bridge strategy”[11].
The whole bidding strategy defines calls made as a

function of the cards in possession of the player and bids
made so far. The sheer amount of different combinations
makes it necessary to simplify the description of the
strategy so that it is comprehensible by the players. This
is done by dividing it into substrategies, called conventions.

Each convention defines players’ behavior in a particular
situation (or their equivalence class) in the game. The
general strategy is then a decision tree linking various
conventions.
All the strategies must involve a “slam-seeking con-

vention,” which is a substrategy that players use if they
have very strong cards and hope to win a big bonus: in other
words, to decide whether to seek slam or not. A very
popular and often-used slam-seeking strategy is the Roman
Key Card Blackwood (RKB) strategy [12]. If you play a
game of bridge (in a tournament), it is very likely that the
RKB will be used, probably several times, and therefore, it
is likely to be included in the optimal classical strategy [11].
In this paper, we give specific example of improving RKB
using a quantum strategy. More generally, quantum strat-
egies can probably be useful in many different bridge
strategies. For example, other slam-seeking strategies like
Gerber [13] differ from RKB only slightly, and the quantum
protocol can be modified accordingly.
We now concentrate on a subgame of the bidding phase,

which is deciding whether to seek slam or not. It is a very
good object for our studies because of its simplicity. It is the
end of the auction phase, and the players know a lot about
their partners’ cards. Communication is very limited, in
some cases, to not more than two possible bids. But before
they move to playing the hand, they have to answer only
one, binary question: Should they commit themselves to
playing slam? It is fair to assume that regardless of
choosing classical or quantum strategy, the players will
play their hands optimally. Then, the amount of points
scored depends only on estimating their capability of
playing slam correctly. In other words, giving the correct
answer to that binary question is equivalent to winning the
game. An example of such a situation is given in
Appendix A. In a nutshell, the players face a dilemma:
Bob (playingWest) needs to decide whether to bid for small
slam or not; Alice (East) knows that to make the right
decision he will either need information about the number
of aces that she has or need to know whether she has the
queen of diamonds. Unfortunately, she does not know
which of these two pieces of information Bob needs;
moreover, she is limited to calling one of two possible
bids: in information theory terms, to send one bit of
information. In computer science, this particular commu-
nication complexity task is known as a random access code.
Classical and quantum ways of dealing with this problem
are described in the next section.

III. BRIDGE AS A COMMUNICATION
COMPLEXITY PROBLEM

The auction in bridge can be regarded as a CCP. Let HN ,
HE, HS, and HW denote the hands of the players. There
exists an optimal contract for W and E which is a function
of all the hands fðHN;HE;HS;HWÞ. The goal of the
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partners is to call the optimal contract: in other words, find
the value of f, with as little communication as possible.
There are some additional constraints that make the
problem more challenging: (i) the amount of communica-
tion that the players are allowed to exchange depends on the
value of f and on the strategy of their opponents, (ii) the
function f may be hard to compute even if all the hands are
known, (iii) it is difficult to compare the quantum and the
classical strategies since, in most of the cases, it is hard to
find the optimal classical strategies. However, when we
limit ourselves to considering a single convention, the
situation becomes more simple. In Appendix B, we show
that the Roman Key Blackwood convention can be con-
sidered as a particular CCP, phrased in the following way:
Alice has a random string of two bits a0 and a1, while Bob
makes his independent choice as to which of the two bits he
wants to learn; that is, he fixes b ¼ 0, 1, to learn ab (see
Fig. 1). But, Alice is allowed to send a single-bit messagem
to Bob (m ¼ 0 in the form of 5♣ orm ¼ 1 as 5♦), while he
is not allowed to send any information.
For such CCPs, one is usually interested in the worst-

case success probability, or the average probability (the
success is when Bob learns the correct value of a0 or a1).
One usually assumes uniformly distributed inputs.
However, the nature of bridge is such that this assumption
is not satisfied. Thus, we must introduce the following
figure of merit I, which is the average probability that Bob,
after receiving the message m, correctly guesses the bit
from Alice that he wants to know:

I ¼
X
i;j;k

pða0 ¼ i; a1 ¼ j; b ¼ kÞ

× PðR ¼ abja0 ¼ i; a1 ¼ j; b ¼ k;mÞ; ð1Þ

where R is the value that Bob guesses for ab, after receiving
m, and pða0; a1; bÞ is the probability distribution of a0, a1
and b.
To find the maximal value of I achievable with classical

resources, as in the case of any classical CCP, it suffices to
check all deterministic encodings of a0 and a1 into one bit
message mða0; a1Þ. We have listed all 256 possible
combinations of encoding/decoding strategies and found
that the optimal deterministic strategy, which attains the
maximum value of Ic, corresponds to Alice in each run
sending a0 (or a1) as the message m. If Bob is interested in
a0 (alternatively, a1), he gets the right value. However, if
he, in a given run, is interested in a1 (alternatively, a0), his
guess is the more probable value, which he infers from the
known marginal distributions pða0Þ and pða1Þ. Thus, one
has

IC ¼ maxfpðb ¼ 0Þ þ pðb ¼ 1Þmax
i
fpða1 ¼ ijb ¼ 1Þg;

pðb ¼ 1Þ þ pðb ¼ 0Þmax
i
fpða0 ¼ ijb ¼ 0Þgg:

ð2Þ

In the game of duplicate bridge, winning does not mean
getting more points than your opponents. It means getting
more points than other pairs playing with the same cards.
Because finding the optimal bid dramatically increases the
amount of points awarded (see “Scoring and match points”
section of the Appendix), doing so is the necessary
condition for winning. If the players find themselves in
the situation described in the Appendix, they know that
every other partnership playing with the same cards will
face the same problem: whether or not to bid for slam.
Assuming that all of them will play the hand optimally, the
ones who bid correctly will win. Therefore, the probability
of guessing ab is the probability of winning and is referred
to as such in the rest of the paper.

IV. QUANTUM BRIDGE

As we have explained in the previous section, the task
that Alice and Bob have to perform in this situation reduces
to communicating to the receiver one of the two bits. The
only problem is that it is the receiver who chooses what he
is interested in, and the communication is restricted to a
single bit. This kind of task is called a random access code,
and it is known that quantum information theory can deal
with it more efficiently.
Let Alice and Bob make measurements on an entangled

state. Each of them can choose one of two observables
(Alice’s choice is denoted by a and Bob’s by b) with binary
outcomes A and B, respectively. Consider the following
protocol based on the 2 → 1 entanglement-assisted random
access code discussed in Ref. [14].
Alice receives two bits a0 and a1. She chooses

her measurement setting according to the value of

FIG. 1. Quantum protocol of bridge CCP. Alice (playing East)
holds two bits of information ai with i ¼ 0, 1 (defined by her
hand). Bob (playing West) chooses between b ¼ 0 or 1, which
denotes in which bit of Alice he is interested. Alice chooses her
measurement setting to be a ¼ a0⊕a1. Bob sets his measurement
according to his choice of b. After reading out her outcome A
(which is encoded as a bit value), Alice sends a one-bit message
to Bob, the value of m ¼ A⊕a0. Bob computes his guess R for
the value of the bit he wants to know by adding the message to
his local measurement outcome B (also encoded as a one-bit
value), that is R ¼ B⊕m.
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a ¼ a0⊕a1. The probability of a to be 0 is equal to
p¼ pða0 ¼ 0Þpða1 ¼ 0Þþ ½1−pða0 ¼ 0Þ�½1−pða1 ¼ 0Þ�.
Bob’s setting is simply defined by his input bit b, which can
be 0 with probability q. After reading her outcome A, Alice
prepares the message m ¼ A⊕a0, which she transmits to
Bob. He then computes his guess value of the required bit,
R, by adding the message to his outcome: R ¼ B⊕m.
A simple calculation shows that R ¼ ab as long
as A⊕B ¼ ab.
Therefore, in our protocol, Bob gets the correct value of

ab, with probability I equal to

I ¼
X
a;b

pða; bÞPðA⊕B ¼ abja; bÞ; ð3Þ

which can be put equivalently as

Q ¼ 1

2
þ 1

2

X
a;b

pða; bÞð−1ÞabEða; bÞ; ð4Þ

where the correlation function Eða; bÞ is given by
PðA ¼ Bja; bÞ − PðA ≠ Bja; bÞ. The expression Q ¼P

a;bpða; bÞð−1ÞabEða; bÞ is the left-hand side of a biased
Clauser-Horne-Shimony-Holt (CHSH) inequality consid-
ered in Ref. [15]. Its maximal quantum value is given by
[15]

Q ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ð1 − qÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ð1 − pÞ2

q
: ð5Þ

Thus, the maximal quantum value of IQ is

IQ ¼ 1

2
ð1þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ð1 − qÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ð1 − pÞ2

q
Þ: ð6Þ

The exact probability distribution pða0; a1; bÞ is difficult
to estimate since it depends on the overall strategies of the
partners and their opponents. We have asked the bridge
expert Tommy Gullberg for his estimates which are as
follows [11]: pða0 ¼ 0jb ¼ 0Þ ≈ 0.5, pða1 ¼ 0jb ¼ 1Þ≈
0.55, which implies p ≈ 0.5. It is also reasonable to assume
q ≈ 0.75. With these estimates, the classical strategy (2)
gives a success probability 0.8875, while the quantum one
(6) reaches 0.8953.
As we have explained before, the same quantum protocol

may be used in many different instances of bidding and
trick-taking. However, the probability distribution
pða0; a1; bÞ may differ from case to case. Therefore, in
the experimental section of the paper, we have compared
the performance of quantum and classical strategies for a
wide range of parameters. Usually, pða0 ¼ 0jb ¼ 0Þ ≈
pða1 ¼ 0jb ¼ 1Þ ≈ p, and we use this approximation in
all our figures.
Let us stress that the game of bridge as a whole is not a

communication complexity problem. It only shares some of
its properties, in certain clearly defined phases of the game.
For example, its rules do not put any constraints on the

amount of communication between the partners but only on
the amount of communication about their cards. They can,
for example, ask about the other player’s strategies, discuss
issues with the referee, or simply ask the other partner to
repeat his last bid if they did not hear it clearly. This means
that, in the quantum strategy, the players can make
measurements on entangled pairs and announce if they
detected a particle until both of them do. This information
has nothing to do with their cards. Then, they can carry on
with the auction. This allows them to exploit the advantage
of quantum states without having to worry about the
efficiency of their detectors, which in standard communi-
cation complexity problems, plays a crucial role. We would
also like to point out that bridge offers no communication
between partners that is not also available for the opposing
team, and hence, eavesdropping on the opposing team’s
messages is pointless.
Apart from the main advantage of having a larger

probability of playing the optimal contract, or better
efficiency in the defense play, Alice and Bob also have
a less obvious advantage. The rules of bridge forbid the
partners to use a secret strategy. Its detailed description
should be made available to the opponents before the game.
Moreover, the player making the bid after Alice (the
sender) and before Bob (the receiver) can, before announc-
ing his/her bid, ask the receiver what information Bob got,
and he must provide all the information that he has
obtained. However, in the quantum case, the receiver
can answer truthfully as follows: I did not get any
information yet because I have not measured my system
yet, and I cannot do it now because the choice of my
measurement depends on your forthcoming bid. Therefore,
using the quantum strategy not only helps the partners to
behave more optimally, but it also makes the game harder
for the opponents, as the overtly conveyed message carries
no information until it is added to the result of the receiver.
Furthermore, in the quantum case, the choice of what the
receiver learns is delayed until the very last moment before
his bid, which gives him more knowledge about the
opponents’ cards. This allows him to learn information
that is more relevant, as he knows more about its context.
An advantage of this type is difficult to quantify, and
delaying the choice of measurement requires high detection
rates; therefore, we do not dwell on this subject anymore
here. Our quantum protocol can also be used for defensive
play and signaling (see Appendix C).

V. EXPERIMENTAL REALIZATION

Let us describe our experiment, which demonstrates the
quantumviolationof theclassicalboundofEq. (6) forvarious
values of p and q. At the same time, it is the experimental
realization of a biased nonlocal game [15,16], a quantum
CCP, and the quantum bridge. The optimal state for all these
tasks is a two-qubit maximally entangled state, and the
measurements of the parties are the ones given in Ref. [15]:
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A1 ¼
σxðqþ ð1 − qÞ cos βÞ þ σzð1 − qÞ sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ ð1 − qÞ cos βÞ2 þ ð1 − qÞ2sin2β

p ;

A2 ¼
σxðq − ð1 − qÞ cos βÞ − σzð1 − qÞ sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − ð1 − qÞ cos βÞ2 þ ð1 − qÞ2sin2β

p ;

B1 ¼ σx;

B2 ¼ σx cos β þ σz sin β;

jψi ¼ 1ffiffiffi
2

p ðj0ij0i þ j1ij1iÞ; ð7Þ

where σz and σx are the standard Pauli operators, and

cos β ¼ 1

2

ðq2 þ ð1 − qÞ2Þðp2 − ð1 − pÞ2Þ
qð1 − qÞðp2 þ ð1 − pÞ2Þ : ð8Þ

We have realized these quantum protocols by using
polarization entangled pairs of photons jϕþi ¼
ðjHHi þ jVViÞ= ffiffiffi

2
p

. In the experiment, UV light centered
at a wavelength of 390 nmwas focused inside a 2-mm-thick
BBO nonlinear crystal. Photon pairs, because of a degen-
erate emission of type-II spontaneous parametric down-
conversion, are collected in two spatial modes a and b.
Half-wave plates (HWP) and two 1-mm-thick BBO crystals
are used for compensation of longitudinal and transversal
walk-offs. The emitted photons were coupled into 2-m
single-mode optical fibers (SMF) and passed through
narrow-bandwidth interference filters (F) (Δλ ¼ 1 nm) to
secure well-defined spatial and spectral emission modes
(see Fig. 2) [17].
Alice uses a (p: 1 − p) VRBS for her measurement basis

choice, with the probabilities ðpÞ and (1 − p) for the first
and second basis choices. Her measurement observables A1

(corresponding to a ¼ 0) and A2 (corresponding to a ¼ 1)
are realized by HWP oriented by ϕA1

and ϕA2
, respectively.

Bob uses a (q: 1 − q) VRBS for his basis choice, with the
probabilities ðqÞ and (1 − q) for the first and second basis
choices. His measurement observables B1 and B2 (corre-
sponding to b ¼ 0 and 1, respectively) are realized by HWP
oriented by ϕB1

and ϕB2
, respectively (see Fig. 2), such as

tanϕA1
¼ ð1 − qÞ cos ðπ=2 − βÞ

qþ ð1 − qÞ sin ðπ=2 − βÞ ;

tanϕA2
¼ −ð1 − qÞ sin ðπ=2 − βÞ

q − ð1 − qÞ cos ðπ=2 − βÞ ;

ϕB1
¼ π=4;

ϕB2
¼ π=2 − β: ð9Þ

The polarization measurement was performed using PBS
and single-photon detectors (D) placed at the two output
modes of the PBS. Our detectors are actively quenched
Si-avalanche photodiodes. All single-detection events were
registered using a VHDL-programmed multichannel

coincidence logic unit, with a time coincidence window
of 1.7 ns. The measurement time for each setting was
200 seconds.
We have tested the protocols for different probabilities p

and q by changing the transmission coefficients of Alice’s
and Bob’s VRBS. Figure 3 shows the classical ICðqÞ
(dashed line), quantum IQðqÞ (continuous line), and exper-
imental data points observed for the success probability
versus q for the value of p ¼ 0.5. Figure 4 shows a 3D plot
for the classical ICSðp; qÞ, quantum IQSðp; qÞ, and exper-
imental data observed for the success probability of CCP
protocols versus p and q. Our results are in very good
agreement with the theoretical predictions and clearly
demonstrate the advantage of the quantum strategy over
the classical ones.
Note that the actual implementation in a real game would

require Alice and Bob to have an active control over the
choice of the local basis of measurement. However, the
demonstrated power of the quantum process would not be
altered by this.

FIG. 2. Experimental setup for quantum bridge CCP. UV light
centered at a wavelength of 390 nm is focused inside a 2-mm-
thick β barium borate (BBO) nonlinear crystal to produce photon
pairs. Half-wave plates (HWP) and two 1-mm-thick BBO crystals
are used for compensation of longitudinal and transverse walk-
offs. The emitted photons are coupled into 2-m SMF and passed
through narrow-bandwidth interference filters (F) (Δλ ¼ 1 nm).
Alice (or the E parter) uses a (p: 1 − p) variable-ratio beam
splitter (VRBS) for her measurement basis choice, with the
probabilities ðpÞ and (1 − p) (corresponding to her input value a,
see text) for the first and second base choices. Her measurement
observables A1 and A2 are realized by HWP oriented by ϕA1

and
ϕA2

, respectively. Bob uses a (q: 1 − q) VRBS for his basis
choice, with the probabilities ðqÞ and (1 − q) (corresponding to
his input value b) for the first and second bases. His observables
B1 and B2 are realized by HWP oriented by ϕB1

and ϕB2
,

respectively. The polarization measurements for Alice and Bob
were performed using polarizing beam splitters (PBS) and single-
photon detectors (D).
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VI. CONCLUSION

In summary, we report an experimental realization of a
quantum bridge CCP protocol, which is the first demon-
stration of a quantum CCP usable in a real-life scenario.
This was possible because we show that our quantum
bridge protocol corresponds to a biased nonlocal CHSH
game, which in turn is equivalent to a 2 → 1 quantum

random access code. Thus, our experiment is also a
realization of an entanglement-assisted random access
code. We also establish links between game theory,
communication complexity, and quantum physics. Such
quantum games and communication complexity protocols
and their links can be generalized to n partners scenario.
Concerning bridge, it is up to the World bridge Federation
to decide whether to allow quantum resources and encoding
strategies in championships. A positive decision would
make this technique the first commonplace application of
quantum communication complexity. A negative one
would forbid quantum strategies and, thus, would con-
stitute the first-ever regulation of quantum-resources in
sport. The results reported here will contribute to a deeper
understanding of the possible impact of quantum resources
on information and communication technologies.

ACKNOWLEDGMENTS

The authors thank Tommy Gullberg and Johan Ahrens
for discussions. This work was supported by the Swedish
Research Council (VR), the Linnaeus Center of Excellence
ADOPT, ERC Advanced Grant QOLAPS, TEAM
Programme of Foundation for Polish Science (FNP),
NCN Grant No. 2013/08/M/ST2/00626, QUASAR
(ERA-NET CHIST-ERA 7FP UE), and UK EPSRC.

APPENDIX A: THE RULES
OF DUPLICATE BRIDGE

Duplicate bridge is a metagame. The same bridge deal
(i.e., the specific arrangement of the 52 cards into the four
hands) is played at each table, and scoring is based on
relative performance. This reduces the element of chance
while heightening the one of skill. Now we give a brief
description of the game. More details can be found in,
e.g., Ref. [10].

1. Introduction

Duplicate bridge is one of the most popular card games,
recognized by the International Olympic committee as a
sport (only two “mind sports,” bridge and chess, are
recognized) and governed by the World bridge
Federation for international competitions. It uses a standard
deck of 52 cards and is played by exactly four players. The
players are usually named according to their seat directions
as East, West, North, and South. Among these, West and
East form a partnership, or a pair, competing against North
and South.
A tournament consists of several games. In each game,

the cards are distributed between the players. In rubber
bridge, a more casual version of the game, this distribution,
called a deal, heavily influences the winning probability.
However, in duplicate bridge, previously prepared deals are
stored in bridge boards—simple four-way card holders.

FIG. 3. Experimental results for quantum bridge: (a) the
classical ICðqÞ (dashed line), quantum IQðqÞ (continuous line),
and the experimental data points observed for the success
probability I for pða0 ¼ 0jb ¼ 0Þ ¼ pða1 ¼ 0jb ¼ 1Þ ¼
p ¼ 0.5. For q ¼ 0.5, the obtained quantum success probability
is 0.848� 0.005 (the corresponding classical value is 0.75). For
the value of q ¼ 0.75, which we estimate to correspond to a
common situation in bridge, the quantum and classical values are
0.895 (the experimental quantum value is 0.887� 0.005) and
0.875, respectively.

FIG. 4. Experimental results for quantum CCP protocol for
the whole spectrum of quantum strategies. We show the
classical ICðp; qÞ (blue plot), quantum IQðp; qÞ (red plot), and
experimental data (green points) for the success probability
I as functions of p and q. The classical value of ICðp; qÞ is
calculated from Eq. (2) under the assumption that
pða0 ¼ 0jb ¼ 0Þ ¼ pða1 ¼ 0jb ¼ 1Þ ¼ p0, which leads to
p ¼ p02 þ ð1 − p0Þ2. [Only half of the ICðp; qÞ plot is shown
to make the IQðp; qÞ plot and the experimental data points
visible].
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They are used to enable each player’s hand to be passed
intact to the next table, which must play the same deal, and
final scores are calculated by comparing each pair’s result
with others who played the same hand.
Each game consists of two main phases: 1. The auction,

also called bidding for a contract. 2. Playing the hand, when
the pair that won the auction tries to take enough tricks to
make the contract.

2. Bidding in Bridge

In order to understand how to bid, first one should know
the ranking of cards and suits. The deck of 52 cards consists
of four suits: spades♠, hearts♥, diamonds♦, and clubs♣.
Spades ♠ are ranked as the highest, and the next highest
suit is hearts ♥; together they are called the major suits.
They are followed by minor suits, with diamonds ♦ ranked
higher than clubs ♣. This ranking is important in bidding
and scoring at the end of the game. In a suit, cards are
ranked from a 2 being the lowest to an ace being the
highest.
The bidding phase starts with the dealer (one player is

marked as the dealer on each bridge board) and rotates
around the table clockwise, with each player making a call.
A call is limited to a vocabulary of 38 words or phrases
consisting of the following: (i) a bid which states a level and
a denomination; a denomination can be any of the four suits
or NT (which stands for no trump); given seven levels of
bidding and five denominations, there are 35 possible bids.
(ii) Double, only available when the last bid is made by an
opponent. (iii) Redouble, only available after an opponent’s
double. (iv) Pass, when unwilling or unable to make one of
the three preceding calls. This vocabulary is further limited
by the requirement that each bid has to be sufficient; i.e., it
has to have either a higher level than a previous bid or the
same level and a higher denomination. NT is higher
than any of the suits. For example, if the last bid was
3♠, the next one can be 3NT or 4♣ but not 3♣.
If three players in a row pass, the auction is over. A pair

is said to have won the auction if the last bid was made by
one of its players. This partnership is called the declaring
side. The player on the declaring side who, during the
auction, first stated the denomination of the final bid
becomes the “declarer,” the declarer’s partner becomes
the “dummy,” and the opposing side become the “defend-
ers.” The final bid also becomes the “contract.” The
declaring side promises to take, during the next phase,
the number of tricks greater than or equal to the level of the
contract plus 6, and the denomination becomes the trump
(in the case of the denomination NT, there is no trump).

3. Playing the hand

To begin play, the defender on the declarer’s left makes
the opening lead by placing his selection face up on the
table. The dummy then spreads his hand on the table so that
it is visible to every other player. The players play

clockwise around the table by placing their cards on the
table, and each must “follow suit” (that is, play a card of the
suit that led the trick) if able. A player that cannot follow
suit may either “ruff” (play a trump) if there is a trump suit
or “sluff” (play a card of any other suit). The player that
plays either the highest trump or, in a trick that contains no
trumps, the highest card of the suit that led the trick (1) wins
the trick for its side and (2) proceeds to lead the next trick.
The declarer directs the play of cards from the dummy, in
addition to playing cards from his own hand. The play
continues until all 13 tricks are played. Then the score is
calculated.

4. Scoring and match points

If the declaring side wins the number of tricks specified
by contract (or more), they are awarded some points and
their opponents get exactly the same amount of negative
points. If they win less, the situation is reversed.
If the declaring side makes their contract, they get points

for the following: (i) Odd tricks—the number of tricks
specified by the level of the contract. The amount of points
depends on the level of the contract, the denomination, and
whether it was doubled or redoubled. The points awarded
for this are called contract points. (ii) Overtricks—if the
partnership wins more tricks than the contract specified,
they are counted as overtricks. They are worth less points
than odd tricks. The amount of points here also depends on
the denomination and whether the contract was doubled or
redoubled, but it also depends on vulnerability. Whether or
not the partnership is vulnerable is marked on the bridge
board. (iii) Slam bonus—if the partnership bids and wins
12 or 13 tricks, they are awarded a huge bonus, which
depends on their vulnerability. (iv) Double bonus—a bonus
for making the contract that has been doubled or redoubled.
(v) Game bonus—a small bonus for making the contract. A
much larger one is given if the partnership scores more than
100 contract points. An even larger bonus is awarded if they
were vulnerable.
If the declaring side fails to make their contract, their

opponents get points for each undertrick. The amount of
points is larger than for overtricks or even odd tricks and
depends on vulnerability and whether the contract was
doubled or redoubled.
The tables with the exact point values can be found, e.g.,

in Ref. [18]. An important implication of these scoring
rules is that finding the optimal contract is crucial for the
game. This stems from the fact that overtricks are worth less
than odd tricks; a game bonus is awarded only for contract
points, and a slam bonus is only applied if the parties bid
for a slam. For example, let us consider a case where the
declaring side wins nine tricks with no trump while being
vulnerable. If their contract was 2NT, they are awarded 70
contract points plus 30 for one overtrick plus 50 in game
bonus, which gives them 150 total. If their contract was
3NT, they get 100 contract points and a game bonus of 500,
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which gives them 600 in total. If their contract was 4NT,
they had one undertrick, and they get 100 penalty points. It
is therefore crucial for the declaring side neither to
underestimate or overestimate their ability to win tricks.
However, these points do not influence the final position

of the partnership that scored them directly. Instead, all the
pairs that played the same deal are compared (the pairs that
sat at North-South and East-West positions are compared
separately). Then 2 match points (MPs) are awarded for
each partnership that scored less points with the same deal.
For each partnership that scored the same amount, 1=2 MP
is awarded. Therefore, scoring 90 MPs when everyone else
made only 70 is as good as scoring 2000.

5. Bidding strategies

In duplicate bridge, the auction phase is much more
important than playing the hand. Often, the second phase is
reduced to the declarer revealing his hand and claiming that
he will take exactly the amount of tricks specified in the
contract, and the defenders agree, ending the game.
The auction phase is all about communication. The

purpose of some early bids may be to exchange information
rather than to set the final contract. For most players, many
calls (bids, doubles, and redoubles, and sometimes even
passes) are not made with the intention that they become
the final contract but rather to describe the strength and
distribution of the player’s hand so that the partnership can
reach an informed conclusion on their best contract, and/or
to obstruct the opponents’ bidding. The set of agreements
used by a partnership about the meaning of each call is
referred to as a bidding system, full details of which must
be made available to the opponents; “secret” systems are
not allowed. An opponent can ask the bidder’s partner to
explain the meaning of the call.
There are around 5.36 × 1028 different deals possible,

which makes bidding strategies very complex, especially
since they have to take into account the possibility of the
opponents interfering. To make it possible to play the game,
they are divided into conventions—substrategies that are
applicable only in certain situations; e.g., Cappelletti
convention is a strategy for interrupting opponents’ com-
munication while sending the partner information about the
strongest suit; it can be used only after a bid of 1NT by the
opponents with moderately strong cards.
Because making a contract for more than 100 contract

points or a slam leads to large amounts of bonus points,
there are multiple conventions designed to check if such
contracts are possible to make. One of the most popular is
Roman Key Blackwood, which is described in the main
text. All the conventions, apart for the ones for interrupting
the opponents, are designed to convey as much information
as possible while keeping the final bid as low as possible.
This enables the players to stay at a safe level in case they
find out that their cards are not that good or to squeeze in
additional rounds of communication before concluding the

auction. Therefore, they bear resemblance to communica-
tion complexity problems.

6. Strategies for playing the hand

The strategies for playing the hand are very different for
the declaring side and the defenders. This stems from the
fact that the dummy’s cards are visible to everyone and that
they are being played by the declarer. This leads to
asymmetry. The declaring side is reduced to a single
player, and half of its cards are known to the opponents.
The defenders, on the other hand, face a problem of
coordinating their actions. Usually, they do not have many
opportunities to exchange information during the auction,
so they have to use the cards they play to send signals. One
of the most common conventions is called Smith Peter.
When one of the defenders plays the opening lead, the other
plays a low spot card (2–5) if he would like his partner to
play this suit once more and a high spot card (6–10) if he
wants to discourage his partner from playing this suit. This
strategy is called signaling.
Again, the communication is limited because the players

aim at establishing a joint defense strategy as soon as
possible, and their freedom of choosing the signals is
constrained by the cards they have. Therefore, the quantum
protocol described in the main text can also be adapted to
defensive play. An example of this is presented in the next
part of the Appendix.
Duplicate bridge is one of the most complex games, and

this short description presents only the very basics of it. The
interested reader should review any of the numerous books
available on this subject and try to play the game.

APPENDIX B: THE CASE WHEN CLASSICAL
STRATEGIES FAIL

Consider the cards and bidding in a bridge scenario, as
shown in Fig. 5. The bidding can be explained as follows.
W looks at his cards. He has good cards in diamonds (♦)
and therefore makes the bid 1♦, suggesting that the
partnership can win one more trick than the minimum
(which is always defined as 6 out of 13 possible). E does
not have particularly good cards in any suit and therefore
gives the answering bid of 1NT; i.e., he suggests seven
tricks without trump suit. By this bid, W understands that E
has no significant strength in ♦ and does not have more
than four cards in any suit (otherwise, he would have
suggested that suit). Therefore, W suggests his second best
suit, ♥. E now knows that W prefers ♦ but can play with ♥
if necessary. E has more strength in ♦ and hence suggests
3♦, i.e., nine tricks with ♦ suit as trumps. The partnership
has now settled the trump suit. Now they undertake a more
difficult contract (by making more bids) in exchange for
more information about the partner’s hand. W makes a so-
called cuebid of 4♣, directly suggesting ten tricks, but the
cuebid implies that W is aiming for 12 tricks. By choosing
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♣, W indicates that he has either no cards at all or one
strong card in the suit of ♣. W is thus asking E with his bid
if E has any key cards (defined as four aces and trump
king). E’s answer says that he indeed has the key cards
needed. However, W has no information about the last
missing card of interest, the queen of trumps, ♦Q.
Unfortunately, we have no standard tools to ask about
♦Q without exceeding the safety level of 5♦. A typical
bridge strategy is Roman Key Card Blackwood 4NT (key
card refers to the king of trumps and the four aces; NT
stands for no trump) [12]. If one partner wishes to ask the
other whether he has the queen of trumps in his hand, he
calls out a bid on which meaning the players have agreed
upon. The standard answers for the partner are as follows:
A bid 5♣ means that the partner has 0 or three key cards;
similarly, a bid of 5♦, 5♥, or 5♠ means one or four key
cards, two or five key cards without the trump queen, or
two or five key cards with the trump queen, respectively.
Clearly, there is no way to check for the trump queen
without exceeding the level of 5♦. Thus, the classical
bidding techniques are useless, and the partner W may be
forced to guess whether the partner E has the trump queen
or not.
We now show that the bridge scenario in Fig. 5 is

equivalent to a type of random access code, for which the
quantum strategies provide an advantage over classical
ones. Let the bit b represent the type of information that
Bob (playing West) is interested in (see Fig. 1). b ¼ 0
corresponds to Bob being interested in the key cards, and
b ¼ 1 to him being interested in Q♦. For Alice (playing
East), her bits will have the following meaning: The bit
a0 ¼ 0 stands for 0 or three key cards, whereas a0 ¼ 1
means one or four of them; the bit a1 ¼ 0 means that Alice
has Q♦, and a1 ¼ 1 means that she does not. The assign-
ments of the particular values of the bits are arbitrary. For
simplicity, we assume that for all the variables, the value 0
corresponds to the most probable situation. If Alice has two
or five key cards (the bit a0 is not defined), her answer is 5♥
or 5♠, just like in the standard Blackwood case. However,
with the bits a0 and a1 well defined, it would be of an
advantage to send a message to Bob allowing him to gain
one of these values, or increase the probability of guessing

them. But, she can send exactly one bit of information to
Bob without exceeding the critical value of 5♦. That is, her
response can be 5♣ or 5♦. Without knowing whether Bob
is interested in a0 or a1, she can only, in the classical case,
make a random choice, or they could agree beforehand that
in such a case she sends, say, a0. This highly limits their
strategies.

APPENDIX C: QUANTUM STRATEGIES FOR
DEFENSIVE PLAY

The quantum protocol described in the main text can also
be used for defensive play and signaling. To see this,
consider the cards given in Fig. 6. In this particular game of
bridge, the W-E team is the defending team and N is the
dummy. In this given scenario, let us assume that W
discards the A♥ against S’s 4♦ contract. After N’s
response, East plays the 10♥ to signal a discouraging
attitude towards the played suit (see Fig. 6). W wants to
know whether E possesses the Q♥ or not. From the
viewpoint of W, E can have 10♥ as the highest card in
the suit, or East might have, e.g., Q♥ and still play 10♥ to
signal a negative attitude. If East has the queen, West
should discard the 9♥ so that East can play the Q♥. If East
does not have the relevant card, there is a good risk of
letting the declarer win the ten tricks needed to fulfill the
contract. In conclusion, West needs information about the
Q♥. In order to extract the information about the queen, we
once again use our quantum protocol with the following
variable definitions. If a0 ¼ 0, it encourages suit. If a0 ¼ 1,
it discourages suit. If a1 ¼ 0, we have an odd number of
cards. If a1 ¼ 1, we have an even number of cards. With q
defined as the probability of W being interested in the
attitude towards the suit, we may define the message m as
follows: If m ¼ 0, then play a small card; if m ¼ 1, then
play a high card. Thus, the quantum protocol has once
again improved the conditions of playing the best card.
Generally, whenever communication between the partners
is restricted to one single bit and there exists a nonzero
probability that the partner might be interested in values of
one of two bits of information, the protocol gives a quantum
advantage.

FIG. 5. Cards and bidding for bridge. An example of cards and
bidding for the W and E partners.

FIG. 6. Cards for defensive play and signaling.
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