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We calculate the dynamical conductivity σðωÞ and the bosonic (pair) spectral function PðωÞ from
quantum Monte Carlo simulations across clean and disorder-driven superconductor-insulator transitions
(SITs). We identify characteristic energy scales in the superconducting and insulating phases that vanish at
the transition due to enhanced quantum fluctuations, despite the persistence of a robust fermionic gap
across the SIT. Disorder leads to enhanced absorption in σðωÞ at low frequencies compared to the SIT in a
clean system. Disorder also expands the quantum critical region, due to a change in the universality class,
with an underlying T ¼ 0 critical point with a universal low-frequency conductivity σ� ≃ 0.5ð4e2=hÞ.
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I. INTRODUCTION

The interplay of superconductivity and localization has
proven to be a rich and intriguing problem, especially in
two dimensions [1–7]. Both paradigms stand on the
shoulders of giants—the BCS theory of superconductivity
and the Anderson theory of localization. Yet, when the
combined effects of superconductivity and disorder are
considered, both paradigms break down, even for s-wave
superconductors.
It has been shown [8–10] in model fermionic

Hamiltonians with attraction between electrons and dis-
order arising from random potentials that the single-particle
density of states continues to show a hard gap across the
disorder-driven quantum phase transition and that pairs
continue to survive into the insulating state. The super-
conducting transition temperature Tc, however, does
decrease with increasing disorder and vanishes at a critical
disorder, signaling a superconductor-insulator transition
(SIT). These theoretical predictions are supported by
scanning-tunneling-spectroscopy experiments [11–14]
and by magnetoresistance oscillations [6] in disordered
thin films.
Recent conductivity measurements at frequencies well

within the superconducting gap (0–20 GHz) [15–20] have
observed low-frequency features that cannot be accounted
for by pair-breaking mechanisms. A theoretical under-
standing of the low-frequency dynamical conductivity is

vital for understanding the role of fluctuations and for
guiding future experiments that probe the SIT.
The robustness of the single-particle gap across the SIT

suggests that the low-energy physics near the SIT can be
described by an effective “bosonic” Hamiltonian, the
disordered quantum XY model, where the relevant degrees
of freedom are the phases of the local superconducting
order parameter, see Fig. 1. This model is also relevant for
ultracold atomic gases in optical lattices where the tran-
sition is tuned by changing the tunneling of bosons
compared to their on-site repulsion [21–24]. More recently,
it has also become possible to include disorder in optical
lattices using speckle patterns. By increasing the strength of
the disorder potential, it could be possible to drive quantum
phase transitions from a superfluid to a Bose glass [25–28];
our results are also relevant for such experiments.
We map the quantum ð2þ 1ÞD XY Hamiltonian to an

anisotropic classical 3D XY model [29–31] and simulate
the model using Monte Carlo methods. We focus on the
behavior of two dynamical quantities of fundamental
significance, the conductivity σðωÞ and the boson (“pair”)
spectral function PðωÞ obtained by analytic continuation
from imaginary time using the maximum entropy method
supplemented by sum rules. Disorder is introduced into the
quantum model by breaking bonds (“Josephson cou-
plings”) on a 2D square lattice with a probability p. We
compare the results of the disorder-driven SIT with the
clean system [29,32], where the SIT is tuned by Ec=EJ, the
charging energy relative to the Josephson coupling.
Our main results are as follows.
(1) The conductivity ReσðωÞ in the clean superconduc-

tor shows absorption above a threshold ωHiggs that
can be associated with the scale of the Higgs
(amplitude) mode. As we approach the SIT from
the superconducting (SC) side, both the superfluid
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stiffness ρs and the Higgs scale ωHiggs go soft and
vanish at the SIT, even though the fermionic energy
gap remains finite across the transition.

(2) In the insulating state of the clean system, we find a
threshold ωσ for absorption in ReσðωÞ and show that
it is twice the gap ωB in the bosonic spectral function
ImPðωÞ=ω. We show that both these scales go soft
on approaching the SIT from the insulating side.
Furthermore, in the insulator, ImσðωÞ becomes
negative at low frequencies, indicating “capacitive”
response.

(3) The low-frequency spectral weight in ReσðωÞ for the
disordered system is greatly enhanced relative to its
clean counterpart, so that there is no clear optical gap
in the vicinity of the SIT, despite the existence of a
nonzero fermionic energy gap. We find that en-
hanced quantum phase fluctuations and rare regions
generate low-frequency spectral weight for ω well
below the clean ωHiggs scale in the SC state, and
well below the clean ωσ ¼ 2ωB scale on the
insulating side.

(4) The spectral function ImPðωÞ=ω has a characteristic
peak in the insulator, whose energy ~ωB is a measure
of the inverse coherence time scale for bosonic (pair)
excitations. The vanishing of the superfluid stiffness
ρs on the SC side and the vanishing of ~ωB from the
insulating side are shown to demarcate the quantum
critical regime at the SIT for both the clean and the
disordered systems.

(5) The low-frequency conductivity σ� in the quantum
critical regime between the SC and the insulator
can be estimated meaningfully from the integra-
ted spectral weight over a frequency range of the
order of the temperature [see Eq. (C3)]. We find

σ� ≃ 0.5ð4e2=hÞ at the disorder-driven SIT in com-
parison to σ� ≃ 0.4ð4e2=hÞ at the SIT in the pure
system, in good agreement with recent studies
[32–35] of the disorder-free problem.

II. MODEL

The quantum XY model is equivalent to a Josephson-
junction array (JJA), with the Hamiltonian

ĤJ ¼
Ec

2

X
i

n̂2i −
X
hiji

Jij cosðθ̂i − θ̂jÞ; (1)

where the number operator n̂i at site i is canonically
conjugate to the phase operator θ̂i. Here, Ec is the charging
energy. The Josephson couplings are Jij ¼ EJ with prob-
ability ð1 − pÞ and Jij ¼ 0 with probability p. The clean
system (p ¼ 0) is a coherent superconductor when EJ
dominates over Ec, with phases aligned across all the
junctions. However, large Ec=EJ favors a well-defined
number eigenstate, leads to strong phase fluctuations,
and drives the system into an insulating state. Thus,
Ec=EJ can be used to tune across the SIT in the clean
system. A quantum phase transition can also be induced by
increasing disorder p (bond dilution) for fixed Ec=EJ.
[Fig. 3(h)]. Thus, Eq. (1) is a simple yet nontrivial model
that describes a disorder-tuned SIT with a dynamical
exponent z ¼ 1.
Our results are obtained from calculations of the super-

fluid stiffness ρs, the complex conductivity σðωÞ, and
the boson spectral function ImPðωÞ. We estimate the
superfluid stiffness ρs using ρs=π ¼ Λxxðqx → 0; qy ¼ 0;
iωn ¼ 0Þ − Λxxðqx ¼ 0; qy → 0; iωn ¼ 0Þ, which is the
difference of the longitudinal and transverse pieces of
the current-current correlation function Λxx. Here,
jxðr; τÞ ∼ sin ½θðrþ x̂; τÞ − θðr; τÞ� is the current and ωn ¼
2πnT are Matsubara frequencies.
We use the Kubo formula for the complex conductivity

σðωÞ expressed in terms of Λxxðq ¼ 0; τÞ and transform the
imaginary-time quantum Monte Carlo (QMC) results to real
frequency using the maximum entropy method (MEM); see
Appendix B. We have checked our results extensively using
sum rules and compared the MEM results with direct
estimates in imaginary time, as described in detail below.
Similarly, we use QMC methods to calculate the imaginary-
time correlation function Pðr; τÞ ¼ ha†ðr; τÞað0; 0Þi, where
the bosonic creation operator is a† ¼ exp iθðr; τÞ, and we
obtain the spectral function ImPðωÞ using the MEM.

III. SUPERCONDUCTOR

We first discuss the SC and insulating states in both the
clean and disordered systems, before turning to the quan-
tum critical point. The SC state is characterized by a
nonzero superfluid stiffness ρs (see Fig. 2). We use our
calculated ρs to test the sum rule for the MEM-derived

FIG. 1. The emergent inhomogeneity of the local pairing
amplitude ΔðrÞ in a disordered superconductor in the left panel
and the robustness of the single-particle gap [8–10] across the SIT
suggest an effective low-energy description in terms of a
disordered quantum XY model shown on the right. The quantum
phase transition occurs when long-range phase coherence is lost
between weakly connected “superconducting islands” tuned by
the ratio Ec=EJ of charging energy to Josephson coupling as well
as by disorder, modeled by removing a fraction p of the
Josephson bonds.
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optical conductivity. The total spectral weight is given byR
∞
0 dωReσðωÞ ¼ πh−kxi=2, where h−kxi is the kinetic
energy. We find that

R∞
0þ dωReσðωÞ (note the lower

limit of 0þ) calculated from the MEM result differs from
h−kxi by an amount that is exactly accounted for by the
delta function ρsδðωÞ. We have checked this sum rule
both in the clean and the disordered systems (see
Appendix B).
In the clean superconductor [Fig. 3(a)], ReσðωÞ shows

finite spectral weight above a threshold. Note that in the
bosonic model, the cost of making electron-hole excita-
tions is essentially infinite (i.e., much larger than all scales
of interest). Phase fluctuations of the order parameter Ψ ¼
A expðiθÞ generates a current j ∼ ImΨ�∇Ψ ∼ jAj2∇θ that
couples a massive amplitude excitation (Higgs mode) and
a massless phase excitation (phonon) which leads to a
threshold in absorption [36,37]. Hence, we identify the
threshold in ReσðωÞ with the Higgs scale ωHiggs. We
emphasize that even though the microscopic model (1) has
only phase degrees of freedom, its long-wavelength
behavior upon coarse graining contains both amplitude
(Higgs) and phase fluctuations (phonons and vortices). In
addition, one can show that ReσðωÞ has an ω5 tail at low
energies arising from three-phonon absorption in a clean
SC. The large power-law suppression, together with a very
small numerical prefactor [38], however, makes this
spectral weight too small to be visible in our numerical
results for ReσðωÞ.
As Ec=EJ is tuned to reach the SIT in the clean system,

ρs decreases and vanishes at the transition; see Fig. 2. We
also find that the Higgs scale goes soft upon approaching
the quantum critical point, as expected.
The disordered SC results differ in several ways from

those of the clean system. First, the superfluid stiffness ρs is
reduced by disorder, vanishing at the SIT upon tuning the
transition by disorder p. An important difference is the
absence of a discernible Higgs threshold in ReσðωÞ for
the disordered SC; see Fig. 3(b). Qualitatively, the absence
of a threshold can be understood by the fact that once
disorder breaks momentum conservation, even single-
phonon absorption is permitted, and one no longer needs
a multiphonon process for absorption. The effect of long-
range Coulomb interactions, which change the phonon
dispersion (∼q) to that of a 2D plasmon (∼ ffiffiffi

q
p

), is an
important open problem.
While the delta function in ReσðωÞ cannot be directly

detected in dynamical experiments, its Kramers-Kronig
transform in the reactive response ImσðωÞ ¼ ρs=ω can
indeed be measured. In the SC, the finite low-frequency
absorption in ReσðωÞ (due to the single-phonon processes
discussed above) causes ωImσðωÞ to deviate from a
constant, as is evident in Fig. 4. Our results are qualita-
tively similar to what has been seen in recent experiments,
which, however, have focused on finite-temperature tran-
sitions in weakly disordered samples [20].
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FIG. 2. Energy scales, in units of EJ , as a function of the control
parameter Ec=EJ in the clean system. From the SC side, the
superfluid stiffness ρs and the Higgs “mass” ωHiggs, and from
the insulating side, the optical conductivity threshold ωσ and
the boson-energy scales ωB and ~ωB, vanish at the transition,
creating a fan-shaped region where quantum critical fluctuations
dominate.
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FIG. 3. (a)–(f) ReσðωÞ across the (a),(c),(e) clean (p ¼ 0) and
(b),(d),(f) disorder-tuned (fixed Ec=EJ) superconductor-insulator
transitions. (g) Boson spectral function ImPðωÞ=ω for clean
superconducting (blue line) and insulating (red line) states. The
energy scales shown in Fig. 2 are indicated in (a)–(g). All
quantities are at fixed temperature T=EJ ¼ 0.156 and fixed
system size 256 × 256 for the clean case and 64 × 64 for the
disordered. In the disordered system, the spectral functions are
marked by a significant increase in low-frequency weight,
obscuring the gap scales of the clean system. (h) Schematic
phase diagram showing how the SIT can be crossed by either
increasing Ec=EJ or by tuning the disorder p.
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IV. INSULATOR

The clean insulator shows a hard gap in ReσðωÞ with an
absorption threshold that we denote by ωσ; see Fig. 3(e). To
gain insight into this gap, we look at the boson spectral
function ImPðωÞ=ω in Fig. 3(g), which, too, shows a hard
gap ωB, the analog of what was dubbed ωpair in Ref. [10].
The simplest process contributing to the conductivity is
described diagrammatically as the convolution of two
boson Green’s functions leading to ωσ ¼ 2ωB, as seen in
Fig. 2. We also see that both of these energy scales go soft
as the SIT is approached from the insulating side. In
addition, there is a well-defined peak in ImPðωÞ=ω at a
characteristic scale ~ωB [Fig. 3(g)], which also goes soft at
the SIT (Fig. 2).
In contrast to the hard gap of the clean system, the dirty

insulator exhibits absorption down to arbitrarily low frequen-
cies [see Fig. 3(f)], which is, at least in part, due to rare
regions. The absence of a finite threshold in absorption raises
the question: what is the characteristic energy scale that goes
soft as one approaches the SIT from the insulating side? We
find that this scale is the location of the low-energy peak at
~ωB in the boson spectral function ImPðωÞ=ω, whose
evolution with disorder is most readily seen in the “sling-
shotlike” plot in Fig. 4(c). The corresponding changes in
ReσðωÞ are shown in Fig. 4(a). We also note that there is a
marked change in ImσðωÞ across the SIT. We see from
Fig. 4(b) that it changes sign at low frequencies from an
inductive [ImσðωÞ > 0] to a capacitive [ImσðωÞ < 0]
response going through the disorder-tuned SIT.

V. QUANTUM CRITICALITY

We have already discussed the various scales that go soft
on approaching the SIT from either side. The results for the

clean system, with the SIT tuned by Ec=EJ, are summarized
in Fig. 2. We now analyze the results for the disordered
system. The finite-temperature QMC data, taken at face
value, suggest a finite separation between the disorder
values at which ρs goes to zero from the SC side and the
characteristic boson scale ~ωB vanishes from the insulating
side; see Figs. 5(a) and 5(b). We emphasize that this
intermediate region is not a Bose metal separating the
SC and insulator, but rather the quantum critical region. As
shown in Fig. 5(c), the SC transition temperature Tc, at
which ρs vanishes, and the crossover scale T�, at which ~ωB
vanishes, define this fan-shaped critical region. [We have
used z ¼ 1 in scaling the system size as we go down in
temperature in Fig. 5(c); see Appendix A.] Both Tc and T�
extrapolate to zero at the same critical disorder pc ≈ 0.337
(for the chosen value of Ec=EJ) with the scaling jp − pcjzν,
where z ¼ 1 and ν ¼ 0.96� 0.06.
Finally, we turn to the important question of the universal

conductivity at the SIT [29–32,39]. The dc limit requires
ω → 0 first and then T → 0, which is not possible when
analytically continuing Matsubara data [40]. What we
can meaningfully do is exploit quantum critical scaling
and sum rules. The MEM results (i) satisfy the conducti-
vity sum rule, which integrates over all freque-
ncies (see Appendix B), and (ii) are reliable for high
frequencies ω > 2πT. Taking the difference of integra-
ted spectral weights, we can reliably estimate σ� ¼
ð2πTÞ−1 R 2πT

0þ dωReσðω; T;pÞ. We may now use the uni-
versal scaling form [40] Reσðω; T;pÞ ¼ σQΦðω=T;
jp − pcjT−1=zνÞ, with σQ ¼ 4e2=h, to obtain

σ�ðT;pÞ ¼ σQ
2π

Z
2π

0þ
dxΦðx; jp − pcjT−1=zνÞ: (2)

FIG. 4. Dynamical response functions across the disorder-tuned SIT. The critical disorder pc ¼ 0.337 is marked as a dashed line;
T=EJ ¼ 0.156, Ec=EJ ¼ 3.0, and L ¼ 64. (a) In the conductivity ReσðωÞ, the superfluid response is evident as a zero-frequency delta
function of strength ρs. Deep in the insulator, there is a gap in ReσðωÞ that grows with disorder. (b) ωImσðωÞ shows a crossover from
“inductive” [ωImσðωÞ ¼ ρs > 0] to “capacitative” [ωImσðωÞ < 0] behavior at small ω across the transition. (c) The boson spectral
function ImPðωÞ=ω, which has a peak centered about zero frequency in the superconductor, develops a characteristic scale ~ωB in the
insulator that grows with disorder.
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Thus, σ� is a T-independent universal constant at the
quantum critical point p ¼ pc and closely related to the
low-frequency conductivity measured in experiments.
Another estimate of the low-frequency conductivity

comes directly from the current correlator σ�Λ¼β2Λxxðq¼0;
τ¼β=2Þ=π at the largest available value of imaginary time
[41]. The σ� estimates obtained by the two methods show
good agreement [Fig. 6(a)] and provide a nontrivial check
on the analytic continuation.
In Fig. 6(b), we plot σ�ðT;pÞ as a function of p for

various temperatures. In the superconductor (p < pc), the
conductivity increases with decreasing T, while the oppo-
site trend is observed in the insulator (p > pc). Precisely at
the SIT p ¼ pc, we find a T-independent crossing point
that also allows us to estimate the critical σ�. Another way
to scale the data is to plot σ�ðT;pÞ as a function of the
scaling variable jp − pcjT−1=zν. We find data collapse for
pc ¼ 0.337 and zν ¼ 0.96 (consistent with Fig. 5) with a
critical value of σ� ≈ 0.5σQ. For a detailed comparison of
the critical exponents and σ� with previous results [42], see
Appendix C.

VI. CONCLUSIONS

Wehave presented calculations of the complex dynamical
conductivity σðωÞ and the boson spectral function PðωÞ
across the SIT driven by increasing the charging energy
Ec=EJ aswell as by increasing disorderp. By comparison of
the clean and disordered problems, we see the effect of
disorder on the Higgs scaleωHiggs in the superconductor and
on the threshold ωσ in the insulator, in generating low-
frequencyweight in absorption in both superconducting and
insulating phases, and in expanding the region over which
critical fluctuations are observable. In the literature, an
insulating phase of bosons with disorder has been referred
to as a compressible Bose glass phase away from particle-
hole symmetry [21] or an incompressible Mott glass phase
with particle-hole symmetry [42]. We work with a particle-
hole-symmetric system, and while we see evidence of a
gaplike scale in the insulator, we also find a low-frequency
tail in the absorption, presumably arising from rare regions.
In this respect, our insulator seemsmore akin to aBose glass.
It is important to emphasize that the effects we have
calculated have required going beyond mean-field theories,
even those that included emergent granularity due to the
microscopic disorder, by focusing on the role of fluctuations
of the order parameter.We have calculated the effect of these
fluctuations, both amplitude and phase, on experimentally
accessible observables using QMC methods coupled with
maximum entropy methods, constrained by sum rules.
Recently, the AdS-CFT holographic mapping has been used
to obtain the dynamical conductivity at the disorder-free
bosonic quantum critical point [34,35]. Our focus here has
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been on the evolution of the dynamical quantities in both the
phases, superconducting and insulating, and across the
disorder-driven SIT, for which the holographic formalism
has not yet been developed.
Our calculations have laid the foundation for key

signatures in dynamical response functions across quantum
phase transitions. Although we have focused on the
disorder-driven s-wave SIT in thin films, the ideas are
equally relevant for a diverse set of problems, including
(i) unconventional superconductors like the high-Tc cup-
rates that have a quantum critical point tuned by doping,
(ii) SITs at oxide interfaces like LaAlO3=SrTiO3, (iii) SITs
in the next generation of weakly coupled layered materials
like dichalcogenide monolayers, and (iv) bosons in optical
lattices with speckle disorder.
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APPENDIX A: MONTE CARLO SIMULATIONS

We analyze the ð2þ 1ÞD quantum XY model given by
Eq. (1), which is a generalization of the full quantum rotor
Hamiltonian

ĤJ¼
Ec

2

X
i

n̂2i −
X
hiji

Jijcosðθ̂i− θ̂jÞ−
X
i

ðμ−ViÞni

¼−
Ec

2

X
i

d2

dθ2i
−
X
hiji

Jijcosðθ̂i− θ̂jÞþi
X
i

ðμ−ViÞ
d
dθi

(A1)

since ni ¼ −id=dθi. The partition function can be
expressed as the coherent-state path integral Z ¼R
D½θ�e−S with action [29]

S ¼
Z

β

0

dτ

�
1

Ec

X
i

ð∂τθiÞ2 − i
μ − Vi

Ec=2
∂τθi

−
X
hiji

Jijð1 − cos½ðθ̂i − θ̂jÞ�Þ
�
: (A2)

For a slowly varying phase, Eq. (A2) becomes

S ¼
Z

β

0

dτ

�
1

Ec

X
i

ð∂τθiÞ2 − i
μ − Vi

Ec=2
∂τθi −

Jij
2
ð∂rθiÞ2

�
:

(A3)

For the pure system (Vi ¼ V), if ðμ − VÞ=ðEc=2Þ is an
integer, then the middle term does not contribute to the free

energy because
R β
0 ∂τθi ¼ 2π × integer. In this special case

of particle-hole symmetry, the dynamical exponent is
z ¼ 1. Away from this particle-hole-symmetry point, the
first derivative term remains in the action, and for the pure
system, z ¼ 2. Upon including disorder Vi in the diagonal
potential, recent Monte Carlo simulations [43] have
obtained z ¼ 1.83� 0.05.
The model we have studied has bond disorder Jij that

respects particle-hole symmetry. In this case, the dynamical
exponent is expected to remain z ¼ 1, as argued in
Refs. [44,45]. We also note that a recent Monte Carlo
study of the ð1þ 1ÞD JJA also concluded that z ¼ 1 in the
presence of bond disorder [46]. In order to definitively
establish the value of z, two-parameter finite-size scaling
with varying aspect ratios of Lτ and L is necessary. Within
the scope of the analysis presented here, the good scaling
collapse of our data for the bond-disordered model, shown
in Figs. 5 and 6, is indeed consistent with z ¼ 1.
Our Monte Carlo simulations are performed by mapping

Eq. (1) onto an anisotropic 3D classical XY model with
Hamiltonian [31]

HXY ¼ −Kτ

X
r;j

cos ½θrðτjÞ − θrðτjþ1Þ�

− K0

X
hr;r0i;j

cos ½θrðτjÞ − θr0 ðτjÞ� (A4)

by performing a Trotter decomposition of imaginary time
into Lτ slices of width Δτ such that the inverse temperature
β ¼ LτΔτ; r and r0 are points in the 2D plane, τj denotes
the jth imaginary-time slice, and the dimensionless cou-
pling constants are Kτ ¼ 1=ΔτEc and K0 ¼ ΔτEJ.
We perform Monte Carlo simulations using the efficient

Wolff cluster update method [47]. In all of our simulations,
we have set K0 ¼ 0.1, which we have checked to be
sufficiently small to remove the error from the Trotter
decomposition. For the clean system, we perform simu-
lations on lattices of size 256 × 256 with Lτ ¼ 64. For the
disorder-tuned transition, we work at fixed Ec=EJ ¼ 3.0.
Simulations at different temperatures have been performed
by changing the number of imaginary-time slices Lτ from
32 to 128; for each Lτ, we fix L ¼ Lτ since the dynamical
exponent is z ¼ 1. All disorder results have been averaged
over 100 disorder realizations.

APPENDIX B: DYNAMICAL OBSERVABLES AND
ANALYTIC CONTINUATION

We calculate the imaginary-time, or equivalently, the
Matsubara-frequency (ωn ¼ 2nπ=β), current-current corre-
lation function

Λxxðq; iωnÞ ¼
X
r

Z
β

0

dτhjxðr; τÞjxð0; 0Þieiq·re−iωnτ;

(B1)
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where the paramagnetic current in our model is given by
jxðr; τÞ≡ K0 sin ½θðrþ x̂; τÞ − θðr; τÞ�. The conductivity is
related to the analytic continuation of Λxx at q ¼ 0

σðωÞ ¼ ½h−kxi − Λxxðωþ i0þÞ�=iðωþ i0þÞ; (B2)

where h−kxi is the average kinetic energy along bonds in
the x direction. ReσðωÞ is then given by

ReσðωÞ ¼ ρsδðωÞ þ ImΛxxðωÞ=ω: (B3)

The superfluid stiffness ρs is obtained from the difference
between the transverse and longitudinal limits of the
current-current correlation function ρs=π ¼ Λxxðqx →
0; qy ¼ 0; iωn ¼ 0Þ − Λxxðqx ¼ 0; qy → 0; iωn ¼ 0Þ and
the sum rule h−kxi ¼ Λxxðqx → 0; qy ¼ 0; iωn ¼ 0Þ.
Finally, ReσðωÞ obeys the optical conductivity sum rule
2
R∞
0þ dωReσðωÞ ¼ πh−kxi − ρs, which serves as a non-

trivial check on our analytic continuation results.

1. Analytic continuation of ΛðτÞ
The imaginary-time correlation function ΛxxðτÞ calcu-

lated in our Monte Carlo simulations is related to its real-
frequency counterpart [and subsequently to σðωÞ] through

ΛxxðτÞ ¼
Z

∞

−∞

dω
π

e−ωτ

1 − e−βω
ImΛxxðωÞ: (B4)

To extract the real-frequency data, we have employed the
MEM [48] to invert this Laplace transform. We have
performed extensive tests on our maximum entropy rou-
tine; further details can be found in the Supplemental
Material of Ref. [10].
In addition to these tests on the MEM routine itself,

whenever possible, we have checked those characteristics
of the spectra obtained via the MEM against features that
can be directly calculated for the Monte Carlo correlation
functions. Gapped functions, either in σðωÞ or PðωÞ, have
recognizable exponential decays in the imaginary-time
correlation functions corresponding to the gap scale,
whereas spectra without a gap correspond to correlation
functions with no discernible gap scale in the τ data; see
Fig. 7. For the clean system, the extracted gap scales for
ΛðτÞ and PðτÞ track consistently with those scales coming
from the real-frequency functions obtained after perform-
ing the analytic continuation. In the disordered systems, the
absence of a threshold even for a small disorder makes
reading of a gap scale in the SC unreliable for both the
imaginary time and analytically-continued functions.
We have also carefully checked that the sum rule on σðωÞ

is verified. For lattice systems, the optical conductivity sum
rule is

Iσ ¼
Z

∞

−∞
dωReσðωÞ ¼ πh−kxi: (B5)

Equation (B5) includes the spectral weight contained in the
delta-function response proportional to the superfluid stiff-
ness ρs. The regular part of the spectrum (which we obtain
from analytic continuation) satisfies

2

Z
∞

0þ
dωReσðωÞ ¼ πh−kxi − ρs: (B6)

We emphasize that this sum rule is not built into the MEM
routine and provides an independent verification of the
procedure. The sum rule is shown in Fig. 8 for both the
clean and the disorder-driven transitions.

2. Analytic continuation of PðτÞ
The boson spectral function is related to the boson

Green’s function via

PðτÞ ¼
Z

∞

−∞

dω
π

e−ωτ

1 − e−βω
ImPðωÞ; (B7)

which we invert using the MEM in exactly the same way as
for σðωÞ.
The boson spectral functions obey the following two

sum rules:

Ið1ÞP ¼
Z

∞

−∞

dω
π

1

1 − e−βω
ImPðωÞ ¼ Pðτ ¼ 0Þ ¼ 1; (B8)

which follows trivially from Eq. (B7), and
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FIG. 7. Imaginary-time correlation functions ΛðτÞ for the clean
transition in the superconducting phase (Ec=EJ ¼ 3.22), the
insulating phase (Ec=EJ ¼ 4.76), and near the critical point
(Ec=EJ ¼ 4.17). Dashed lines indicate the gap scales that can
be reliably extracted in the SC and insulating phases.

DYNAMICAL CONDUCTIVITY ACROSS THE DISORDER- … PHYS. REV. X 4, 021007 (2014)

021007-7



Ið2ÞP ¼
Z

∞

−∞

dω
π

ImPðωÞ
ω

¼
Z

β

0

dτPðτÞ ¼ Ið3ÞP : (B9)

This second sum rule can be seen by integrating both sides
of Eq. (B7) over τ from 0 to β. Note that in the limit of
T → 0, Eq. (B8) reduces to a sum rule on ImPðωÞ itself:R
∞
0 dωImPðωÞ ¼ 1. Results for the sum rules are shown
in Fig. 8.

APPENDIX C: UNIVERSAL CONDUCTIVITY
AND CRITICAL EXPONENTS

There have been many attempts to calculate the value of
the so-called universal conductivity at the superconductor-
insulator quantum phase transition. We will only focus on
those models expected to be in the same universality class
as our model (z ¼ 1); a more complete history can be found
in Ref. [49] and the references therein.
Since the conductivity is a universal function of ω=T at

the critical point [40], there are different and possibly
distinct limiting values of σðω=TÞ:

σð0Þ ¼ σðω → 0; T ¼ 0Þ; (C1)

σð∞Þ ¼ σðω ¼ 0; T → 0Þ: (C2)

In our paper, we have proposed another universal quantity

σ� ¼ σQ
2πT

Z
2πT

0þ
dωσðωÞ (C3)

that can be reliably extracted from the numerics, as
explained in the text.
We will express all σ values in units of σQ ¼ 4e2=h. For

disorder-free models in the ð2þ 1ÞD XY universality class,
our value of σ� ≈ 0.4 is consistent with the recent result of
Ref. [32], where they found σð0Þ ¼ 0.45� 0.05 using Padé
approximates to analytically continue Monte Carlo data at
the critical point, modified from the previous estimate [29]
of σð0Þ ¼ 0.285� 0.02 obtained by extrapolation of the
current-current correlation function for ωn → 0. More
recently, groups [34,35] have used holographic continu-
ation to perform analytic continuation at the critical
point. They found σð∞Þ ¼ 0.32 and σð∞Þ ¼ 0.359ð4Þ,
respectively.
For the disorder-tuned transition, we have obtained

σ� ≈ 0.50; (C4)

ν ¼ 0.96� 0.06; (C5)

where z ¼ 1 by definition for the model. There have been
only a few results on disordered transitions that can
meaningfully be compared to our work. A Monte Carlo
study of the ð2þ 1ÞD XY model with on-site charging-
energy disorder [31] found z ¼ 1.07� 0.03, ν ≈ 1, and
σð0Þ ¼ 0.27� 0.04 obtained by extrapolation of Λxx for
ωn → 0. We expect that using analytic continuation could
modify this estimate. Studies of the disordered quantum
rotor model using strong-disorder renormalization-group
theory [42] have found ν ¼ 1.09� 0.04, although they
have not looked at the universal conductivity.
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