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A shortcut to adiabaticity is a driving protocol that reproduces in a short time the same final state that
would result from an adiabatic, infinitely slow process. A powerful technique to engineer such shortcuts
relies on the use of auxiliary counterdiabatic fields. Determining the explicit form of the required
fields has generally proven to be complicated. We present explicit counterdiabatic driving protocols for
scale-invariant dynamical processes, which describe, for instance, expansion and transport. To this end,
we use the formalism of generating functions and unify previous approaches independently developed
in classical and quantum studies. The resulting framework is applied to the design of shortcuts to
adiabaticity for a large class of classical and quantum, single-particle, nonlinear, and many-body
systems.
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I. INTRODUCTION

Modern research in nanoengineering develops increas-
ingly small devices that operate in a regime described by
effective classical dynamics [1,2] or quantum mechanics
[3,4]. Achieving a fast coherent control with high fidelity
[5,6] is a ubiquitous goal shared by a variety of fields and
technologies, including quantum sensing and metrology
[7], finite-time thermodynamics [8], quantum simulation
[9], and adiabatic quantum computation [10]. The quantum
adiabatic theorem [11], however, appears as a no-go
theorem for excitation-free ultrafast processes. As a result,
an increasing amount of theoretical and experimental
research is targeting the design of shortcuts to adiabaticity
(STA), i.e., nonadiabatic processes that reproduce in a finite
time the same final state that would result from an
adiabatic, infinitely slow protocol [12].
A variety of techniques has been developed to engineer

STA: The use of dynamical invariants [13,14], the inversion
of scaling laws [15,16], the fast-forward technique [17–19],
and counterdiabatic driving, also known as transitionless
quantum driving [20–22]. Among these techniques, coun-
terdiabatic driving (CD) is unique in that it drives the
dynamics precisely through the adiabatic manifold of the
system Hamiltonian. In addition, it enjoys a wide appli-
cability. In its original formulation [20–22], one considers a
time-dependent Hamiltonian Ĥ0ðtÞ with instantaneous

eigenvalues fεnðtÞg and eigenstates fjnðtÞig. In the limit
of infinitely slow variation of Ĥ0ðtÞ, a solution of the
dynamics is given by

jψnðtÞi ¼ e−ði=ℏÞ
R

t

0
dsεnðsÞ−

R
t

0
dshnj∂snijnðtÞi: (1)

In this adiabatic limit, no transitions between eigenstates
occur [11], and each eigenstate acquires a time-dependent
phase that can be separated into a dynamical and a
geometric contribution [23], represented by the two terms
inside the exponential in the above expression.
Now, consider a nonadiabatic Hamiltonian Ĥ0ðtÞ. In the

CD paradigm, a corresponding Hamiltonian ĤðtÞ is
constructed, such that the adiabatic approximation asso-
ciated with Ĥ0ðtÞ [Eq. (1)] is an exact solution of the
dynamics generated by ĤðtÞ under the time-dependent
Schrödinger equation. Writing the time-evolution operator
as ÛðtÞ ¼PnjψnðtÞihnð0Þj, one arrives at an explicit
expression for ĤðtÞ [20–22]:

Ĥ ¼ Ĥ0 þ Ĥ1 ¼ Ĥ0 þ iℏ
X
n

ðj∂tnihnj − hnj∂tnijnihnjÞ:

(2)

Here, the auxiliary CD Hamiltonian Ĥ1ðtÞ enforces evo-
lution along the adiabatic manifold of Ĥ0ðtÞ: If a system is
prepared in an eigenstate jnð0Þi of Ĥ0ð0Þ and subsequently
evolves under ĤðtÞ, then the term Ĥ1ðtÞ effectively
suppresses the nonadiabatic transitions out of jnðtÞi that
would arise in the absence of this term. Note that the
evolution is nonadiabatic with respect to the full CD
Hamiltonian Ĥ ¼ Ĥ0 þ Ĥ1.
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The CD Hamiltonian ĤðtÞ has been the object of intense
study. It was found that the higher the speed of evolution,
the larger is the intensity of the required auxiliary CD field
[24,25]. Experimental demonstrations of driving protocols
inspired by the CD technique have recently been reported
in single two-level systems [26,27]. In the many-body case,
Ĥ1ðtÞ generally includes nonlocal and multibody inter-
actions [25,28]. Local driving protocols can be derived
for unitarily equivalent Hamiltonians [28], an approach
that has also proven useful in single-particle systems
[12,26,27,29].
However, the computation of the auxiliary term Ĥ1ðtÞ

requires knowledge of the spectral properties of the
instantaneous system Hamiltonian Ĥ0ðtÞ at all times.
This constraint has limited the range of applicability of
the method to the control of few-level systems [20–22] and
noninteracting matter waves in time-dependent harmonic
traps [30–32].
Recently, a classical analogue of CD was proposed,

namely, dissipationless classical driving [33]. Here, for a
time-dependent classicalHamiltonianH0ðq; p; tÞ, one seeks
anauxiliary termH1ðq; p; tÞ such that under theHamiltonian
dynamics generated by H ¼ H0 þH1, the classical adia-
batic invariant ofH0 is conserved exactly. For systems with
one degree of freedom, an explicit solution of this problem,
analogous to Eq. (1) above, was obtained [see Eq. (32) of
Ref. [33]].Moreover, itwasargued that this classical solution
can be useful in constructing the quantal CD Hamiltonian
ĤðtÞ, bypassing the spectral decomposition of Ĥ0ðtÞ. This
idea was illustrated for arbitrary power-law traps (including
the particle in a box as a limiting case), for which simple
expressions for Ĥ1ðtÞ in terms of position and momentum
operatorswere obtained andquantized. Further progresswas
achieved using scaling laws in expansions and compressions
for a wide variety of single-particle, nonlinear, and many-
body quantum systems [28].
Our aim in this paper is to find an experimentally

realizable CD Hamiltonian (2) for scale-invariant proc-
esses, without using the explicit spectral decomposition of
Ĥ0ðtÞ. Scale-invariant driving is generated by transforma-
tions of Ĥ0ðtÞ for which the density profile (and all local
correlations in real space) is preserved up to scaling and
translation. Using this property, we start with a single
quantum particle in a one-dimensional potential, from
which we will develop a general framework to find local
CD protocols for multiparticle quantum systems, obeying
both linear and nonlinear dynamics. We will use methods
from classical Hamiltonian dynamics, namely, the formal-
ism of generating functions, to treat dissipationless classical
driving by the same means. Our approach also allows one
to treat arbitrary external potentials, beyond the validity of
perturbation theory.
The paper is organized as follows: We will begin in

Sec. II by deriving an expression for the CD Hamiltonian
(2) for the scale-invariant driving of a quantum system with

one degree of freedom. Section III is dedicated to classical
Hamiltonian dynamics, in which the classical version of Ĥ1

can be rewritten in a local form using linear canonical
transformations and the formalism of generating functions.
These findings will be generalized and applied in Sec. IV to
a broad family of many-body quantum systems. Specific
protocols for arbitrary trapping potentials will be discussed
in Sec. V. Section VI is dedicated to nonlinear systems,
with emphasis in mean-field theories. In Sec. VII, we will
discuss the relation of CD to more general scaling laws,
before we explicitly engineer STA in Sec. VIII. We close
with a summary and discussion in Sec. IX.

II. COUNTERDIABATIC HAMILTONIAN
FOR SCALE-INVARIANT DRIVING

Generally, it appears to be hardly feasible to find closed-
form expressions, i.e., expressions that do not depend on
the full spectral decomposition of Ĥ0ðtÞ, for the auxiliary
term in the CD Hamiltonian ĤðtÞ (2). Recently, it has been
shown that scale invariance greatly facilitates this task for
processes that describe self-similar expansions and com-
pressions in a time-dependent trap [28], including the
family of power-law potentials as a special case [33].
More generally, scale-invariant driving refers to transfor-
mations of the system Hamiltonian associated with a set of
external control parameters λðtÞ ¼ ½λ1ðtÞ;…; λnðtÞ� that
can be absorbed by scaling of coordinates, time, energy,
and possibly other variables to rewrite the transformed
Hamiltonian in its original form up to a multiplicative
factor. If only the potential term U½q; λðtÞ� is modulated, its
overall shape does not change under λð0Þ → λðtÞ. For the
time being, we focus on a quantum system with a single
degree of freedom

Ĥ0ðtÞ ¼
p2

2m
þ U½q; λðtÞ� ¼ p2

2m
þ 1

γ2
U0

�
q − f
γ

�
; (3)

where λ ¼ ðγ; fÞ and U0ðqÞ ¼ U½q; λð0Þ�. Note that
generally, γ ¼ γðtÞ and f ¼ fðtÞ are both allowed to be
time dependent, but we assume that they are independent of
each other. This time dependence encompasses transport
processes [γðtÞ ¼ 1], dilations [such as an expansion or
compression, with fðtÞ ¼ 0], and combined dynamics,
which are the focus of our attention and elements of the
dynamical group of the system Hamiltonian, the universal
covering group of SUð1; 1Þ, SUð1; 1Þ [34].
Our goal is to rewrite the auxiliary term Ĥ1ðtÞ [Eq. (2)]

into a form that does not rely on the spectral decomposition
of Ĥ0ðtÞ. Let ψ0

nðqÞ ¼ hnjqi be an eigenfunction of
the Hamiltonian Ĥ0ðγ ¼ 1; f ¼ 0Þ; then, ψnðq; γ; fÞ ¼
αðγÞψ0

n½ðq − fÞ=γ� is an eigenfunction of Ĥ0ðγ; fÞ, where
αðγÞ ¼ 1=

ffiffiffi
γ

p
is a normalization constant. The proof of this

statement can be found in Appendix A.
Now, we want to use this symmetry to simplify Ĥ1ðtÞ in

Eq. (2). We have
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Ĥ1ðtÞ ¼ iℏ _λ ·
X
m

ðj∇λmihmj − hmj∇λmijmihmjÞ; (4)

which reads in space representation

Ĥ1ðtÞ ¼ iℏ _λ ·
X
m

Z
dqjqi∇λψmðq; λÞhmj

− iℏ _λ ·
X
m

Z
dqhmjqi∇λψmðq; λÞjmihmj: (5)

To simplify this expression, we note that

∇λψnðq; λÞ

¼
�
α0ðγÞ
αðγÞ ψnðq; γÞ − q − f

γ
∂qψnðq; γÞ;−∂qψnðq; γÞ

�
:

(6)

For the sake of clarity, let us treat both terms of Ĥ1ðtÞ in
Eq. (5) separately. We obtain for the first term

iℏ _λ ·
X
m

Z
dqjqi∇λψmðq; λÞhmj

¼ _γ

γ
ðq − fÞpþ iℏ_γ

α0ðγÞ
αðγÞ þ

_fp; (7)

while the second term reduces to

− iℏ _λ ·
X
m

Z
dqhmjqi∇λψmðq; λÞjmihmj

¼ − iℏ_γ
2γ

− iℏ_γ
α0ðγÞ
αðγÞ : (8)

Note that the second component of ∇λψnðq; λÞ does not
contribute, since the wave function vanishes at infinity
due to normalizability. In conclusion, we obtain the explicit
expression of the auxiliary CD Hamiltonian

Ĥ1ðtÞ ¼
_γ

2γ
½ðq − fÞpþ pðq − fÞ� þ _fp; (9)

where we use ½q − f; p� ¼ iℏ. Notice that Ĥ1ðtÞ in Eq. (9)
is of the general form Ĥ1 ∝ ðqpþ pqÞ, which was
found for a time-dependent harmonic trap [30] and more
generally in Refs. [28,33] for the class of potentials

U½q; γðtÞ� ¼ A
γ2

�
q
γ

�
b
; (10)

where b ∈ f2; 4; 6;…g and A > 0. See also Refs. [33,35]
for a discussion of the limiting case b → ∞, that of a
boxlike confinement. Obviously, this class [Eq. (10)]
belongs to the more general scale-invariant potentials
introduced above in Eq. (3).

Equation (9) is our first main result. For all driving
protocols under which the original Hamiltonian Ĥ0ðtÞ is
scale invariant, i.e., where the time-dependent potential is
of the form of Eq. (3), the auxiliary term Ĥ1ðtÞ takes the
closed form [Eq. (9)]. In particular, Ĥ1ðtÞ is independent
of the explicit energy eigenfunctions and only depends on
the anticommutator Ĥ1 ∝ fq; pg ¼ qpþ pq, the generator
of dilations. As a result, CD applies not only to single
eigenstates but also to nonstationary quantum super-
positions and mixed states. However, the expression (9)
is still not particularly practical, as nonlocal Hamiltonians
[36] are hard to realize in the laboratory. We continue our
analysis by explicitly constructing coordinate transforma-
tions that allow us to write Ĥ1ðtÞ in local form, i.e., where
Ĥ1ðtÞ depends only on position. In order to do so, we will
use the classical version of CD as a guide.

III. SCALE-INVARIANT DRIVING:
A CASE FOR GENERATING FUNCTIONS

We now turn to dissipationless classical driving [32,33],
the classical analogue of quantum counterdiabatic driving.
For scale-invariant Hamiltonians, the connection between
the quantum and classical cases is particularly close, and
the corresponding auxiliary CD terms Ĥ1ðtÞ and H1ðtÞ are
essentially identical, up to quantization.
In complete analogy with the quantum case, we consider

a classical Hamiltonian with one degree of freedom

H0ðz; tÞ ¼ H0½z; λðtÞ� ¼
p2

2m
þU½q; λðtÞ�; (11)

where z ¼ ðq; pÞ is a point in phase space. The classical
adiabatic invariant is given by

ωðz; λÞ ¼ Ω½H0ðz; λÞ; λ�; (12)

where

ΩðE; λÞ ¼
Z

dzΘ½E −H0ðz; λÞ� (13)

is the volume of phase space enclosed by the energy shell
E of H0ðz; λÞ. In the adiabatic limit, ω½zðtÞ; λðtÞ� remains
constant along a Hamiltonian trajectory zðtÞ evolving under
H0½z; λðtÞ�, just as the quantum number n remains constant
in the quantum case. We now consider nonadiabatic driving
of the parameters λðtÞ, and we seek an auxiliary CD term

H1ðz; tÞ ¼ _λ · ξ½z; λðtÞ�; (14)

resembling Eq. (4), such that ω remains constant at an
arbitrary driving speed, for any trajectory evolving under
the Hamiltonian Hðz; tÞ ¼ H0½z; λðtÞ� þH1ðz; tÞ.
It is useful to picture dissipationless driving in terms

of an ensemble of trajectories evolving under Hðz; tÞ, with
initial conditions sampled from an energy shell Eð0Þ of
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H0½z; λð0Þ�. Since the value of ω is preserved for every
trajectory in this ensemble, at any later time t > 0, these
trajectories populate a single energy shell EðtÞ of
H0½z; λðtÞ�, determined by the condition Ω½EðtÞ; λðtÞ� ¼
Ω½Eð0Þ; λð0Þ�, which defines the adiabatic energy shell.
As discussed in Ref. [33], it is useful to view ξðz; λÞ as a

generator of infinitesimal transformations z → zþ dz, with

dz ¼ dλ · fz; ξg; (15)

where fA; Bg ¼ ∂qA · ∂pB − ∂pA · ∂qB is the Poisson
bracket. Equation (15) provides a rule for converting a
small change of parameters dλ into a small displacement in
phase space dz. In order to achieve dissipationless classical
driving, the energy shells of H0ðλÞ must be mapped, under
Eq. (15), onto those of H0ðλþ dλÞ, with

ωðzþ dz; λþ dλÞ ¼ ωðz; λÞ: (16)

When this condition is satisfied, the term H1 ¼ _λ · ξ
provides precisely the counterdiabatic driving required
to preserve the value of ω. Thus, to construct the CD
Hamiltonian, we must find the function ξðz; λÞ that gen-
erates infinitesimal deformations of the adiabatic energy
shell, as per Eqs. (15) and (16).
Our scale-invariant Hamiltonian

H0ðz; γ; fÞ ¼
p2

2m
þ 1

γ2
U0

�
q − f
γ

�
(17)

satisfies

H0ðqþ a; p; γ; f þ aÞ ¼ H0ðq; p; γ; fÞ;

H0

�
rq;

p
r
; rγ; rf

�
¼ 1

r2
H0ðq; p; γ; fÞ;

ΩðE; γ; fÞ ¼ Ωðγ2E; 1; 0Þ; (18)

for any real a and positive r. Using these properties, we can
verify by direct substitution that the canonical mapping

ðq; pÞ →
�
qþ df þ dγ

γ
ðq − fÞ; p − dγ

γ
p

�
(19)

satisfies Eq. (16). The change f → f þ df produces a
coordinate translation, while under the change γ → γ þ dγ,
the adiabatic energy shell is stretched along the coordinate
q − f and compressed along the momentum p. The
infinitesimal transformation (19) is generated by

ξγ ¼
ðq − fÞp

γ
; ξf ¼ p; (20)

as verified by substitution into Eq. (15), with λ ¼ ðγ; fÞ and
ξ ¼ ðξγ; ξfÞ. Combining Eqs. (14) and (20), we arrive at

H1ðz; tÞ ¼
_γ

γ
ðq − fÞpþ _fp; (21)

the classical counterpart of Eq. (9). With this auxiliary term,
the value of ω½zðtÞ; λðtÞ� remains constant along a trajec-
tory evolving under the Hamiltonian H ¼ H0 þH1, for
any protocol λðtÞ. To illustrate this general result, we derive
H1ðtÞ for an analytically solvable example, namely, the
parametric Morse oscillator in Appendix B.
Equation (21) gives us a nonlocal CD Hamiltonian that

accomplishes dissipationless classical driving. Our goal
now is to find a coordinate transformation mapping ðq; pÞ
to a set of new variables ðq̄; p̄Þ, and a corresponding
Hamiltonian H̄ðq̄; p̄; tÞ whose dynamics (in q space) is
identical to that under Hðq; p; tÞ, and for which H̄ðq̄; p̄; tÞ
is local; i.e., it is the sum of a kinetic energy term
proportional to p̄2 and a function Ūðq̄; tÞ. In classical
mechanics, this type of problem can be elegantly solved
using the formalism of generating functions [37].
We briefly recall the main idea. Let h1ðq1; p1; tÞ be a

time-dependent Hamiltonian, written in terms of coordi-
nates ðq1; p1Þ in a two-dimensional phase space. Now,
consider new coordinates ðq2; p2Þ that are related to
ðq1; p1Þ by a time-dependent canonical transformation:

q2 ¼ q2ðq1; p1; tÞ; p2 ¼ p2ðq1; p1; tÞ: (22)

Since canonical transformations are invertible, we can
alternatively express the “old” coordinates ðq1; p1Þ as
functions of the “new” ones ðq2; p2Þ. If a function
Fðq1; p2; tÞ can be constructed such that the relationship
between the two coordinate sets is given by

p1 ¼
∂F
∂q1 ; q2 ¼

∂F
∂p2

; (23)

then Fðq1; p2; tÞ is called a generating function of a type-
two canonical transformation [37]. We can then define a
Hamiltonian

h2ðq2; p2; tÞ ¼ h1 þ
∂F
∂t (24)

that generates trajectories equivalent to those of
h1ðq1; p1; tÞ. Specifically solutions to the equations

_q1 ¼
∂h1
∂p1

; _p1 ¼ −∂h1
∂q1 ; (25)

when rewritten in the new coordinates, become solutions to

_q2 ¼
∂h2
∂p2

; _p2 ¼ −∂h2
∂q2 : (26)

The function Fðq1; p2; tÞ thus encodes the transformation
of both the variables (23) and the Hamiltonian (24).
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In what follows, we shall apply this approach to three
different sets of coordinates related by canonical trans-
formations. The CD Hamiltonian for scale-invariant
dynamics with the nonlocal term [Eq. (21)] reads

Hðq; p; tÞ ¼ p2

2m
þ 1

γ2
U0

�
q − f
γ

�
þ _γ

γ
ðq − fÞpþ _fp:

(27)

Now, we define a type-two generating function

Fðq; p̄; tÞ ¼ qðp̄ −m _fÞ −m
2

_γ

γ
ðq − fÞ2 þm

2

Z
t

0

ds _f2;

(28)

and we use it with Eqs. (23) and (24) to construct a
canonical transformation to coordinates ðq̄; p̄Þ, obtaining

q̄ ¼ q; p̄ ¼ ðpþm _fÞ þm
_γ

γ
ðq − fÞ; (29)

and

H̄ðq̄; p̄; tÞ ¼ p̄2

2m
þ 1

γ2
U0

�
q̄ − f
γ

�
−m

2

̈γ
γ
ðq̄ − fÞ2 −mf̈ q̄ :

(30)

The HamiltoniansHðq; p; tÞ and H̄ðq̄; p̄; tÞ generate equiv-
alent trajectories, in the sense of Eqs. (25) and (26).
Moreover, since q ¼ q̄, these trajectories are identical in
configuration space. This observation can be verified
independently by considering the second-order differential
equation for the coordinates q and q̄. In either case, we have

mq̈ ¼ − 1

γ3
U0

0½ðq − fÞ=γ� þm
̈γ
γ
ðq − fÞ þmf̈: (31)

ComparingH [Eq. (27)] and H̄ [Eq. (30)], we see that the
nonlocal terms in the former are replaced by local terms
in the latter, which we conceptually identify as a local
formulation of H1ðtÞ [Eq. (21)]. The first of these new
terms in H̄ is an inverted harmonic oscillator whose
stiffness is proportional to the acceleration of the scaling
factor; cf., also Refs. [16,28]. The quantum analogue of the
second term has appeared in the context of linear transport
processes. The so-called Duru transformation [38] maps the
dynamics of a transport process into the comoving frame
q → q − f, removing the time dependence of the original
potential associated with fðtÞ at the expense of introducing
the time dependent force−mf̈, which is precisely cancelled
by the counterdiabatic local potential −mf̈ q̄.
Now, consider a protocol in which the parameters f and γ

are fixed outside some interval t0 ≤ t ≤ t1 (as in the inset of
Fig. 1), and imagine trajectories zðtÞ and z̄ðtÞ that evolve
under H and H̄, respectively, from identical initial

conditions at t < t0. These equivalent trajectories are
related by Eq. (29) at every instant in time, which
immediately implies that zðtÞ and z̄ðtÞ are identical in
phase space for t < t0; then, their momenta differ during
the interval t0 ≤ t ≤ t1; and finally, they coincide again at
t ¼ t1 and remain identical thereafter. Since the adiabatic
invariant ω is preserved exactly along the trajectory zðtÞ, it
follows that along the trajectory z̄ðtÞ, the initial value of ω
(at t < t0) is identical to the final values of ω (at t > t1),
even if it varies at intermediate times. Thus, the local
driving Hamiltonian (30) implements a shortcut to adia-
batic change of the parameters f and γ between some given
initial and final values.
To gain further insight, let us construct a new canonical

transformation, to variables ð ~q; ~pÞ, using

Fðq; ~p; tÞ ¼ 1

γ
ðq − fÞ ~p: (32)

Applying Eqs. (23) and (24), we get

~q ¼ q − f
γ

; ~p ¼ γp; (33)

and

L0 L1
q

p0

p0

p1

p1

p

t0 t1
t

L0

L1

L t

u 

FIG. 1. Shortcut to adiabaticity based on dissipationless
classical driving. Energy shells for a particle in a one-dimensional
box [Eq. (42)], in a time-dependent piston of width LðtÞ that
changes at a constant rate u for t0 ≤ t ≤ t1 (inset). Energy shells
corresponding to H0ðz̄;LÞ are shown as a pair of parallel, dotted
line segments of length L, at momenta �p̄. The solid lines
represent a level surface of the adiabatic invariant I corresponding
to the full, counteradiabatic Hamiltonian Hðz̄;LÞ (43). At t ¼ t0,
the force fðq; tÞ [Eq. (44)] induces a “jump” of trajectories z̄ from
dashed to solid lines—for t0 ≤ t ≤ t1, the adiabatic energy shell is
deformed invariantly—and finally, at t ¼ t1, force fðq; tÞ
[Eq. (44)] induces jumps back to p̄.
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~Hð ~q; ~p; tÞ ¼ 1

γ2

�
~p2

2m
þU0ð ~qÞ

�
: (34)

The transformation (33) is a linear dilation of the coordinate
and the reciprocal contraction in momentum space.
The fact that ~Hð ~q; ~p; tÞ is time independent, apart from

the factor 1=γ2, has two interesting consequences. First, the
quantity Ið ~q; ~pÞ ¼ γ2 ~H is a dynamical invariant, as follows
from direct inspection of Hamilton’s equations. If we
picture a level surface of I as a closed loop in ~z space,
then under ~H, a trajectory ~zðtÞ simply evolves around this
loop, at a speed proportional to 1=γðtÞ2. The function I can
be expressed in any of the three sets of phase-space
coordinates considered above. The resulting functions

Iðq; p; tÞ ¼ γ2
p2

2m
þU0

�
q − f
γ

�
;

Iðq̄; p̄; tÞ ¼ γ2

2m

�
p̄ −m

_γ

γ
ðq̄ − fÞ −m _f

�
2

þU0

�
q̄ − f
γ

�
;

Ið ~q; ~pÞ ¼ ~p2

2m
þU0ð ~qÞ (35)

are all dynamical invariants, along Hamiltonian trajectories
generated byHðz; tÞ, H̄ðz̄; tÞ, and ~Hð~z; tÞ, respectively. This
conclusion follows from the equivalence of the trajectories
zðtÞ, z̄ðtÞ, and ~zðtÞ, which can also be verified by inspection
of Hamilton’s equations.
The invariance of I allows us to visualize the evolution of

these trajectories, as each one clings to a level surface of I
expressed in the given phase-space coordinates. If f is not
varied with time, then a level surface of Iðq; p; tÞ gets
stretched along q and contracted along p as γ increases with
time (or the other way around if γ decreases); a level surface
of Iðq̄; p̄; tÞ additionally acquires a shear along the momen-
tum direction, proportional to _γ, as illustrated by the pairs of
diagonal lines in Fig. 1. If f is varied with time, then a level
surface of Iðq; p; tÞ undergoes translation along the coor-
dinate q, and the level surface of Iðq̄; p̄; tÞ additionally
undergoes a displacement along p by an amount m _f.
Second, if we introduce the new timelike variable [39]

τðtÞ ¼
Z

t

0

dsγ−2ðsÞ; (36)

we obtain

d ~q
dτ

¼ ~p
m

and
d ~p
dτ

¼ −U0
0ð ~qÞ; (37)

which describe motion under a time-independent
Hamiltonian, whose energy shells are the level surfaces
of Ið ~q; ~pÞ. Let ½ ~qðτÞ; ~pðτÞ� denote a particular solution to
these equations of motion. Inverting the canonical trans-
formations in Eqs. (33) and (40), we can immediately use
this solution to construct trajectories generated by the
Hamiltonians H and H̄, namely,

qðtÞ ¼ γ ~qðτÞ; pðtÞ ¼ 1

γ
~pðτÞ (38)

and

q̄ðtÞ ¼ γ ~qðτÞ þ f; p̄ðtÞ ¼ 1

γ
~pðτÞ þm_γ ~qðτÞ þm _f:

(39)

Hence, trajectories generated by the time-dependent
Hamiltonians H and H̄ can be constructed directly
from trajectories evolving under a time-independent
Hamiltonian ~H, which further emphasizes the equivalence
between these trajectories. We will exploit these observa-
tions in the following discussion of shortcuts for driven
multiparticle quantum systems.
Energylike dynamical invariants such as I were intensely

studied in the mathematical literature for classical and
quantum dynamics. In particular, it can be shown that if
(and only if) an energylike invariant exists, then one can
find a coordinate transformation, as discussed in the present
analysis [29,40–46].
For completeness, we note that the transformation from

ðq̄; p̄Þ to ð ~q; ~pÞ is generated by the function

Fðq̄; ~p; tÞ ¼ 1

γ
ðq̄ − fÞð ~pþmγfÞ þm

2

_γ

γ
ðq̄ − fÞ2

þm
2

Z
t

0

dsð_γ2 þ 2γ̈γÞ; (40)

for which we have

~q¼ 1

γ
ðq̄−fÞ and ~p¼ γðp̄−m _fÞ−m_γðq̄−fÞ: (41)

A. An illustrative example:
A particle in a time-dependent box

For a particle in a time-dependent box, the form of
the new Hamiltonian H̄ðq̄; p̄; tÞ (30) can be understood
intuitively. Consider a particle of mass m inside a one-
dimensional box with hard walls at q ¼ 0 and q ¼ L, as
described by the Hamiltonian

H0ðz;LÞ ¼
p2

2m
þ Uboxðq;LÞ; (42)

where Uboxðq;LÞ is zero inside the box and “infinite”
outside. We further assume that L ¼ LðtÞ changes with
constant rate u for times t0 ≤ t ≤ t1 and is constant
otherwise with Lðt ≤ t0Þ ¼ L0 and Lðt ≥ t1Þ ¼ L1;
cf. Fig. 1. Now, imagine the aforementioned adiabatic
energy shell as a closed loop that is deformed as LðtÞ is
varied with time. Then, H0ðz;LÞ generates motion around
this loop, and the auxiliary CD term H1ðtÞ ¼ m _Lξ ¼ muξ
adjusts each trajectory z so that it remains on shell [33]; see
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Fig. 1. The dashed lines represent the adiabatic energy
shells corresponding toH0 for a particular energy E. Notice
that particles at q ¼ L hit the hard wall and are “boosted”
from one branch to the other. In other words, particles
hitting the hard wall with momentum p are reflected at
q ¼ L and travel back with −p, and so close the loop. The
solid lines pþmuq=L and −pþmuq=L represent a level
surface of the adiabatic invariant I corresponding to the full
counterdiabatic Hamiltonian

Hðz;LÞ ¼ p2

2m
þ Uboxðq;LÞ þ

u
L
qp: (43)

In the previous discussion, we were asking for a set of
coordinates ðq̄; p̄Þ and the corresponding Hamiltonian
H̄ðq̄; p̄; tÞ, for which here the solid lines represent the
exact solution. For times t < t0 and t > t1, the energy shells
for old and new coordinates are identical. In other words at
t ¼ t0 the trajectories z have to “jump” from p ¼ � ffiffiffiffiffiffiffiffiffiffi

2mE
p

to p̄ ¼ �pþmuq=L, where q̄≡ q, and at t ¼ t1, the
trajectories z jump back to the unperturbed shell. These
jumps are induced by a force

fðq̄; tÞ ¼ m
q̄u
L0

δðt − t0Þ −m
q̄u
L1

δðt − t1Þ (44)

that applies “impulses” at t ¼ t0 and t ¼ t1. The latter
force is the derivative of an auxiliary potential
fðq̄; tÞ ¼ −∂ q̄U1ðq̄; tÞ

U1ðq̄; tÞ ¼ −m
2

q̄2u
L0

δðt − t0Þ þ
m
2

q̄2u
L1

δðt − t1Þ;

¼ −m
2

L̈ðtÞ
LðtÞ q̄

2 (45)

that we recognize as the additional potential term in the
transformed Hamiltonian H̄ðq̄; p̄; tÞ (30), with γðtÞ ¼
LðtÞ=Lð0Þ and fðtÞ ¼ 0.
Therefore, we conclude that the additional harmonic

term in the Hamiltonian (30) with possible negative spring
constant −m ̈γ=γ is nothing else but the term necessary to
facilitate the transfer of the classical trajectories from the
energy shells of H0 to those invariant under H [Eq. (27)]
and eventually H̄ [Eq. (30)]. Interestingly enough, this
result agrees with the CD derived in the quantum case for a
time-dependent boxlike confinement using Lewis-Riesenfeld
invariants and reverse engineering of scaling laws [16].

IV. MULTIPARTICLE QUANTUM SYSTEMS

In the previous section, we showed how the auxiliary,
classical term in the counterdiabatic Hamiltonian can be
brought into a local form. We will next apply this finding
to general multiparticle quantum systems. Let us consider
the broad family of many-body systems described by the
Hamiltonian

Ĥ0 ¼
XN
i¼1

�
− ℏ2

2m
Δqi þU½qi; λðtÞ�

�
þ ϵðtÞ

X
i<j

Vðqi − qjÞ;

(46)

with qi ∈ RD unless stated otherwise (D denoting the
effective dimension of the system), and where Δqi is the
Laplace operator and Uðq; tÞ represents an external trap
whose time dependence is of the form [Eq. (3)]
U½q;λðtÞ�¼U0f½q−fðtÞ�=γðtÞg=γðtÞ2. As before [Eq. (3)],
the trap can be shifted by the time-dependent displacement
f ¼ fðtÞ and simultaneously modulated by the scaling
factor γ ¼ γðtÞ. We further assume that the two-body
interaction potential obeys

VðκqÞ ¼ κ−αVðqÞ; (47)

which includes relevant examples in ultracold gases such
as the pseudopotential for contact interactions [47], e.g.,
the Fermi-Huang potential for s-wave scattering for which
α ¼ D [48].
We define the dimensionless coupling constant

ϵð0Þ ¼ 1 at t ¼ 0 and consider a stationary state
Ψðt ¼ 0Þ ¼ Ψðq1;…;qN ; t ¼ 0Þ, with chemical potential
μ, i.e., Ĥ0Ψ ¼ μΨ. The scale-invariant solution for this
multiparticle quantum system that generalizes the wave
function for a single degree of freedom discussed earlier
reads

ΨðtÞ ¼ γ−ND=2e−iμτ=ℏΨ
�
q1 − fðtÞ

γðtÞ ;…;
qN − fðtÞ

γðtÞ ; 0

�
;

(48)

where τ is the timelike variable introduced above [Eq. (36)].
By substituting the latter ansatz into the many-body
Schrödinger equation, we find that ΨðtÞ is actually the
exact time-dependent solution for the dynamics generated
by the CD Hamiltonian

γ2Ĥ ¼
XN
i¼1

�
− ℏ2

2m
Δ ~qi þ U0ð ~qiÞ

�

þ ϵγ2−α
X
i<j

Vð ~qi − ~qjÞ

þ
XN
i¼1

�
−iℏ∂τf

γ
· ∂ ~qi − i

ℏ∂τγ

2γ
ð ~qi · ∂ ~qi þ ∂ ~qi · ~qiÞ

�
;

(49)

where the scaled spatial coordinate reads ~qi ¼
½qi − fðtÞ�=γ, as before. The scale-invariant solution to a
related classical and restricted problem with fðtÞ ¼ 0 was
derived in Ref. [49]. We observe that in an interacting
system (with V ≠ 0), there is an additional consistency
condition for the dynamics to be scale invariant:

ϵðtÞ ¼ γðtÞα−2; (50)
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given the definition ϵð0Þ ¼ 1. Generally, inducing a scale-
invariant dynamics in an interacting system requires us to
tune the interaction along the process. In ultracold-atom
experiments, this tuning is a routine task in the laboratory
assisted by means of a Feshbach resonance [50] or a
modulation of the transverse confinement in low-
dimensional systems [51,52]. No interaction tuning is
required in processes involving transport exclusively, that
is, in protocols for which f ¼ fðtÞ and γðtÞ ¼ 1. For
processes with γðtÞ ≠ 1, there are relevant scenarios for
which α ¼ 2 and no interaction tuning is required [15,16].
In addition, for processes with γðtÞ ≠ 1 and α ≠ 2, when-
ever the scaling factor remains of order unity along the
process γðtÞ ∼Oð1Þ, a high-fidelity quantum driving is
achieved even in the absence of interaction tuning, i.e.,
while keeping ϵðtÞ ¼ 1 [16].
Provided that the consistency equation (50) is fulfilled

(or approximately satisfied) so that ϵγ2−α ¼ 1, Î ¼ γ2Ĥ0

becomes a first integrand or constant of motion and can be
identified as an invariant operator Î satisfying

dÎ
dt

¼ ∂Î
∂t þ

1

iℏ
½Î ; Ĥ�; (51)

and that is the quantum equivalent of the classical, energy-
like dynamical invariant [Eq. (35)].
The third line in Eq. (49) corresponds to the auxiliary CD

Hamiltonian that in the original variables ðqi;piÞ reads

Ĥ1 ¼
XN
i¼1

�
_f · pi þ

_γ

2γ
fqi − fðtÞ;pig

�
: (52)

Here, the curly brackets denote the anticommutator of
two operators A and B: fA;Bg ¼ A · Bþ B · A. In com-
plete analogy to the classical case, the first term is the
auxiliary CD term associated with transport along the
trajectory q ¼ fðtÞ, while the second one is associated
with the expansion. Equation (52) agrees with the single-
particle expression in Eq. (9) and previous results derived
for power-law traps [14,28,33].
In the previous section, we found coordinate trans-

formations that allowed us to write the CD Hamiltonian
for a system with one degree of freedom in local form. The
crucial steps involved finding a generating function for the
coordinate transformation and a corresponding dynamical
invariant. In the following, we will apply the same ideas to
the multiparticle Hamiltonian Ĥ (49). The representation
in quantum mechanics of the group of linear canonical
transformations has been discussed at length in the liter-
ature; see, for instance, Ref. [53]. We denote the quantum,
multiparticle unitary transformation that plays the role of
the classical generating function Fðq; p̄; tÞ [Eq. (28)] by U.
It reads

U ¼
YN
i¼1

exp

�
im
ℏ

_f · qi þ
im_γ

2ℏγ
ðqi − fÞ2 − i

m
2

Z
t

0

ds_f2
�
:

(53)

The latter functions transform the “old” set of coordinates
ðqi;piÞ to a new set ðq̄i; p̄iÞ according to

qi → q̄i ¼ UqiU† ¼ qi; (54a)

pi → p̄i ¼ UpiU† ¼ pi −m_γ

γ
ðqi − fÞ −m_f; (54b)

Ĥ → ˆ̄HðtÞ ¼ UĤðtÞU† − iℏU∂tU†: (54c)

Here, the new representation of the CD Hamiltonian
becomes

ˆ̄HðtÞ ¼
XN
i¼1

�
− ℏ2

2m
Δq̄i þU½q̄i; λðtÞ�

�
þ ϵðtÞ

X
i<j

Vðq̄i − q̄jÞ

þ
XN
i¼1

�
−m
2

γ̈

γ
ðq̄i − fÞ2 −mf̈ · q̄i

�
; (55)

which is the multiparticle quantum equivalent of the
classical Hamiltonian H̄ðq̄; p̄; tÞ (30). Under this canonical
transformation, the time evolution of the initial state
is mapped to ΨðtÞ → ΦðtÞ ¼ UΨðtÞ. Finally, it follows
that the dynamical invariant I can be written in new
coordinates ðq̄i; p̄iÞ

Î ¼
XN
i¼1

1

2m
½γðp̄i −m _fÞ −m_γðq̄i − fÞ�2

þ
XN
i¼1

U0

�
q̄i − f
γ

�
þ
X
i<j

V

�
q̄i

γ
− q̄j

γ

�
; (56)

which is equivalent to the second line of Eq. (35).
We note that the dynamics governed by ˆ̄HðtÞ induces

a phase modulation associated with U that generally
leads to excitations away from the adiabatic trajectory
ΨðtÞ. The nonadiabatic nature of the resulting shortcuts
to adiabaticity is exclusively captured by U (phase
modulations), while local correlation functions are
identical at all times with the adiabatic ones, given that
jΨðtÞj2 ¼ jΦðtÞj2. Nonetheless, U reduces to the identity
and ΦðtÞ ¼ ΨðtÞ at the beginning and end of the process
(e.g., at time t ¼ f0; τFg). Further, it is straightforward
to design protocols involving only smooth modulations
of the auxiliary counterdiabatic field (requiring no
impulses) of relevance to experimental realizations, as
we shall discuss in Sec. VIII. In the following sections,
the formalism just described will prove useful to
engineer shortcuts to adiabaticity for several nontrivial
systems.
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V. LOCAL COUNTERDIABATIC DRIVING FOR
AN ARBITRARY TRAPPING POTENTIAL

The only condition we have imposed in the preceding
sections on the time dependence of the external potential is

its scale-invariant form [Eq. (3)]. To illustrate the generality
of our approach, let Uðq; tÞ have a power-series expansion

Uðq; tÞ ¼
X∞
p¼0

αpðtÞðq − fÞp; (57)

TABLE I. List of counterdiabatic driving schemes for potentials that acquire the form of Uðq; tÞ in Eq. (3) under the indicated time
dependence of the parameters A, B, and α, including well-known shape-invariant potentials in supersymmetric quantum mechanics. A
local CD protocol for expansions and compressions (f ¼ 0) is induced by the potential Ūðq̄; tÞ ¼ Uðq̄; tÞ − m̈γq̄2=ð2γÞ. When
meaningful, the same potentials can be used as a two-body potential V with α ¼ 2. A single degree of freedom is considered for clarity;
the extension to higher dimensions under cylindrical or spherical symmetry is straightforward following Ref. [16]. The range of
potentials is −∞ ≤ q ≤ ∞, 0 ≤ r ≤ ∞, unless stated otherwise. The family of power-law potentials [28,33] includes the harmonic case
(b ¼ 2) [15] and the infinite square well (b ¼ ∞) [16].

Name Uðq; tÞ Time dependence Counterdiabatic modulation −γ̈=γ
Arbitrary potential 1

γ2
U0ðqγÞ Arbitrary γðtÞ − ̈γðtÞ

γðtÞ
Power-law trap Ajqjb AðtÞ ¼ Að0Þ

γ2þb

_AðtÞ
ð2þbÞAðtÞ − 3þb

ð2þbÞ2 ½
_AðtÞ
AðtÞ�2

Modified Pöschl-Teller − ℏ2
2m α

2 λðλ−1Þ
cosh2 αq αðtÞ ¼ αð0Þ

γ
α̈ðtÞ
αðtÞ − 2½ _αðtÞαðtÞ�2

well [55] (λ > 1)

Pöschl-Teller well [55] ℏ2

2m α
2ðλðλ−1Þcos2αq þ

κðκ−1Þ
sin2αqÞ αðtÞ ¼ αð0Þ

γ
α̈ðtÞ
αðtÞ − 2½ _αðtÞαðtÞ�2

(λ, κ > 1)

Optical lattice A sin2ðαqÞ AðtÞ ¼ Að0Þ
γ2
, αðtÞ ¼ αð0Þ

γ

_AðtÞ
2AðtÞ − 3

4
½ _AðtÞAðtÞ�2 ¼ α̈ðtÞ

αðtÞ − 2½ _αðtÞαðtÞ�2
Gaussian well −A expð−α2q2Þ AðtÞ ¼ Að0Þ

γ2
, αðtÞ ¼ αð0Þ

γ

_AðtÞ
2AðtÞ − 3

4
½ _AðtÞAðtÞ�2 ¼ α̈ðtÞ

αðtÞ − 2½ _αðtÞαðtÞ�2
Finite square well −AΘðα − qÞ AðtÞ ¼ Að0Þ

γ2
, αðtÞ ¼ αð0Þγ _AðtÞ

2AðtÞ − 3
4
½ _AðtÞAðtÞ�2 ¼ − α̈ðtÞ

αðtÞ
Exponential −A expð−r=αÞ AðtÞ ¼ Að0Þ

γ2
, αðtÞ ¼ αð0Þγ _AðtÞ

2AðtÞ − 3
4
½ _AðtÞAðtÞ�2 ¼ − α̈ðtÞ

αðtÞ
Yukawa −A expð−r=αÞ

r=α AðtÞ ¼ Að0Þ
γ2
, αðtÞ ¼ αð0Þγ _AðtÞ

2AðtÞ − 3
4
½ _AðtÞAðtÞ�2 ¼ − α̈ðtÞ

αðtÞ
Wood-Saxon −A expð−r=αÞ

1−expðr=αÞ AðtÞ ¼ Að0Þ
γ2
, αðtÞ ¼ αð0Þγ _AðtÞ

2AðtÞ − 3
4
½ _AðtÞAðtÞ�2 ¼ − α̈ðtÞ

αðtÞ
(α ≪ f)

Hulthén − A
1þexp½ðr−fÞ=α� AðtÞ ¼ Að0Þ

γ2
, αðtÞ ¼ αð0Þγ _AðtÞ

2AðtÞ − 3
4
½ _AðtÞAðtÞ�2 ¼ − α̈ðtÞ

αðtÞ
(α ≪ f)

Kratzer −2Aðαr − 1
2
α2

r2Þ AðtÞ ¼ Að0Þ
γ2
, αðtÞ ¼ αð0Þγ _AðtÞ

2AðtÞ − 3
4
½ _AðtÞAðtÞ�2 ¼ − α̈ðtÞ

αðtÞ
Morse A2 þ B2 expð−2αqÞ AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ , αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2

−2BðAþ α=2Þ expð−αqÞ ðX ¼ A; B; αÞ
Eckart A2 þ B2=A2 − 2B coth αq AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ2
, αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2 ¼

_BðtÞ
2BðtÞ − 3

4
½ _BðtÞBðtÞ�2

ðB > A2Þ þAðA − αÞcosech2αq ðX ¼ A; αÞ
Scarf I −A2 þ ðA2 þ B2 − AαÞ sec2 αq AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ , αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2

(Trigonometric) −Bð2A − αÞ tan αq sec αq ðX ¼ A; B; αÞ
Scarf II A2 þ ðB2 − A2 − AαÞsech2αq AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ , αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2

(Hyperbolic) þBð2Aþ αÞsechαq tanh αq ðX ¼ A; B; αÞ
Generalized Pöschl-Teller A2 þ ðB2 þ A2 þ AαÞcosech2αr AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ , αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2

ðA < BÞ −Bð2Aþ αÞ coth αr cosech αr ðX ¼ A; B; αÞ
Pöschl-Teller II ðA − BÞ2 − AðAþ αÞsech2αr AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ , αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2

ðB < AÞ þBðB − αÞ cosech αr ðX ¼ A; B; αÞ
Rosen-Morse I AðA − αÞcosec2αqþ 2B cot αq AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ2
, αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2 ¼

_BðtÞ
2BðtÞ − 3

4
½ _BðtÞBðtÞ�2

(Trigonometric) −A2 þ B2=A2 ðX ¼ A; αÞ
ð0 ≤ αq ≤ πÞ
Rosen-Morse II A2 þ B2=A2 − AðAþ αÞsech2αq AðtÞ ¼ Að0Þ

γ , BðtÞ ¼ Bð0Þ
γ2
, αðtÞ ¼ αð0Þ

γ
ẌðtÞ
XðtÞ − 2½ _XðtÞXðtÞ�2 ¼

_BðtÞ
2BðtÞ − 3

4
½ _BðtÞBðtÞ�2

(Hyperbolic) ðB < A2Þ þ2B tanh αq ðX ¼ A; αÞ
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where αpðtÞ ¼ UðpÞ
0 ð0Þ=p!, with UðpÞ

0 denoting the pth

derivative and Uð0Þ
0 ð0; tÞ ¼ U0ð0; tÞ. Further, assume the

potential to be isotropic, the extension to anisotropic
potentials being straightforward. Given a process governed
by the time-dependent potential [Eq. (57)], we aim at
finding a local CD protocol.
First, let us impose the form required for scaling laws

Uðq; tÞ ¼ U0½ðq − fÞ=γ�=γ2 [Eq. (3)], which implies the
following relationship among the coefficients in the series
expansion [Eq. (57)]:

α0ðtÞ ¼
α0ð0Þ
γ2

; α1ðtÞ ¼
α1ð0Þ
γ3

;…; αpðtÞ ¼
αpð0Þ
γpþ2

:

(58)

Hence, for an arbitrary potential, the time modulation in
Eq. (57) can be implemented, provided that each coefficient
αpðtÞ can be tuned independently. The latter condition
leads to the recurrence relation

αpðtÞ
αpð0Þ

¼
�
αp−1ðtÞ
αp−1ð0Þ

�ðpþ2Þ=ðpþ1Þ
¼
�
αp−mðtÞ
αp−mð0Þ

�ðpþ2Þ=ðp−mþ2Þ
;

(59)

where the last exponent results from
Q

m
k¼1ðp − kþ 3Þ=

ðp − kþ 2Þ ¼ ðpþ 2Þ=ðp −mþ 2Þ. The auxiliary poten-
tial terms in Eq. (55) can be absorbed into the definition of
the expansion coefficients

~αpðtÞ ¼ αpðtÞ −mγ̈

2γ
δp;2 −mf̈ðδp;1 þ δp;0Þ; (60)

so that the local CD potential is given by Ūðq̄; tÞ ¼P∞
p¼0 ~αpðtÞðq̄ − fÞp, which is the sum of the one-body

trapping potential Uðq; tÞ and the auxiliary terms in ˆ̄HðtÞ.
The required modulation of the ~αpðtÞ coefficients makes
the implementation of CD protocols with nonharmonic
traps particularly amenable to the painting-potential
technique [54].

A. Example: The quartic trap potential

As an illustrative example, we consider the quartic
potential

Uðq; tÞ ¼ α2ðtÞðq − fÞ2 þ α4ðtÞðq − fÞ4; (61)

where the time modulations

α2ðtÞ ¼
α2ð0Þ
γ4

and α4ðtÞ ¼
α4ð0Þ
γ6

(62)

lead to a scaling of the form [Eq. (57)], associated with a
scale-invariant dynamics. Provided that Eq. (50) is satis-
fied, the CD potential, for which ΦðtÞ ¼ UΨðtÞ is the exact

solution to the many-body Schrödinger equation, is simply
given by

Ūðq̄; tÞ ¼ −m̈f · q̄þ
�
α2ð0Þ
γ4

− m̈γ

2γ

�
ðq̄ − fÞ2

þ α4ð0Þ
γ6

ðq̄ − fÞ4: (63)

In many instances, the coefficients in the set fαpð0Þgp
associated with the power series [Eq. (57)] are interrelated,
and the required time dependence of the potential can be
brought into the form of Eq. (35) by direct inspection or a
scaling analysis. A list of examples and the associated CD
protocols is provided in Table I, which includes among
others the family of shape-invariant potentials in super-
symmetric quantum mechanics [56], as well as common
potentials in atom optics, such as several types of wells and
optical lattices.

VI. COUNTERDIABATIC DRIVING OF
NONLINEAR SYSTEMS

The original formulation of CD is restricted to linear
systems. However, it was recently shown that it can
be generalized to nonlinear systems undergoing scale-
invariant expansions and compressions [28]. The approach
developed in the previous sections also allows us to treat
nonlinear systems.
Typically, nonlinear (“quantum”) systems are described

by effective evolution equations derived within a mean-
field approach. A prominent example is the description of
Bose-Einstein condensates, where scale-invariant dynamics
is of great relevance to time-of-flight measurements
[57–59]. The dynamics is described by the time-dependent
Gross-Pitaevskii equation (TDGPE) governing the
(normalized) wave function Ψðq; tÞ of a Bose-Einstein
condensate

iℏ∂tΨðq; tÞ ¼
�
− ℏ2

2m
Δq þUðq; tÞ þ gDjΨðq; tÞj2

�
Ψðq; tÞ;

(64)

where Uðq; tÞ shall again be of the scale-invariant form
[Eq. (3)]. This nonlinear Schrödinger equation can be
obtained from the model describing a D-dimensional
many-body Bose gas with regularized contact interactions
(the Fermi-Huang pseudopotential) using a mean-field
approximation (e.g., assuming that the many-body wave
function takes the form of a Hartree product). We can
then expect that a protocol derived in the previous
section, exact for the many-body description, should
carry over the TDGPE. Indeed, a stationary state Ψ at
t ¼ 0 with chemical potential μ can be forced to obey
a scale-invariant ansatz of the form Ψðq; tÞ ¼
exp½−iμτðtÞ=ℏ�γ−D=2Ψ½ðq − fÞ=γ; t ¼ 0�. This ansatz is
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the exact solution to a counterdiabatic nonlinear evolution
equation, the modified nonlocal TDGPE

iℏ∂tΨðq; tÞ ¼
�
− ℏ2

2m
Δq þUðq; tÞ þ _f · p

þ _γ

2γ
fq − f;pg þ gDjΨðq; tÞj2

�
Ψðq; tÞ;

(65)

provided that the interaction coupling strength is tuned
according to gD ¼ gDðt ¼ 0ÞγD−2. We observe that this
time dependence of the nonlinear interactions agrees with
that required in the D-dimensional Bose gas and can be
achieved, for instance, by tuning a magnetic field through
a Feshbach resonance [50]. Alternatively, in low-
dimensional quantum gases (D ¼ 1, 2), it can be imple-
mented by modulating the transverse confinement [51,52].
As before, the modified TDGPE can be brought into

local form by applying the canonical time-dependent
transformation U [Eq. (53)] (N ¼ 1), which leads to

iℏ∂tΦðq̄; tÞ ¼
�
− ℏ2

2m
Δq̄ þUðq̄; tÞ −m

2

̈γ
γ
ðq̄ − fÞ2

− m̈f · q̄þ gDjΦðq̄; tÞj2
�
Φðq̄; tÞ; (66)

with exclusively local potential terms, and Φ ¼ UΨ.
Kundu [60] has shown that inhomogeneous nonlinear

Schrödinger equations of this class are equivalent to the
standard homogeneous nonlinear Schrödinger equation and
hence admit a zero-curvature representation, explaining
their integrability [61].
In addition, CD can also be applied to other examples of

nonlinear evolution, for which a nonzero-curvature repre-
sentation has not been found to date. A relevant instance is
the mean-field theory developed by Kolomeisky et al.
[62,63] that accurately describes the ground-state density
profile of one-dimensional bosons with hard-core contact
interactions, i.e., a Tonks-Girardeau gas [64] (and its dual
system under Bose-Fermi duality, a one-dimensional spin-
polarized Fermi gas [65]), up to spatial antibunching [66].
The time-dependent version of the Kolomeisky equation
reads

iℏ∂tΨðq; tÞ ¼
�
− ℏ2

2m
∂2
q þ Uðq; tÞ

þ π2ℏ2

2m
jΨðq; tÞj4

�
Ψðq; tÞ; (67)

where Ψðq; 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðq; 0Þp

is the square root of the initial
density profile. CD protocols can be directly obtained from
the one-dimensional version of Eqs. (65) and (66), respec-
tively, by replacing g1jΨðq; tÞj2 by π2ℏ2=2mjΨðq; tÞj4.
(Recall that jΦðq; tÞj ¼ jΨðq; tÞj.) Note that the quintic

nonlinearity arises from the repulsive contact interactions
and can be considered as a potential term with α ¼ 2. As a
result, no interaction tuning is required, provided that the
gas remains in the Tonks-Girardeau regime. It is worth
emphasizing that, as a mean-field theory, the model by
Kolomeisky et al. [Eq. (67)] overestimates phase coher-
ence. Therefore, while it properly describes the scale-
invariant dynamics in a time-dependent harmonic trap
[67], it fails to accurately account for processes involving
interference such as splitting and recombination [65].
Nonetheless, the Kolomeisky equation has been success-
fully applied to describe the formation of shock waves and
it is accurate as long as changes in the density occur
on a length scale larger than the “Fermi” length [68].
As a result, under scale-invariant driving, protocols derived
from Eq. (67) agree with those designed using an exact
many-body treatment [15,16].
We close this section by mentioning that other nonlinear

processes that can be assisted by CD include the (mean-
field) growth dynamics of a Bose-Einstein condensate [69].
Nonetheless, phase fluctuations in the newborn condensate
are expected to result in the formation of solitons [70] or
vortices [71], depending in the dimensionality, as dictated
by the Kibble-Zurek mechanism [72,73].

VII. COUNTERDIABATIC DRIVING AND
REVERSE ENGINEERING: SCALING LAWS

In the previous discussion, we showed that CD can be
used to enforce scale-invariant dynamics in which the
scaling factor follows the adiabatic trajectory. However,
there are more general scaling laws that are associated with
an invariant of motion, provided that a set of consistency
equations is satisfied [74]. Knowledge of these scaling laws
paves the way to engineering shortcuts to adiabatic scale-
invariant processes. For a large family of many-particle
systems in a time-dependent harmonic trap, such a design
was reported in Ref. [15], extending previous results for the
single-particle Schrödinger equation [13] as well as the
Gross-Pitaevskii equation describing Bose-Einstein con-
densates in the mean field [75]. These results have been
further extended to time-dependent boxlike confinements
[16] and arbitrary power-law potentials [28,33]. We next
present the general scaling laws associated with a family of
Hamiltonians that include all the aforementioned results.
Having done so, we shall establish their explicit relation
with CD. Let us consider the Hamiltonian (46) in which
harmonic and linear terms in qi are explicitly written as

Ĥ0 ¼
XN
i¼1

�
− ℏ2

2m
Δqi þ Uðqi; tÞ

�
þ ϵðtÞ

X
i<j

Vðqi − qjÞ

þ
XN
i¼1

�
m
2
ω2ðtÞ½qi − fðtÞ�2 þmFðtÞ · qi

�
; (68)
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with an arbitrary modulation of the coefficients ωðtÞ
(harmonic trap frequency) and FðtÞ. A stationary state Ψ
of the system [Eq. (68)] at t ¼ 0 follows a scale-invariant
evolution

Φðfqig; tÞ
¼ e−ði=ℏÞ

R
t

0
dt0ðm=2Þ_f2ei

P
N
i¼1

ðm_γ=2γℏÞðqi−fÞ2þðim=ℏÞ_f·qiΨðtÞ;
(69)

with ΨðtÞ given by Eq. (48), whenever the following
consistency conditions are satisfied:

ω2ðtÞ ¼ ω2
0

γ4
− ̈γ
γ
; FðtÞ ¼ −̈f; ϵðtÞ ¼ γα−2; (70)

with ω0 ¼ ωð0Þ, and satisfying γ ¼ γðtÞ the boundary
conditions γð0Þ ¼ 1 and _γð0Þ ¼ 0.
Generally, the resulting dynamics are not adiabatic. Only

in the adiabatic limit, where γ̈ → 0 and ̈f → 0 in Eq. (70),
do we find that the solution for the scaling factor takes the
form ω2ðtÞ ¼ ω2

0=γ
4 and FðtÞ ¼ 0. Nonetheless, counter-

diabatic driving provides means to induce finite-time
evolution [Eq. (69)] that effectively follows the adiabatic
trajectory of the scaling factor. The frequency of the trap is
to be replaced by [15,28]

ω2ðtÞ → ω2ðtÞ − ̈γ
γ
¼ ω2ðtÞ − 3

4

_ω2

ω2
þ 1

2

ω̈

ω
; (71)

while the modulation of the linear term remains FðtÞ → −̈f.

VIII. ENGINEERING SHORTCUTS TO
ADIABATICITY ASSISTED BY SMOOTH

COUNTERDIABATIC FIELDS

In the last part of the present analysis, we shall illustrate
how the time dependence of the control parameters is to
be designed to engineer shortcuts to adiabaticity based on
CD, without the requirement of impulse auxiliary fields.
Assume we wish to find a shortcut to an adiabatic
expansion or compression by changing the scaling factor
γ from an initial value γðt ¼ 0Þ ¼ 1 to a final value γF at
t ¼ τF, while at the same time transporting the system by
shifting the external trapping potential from fðt ¼ 0Þ ¼ 0
to fðτFÞ ¼ fF. Further, let us impose that the auxiliary
Hamiltonian is switched on at t ¼ 0 and switched off at
t ¼ τF; cf., the example in Sec. III, i.e., Ĥ ¼ Ĥ0 at
t ¼ f0; τFg. We have seen earlier that the auxiliary non-
local term Ĥ1 [Eq. (52)] induces the adiabatic dynamics
along the instantaneous eigenstates of the system
Hamiltonian Ĥ0 [Eq. (46)]. The time-dependent coefficient
of Eq. (52) is governed by the rate of change of the scaling
factor γ and the shift function f. Therefore, for it to vanish
at t ¼ f0; τFg, the following boundary conditions are
required:

γð0Þ¼ 1; _γð0Þ¼ 0; γðτFÞ¼ γF; _γðτFÞ¼ 0 (72)

and

fð0Þ¼ 0; _fð0Þ¼ 0; fðτFÞ¼ fF; _fðτFÞ¼ 0; (73)

which can be used to determine an interpolating ansatz, for
instance,

γðtÞ ¼ 1þ 3ðγF − 1Þ t
2

τ2F
þ 2ðγF − 1Þ t

3

τ3F
;

fðtÞ ¼
�
3
t2

τ2F
− 2

t3

τ3F

�
fF: (74)

Alternatively, we have seen that the local counterdiabatic
driving protocol [Eq. (55)] leads to the time evolution
ΦðtÞ ¼ UΨðtÞ. Imposing ˆ̄H ¼ Ĥ0 at t ¼ f0; τFg and
demanding the initial and final states to be stationary, so
that Φ ¼ Ψ, leads to Eqs. (72) and (73), supplemented by

γ̈ð0Þ¼ 0; γ̈ðτFÞ¼ 0; f̈ð0Þ¼ 0; f̈ðτFÞ¼ 0; (75)

which are satisfied by an interpolating ansatz such as

γðtÞ ¼ 1þ 10ðγF − 1Þ t
3

τ3F
− 15ðγF − 1Þ t

4

τ4F
þ 6ðγF − 1Þ t

5

τ5F
;

fðtÞ ¼
�
10

t3

τ3F
− 15

t4

τ4F
þ 6

t5

τ5F

�
fF: (76)

In effect, Eq. (76) provides a “recipe” of how to engineer
shortcuts to adiabaticity in expansions and transport
processes.
It is instructive to consider the amplitude χðtÞ of the

counterdiabatic term F ¼ −̈fF ≡ fFχðtÞ to assist transport
in terms of the dimensionless time s≡ t=τF:

χðtÞ ¼ −60sð2s2 − 3sþ 1Þτ2F: (77)

We note that the function χðtÞ < 0 in the interval ð0; τF=2Þ,
so that the CD term speeds up the wave packet toward
the target position fF. In the subsequent stage ðτF=2; τFÞ,
χðtÞ > 0, so that the CD term decelerates the translation
until the evolving state is centered at q ¼ fF and the CD
term vanishes. The extrema F� ¼ �fF45=8τ2F are reached
at t ¼ τF=6ð3�

ffiffiffi
3

p Þ. For a transport function, fðtÞ ¼
fðtÞn̂ in the direction of an arbitrary unit vector n̂.
Figure 2 shows the time dependence of both fðtÞ and
χðtÞ. CD provides an exact STA to the transport process,
directly applicable to many-body systems such as trapped-
ion chains, without the restrictions to perturbative treat-
ments in previous proposals [31,76]. Alternative transport
functions can be designed using optimal control
theory [77].
The time dependence of the CD term to assist expansions

scales in a similar way with the quench rate, that is,
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−m̈γq̄2
i =γ ∝ τ−2F . In an early stage ð0; τF=2Þ, the gain in the

speed-up of the nonadiabatic expansion is provided by the
auxiliary inverted harmonic potential, when γ̈ > 0; see
Fig. 3. The quickly expanding cloud is then slowed down
(γ̈ < 0) by the CD term during the time interval ðτF=2; τFÞ,
and it comes to rest as the CD term vanishes ( ̈γ → 0−), and
the completion of the process is approached as t → τF.

We point out that alternative trajectories can be designed
that are optimal according to a variety of criteria, such as
minimum mean energy or operating time with fixed
resources, using optimal control theory. Stefanatos [78]
has presented time-optimal protocols for the scale-invariant
expansion dynamics in a time-dependent box. As we have
seen, the auxiliary driving potential in a shortcut to an
adiabatic expansion for this particular example [16] takes
the general form associated with local CD protocols [28].
Hence, the results in Ref. [78] apply generally to CD scale-
invariant dynamics. Similarly, optimal trajectories for
efficient transport [77] can be adopted for scale-invariant
driving with fðtÞ ≠ 0. Furthermore, an analysis of the
Ehrenfest dynamics [79] in CD protocols can be used as
a guideline to engineer modulations of both γðtÞ and fðtÞ.

IX. CONCLUDING REMARKS

A unifying framework has been introduced to design
shortcuts to adiabaticity in both classical and quantum
systems for scale-invariant processes, such as expansions,
compressions, and transport. The dynamical symmetry in
these processes provides the leverage with respect to
the original approach to counterdiabatic driving, which
demands knowledge of the spectral properties of the
instantaneous Hamiltonian of the system [20–22].
In particular, we found a closed-form expression for the

auxiliary term in the counterdiabatic Hamiltonian and
proposed a framework that allows us to rewrite this
expression in local form, which is of relevance to exper-
imental realizations. The formalism of generating functions
provides a simple and intuitive way to find the canonical
transformations that achieve this goal.
These findings were used to construct driving protocols

mimicking adiabatic dynamics for multiparticle quantum
systems with arbitrary trapping potentials, as illustrated in
nonharmonic examples. As an upshot, the requirements to
speed up finite-time thermodynamic processes are greatly
loosened. We envision applications of these ideas in the
development of optimal cooling schemes [80–84] and
their experimental implementation [85]. Our results also
facilitate the realization of friction-free quantum pistons
[16,35,78] and superadiabatic engines [32,86] by relaxing
the restrictions to the shape of the confining potential and
the nature of the working medium.
Remarkably, these protocols are not restricted to

noninteracting systems. In this context, we have illustrated
the realization of shortcuts to adiabaticity in systems
described by nonlinear equations of motion such as the
Gross-Pitaevskii equation and higher-order nonlinear
Schrödinger equations. By doing so, we have shown that
it is possible to perform a fast counterdiabatic decom-
pression (compression) of an interacting Bose-Einstein
condensate in which the final state is free from excitations,
providing a new route to the previous use of shortcuts to
adiabaticity in the laboratory [87]. Further, we have shown
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FIG. 2. Shortcut to adiabatic transport by local counter-
diabatic driving. Whenever the trapping potential Uðq; tÞ ¼
U0½q − fðtÞn̂� [with γðtÞ ¼ 1], the auxiliary counterdiabatic
term with F ¼ −̈fF≕fFχðtÞ induces the self-similar evolution
ΦðtÞ ¼ UΨðtÞ, which at t ¼ f0; τFg reduces to ΨðtÞ ¼ ΦðtÞ, and
the auxiliary term vanishes. CD guarantees that the density profile
of the system is centered at all times at q ¼ fðtÞn̂. This protocol
holds exactly for an arbitrary trapping potential U0ðqÞ and is
valid for an arbitrary single-particle, nonlinear, or many-body
system, requiring no modulation of the coupling constant ϵðtÞ in
the case of interacting systems, i.e., ϵðtÞ ¼ 1.
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FIG. 3. Shortcut to an adiabatic expansion by local counter-
diabatic driving. Whenever the trapping potential Uðq; tÞ ¼
U0½q=γðtÞ�=γðtÞ2 [with fðtÞ ¼ 0], the auxiliary counterdiabatic
term modulated by −m̈γ=γðtÞ induces a nonadiabatic self-similar
dynamics that reduces to the target state ΨðtÞ at t ¼ f0; τFg,
when the auxiliary term vanishes. This protocol holds exactly for
an arbitrary trapping potential U0ðqÞ and can be applied to an
arbitrary single-particle, nonlinear, or many-body system. In the
case of interacting systems, it requires a modulation of the
coupling constant ϵðtÞ, as in Eq. (50).
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that experimentally realizable counterdiabatic driving
schemes can be applied to a wide variety of strongly
correlated many-body systems, broadening the applicability
of fast-transport single-particle protocols [31,88] explored in
trapped-ion experiments [89,90], without resorting to the
validity of perturbative methods. The applicability of short-
cuts to adiabaticity to many-body quantum fluids paves the
way to the realizationofaquantumdynamicalmicroscope, in
which a quantum fluid cloud can be scaled up while
preserving quantum correlations [15]. Spatially zooming
up the quantum state in these systems constitutes an interest-
ing complementary alternative to other imaging techniques
based on long expansion times [70] and large numerical-
aperture optics [91,92].
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APPENDIX A: SCALE-INVARIANT
EIGENFUNCTIONS

In this Appendix, we prove the scaling law for wave
functions used in Sec. II. Let ψ0

nðqÞ be an eigenfunction of
the Hamiltonian Ĥ0 with

Ĥ0ð1Þψ0
nðqÞ ¼ Enψ

0
nðqÞ;

Ĥ0ð1Þ ¼ − ℏ2

2m
∂2
q þ U0ðqÞ; (A1)

then, ψnðq; γÞ ¼ αðγÞψ0
nðq=γÞ is an eigenfunction of Ĥ0ðγÞ

with

Ĥ0ðγÞ ¼ − ℏ2

2m
∂2
q þ

1

γ2
U0ðq=γÞ; (A2)

where αðγÞ is a normalization. The latter can be proven by
direct evaluation. Consider

Ĥ0ðγÞψnðq; γÞ ¼ − ℏ2

2m
∂2
qαðγÞψ0

nðq=γÞ

þ 1

γ2
U0ðq=γÞαðγÞψ0

nðq=γÞ; (A3)

which can be written as

H0ðγÞψnðq; γÞ ¼
αðγÞ
γ2

Enψ
0
nðσÞ ¼

En

γ2
ψnðq; γÞ; (A4)

in terms of σ ¼ q=γ. It follows that if En is an eigenvalue
of H0, then En=γ2 is an eigenvalue of H0ðγÞ [Eq. (A2)].
The prefactor αðγÞ ¼ γ−1=2 can be determined from the
normalization of ψmðq; γÞ:

1 ¼
Z

dq½ψnðq; γÞ�2;

¼ ½αðγÞ�2
Z

dq½ψnðq=γÞ�2;

¼ ½αðγÞ�2γ
Z

dσ½ψnðσÞ�2 ¼ ½αðγÞ�2γ: (A5)

In the above Sec. II, we use a slightly more general result,
where we allow additionally for transport along q. The
validity can be easily checked by replacing q → q − f
everywhere in the latter proof.

APPENDIX B: ILLUSTRATIVE EXAMPLE:
THE MORSE OSCILLATOR

This Appendix is dedicated to an illustration of the
classical results put forward in Ref. [33]. Recall the
classical counterdiabatic Hamiltonian

Hðz; tÞ ¼ H0½z; λðtÞ� þ _λ · ξ½z; λðtÞ�; (B1)

where H1ðtÞ ¼ _λ · ξ½λðtÞ� is the counterdiabatic term.
It is further shown that the generator ξ satisfies

ξðzb; λÞ − ξðza; λÞ ¼
Z

b

a
dt∇ ~H0½zðtÞ; λ�; (B2)

where za and zb are two points on the same energy shell of
H0ðz; λÞ, and zðtÞ is a trajectory that evolves underH0 from
za to zb. For the sake of simplicity of notation, we denote in
the following the gradient with respect to the control
parameter λ by simply ∇. In Eq. (B2), ∇ ~H0 ¼ ∇H0−
h∇H0iH0;λ, where h…iE;λ is the microcanonical average
with

h…iE;λ ≡ 1

∂EΩ

Z
dzδ½E −H0ðz; λÞ�: (B3)

Finally, ΩðE; λÞ is the phase-space volume enclosed by the
energy shell E

ΩðE; λÞ≡
Z

dzΘ½E −H0ðz; λÞ�; (B4)

and we have

∇EðΩ; λÞ ¼ − ∇ΩðE; λÞ
∂EΩðE; λÞ

¼ h∇H0iE;λ: (B5)

The latter formalism can be used to calculate an explicit
expression for the generator ξ.
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We proceed by illustrating the above findings for a
completely analytical solvable system, namely, the para-
metric Morse oscillator. The Morse potential can be written
as [55]

UðqÞ ¼ Um½expð−2βqÞ − 2 expð−βqÞ�: (B6)

In the remainder of this Appendix, we compute ξ [Eq. (B1)]
explicitly for three different driving protocols. We start with
scale-invariant driving, before we vary either only the
potential width β or the potential depth Um.

1. Scale-invariant parametrization

For scale-invariant driving UðqÞ, Eq. (B6) takes the
form

U½q;γðtÞ�¼ Um

γ2ðtÞ
�
exp

�
−2 βq

γðtÞ
�
−2exp

�
− βq
γðtÞ
��

: (B7)

For the sake of simplicity and to avoid clutter, we work in
units where Um ¼ 1 and β ¼ 1. In Fig. 4, Uðq; γÞ is shown
for two different values of γ. For the present case, Eq. (B2)
simplifies to read

ξðzb; γÞ − ξðza; γÞ ¼
Z

b

a
dtð∂γH0 − h∂γH0iÞ; (B8)

where z is again the phase-space variable. In Fig. 5, we plot
two energy shells corresponding to the same energy but
different values of γ, whose volume is the microcanonical
partition function ΩðE; γÞ.
As a first step, we have to calculate the phase-space

volume ΩðE; γÞ, which is given by

ΩðE; γÞ ¼
Z

q2

q1

dqpðq; EÞ;

¼
Z

q2

q1

dq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E −Uðq; γÞ�

p
; (B9)

where pðq; EÞ is the momentum, and pðq1;2; EÞ ¼ 0. Note
that ΩðE; γÞ is only finite for a bound state, which means
that 0 ≥ E ≥ −γ−2. For the sake of simplicity, we continue
in units, where the mass m ¼ 1=2. Then, the 0s of the
momentum are given by

q1 ¼ −γ ln
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Eγ2

q �
;

q2 ¼ −γ ln
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Eγ2

q �
: (B10)

The phase-space volume is obtained by calculating the
integral in Eq. (B9). We have

ΩðE; γÞ ¼ 2π
�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
−Eγ2

q �
: (B11)

Accordingly, we obtain with Eq. (B8)

_ξ ¼ 2p2=γ þ 2qγ−4 expð−2q=λÞ − 2qγ−4 expð−q=γÞ:
(B12)

Finally, ξ is obtained by either integrating Eq. (B8) or by
solving the partial differential equation

_ξ ¼ −∂qξ∂pH0 þ ∂pξ∂qH0 ¼ −fξ; H0g; (B13)

where the curly brackets again denote the Poisson bracket.
The right-hand side of Eq. (B13) can be explicitly written
as

−fξ; H0g ¼ 2p∂qξþ 2γ−3 expð−2q=γÞ∂pξ

− 2γ−3 expð−q=γÞ∂pξ: (B14)

One easily convinces oneself (almost by inspection) that a
solution to Eq. (B13) is given by

ξ ¼ qp=γ. (B15)

2 1 1 2 3 4 5
q

4

2

2

4

6

8

U q,

FIG. 4. Scale-invariant counterdiabatic driving of the Morse
oscillator. Morse potential Uðq; βÞ [Eq. (B7)] for γ ¼ 1 (dashed
blue line) and γ ¼ 1=2 (solid red line).
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FIG. 5. Phase-space volume ΩðE; γÞ corresponding to Uðq; γÞ
[Eq. (B7)] for E ¼ −1=2 and γ ¼ 1 (dashed blue line) and
γ ¼ 1=2 (solid red line).
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The latter result is in perfect agreement with the above
analysis that led to Eq. (21).

2. Arbitrary parametrization

Scale-invariant dynamics have proven to be theoretically
useful, as they allow the computation of the counterdiabatic
term ξ in closed form. From an experimental point of
view, however, it might be more relevant to vary the two
parameters, the potential depth Um and the width β,
independently. Therefore, we continue our discussion with
examples where we vary only Um or β, while the other
parameter is kept constant.

a. Time-dependent width

We continue by considering a Morse potential of the
form

Uw½q; βðtÞ� ¼ exp½−2βðtÞq� − 2 exp½−βðtÞq�; (B16)

where we set again for the sake of simplicity Um ¼ 1. This
choice of units it not necessary but convenient, as it
drastically reduces the clutter in the formulas. As before,
we need to compute ΩðE; βÞ first. With the 0s of the
momentum pðq; EÞ being given by

q1 ¼ − 1

β
lnð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ E
p Þ;

q2 ¼ − 1

β
lnð1 − ffiffiffiffiffiffiffiffiffiffiffiffi

1þ E
p Þ; (B17)

we obtain

ΩwðE; βÞ ¼ 2π

�
1

β2
−

ffiffiffiffiffiffiffi−Ep

β

�
: (B18)

Accordingly, we have for _ξ

_ξw ¼ −2p2=β − 2 expð−2βqÞ=β þ 4 expð−βqÞ=β
− 2q expð−2βqÞ þ 2q expð−βqÞ
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 − expð−2βqÞ þ 2 expðβqÞ

q
=β2: (B19)

After a few lines, a simplified expression for ξ can be
found, which reads

ξw ¼ p
β2

þ qp
β

− 1

β2
arctan

�
1 − expð−βqÞ

p

�

− 2

β3
arccot

�
p expð−βqÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−H0ðq; pÞ

p
1þ expðβqÞH0ðq; pÞ

�
: (B20)

We observe that the second term in Eq. (B18) is identical
to the counterdiabatic term for scale-invariant dynamics.
Moreover, H0 is the “unperturbed” Hamiltonian as a
function of the phase-space variables p and q. Note also
that the latter expression is valid for all bound states, i.e.,
E ¼ H0ðq; pÞ ≤ 0.

b. Time-dependent depth

As a final example, let us consider a Morse potential,
whose depth Um is varied while its width is kept constant.
We have

Ud½q;UmðtÞ� ¼ UmðtÞ½expð−2qÞ − 2 expð−qÞ�; (B21)

where, this time, we set β ¼ 1. As before, we need the 0s of
the momentum, which read here

q1 ¼ ln

 
−Um þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UmðEþ UmÞ
p

E

!
and

q2 ¼ ln

 
−Um þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UmðEþUmÞ
p

E

!
; (B22)

with which we obtain

ΩdðE;UmÞ ¼ 2πð
ffiffiffiffiffiffiffi
Um

p − ffiffiffiffiffiffiffi−Ep
Þ: (B23)

In complete analogy to the previous two examples, we
compute _ξ, which reads here

_ξd ¼ expð−2qÞ − 2 expð−qÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 −Um½expð−2qÞ þ 2 expðqÞ�

q
=
ffiffiffiffiffiffiffi
Um

p
:

(B24)

Although the expression for _ξ appears to be simpler, the
integral ξ is much more involved. After several lines of
simplification, we obtain

ξd¼− p
2Um

−
1

2
ffiffiffiffiffiffiffi
Um

p arctan

 
pexpðqÞfexpðqÞH0þUmþ½expðqÞ−1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−UmH0

p g
expð2qÞ

ffiffiffiffiffiffiffiffiffiffi
−H3

0

q
þexpðqÞ½expðqÞ−1� ffiffiffiffiffiffiffiUm

p
H0þ½1−2expðqÞ�Um

ffiffiffiffiffiffiffiffiffiffi−H0

p þ½expðqÞ−1� ffiffiffiffiffiffiffi
U3

m

p
!
:

(B25)

By comparing the closed-form expressions for the counterdiabatic terms in Eqs. (B15), (B20), and (B25), it becomes
obvious how much scale-invariant driving simplifies the situation. Although for scale-invariant driving H1 can be brought
into local form with the help of an appropriate coordinate transformation, this simplification seems hardly feasible in the
general case.
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