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Discovering and characterizing the large-scale topological features in empirical networks are crucial
steps in understanding how complex systems function. However, most existing methods used to obtain the
modular structure of networks suffer from serious problems, such as being oblivious to the statistical
evidence supporting the discovered patterns, which results in the inability to separate actual structure from
noise. In addition to this, one also observes a resolution limit on the size of communities, where smaller but
well-defined clusters are not detectable when the network becomes large. This phenomenon occurs for the
very popular approach of modularity optimization, which lacks built-in statistical validation, but also for
more principled methods based on statistical inference and model selection, which do incorporate statistical
validation in a formally correct way. Here, we construct a nested generative model that, through a complete
description of the entire network hierarchy at multiple scales, is capable of avoiding this limitation and
enables the detection of modular structure at levels far beyond those possible with current approaches. Even
with this increased resolution, the method is based on the principle of parsimony, and is capable of
separating signal from noise, and thus will not lead to the identification of spurious modules even on sparse
networks. Furthermore, it fully generalizes other approaches in that it is not restricted to purely assortative
mixing patterns, directed or undirected graphs, and ad hoc hierarchical structures such as binary trees.
Despite its general character, the approach is tractable and can be combined with advanced techniques of
community detection to yield an efficient algorithm that scales well for very large networks.
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I. INTRODUCTION

The detection of communities and other large-scale
structures in networks has become perhaps one of the
largest undertakings in network science [1,2]. It is moti-
vated by the desire to be able to characterize the most
salient features in large biological [3–5], technological
[6,7], and social systems [3,8,9], such that their building
blocks become evident, potentially giving valuable insight
into the central aspects governing their function and
evolution. At its simplest level, the problem seems straight-
forward: Modules are groups of nodes in the network that
have a similar connectivity pattern, often assumed to be
assortative, i.e., connected mostly among themselves and
less so with the rest of the network. However, when
attempting to formalize this notion and develop methods
to detect such structures, the combined effort of many
researchers in recent years has spawned a great variety of
competing approaches to the problem, with no clear,
universally accepted outcome [2].

The method that has perhaps gathered the most wide-
spread use is called modularity optimization [10] and
consists in maximizing a quality function that favors
partitions of nodes for which the fraction of internal edges
inside each cluster is larger than expected given a null
model, taken to be a random graph. This method is
relatively easy to use and comprehend, works well in
many accessible examples, and is capable of being applied
in very large systems via efficient heuristics [11,12].
However it also suffers from serious drawbacks. In par-
ticular, despite measuring a deviation from a null model, it
does not take into account the statistical evidence asso-
ciated with this deviation, and as a result, it is incapable of
separating actual structure from those arising simply of
statistical fluctuations of the null model, and it even finds
high-scoring partitions in fully random graphs [13]. This
problem is not specific to modularity and is a characteristic
shared by the vast majority of methods proposed for
solving the same task [2]. In addition to the lack of
statistical validation, modularity maximization fails to
detect clusters with size below a given threshold [14,15],
which increases with the size of the system as ∼

ffiffiffiffi
E

p
, where

E is the number of edges in the entire network. This
limitation is independent of how salient these relatively
smaller structures are, and makes this potentially very im-
portant information completely inaccessible. Furthermore,
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results obtained with this method tend to be degenerate for
large empirical networks [16], for which many different
partitions can be found with modularity values very close to
the global maximum. In these common situations, the
method fails in giving a faithful representation of the actual
large-scale structure present in the system.
More recently, increasing effort has been spent on a

different approach based on the statistical inference of
generative models, which encode the modular structure of
the network as model parameters [17–28]. This approach
offers several advantages over a dominating fraction of
existing methods, since it is more firmly grounded on well-
known principles and methods of statistical analysis, which
allows the incorporation of the statistical evidence present
in the data in a formally correct manner. Under this general
framework, one could hope to overcome some of the
limitations existing in more ad hoc methods, or at least
make any intrinsic limitations easier to understand in light
of more robust concepts [29–32]. Perhaps the generative
model most used for this purpose is the stochastic block
model [17–28,33–36], which groups nodes in blocks with
arbitrary probabilities of connections between them. This
very simple definition already does away with the restric-
tion of considering only purely assortative communities
and accommodates many different patterns, such as core-
periphery structures and bipartite blocks, as well as
straightforward generalizations to directed graphs. In
this context, the detectability of well-defined clusters
amounts, in large part, to the issue of model selection
based on principled criteria such as minimum description
length (MDL) [32,37] or Bayesian model selection (BMS)
[38–42]. These approaches allow the selection of the most
appropriate number of blocks based on statistical evidence,
and thus avoid the detection of spurious communities.
However, frustratingly, at least one of the limitations of
modularity maximization is also present when doing model
selection, namely, the resolution limit mentioned above. As
was recently shown in Ref. [32], when using MDL, the
maximum number of detectable blocks scales with

ffiffiffiffi
N

p
,

where N is the number of nodes in the network, which is
very similar to the modularity optimization limit. However,
in this context, this limitation arises out of the lack of
knowledge about the type of modular structure one is about
to infer and the a priori assumption that all possibilities
should occur with the same probability. Here, we develop a
more refined method of model selection, which consists in
a nested hierarchy of stochastic block models, where an
upper level of the hierarchy serves as prior information to a
lower level. This dramatically changes the resolution of the
model selection procedure and replaces the characteristic
block size of

ffiffiffiffi
N

p
in the nonhierarchical model by much a

smaller value that scales only logarithmically with N,
enabling the detection of much smaller blocks in very
large networks. Furthermore, the approach provides a
description of the network in many scales, in a complete

model encapsulating its entire hierarchical structure at
once. It generalizes previous methods of hierarchical
community detection [43–49], in that it does not impose
specific patterns such as dendograms or binary trees, in
addition to allowing arbitrary modular structures as the
usual stochastic block model, instead of purely assortative
ones. Furthermore, despite its increased resolution, the
approach attempts to find the simplest possible model that
fits the data and is not subject to overfitting, and, hence,
will not detect spurious modules in random networks.
Finally, the method is fully nonparametric and can be
implemented efficiently with a simple algorithm that scales
well for very large networks.
In Sec. II, we start with the definition of the model and

then we discuss the model-selection procedure based on
MDL. We then move to the analysis of the resolution limit,
and proceed to define an efficient algorithm for the
inference of the nested model, and we finalize with the
analysis of synthetic and empirical networks, where we
demonstrate the quality of the approach. We then conclude
with an overall discussion.

II. HIERARCHICAL MODEL

The original stochastic block model ensemble [33–36] is
composed ofN nodes, divided into B blocks, with ers edges
between nodes of blocks r and s (or, for convenience of
notation, twice that number if r ¼ s). Here, we differentiate
between two very similar model variants: (1) the edge
counts ers are themselves the parameters of the model, and
(2) the parameters are the probabilities prs that an edge
exists between two nodes of the respective blocks, such that
the edge counts hersi ¼ nrnsprs are constrained on aver-
age. Both are equally valid generative models, and as long
as the edge counts are sufficiently large, they are fully
equivalent (see Ref. [50] and Appendix A). Here, we stick
with the first variant, since it makes the following formu-
lation more convenient. We also consider a further variation
called the degree-corrected block model [24], which is
defined exactly as the traditional model(s) above, but one
additionally specifies the degree sequence fkig of the graph
as an additional set of parameters (again, these values can
be the parameters themselves, or they can be constrained on
average [50]). The degree-corrected version, although it is a
relatively simple modification, yields much more convinc-
ing results on many empirical networks, since it is capable
of incorporating degree variability inside each block [24].
As will be seen below, it is, in general, also capable of
providing a more compact description of arbitrary networks
than the traditional version.
The nested version, which we define here, is based on the

simple fact that the edge counts ers themselves form a block
multigraph, where the nodes are the blocks and the edge
counts are the edge multiplicities between each node pair
(with self-loops allowed). This multigraph may also be
constructed via a generative model of its own. If we choose
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a stochastic block model again as a generative model, we
obtain another smaller block multigraph as parameters at a
higher level, and so on recursively, until we finally reach a
model with only one block. This forms a nested stochastic
block model hierarchy, which describes a given network at
several resolution levels (see Fig. 1).
This approach provides an increased resolution when

performing model selection, since the generative model
inferred at an upper level serves as prior information to the
one at a lower level. Despite its more elaborate formulation,
this hierarchical model remains tractable, and it is possible
to apply it to very large networks, in a fully nonparametric
manner, as discussed below. Furthermore, it generalizes
cleanly the flat variants, which correspond simply to a
hierarchy with only one level. It also does not impose any
preferred mixing pattern (e.g., assortative or dissortative
block structures), and is not restricted to any specific
hierarchical form, such as binary trees or dendograms
[97]. In the following, we describe the maximum likelihood
method to infer the multilevel partitions and the model
selection process based on the minimum description
length principle and compare it with Bayesian model
selection.
In the analysis, we focus on undirected networks, but

everything is straightforwardly applicable to directed net-
works as well. In Appendix C, we present a summary of the
relevant expressions for the directed case.

A. Module inference

The inference approach consists in finding the best
partition fbig of the nodes, where bi ∈ ½1; B� is the block
membership of node i, in the observed networkG, such that
the posterior likelihood PðGjfbigÞ is maximized. Since
each graph with the same edge counts ers occurs with
the same probability, the posterior likelihood is simply
PðGjfbigÞ ¼ 1=Ωðfersg; fnrgÞ, where ers and nr are
the edge and node counts associated with the block
partition fbig and Ωðfersg; fnrgÞ is the number of
different network realizations. Hence, maximizing the
likelihood is identical to minimizing the ensemble entropy
[50,52] Sðfersg; fnrgÞ ¼ lnΩðfersg; fnrgÞ.
For the lowest level of the hierarchy (which models

directly the observed network), we have a simple graph, for
which the entropies can be computed as [50]

St ¼
1

2

X
rs

nrnsHb

�
ers
nrns

�
; (1)

for the traditional block model ensemble, and

Sc ≃ −E −
X
k

Nk ln k! −
1

2

X
rs

ers ln

�
ers
eres

�
; (2)

for the degree-corrected variant, where E ¼ P
rsers=2 is

the total number of edges, Nk is the total number of nodes
with degree k, er ¼

P
sers is the number of half-edges

incident on block r, HbðxÞ ¼ −x ln x − ð1 − xÞ lnð1 − xÞ is
the binary entropy function, and it was assumed that
nr ≫ 1. Note that only the last term of Eq. (2) is, in fact,
useful when finding the best block partition, since the other
terms remain constant. However, the full expression is
necessary when comparing the models against each other
via model selection, as discussed below.
For the upper-level multigraphs, the entropy can also be

computed [50], and it takes a different form

Sm ¼
X
r>s

ln
��nrns

ers

��
þ
X
r

ln

�� ððnr
2
ÞÞ

err=2

��
; (3)

where ððnmÞÞ ¼ ðnþm−1
m Þ is the number of m-combinations

with repetitions from a set of size n. Note that we no longer
assume that nr ≫ 1, since at the upper levels the number of
nodes becomes arbitrarily small.
At each level l ∈ ½0; L� in the hierarchy there are Bl−1

nodes, which are divided into Bl blocks (with Bl ≤ Bl−1),
were we set B−1 ≡ N. The edge counts at level l are
denoted elrs and the block sizes nlr. Therefore, we must have
that

P
rn

l
r ¼ Bl−1 and

P
rse

l
rs=2 ¼ E; i.e., the total number

of nodes decreases in the upper levels, but the total number
of edges remains the same. The combined entropy of all
layers is then given by

FIG. 1. Example of a nested stochastic block model with three
levels, and a generated network at the bottom. The top-level
structure describes a core-periphery network, which is further
subdivided in the lower levels.
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Sn ¼ St=cðfe0rsg; fn0rgÞ þ
XL
l¼1

Smðfelrsg; fnlrgÞ: (4)

The full generative model corresponds to a nested sequence
of network ensembles, where each sample from a given
level generates another ensemble at a lower level. The
entropy in Eq. (4) represents the amount of information
necessary to encode the decision sequence, which, starting
from the topmost model, selects the observed network
among all possible branches in the lower levels.
Whenever both the number of levels and the number of

blocks Bl of each level is known, the best multilevel
partition is the one that minimizes Sn. However, such
information regarding the size of the model is most often
not available and needs to be inferred from the data as well.
Using Eq. (4) for this purpose is not appropriate, since
minimizing it across all possible hierarchies leads to a
trivial and meaningless result where Bl ¼ N for all l.
Instead, one must employ some form of Occam’s razor and
select the simplest possible model that best describes the
observed data without increasing its complexity. We
present such an approach in the next section.

B. Model selection

A method that directly formalizes Occam’s razor prin-
ciple is known as minimum description length [53,54],
where one specifies the total amount of information
necessary to described the data, which includes not only
the sample but the model parameters as well. The descrip-
tion length for the model above is

Σ ¼ Lt=c þ St=c; (5)

where Lt=c is the amount of information necessary to fully
describe the model and St=c corresponds to entropy of the
lowest level l ¼ 0 of the hierarchy. In a given level l of the
hierarchy, the information required to describe the model
parameters felrsg is given by the entropy Sm [Eq. (3)] of the
model in level lþ 1, so that we may write

Lt ¼
XL
l¼1

Smðfelrsg; fnlrgÞ þ Ll−1
t : (6)

The only missing information is how to partition the nodes
of the current level into Bl blocks, which corresponds to the
term Ll

t in the equation above. The total number of
partitions with the same block sizes fnlrg is given by
Bl−1!=

Q
rn

l
r!, and the total number of different block sizes

is ðð Bl
Bl−1

ÞÞ. Hence, the amount of information necessary to
describe the block partition of level l is

Ll
t ¼ ln

��
Bl

Bl−1

��
þ lnBl−1! −

X
r

ln nlr!: (7)

Note that this is different from the choice made in
Refs. [32,37], which considered all possible BBl−1

l partitions
to be equally likely, and, hence, the necessary amount of
information was computed as Bl−1 lnBl. This choice
implicitly assumes that all blocks have equal sizes and
offers a worse description when this is not the case. Note
that for Bl−1 ≫ 1, we have

Ll
t ≃ Bl−1Hðfnlr=Bl−1gÞ; (8)

where HðfpigÞ ¼ −
P

ipi lnpi is the entropy of the distri-
bution fpig. Therefore, for uniform blocks nlr ¼ Bl−1=Bl,
we recover asymptotically the value Ll

t ≃ Bl−1 lnBl.
However, the value of Eq. (7) can be much smaller for
nonuniform partitions. This choice has important conse-
quences for the resolution of relatively small blocks, as will
be seen below.
For the degree-corrected version, we still need to include

the information necessary to describe the degrees at the
lowest level,

Lc ¼ Lt þ
X
r

nrHðfpr
kgÞ; (9)

where fpr
kg is the degree distribution of nodes belonging

to block r [98]. It is worth noting that, if a network
is sampled from the traditional block model ensemble,
so that pr

k is a Poisson with average er=nr, Eq. (9)
becomes Lc ¼ Lt þ 2E −

P
rer ln er=nr þ

P
kNk ln k!,

which means that Sc þ Lc ¼ St þ Lt, i.e., the total
description length is identical for both the traditional and
the degree-corrected models in this case, and, therefore,
both models describe the same network equally well [99].
However, if the distributions fpr

kg deviate from Poissons,
the degree-corrected variant will provide, in general, a
shorter description length.
It is easy to see that, if one has a flat L ¼ 1 hierarchy,

with fBlg ¼ fB; 1g, the description length of the non-
hierarchical model is recovered [32]; e.g., for the traditional
model, we have ΣL¼1 ¼ LL¼1 þ St, with

LL¼1¼ ln

��ððB
2
ÞÞ

E

��
þ ln

��
B
N

��
þ ln N!−

X
r

ln nr!; (10)

where the only difference in comparison to Ref. [32] is
that here we are using the improved partition description
length of Eq. (7). Therefore, the nested generalization fully
encapsulates the flat version, such that minΣ ≤ minΣL¼1;
i.e., the nested model can provide only a shorter or equal
description length of the observed network.
The MDL principle predicates that whenever the hier-

archy size itself needs to be inferred, one should minimize
Eq. (5), instead of Eq. (4) directly. However, MDL is one of
the many principled methods one could use to do model
selection, which include, e.g., Bayesian model selection via
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integrated likelihood [21,38,39,41,42,55], likelihood ratios
[56], or more approximative methods, such as Bayesian
information criterion [57] and Akaike information criterion
[58]. If any two of these methods are derived from
equivalent assumptions, one should expect them to deliver
compatible results. In Appendix A, we make a comparison
of the MDL approach with Bayesian model selection via
integrated likelihood (BMS), since it is nonapproximative
and can be computed exactly for the stochastic block
model, where we show that under compatible assumptions,
these two methods deliver the exact same results. In the
following, we compare the results obtained with non-
hierarchical MDL (or BMS) and the nested model pre-
sented, and show that it yields a higher quality model
selection criterion, which detects the correct number of
blocks for sparse networks, without being overconfident.
Based on this analysis, we are capable of deriving the
optimum number of blocks given a network size, and we
show that the nested model does not suffer from the
resolution limit, which hinders the nonhierarchical
approach.

1. Module detectability and the “resolution limit”

The general problem of module detectability can be
formulated as follows: Suppose we generate a network with
a given parameter set. To what extent can we recover the
planted parameters by observing this single sample from
the model? The answer is conditional on the amount of
one’s prior knowledge. If the number of blocks B is known
beforehand, the remaining task is simply to classify the
nodes in one of these B classes. This problem has been
shown to exhibit a detectability-indetectability phase tran-
sition [29,30,59,60]: If the existing block structure is too
weak, it becomes impossible to infer the correct partition
with any method, despite the fact that the model parameters
deviate from that of a fully random graph. On the other
hand, if the block structure is sufficiently strong, it is
possible to detect the correct partition with a precision that
increases as the block structure becomes stronger. Another
situation is when one does not know the correct number B,
which is arguably more relevant in practice. In this case, in
addition to the node classification, one needs to perform
model selection. Ideally, one would like to find the correct
B value whenever the corresponding partition is detectable.
However, in situations where the correct partition is only
partially detectable, i.e., the inferred partition is positively
but weakly correlated with the true model, an application of
Occam’s razor may actually choose a simpler model, with
smaller B, with a comparable correlation with the true
partition. Hence, if we lack knowledge of the model size B,
there will be situations where the true partition will be more
poorly detected, when compared to the case where we have
this information. This can be clearly illustrated with a very
simple example known as the planted partition (PP) model
[61]. It corresponds to an assortative block structure

given by ers ¼ 2E½δrsc=Bþ ð1 − δrsÞð1 − cÞ=BðB − 1Þ�,
nr ¼ N=B, and c ∈ ½0; 1� is a free parameter that controls
the assortativity strength. For this model, if we have that
N=B ≫ 1, it can be shown that the detectable phase exists
for hki > ½ðB − 1Þ=ðcB − 1Þ�2 [29–31]. Let us make the
situation even simpler and consider the strongest possible
block structure with c ¼ 1, i.e., B perfectly isolated
assortative communities with N=B nodes. In this case,
the detectability threshold lies at hki ¼ 1. Therefore, for
any hki > 1, we should be able to detect all B blocks, with a
precision increasing with hki, if we know we have B blocks
to begin with. If we do not know this, we must apply a
model-selection criterion as described above to obtain the
best value of B. For simplicity, let us assume that, for the
correct value of B≡ Btrue, the true partition is perfectly
detected, such that St ≃ −E lnB, ignoring additive con-
stants, which are irrelevant at this point. If a value of
B > Btrue is used, we assume that the inferred partition
corresponds to regular subdivisions of the planted one, such
that the entropy remains approximately unchanged
St ≃ −E lnBtrue. For B < Btrue, the blocks are uniformly
merged together, so that St ≃ −E lnB. Hence, we may
write the expected value of the minimum description length
in the nonhierarchical model by summing St ¼
−E lnminðB; BtrueÞ with Eq. (10). For the nested version
of the model, we assume a regular hierarchy tree of depth L
and with a fixed branching ratio σ, i.e., Bl ¼ σL−l, so that
Eq. (5) becomes

Σ≃
��σ

2

�� B
σ − 1

lnEþ σ

2
B lnBþ N lnB

− E lnminðB; BtrueÞ; (11)

where Bl ≫ σ was assumed, together with L ≫ 1, and
B≡ B0. One may compare these criteria against each other
in their capacity of recovering the planted value of B, by
finding the extremum of each function. In Fig. 2, we show
the optimum values of B for a model with N ¼ 104 and
Btrue ¼ 100, as well as the results for the direct minimi-
zation of the corresponding exact quantities for actual
network realizations, and a comparison of the obtained
partitions using the normalized mutual information (NMI)
[100]. We also include the comparison with a dense BMS
criterion (see Appendix A) both in its full form [Eqs. (A5)
and (A8)] and with the partition likelihood term omitted,
i.e., PðfbigjBÞ ¼ 1, as was done in Refs. [23,40]. We see
that the dense BMS criterion fails to detect the correct
model size for sparser networks, which is in accordance
with its inadequacy in this region. The hierarchical model
provides, as expected, the best results and detects the
correct model for the sparsest networks. The incomplete
BMS criterion is clearly overconfident for sparse networks
and detects B > 1 structures even when the model lies
below the detectability threshold hki ¼ 1; hence, this
shows that the partition likelihood should not simply be
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discarded [101]. Both MDL and dense BMS fail to detect
anything for hki < 2, which corresponds to a strong
threshold [102], which interestingly lies above the strict
detectability limit at hki ¼ 1. This corresponds to a region
where detectability is possible, but only if the true value of
B is known (or if a more refined model-selection criterion
exists). Note that the incomplete BMS criterion performs
better in the region 1 < hki < 2, but this is perhaps better
interpreted as a by-product of its overall overconfidence for
very sparse networks. Note that all criteria eventually agree
on the correct value if hki is made sufficiently large, which
corresponds to the intuitive notion that the detection
problem becomes much easier for dense networks.
A prominent problem in the detectability of block

structures via other methods, such as modularity optimi-
zation [10], is when modules are merged together, regard-
less of how strong the community structure is perceived to
be. For the modularity-based approach, when considering a
maximally modular network, similar to the PP model with
c → 1, but with the additional restriction that the graph
remains connected, it has been shown [14] that modules are
merged together as long as B >

ffiffiffiffi
E

p
. This phenomenon is

considered counterintuitive, and has been called the
“resolution limit” of community detection via this method
[103]. As it happens, this problem does not only occur for

modularity-based methods, but also if one does statistical
inference based on MDL. For the nonhierarchical model, it
can be shown that, according to this criterion, the optimal
number of blocks scales as B� ≃ μðhkiÞ ffiffiffiffi

N
p

, where μðxÞ is
an increasing function [32]. Therefore, if the planted
number exceeds this threshold, blocks will be merged
together, despite the fact that the block structure is
detectable with arbitrary precision if one knows the correct
value of B, and it sufficiently exceeds the detectability
threshold hki > 1 of the PP model. This means that the true
parameters of the model can no longer be used to compress
the generated data. This is a direct result of the assumption
that all possible block structures of a given size are equally
possible, and the number of such models becomes very
large, with a model description length scaling roughly with
∼B2 lnEþ N lnB. In the presence of additional assump-
tions about the model, such as the fact that one is dealing
with the PP model instead of a more general block
structure, this can, in principle, be improved. However,
in most practical situations, such assumptions cannot be
made. One main advantage of the nested model is that this
limit can be overcome without requiring such prior knowl-
edge. The description length via the nested model for the
maximally modular network above is given by Eq. (11),
with Btrue ¼ B. As can be seen, this equation has only log-
linear dependencies on the model size B, instead of the
quadratic one present in the flat MDL. The result of this is
that, if one finds the value of B�, which minimizes the
nested description length, one obtains the scaling

B� ∝
N
lnN

; (12)

for sufficiently large N. This is a significant improvement,
since the maximum number of detectable blocks grows
almost linearly with the number of nodes. Thus, a char-
acteristic detectable block sizeN=B� ∼

ffiffiffiffi
N

p
is replaced by a

much smaller value N=B� ∼ lnN, which allows for a
precise assessment of small communities even in very
large networks.
It is possible to understand in more detail the origin of

the improvement by considering a related problem, which
is the detection of specific blocks that are much smaller
than the remaining network. Another facet of the resolution
limit manifests itself when two such blocks are merged
together, despite the fact that if they are considered in
isolation they would be kept separate. Here, we consider
this problem by using a slightly modified scenario than the
one proposed in Ref. [14], which is a network composed of
two fully isolated blocks, each with ec=2 internal edges and
nc nodes, and a remaining network with N nodes, E edges,
average degree hki ¼ 2E=N, and an arbitrary topology [see
Fig. 3(c)]. We may decide if these blocks are merged
together by considering the difference in the description
length. The entropy difference for the merge is simply
ΔSt ¼ ec ln 2 (where we assume ec ≪ n2c, but the dense

FIG. 2. Model selection results for a PP model with N ¼ 104,
Btrue ¼ 100, and fully isolated blocks (c ¼ 1), using the model-
selection criteria described in the text. The top panel shows the
inferred value of B versus the average degree hki in the network.
The solid lines show the theoretical value according to each
criterion, and the data points are direct optimization of the
corresponding quantities for actual generated network, averaged
over 40 independent realizations. The bottom panel shows the
normalized mutual information (NMI) between the inferred and
planted partitions. The dashed line marks the threshold hki ¼ 1
where inference becomes impossible for N → ∞.
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case can be computed as well, with no significant differ-
ence in the result). For the flat block model,
we have ΔLflat ¼ LL¼1ðEþ ec; N þ 2nc; B − 1; fnrg∪
f2ncgÞ − LL¼1ðEþ ec; N þ 2nc; B; fnrg∪fnc; ncgÞ, com-
puted using Eq. (10). For this case, the point at which the
merge happens, ΔLflat þ ΔSt ¼ 0, will depend not only on
the values of E and N, but also on the average block size
N=B of the remaining network, as can be seen in Figs. 3(a)
and 3(b). As the number of blocks in the remaining network
approaches the maximum detectable value, B� ∼

ffiffiffiffi
N

p
, the

more difficult it becomes to resolve the smaller blocks. The
detectable region recedes further with increasing hki, and
also with the number of nodes in the remaining network as
e�c ∼

ffiffiffiffi
N

p
. Hence, the denser or larger the remaining net-

work, the harder it becomes to detect the smaller blocks
with the flat variant of the model. In Fig. 3 are also shown
the values of e�r for which modularity also fails to separate
the blocks (if one considers that they are connected to
themselves and to the rest of the network by single edges
[104]), which are overall compatible with the flat MDL
criterion. The situation changes significantly with the
nested model. To consider the merge, we assume an

optimal block hierarchy that splits at the top into two
branches, the left one containing the two smaller blocks and
the right one containing the remaining network and its
arbitrary hierarchical structure [see Fig. 3(d)]. To consider
the merge, we need to compute the description length only
at the lowest level, since the rest remains unchanged after
the merge. By computing the difference via Eq. (5), after
some manipulations we obtain ΔΣnested ¼ ΔSt þ ln nc−
lnðð 3ecÞÞ þ lnðB þ 1Þ − lnðB þ N − 1Þ − lnðB1 þ B þ 2Þ,
with B ¼ B0. Note that this expression is independent of E,
and, hence, the density of the remaining network cannot
influence the merging decision. Since B1 ≤ B, and assum-
ing B ≫ 1, we obtain ΔΣnested ≃ ΔSt þ ln nc − ln½ðec þ 2Þ
ðec þ 1Þ� − lnðBþ NÞ, and, hence, the dependence on
either N or B is again only logarithmic,
e�c ≈ ½lnðBþ NÞ − ln nc�= ln 2, as shown in Fig. 3(b).
With this example, one can notice that the nested model
is capable of compartmentalizing the network at the upper
levels, such that the lower-level branches can become
almost independent of each other. This means that, in
many practical situations, one can sufficiently overcome
the resolution limit without abandoning a global model that
describes the whole network at once.
In the following section, we specify an efficient algo-

rithm to infer the parameters of the nested block model in
arbitrary networks, and we test its efficacy in uncovering
the multilevel structure of synthetic as well as empirical
networks.

III. INFERENCE ALGORITHM

Individually, any specific level l of the hierarchical
structure is a regular block model, and, hence, the classi-
fication of the Bl−1 nodes of this level into Bl blocks
can be done via well-established methods, such as the
Monte Carlo method [32,40], simulated annealing, or belief
propagation [29,30,56]. Here, we use the method described
in Ref. [63], which is an agglomerative heuristic that
provides high-quality results, while being unbiased with
respect to the types of block structure that are inferred, and
is also very efficient, with an algorithmic complexity of
OðNln2NÞ, independent of the number of blocks B. If one
knows the depth L of the hierarchy, and all fBlg values, the
multilevel partitions can be obtained by starting from the
lowest level l ¼ 0 and progressing upwards to l ¼ L.
However, this cannot be done when the number and sizes
of the hierarchical levels are unknown. Although it is
relatively simple to heuristically impose such patterns as
binary trees or dendograms, these are not satisfactory given
the general character of the model, which accommodates
arbitrary branching patterns. However, traversing all pos-
sible hierarchies is not feasible for moderate or large
networks; thus, one must settle with approximative meth-
ods. Here, we propose a very simple greedy heuristic,
which, given any starting hierarchy, performs a series of
local moves to obtain the optimal branching. Although this

(a) (b)

(c) (d)

FIG. 3. Parameter region where two isolated blocks with ec=2
internal edges and nc ¼ ec=5 nodes are detectable as separate
blocks [shown schematically in panel (c)], as a function of the
average block size N=B, and depending on (a) the average degree
hki with N ¼ 105 and (b) the number of nodes N with hki ¼ 20.
The dashed curves show the boundaries for the nonhierarchical
block model, and the solid lines for the hierarchical variant. The
line segments on the right-hand side of the plots show the
detectability threshold for modularity [14], e�c ¼

ffiffiffiffiffiffi
2E

p
. The

points marked with stars (⋆) correspond to the maximum value
of B that is detectable in the remaining network with the
nonhierarchical model, and the dotted line shows the same
quantity for various hki values (i.e., the region on the left of
this curve corresponds to an overfitting of the remaining network,
according to the non-hierarchical criterion). (d) The hierarchical
construction used to decide if the two isolated blocks are merged
together with the nested model.
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algorithm is not guaranteed to find the global optimum, we
have found it to perform very well for many synthetic and
empirical networks, and it tends to find consistent hier-
archies, independently of the starting estimate. It is also
efficient enough not to hinder its application to very large
networks, since it does not significantly change the overall
algorithmic complexity of the inference procedure. The
algorithm is based on the following local moves at a given
hierarchy level l.
(1) Resize.—A new partition of the Bl−1 nodes into a

newly chosen number of blocks Bl is obtained. This is done
via the agglomerative heuristic mentioned previously, with
the modification that it must not invalidate the partition at
the level lþ 1; i.e., no nodes that belong to different blocks
at the upper level can be merged together in the current
level. This restriction enables the difference in Σ [Eq. (5)] to
be computed easily, since it depends only on the mod-
ifications made in the current and upper levels, l and lþ 1.
The actual new value of Bl is chosen via progressive
bisection of the range Bl ∈ ½Bl−1; Blþ1�, so that the mini-
mum of Σ is bracketed, and for each value of Bl attempted,
the best partition is found with the algorithm of Ref. [63].
(2) Insert.—A new level is inserted at position l. Its size

and partition are chosen exactly as in the resize
move above.
(3) Delete.—The model in level l is removed from the

hierarchy; i.e., the nodes of level l − 1 are grouped together
directly as described in level lþ 1.
Through repeated applications of these moves, it is

possible to construct any hierarchy. The actual greedy
optimization consists of starting with some initial hierarchy
and keeping track of whether or not each level is “done” or
“not done.” One initially marks all levels as not done and
starts at the top level l ¼ L. For the current level l, if it is
marked done, it is skipped and one moves to the level l − 1.
Otherwise, all three moves are attempted. If any of the
moves succeeds in decreasing the description length Σ, one
marks the levels l − 1 and lþ 1 (if they exist) as not done,
the level l as done, and one proceeds (if possible) to the
upper level lþ 1, and repeats the procedure. If no improve-
ment is possible, the level l is marked as done and one
proceeds to the lower level l − 1. If the lowest level l ¼ 0 is
reached and cannot be improved, the algorithm ends. Note
that, in order to keep the description length complete, we
must impose that BL ¼ 1 throughout the above process.
The final hierarchy will, in general, depend on the starting
hierarchy, and as was mentioned above, one cannot
guarantee that the global minimum is always found.
However, we find that, in the majority of cases, this
algorithm succeeds in finding the same or very similar
hierarchies, independently of the initial choice, which can
simply be fBlg ¼ f1g. However, the actual time it takes to
reach the optimum will depend on how close the initial tree
was to the final one, and, hence, it is difficult to give an
estimate of the total number of moves necessary. However,

the slowest move is the resize operation, which completes in
OðBl−1ln2Bl−1Þ steps, and, hence, most of the time is spent
at the lowest level l ¼ 0 with B−1 ¼ N, which scales well
for very large networks. We have succeed in obtaining
reliable results with this algorithm for networks in excess of
107 edges; hence, it is suitable for large-scale systems [105].

IV. SYNTHETIC BENCHMARKS

Here, we consider the performance of the nested
block model inference procedure on artificially constructed
networks. Here, we use a nested version of the usual
PP model [61], inspired by similar constructions done in
Refs. [51,64]. We define a seed structure with B0 blocks
and ½m1�rs ¼ δrsc=B0 þ ð1 − δrsÞð1 − cÞ=B0ðB0 − 1Þ, and
construct a nested matrix of depth L − 1 via
ml ¼ ml−1 ⊗ ml−1, where ⊗ denotes the Kronecker
product and l ∈ ½1; L − 1�. The parameters of the model
at level l are elrs ¼ 2Emrs, and all B ¼ BL−1

0 blocks
have the same number of nodes. Via spectral methods
[65], one can show that the detectability transition happens
at hki ¼ ½ðB0 − 1Þ=ðcB0 − 1Þ�2, which is the same as the
regular PP model with B ¼ B0 [29–31,66].

(a) (b)

(c) (d)

FIG. 4. Top: NMI between the inferred and true partitions for
network realizations of the nested PP model described in the text
with B1 ¼ 2, L ¼ 5, hki ¼ 20, and N ¼ 104, as a function of the
assortativity strength c, both via the standard stochastic block
model with B ¼ 16 and the nested variant with unspecified
parameters. The star symbols (⋆) show the value of L for the
inferred hierarchy. All points are averaged over 20 independent
realizations. The gray vertical line marks the detectability thresh-
old when B is predetermined, and the red line when the nested
model fails to detect any structure. Bottom: Example hierarchies
inferred for the values of c indicated in the top panel. The left-
hand image shows the network realization itself, and the
right-hand one the hierarchical structure [the planted hierarchy
corresponds to the one in (a)].
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In Fig. 4, we show the results of the inference procedure
for a generated model with B0 ¼ 2 and L ¼ 5, N ¼ 104

nodes, and hki ¼ 20. The correct number of blocks is
detected up to a given value of c > c�, where c� is the
detectability threshold. The hierarchy itself matches the
nested PP model exactly only for higher values of c, and
becomes progressively simplified for lower values. Note
that, for a large fraction of c values, the correct lower-level
partition is detected with a very high precision, but the
hierarchy that is inferred is simpler than the planted one. In
these cases, however, both the inferred hierarchy as well as
the planted model are fully equivalent; i.e., they generate
the same networks. In other words, the shallower hierar-
chies that are inferred correspond to identical representa-
tions of the same ers matrix at the lowest level, which
require less information to be described, in comparison to
the sequence of Kronecker products used in the model
specification, and, hence, cannot really be seen as a failure
of the inference method, since it simply manages to
compress the original model. Before the value of c reaches
the detectability threshold, the inference method settles on a
fully random L ¼ 1, B ¼ 1 structure, corresponding once
again to a parameter region where the block detection is
only possible with limited precision and if one knows the
correct model size. As predicated by the MDL criterion,
the inferred models tend to be as simple as possible, with
the hierarchies becoming shallower as one approaches a
random graph. The approach is, therefore, conservative,
which brings confidence to the blocks and hierarchies that

are actually found, since, despite the increased resolution
capabilities, it does not tend to find spurious hierarchies.
In Appendix B, we also include a comparison of the

method with other algorithms for community detection that
are not based on statistical inference.

V. EMPIRICAL NETWORKS

Here, we present a detailed analysis of some selected
empirical networks, as well as a meta-analysis of several
networks, spanning different domains and size scales. In all
cases, we use the degree-corrected stochastic block model
at the lowest hierarchical level, instead of the traditional
model, since it almost always provides better results.
Political blogs of the 2004 U.S. election.—This is a

network compiled by Adamic and Glance [67] of political
blogs during the 2004 presidential election in the U.S. The
nodes are N ¼ 1222 individual blogs, and E ¼ 19027
directed edges exists between pairs of blogs, if one blog
cites the other. This network is often used as an empirical
example of community structure, since it displays a
division along political lines, with two clearly distinct
groups representing those aligned with the Republican and
the Democratic parties. Indeed, if one applies the nested
block model to this network, the topmost division in the
hierarchy corresponds exactly to this bimodal partition,
which closely matches the accepted division (see Fig. 5).
This partition is also obtained with the nonhierarchical
stochastic block model if one imposes B ¼ 2 [24].

FIG. 5. The political blog network of Adamic and Glance [67]. Left: Topmost partition of the hierarchy inferred with the nested model.
Right: The same network, using a circular layout, with edge bundling following the inferred hierarchy [68] (indicated also by the square
nodes and the node colors). The size of the nodes corresponds to the total degree, and the edge color indicates its direction (from dark to
light). Nodes marked with a blue halo were incorrectly classified at the topmost level, according to the accepted partition in Ref. [67].
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However, the nested version reveals a much more complete
picture of the network, where these two partitions possess a
detailed internal structure, culminating in B0 ¼ 15 sub-
groups with quite heterogeneous connection patterns. For
instance, one can see that each of the two higher-level groups
possesses one or more subgroups composed mainly of
peripheral nodes, i.e., blogs that cite other blogs but are
not themselves cited as often. Conversely, both factions
possess subgroups that tend to be cited by most other groups,
and others which are cited predominantly by specific groups.
It is also interesting to note that a large fraction of the
connections between the two top-level groups are concen-
trated between only two specific subgroups, which, there-
fore, act as bridges between the larger groups.
This example shows that the model is capable of

revealing the structure of the network at multiple scales,
which reveal simultaneously the existence of the bimodal
large-scale division, as well the lower-level subdivisions.
The autonomous systems topology of the Internet.—

Autonomous systems (AS) are intermediary building
blocks of the Internet topology. They represent organiza-
tional units that are used to control the routing of packets in
the network. A single AS often corresponds to a network of
its own, which is usually owned by a private company or a
government body. The network analyzed here corresponds
to the traffic of information between the AS nodes, as
measured by the CAIDA project [106]. Each node in the
network is an AS, and a directed link exists between two
nodes if direct traffic has been observed between the two
AS. As of September 2013, the network is composed of
N ¼ 52 104 AS nodes and E ¼ 399 625 direct connections
between them. The application of the nested block model to
this network yields the hierarchy seen in Fig. 6, with
B ¼ 191 blocks at the lowest level. The most prominent
feature observed is a strong core-periphery structure, where

most connections go through a relatively small group of
nodes, which act as hubs in the network. The groups both in
the core and in the periphery seem strongly correlated to
geographical location. However, the nodes of the core
groups are not confined to a single geographical location,
and are instead spread all over the globe (see inset of Fig. 6
and the Supplemental Material [96]).
The film-actor network.—This network is compiled by

extracting information available in the Internet Movie
Database (IMDB), which contains each cast member and
film as distinct nodes, and an undirected edge exists
between a film and each of its cast members. If nodes
with a single connection are recursively removed, a net-
work of N ¼ 372 447 and E ¼ 1 812 312 remains (as of
late 2012). As can be seen in Fig. 7, the nested block model
fully captures the bipartite nature of the network and
separates movies and actors at the topmost hierarchical
level, and proceeds to separate them in geographical,
temporal, and topical (genre) lines. The observed partition
is similar to the one obtained via the nonhierarchical model
[32], but one finds B ¼ 971 blocks, instead of B ¼ 332
with the flat version.
Meta-analysis of several empirical networks.—We per-

form an analysis of several empirical networks shown in
Fig. 8, which belong to a wide variety of domains and are
distributed across many size scales. We use the nonhier-
archical stochastic block model as well as the nested
variant. In Figs. 8(a) and 8(b), we show the average block

FIG. 6. Large-scale structure of the Internet at the autonomous
systems level, as obtained by the nested stochastic block model,
displaying a prominent core-periphery architecture. The magni-
fication shows the nodes that belong to the “core” top-level
branch, containing AS nodes spread all over the globe, as shown
in the map inset. See the Supplemental Material [96] for a higher-
resolution version of this figure.

FIG. 7. Large-scale structure of the IMDB film-actor network.
Each node in this graph represents a lowest-level block in the
hierarchy, instead of individual nodes in the graph. The size of the
nodes indicates the number of nodes in each group. The hierarchy
branch at the top are the actors, and at the bottom are the films.
The labels classify each branch according to the most prominent
geographical and temporal characteristics found in the database.
See the Supplemental Material [96] for a higher-resolution
version of this figure.
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sizes N=B for all networks using both models. For the
nonhierarchical version, a clear N=B ∼

ffiffiffiffi
E

p
trend is

observed, which corresponds to the resolution limit present
with this method and other approaches as well. In Fig. 8(b),
we show the results for the nested model, where such a
trend can no longer be observed, and the smallest average
block sizes no longer seem to depend on the size of the
network, which serves as an empirical demonstration of
the lack of resolution limit shown previously. The values of
the description lengths themselves are also distributed in a
seemingly nonorganized manner [see Fig. 8(c)], i.e., no
general tendency for larger networks can be observed, other
than an increased range of possible values for larger E
values. Any difference observed seems to be due to the
actual topological organization, rather than intrinsic
constraints imposed by the method. We also compute

the modularity of the inferred block structures,
Q ¼ P

rerr=2E − e2r=ð2EÞ2, which measures how assorta-
tive the topology is. Higher values of Q close to 1 indicate
the existence of densely connected communities. The value
of Q is the most common quantity used to detect blocks in
networks, and it presumes that such assortative connections
are present. In contrast, by fitting a general stochastic block
model, no specific pattern is assumed, and the partition
found corresponds to the least random model that matches
the data. In Fig. 8, we show the values ofQ obtained for the
analyzed networks. Indeed, some networks are modular,
with high values of Q. However, one does not observe any
strong correlation of the description length and the mod-
ularity values. Hence, the most structured networks do not
necessarily possess much larger Q values, which indicate
that the building blocks of their topological organization
are not predominantly assortative communities (this is clear
in some of the examples considered previously, such as the
Internet AS topology and the IMDB network). However,
for many of these networks, it is probably possible to find
partitions that lead to much higher Q values. These
partitions would, on the other hand, correspond to block
model ensembles with a larger entropy than those inferred
via maximum likelihood. Therefore, the maximization
of Q in these cases would invariably discard topological
information present in the network and provide a much
simplified and possibly misleading picture of the large-scale
structure of the network. Hence, it seemsmore appropriate to
confine modularity maximization only to cases where the
assortative structure is known to be the dominating pattern.
However, even in these cases, methods based on statistical
inference possess clear advantages, such as the lack of
resolution limit, model selection guarantees, and the overall
more principled nature of the approach.

VI. DISCUSSION

In this paper, we present a principled method to detect
hierarchical structures in networks via a nested stochastic
block model. This method fully generalizes previous
approaches for the detection of hierarchical community
structures [43–49], since it makes no assumptions either on
the actual types of large-scale structures possible (assorta-
tive, dissortative, or any arbitrary mixture) or on the
hierarchical form, which is not confined to binary trees
or dendograms. We show that a major advantage of this
approach is that it breaks the so-called resolution limit of
approaches, such as modularity optimization and nonhier-
archical model inference, where modules smaller than a
characteristic size scaling with

ffiffiffiffi
N

p
cannot be resolved. With

the nested model presented, this characteristic scale is
replaced by a much smaller logarithmic dependence, making
it, in practice, nonexistent for many applications. This
increased resolution comes as a result of robust model
selection principles, and is integrated with the desirable
capacity of differentiating between noise and actual

(a) (b)

(d)(c)

FIG. 8. (a) The average block size N=B obtained using the
nonhierarchicalmodel, as a functionofE, for the empirical networks
listed in the bottom table (the Dir. column specifies whether a given
network is directed). The dashed line shows a

ffiffiffiffi
E

p
slope. (b) The

sameas (a)butwith thenestedmodel. (c)Thedescription lengthΣ=E
for thenestedmodel asa functionofE. (d)ThevalueofmodularityQ
as function of Σ=E, for the nested model.
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structure, and, therefore, it is not susceptible to the detection
of spurious communities. We show that the model is capable
of inferring the large-scale features of empirical networks in
significant detail, even for very large networks.
This type of approach should, in principle, also be

applicable to other model classes, such as those based on
overlapping [9,83–85] or link communities [25,86]. We also
predict that it should serve as a more refined method of
detectingmissing information in networks [23,44], as well as
for the prediction of the network evolution [87], determining
the more salient topological features [88,89] or large-scale
functional summaries of the network topology [90].
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APPENDIX A: BAYESIAN
MODEL SELECTION

In the following, we compare Bayesian model selection
via integrated likelihood with the MDL approach consid-
ered in the main text, and we show that they lead to the
same criterion if the model constraints are equivalent.
For the purpose of performing BMS, we evoke the most

usual definition of the stochastic block model ensemble,
where one defines as parameters the probabilities prs that
an edge exists between two nodes belonging to blocks r
and s. The posterior likelihood of observing a given graph
with a block partition fbig and model parameters fprsg is

PðGjfbig; fprsg; BÞ ¼
Y
rs

pers=2
rs ð1 − prsÞðnrnr−ersÞ=2:

(A1)

The inference procedure consists in, as before, maximizing
this quantity with respect to the parameters fprsg and
the block partition fbig. It is easy to see that if one
maximizes Eq. (A1) with respect to fprsg, one recovers
maxfprsg lnPðGjfbig; fprsg; BÞ ¼ −St, given in Eq. (1),
so indeed these models are equivalent. However, this
does not provide a means for model selection, since
models with a larger number of blocks B will invariably
posses a larger likelihood. Instead, the Bayesian model
selection approach is to consider the joint probability
PðG; fbig; fprsg; fprgjBÞ of observing not only the graph
but also the partition fbig, the model parameters fprsg, as
well as the parameters fprg that control the probability of
each partition fbig being observed, which is given by

Pðfbigjfprg; BÞ ¼
Y
r

pnr
r : (A2)

This invariably leads to the inclusion of prior probabilities
of observing the model parameters, PðfprsgjBÞ and
PðfprgjBÞ. Now, instead of finding the model parameters
that maximize this quantity, we compute the integrated
likelihood [38,42,55],

PðG; fbigjBÞ ¼
Z

dprsdprPðG; fbig; fprsg; fprgjBÞ
(A3)

¼
Z

dprsPðGjfbig; fprsg; BÞPðfprsgjBÞ

×
Z

dprPðfbigjfprgÞPðfprgjBÞ (A4)

¼ PðGjfbig; BÞ × PðfbigjBÞ: (A5)

By maximizing PðG; fbigjBÞ, instead of Eq. (A1), one
should avoid overfitting the data, since the larger models with
many parameters are dominated by a majority of choices that
fit the data very badly, and, hence, have a smaller contribution
in the integral of Eq. (A3). Therefore, the maximization of the
integrated likelihood also corresponds to an application of
Occam’s razor, and one should expect it to deliver results
compatible with MDL [53]. However, in practice, things are
more nuanced, since the value of Eq. (A3) is heavily
dependent on the choice of priors PðfprsgjBÞ and
PðfprgjBÞ. For the block partitions themselves, this choice
is more straightforward. Since one wants to be agnostic with
respect to what block sizes are possible, one should choose a
flat prior PðfprgjBÞ ¼ DirichletðfprgjfαrgÞ, with αr ¼ 1,
so that all counts are equally likely. The integral of Eq. (A4) is
then computed as

lnPðfbigjBÞ ¼ − ln
��B
N

��
− lnN!þ

X
r

ln nr!; (A6)

which is identical to the partition description length of
Eq. (7), i.e., lnPðfbigjBÞ ¼ −L0

t .
For the block probabilities, on the other hand, the

situation is more subtle. A common choice is the flat prior
PðfprsgjBÞ ¼ 1 [23,38,40–42]. This choice is agnostic
with respect to what block structures are expected, and it is
also practical, since the integral can be evaluated exactly
[23,42],

lnPðGjfbig; BÞ ¼ −
X
r>s

ln

�
nrns
ers

�
þ ln ðnrns þ 1Þ

−
X
r

ln

�
n2r

err=2

�
þ ln ðn2r=2þ 1Þ

(A7)

≃ −
1

2

X
rs

nrnsHb

�
ers
nrns

�
− ðBþ 1Þ

X
r

ln nr; (A8)
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where the approximation in Eq. (A8) was made assuming
nr ≫ 1, and HbðxÞ is the binary entropy function.
However, there is one important issue with this approach.
Namely, there is a strong discrepancy between the models
generated by the flat prior PðfprsgjBÞ ¼ 1 and most
observed empirical networks. Specifically, typical
parameters with prs ¼ 1=2 sampled by this prior will
result in dense networks with average degree hki ¼P

rsprsnrns=N ¼ N=2. However, most large empirical
networks tend to be sparse, with an average degree that
is many orders of magnitude smaller than N. Hence, as N
becomes large, most observed networks will lie in a
vanishingly small portion of the parameter space produced
by this prior. A better choice would constrain the average
degree to something closer to what is observed in the
data, but at the same time being otherwise noninformative
regarding the block structure. A choice such as
PðfprsgjBÞ ∝ δðPrsprsnrns − 2EÞ, where E is the num-
ber of edges in the observed network, seems appropriate,
but the integral in Eq. (A4) becomes difficult to solve.
Instead, an easier approach is to modify the model sightly,
so that the average degree is implicitly constrained. Here,
we consider the model variant where the number of edges E
is a fixed parameter, and each sampled edge may land
between any two nodes belonging to blocks r and s with
probability qrs, and we have, therefore,

P
r≥sqrs ¼ 1. The

full posterior likelihood of this model is

PðGjfbig; fqrsg; E; BÞ ¼
E!

Ωðfersg; fnrgÞ
Q

r≥sq
mrs
rsQ

r≥smrs!
;

(A9)

where Ωðfersg; fnrgÞ is, as before, the number of different
graphs with the same block partition and edge counts, and
mrs ¼ ers if r ≠ s or err=2 otherwise. By maximizing
Eq. (A9) with respect to fqrsg, one obtains
maxfqrsg lnPðGjfbig;fqrsg;E;BÞ≃− lnΩðfersg;fnrgÞ ¼
−St, as long as mrs ≫ 1 or mrs ¼ 0, so it also is equivalent
to the previous models in this limit. With this reparamet-
rization, the average degree remains fixed independently of
the choice of prior. Therefore, we may finally use a flat
prior PðfqrsgjBÞ ¼ Dirichletðfqrsgjfαrs ¼ 1gÞ, without
the risk of the graphs becoming inadvertently dense, and
again the integrated likelihood can be computed exactly,

PðGjfbig; BÞ ¼
Z

dqrsPðGjfbig; fqrsg; E; BÞPðfqrsgjBÞ
(A10)

¼
�
Ωðfersg; fnrgÞ ×

��ððB
2
ÞÞ

E

���−1
: (A11)

By inserting Eq. (A11) into Eq. (A5) and comparing with
Eq. (10), we see that lnPðG; fbigjBÞ ¼ −ΣL¼1, and we
conclude reassuringly that the MDL approach is fully

equivalent to BMS when all model constraints are com-
patible. In fact, even in the dense case, although not
quite the same, the (dense) BMS and MDL penalties are
very similar. If one assumes N ≫ B2, E ∝ N2, and equal
block sizes nr ¼ N=B, both penalties become
∼BðBþ 1Þ lnN þ N lnB. Therefore, it seems that what-
ever differences arising from the two approaches stem
simply from nuances in the choice of prior probabilities.
This comparison also allows us to interpret the nested block
model as a hierarchical Bayesian approach, where the
priors PðfqrsgjBÞ are replaced by a nested sequence of
priors and hyperpriors, so that their integrated likelihood
matches the description length defined previously.

APPENDIX B: COMPARISON WITH OTHER
COMMUNITY DETECTION METHODS

In this section, we compare results obtained for synthetic
networks with popular community detection methods that
are not based on statistical inference. Here, we focus not
only on the capacity of the method of finding a partition
correlated with the planted one, but also on the number of
blocks detected. We concentrate on two methods that have
been reported to provide good results in synthetic bench-
marks [91], namely, the Louvain method [12], based on
modularity optimization, and the Infomod method
[45,92,93], based on compression of random walks. We
make use of the LFR benchmark [94], which corresponds
to a specific parametrization of the degree-corrected sto-
chastic block model [24], where both the degree distribu-
tion and the block size distribution follow truncated power
laws. Here, we employ a parametrization similar to
Ref. [91], with a degree distribution following a power
law with exponent −2 and a minimum degree kmin ¼ 5, and
a community size distribution also following a power law,
but with exponent −1, and minimum block size of 50. We
also impose the following additional restrictions: The total
number of blocks is always fixed at B ¼ 100, and for every
node i belonging to block r, its degree ki cannot exceed

ffiffiffiffiffi
nr

p
,

to avoid intrinsic degree-degree correlations [50]. With this
parameter choice, the networks generated with N ¼ 2 × 104

possess an average degree hki≃ 7.8. The actual block
structure is parametrized as ers¼ð1−cÞeres=2Eþδrscer,
where c controls the assortativity: For c ¼ 1, all edges
connect nodes of the same block, and for c ¼ 0, we have a
fully random configuration model [107].
Because the different methods result in quite different

numbers of detected blocks, the normalized mutual infor-
mation is not the most appropriate measure of the overlap
between partitions in this case. This is due to the fact that, if
the number of nodes is kept fixed, the NMI values tend to
be larger simply if the number of blocks is increased, even
if this larger partition is in no other way more strongly
correlated to the true one. Another measure that is less
susceptible to this problem is the variation of information
(VI) [95], defined as
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VIðfxig; fyigÞ ¼ HðfxigÞ þHðfyigÞ − 2Iðfxig; fyigÞ;
(B1)

where HðfxigÞ is the entropy of the partition fxig and
Iðfxig; fxigÞ is the (non-normalized) mutual information
between fxig and fyig. A value of VI equal to zero means
that the partitions are identical, whereas any positive value
indicates a reduced overlap between them.
The VI values between the planted partitions and those

obtained with different methods for several network real-
izations of the above model are shown in Fig. 9, together
with the obtained number of blocks. By observing the VI
values for the inference method with a fixed number of
blocks B ¼ 100, we conclude that the strict detectability
transition (when the value of B is known) lies somewhere
slightly above c ≈ 0.2. However, the model-selection pro-
cedure based on the nested stochastic block model pre-
sented in the main text discards any structure below the

c ≈ 0.4 range, and decides on a fully random B ¼ 1
structure. Above this value, the inferred value of B
increases from B ¼ 1 until agreeing with the planted value
for sufficiently large c values. As can also be seen in Fig. 9,
the Louvain method exhibits the “worst of both worlds,”
i.e., it fails to find the correct partition for all values except
c ¼ 1, finding systematically smaller values of B, while at
the same time finding spurious partitions below the
detectability threshold, even when the network is com-
pletely random (c ¼ 0). The Infomod method, on the other
hand, seems to find partitions that are largely compatible
with the planted one, at least for the parameter region above
c ≈ 0.6. However, for even larger values of c, this method
detects a number of blocks that is significantly larger than
the planted value, which increases steadily as c decreases.
Hence, this method is also incapable of separating structure
from noise, and finds spurious partitions far below the
detectability threshold. Thus, from the three methods
analyzed, the one described in the main text is the only
one that combines the following three desirable properties:
(1) optimal inference in the detectable range, (2) guarantee
against overfitting and detection of spurious modules, and
(3) fully nonparametric implementation.
The suboptimal behavior of the modularity-based

method is simply a combination of the resolution limit
[14] and lack of built-in model selection based on statistical
evidence [13]. It is not currently known if the Infomod
method suffers from problems similar to the resolution
limit, but clearly it lacks guarantees against detection of
spurious modules. Although it is also based on the principle
of parsimony, it tries to compress random walks taking
place on the network, instead of the network itself.
Apparently, the method cannot distinguish between the
actual planted block structure and quenched topological
fluctuations—both of which will affect random walks—
and gradually transitions between the two properties in
order to best describe the network dynamics. (As has been
shown in Ref. [91], this problem diminishes if the average
degree of the network is made sufficiently large, in which
case the method finally settles in a B ¼ 1 partition for fully
random graphs.) On the other hand, the method in the main
text is based on maximizing the likelihood of the exact
same generative process that was used to construct the
network, which puts it in clear advantage over the other two
(and, in fact, many other methods, including all those
analyzed in Refs. [91,94]), in addition to including a robust
and formally motivated model-selection procedure.

APPENDIX C: DIRECTED AND
UNDIRECTED NETWORKS

As mentioned in the main text, the model described is
easily generalized for directed graphs. For the ensemble
entropies, we have for the undirected case [50]

FIG. 9. Top: Variation of information (VI) between the planted
and obtained partitions as a function of the assortativity parameter
c, for networks with N ¼ 2 × 104, generated as described in the
text. The legend indicates results obtained with different meth-
ods: Fitting the degree-corrected stochastic block model with a
fixed number of blocks B ¼ 100 (SBM), performing model
selection with the nested stochastic block model (Nested
SBM), the Louvain modularity maximization method [12], and
the Infomod method [45,92,93]. Bottom: The obtained number
of blocks B as a function of c, for the same methods as in the
top panel. The gray horizontal line marks the planted B ¼ 100
value. All results were obtained by averaging over 20 network
realizations.
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St ¼
1

2

X
rs

nrnsHb

�
ers
nrns

�
; (C1)

while for the directed case it reads

Sd
t ¼

X
rs

nrnsHb

�
ers
nrns

�
; (C2)

where HbðxÞ ¼ −x ln x − ð1 − xÞ lnð1 − xÞ is the binary
entropy function. In both cases, ers is the number of edges
from block r to s (or the number of half-edges for the
undirected case when r ¼ s), and nr is the number of nodes
in block r. In the sparse limit, ers ≪ nrns, these expres-
sions may be written approximately as

St ≅ E −
1

2

X
rs

ers ln

�
ers
nrns

�
; (C3)

Sd
t ≅ E −

X
rs

ers ln

�
ers
nrns

�
: (C4)

For the degree-corrected variant with “hard” degree con-
straints, we have

Sc ≅ −E −
X
k

Nk ln k! −
1

2

X
rs

ers ln

�
ers
eres

�
; (C5)

Sd
c ≅ −E −

X
kþ

Nkþ ln kþ! −
X
k−

Nk− ln k−!

−
X
rs

ers ln
�

ers
eþr e−s

�
; (C6)

where er ¼
P

sers is the number of half-edges incident on
block r, and eþr ¼ P

sers and e−r ¼ P
sesr are the number

of out and in edges adjacent to block r, respectively. These
expressions are also only valid in the sparse limit, which in
this case amounts to the following conditions,

ers
hk2ir − hkir

hki2r
hk2is − hkis

hki2s
≪ nrns; (C7)

where hklir ¼
P

i∈rk
l
i=nr [for the directed case, we simply

replace hklir → hðkþÞlir and hklis → hðk−Þlis in the equa-
tion above]. Unfortunately, there is no closed-form expres-
sion for the entropy outside the sparse limit, unlike the
traditional variant [50].
For the upper-level multigraphs, the entropies are [50]

Sm ¼
X
r>s

ln
��nrns

ers

��
þ
X
r

ln
��ððnr

2
ÞÞ

err=2

��
; (C8)

Sd
m ¼

X
rs

ln
��nrns

ers

��
; (C9)

where, as before, ððnmÞÞ ¼ ðnþm−1
m Þ is the number of

m-combinations with repetitions from a set of size n.
For the degree-corrected model, the description length

needs to be augmented with the information necessary to
describe the degree sequence, analogously to Eq. (9) for the
undirected case,

Lc ¼ Lt þ
X
r

nrHðfpr
k−;kþgÞ; (C10)

where fpr
k−;kþg is the joint (in, out)-degree distribution of

nodes belonging to block r.
Note that other generalizations for the directed case are

possible [27], and it should be straightforward to adapt the
nested model for them as well.
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