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The technical merits of weak-value-amplification techniques are analyzed. We consider models of
several different types of technical noise in an optical context and show that weak-value-amplification
techniques (which only use a small fraction of the photons) compare favorably with standard techniques
(which use all of them). Using the Fisher-information metric, we demonstrate that weak-value techniques
can put all of the Fisher information about the detected parameter into a small portion of the events and
show how this fact alone gives technical advantages. We go on to consider a time-correlated noise model
and find that a Fisher-information analysis indicates that the standard method can have much larger
information about the detected parameter than the postselected technique. However, the estimator needed to
gather the information is technically difficult to implement, showing that the inefficient (but practical)
signal-to-noise estimation of the parameter is usually superior. We also describe other technical advantages
unique to imaginary weak-value-amplification techniques, focusing on beam-deflection measurements. In
this case, we discuss combined noise types (such as detector transverse jitter, angular beam jitter before the
interferometer, and turbulence) for which the interferometric weak-value technique gives higher Fisher
information over conventional methods. We go on to calculate the Fisher information of the recently
proposed photon-recycling scheme for beam-deflection measurements and show it further boosts the Fisher
information by the inverse postselection probability relative to the standard measurement case.
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I. INTRODUCTION

There has arisen considerable interest in the use of
“weak-value” techniques to improve the accuracy of
precision measurement. While it has been recognized for
some time that these techniques, in and of themselves, do
not overcome fundamental limits for coherent light sources
(“standard quantum limit”) (see, e.g., Ref. [1]), there are
technical advantages in that these methods make the
experimental approach to these limits relatively easy with
common experimental equipment. Indeed, these techniques
have already been successfully applied in the lab to
measure with high precision the optical spin Hall effect
and other polarization-dependent beam deflections [2–4],
interferometric deflections of optical beams [5–7], phase
shifts [8–10], frequency shifts [11], temperature shifts [12],
and velocity measurements [13]. In most of these experi-
ments, the weak-value-amplification (WVA) technique met
and even surpassed the sensitivity of standard techniques in
the field. For a recent review of this topic and related weak-
value research, see Ref. [14].

Although these experimental findings have been
employed in a number of different research groups and
applied to metrological questions of a number of different
physical parameters, there are still some open questions and
even controversy [15,16] about this technique: Precisely
how and to what extent can WVA techniques help against
technical noise or give some kind of technical advantage
in comparison to the standard measurement techniques?
Starling et al. considered a particular parameter estimator,
showing that WVA could give an advantage [1]. An
important step was made in this question when
Feizpour, Xingxing, and Steinberg [10] were able to
consider a more general kind of technical noise and show
that so long as it has a long correlation time, WVA also
helps suppress it in the signal-to-noise ratio (SNR). In other
closely related work, Kedem [17], Brunner and Simon [18],
and Nishizawa et al. [19] also showed an increased
performance of the SNR in the presence of technical noise.
In contrast to these results, recent papers have claimed

that WVA gives no technical advantage [15,16]. The
argument is justified by using a Fisher-information analysis
of technical noise applied to the signal carrier (e.g., such as
beam-displacement jitter). We note the Fisher-information
analysis has been recently applied to WVA by other authors
as well [13,20]. However, this particular form of technical
noise does not represent the complete picture. There are
many forms of technical noise that are not incorporated in
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this model. For example, in optical beam deflection, noise
sources include electronics noise, transverse displacement
and angular jitter, analog-to-digital discretization noise [15],
turbulence, vibration noise of the other optical elements,
spectral jitter, etc. In light of this criticism, it is our aim in this
work to analyze some of these models and examples using
Fisher-information and maximum-likelihood methods in
order to understand in precisely what sense they give or
fail to give a technical advantage, as well as describe other
technical advantages in beam-deflection (and derivative)
experiments where the imaginary WVA technique does lead
to the optimal Fisher information even in the presence of
some types of noise sources mentioned above.
The paper is organized as follows. In Sec. II, we

introduce the concepts of Fisher-information and
maximum-likelihood techniques and illustrate how to apply
them to Gaussian random measurements. We introduce
weak-value amplification and postselection in Sec. III.
Uncorrelated, displacement technical noise is discussed
in Sec. IV. Time-correlated technical noise is analyzed in
Sec. V. Air turbulence is discussed briefly in Sec. VI. The
combination of displacement jitter and turbulence is dis-
cussed in Sec. VII, showing the weak-value technique can
suppress both. The weak-value technique is shown to better
suppress angular jitter in deflection measurements in
Sec. VIII. We examine a recent photon-recycling proposal
in Sec. IX and show the Fisher information is boosted by
the inverse postselection probability. Our conclusions are
summarized in Sec. X.

II. FISHER INFORMATION OF AN
UNKNOWN PARAMETER

Fisher information describes the available information
about an unknown parameter in a given probability dis-
tribution. Consider an unknown parameter d, upon which
some random variable x depends. Let the probability
distribution of x, given d, be pðxjdÞ. The score of the
distribution is defined as S ¼ ∂d logpðxjdÞ, which is a
measure of the sensitivity of pðxjdÞ with respect to the
parameter d. Assuming p is a smooth function, the average
of S over p is 0, and its variance (second moment) is
defined as the Fisher information

IðdÞ ¼ hS2i ¼
Z

dxpðxjdÞ½∂d logpðxjdÞ�2 (1)

¼ −
Z

dxpðxjdÞ∂2
d logpðxjdÞ: (2)

Fisher information is additive over independent trials,
so for N statistically independent measurements (such as
the collection of N photons from a coherent source),
INðdÞ ¼ NIðdÞ.
Consider an unbiased estimator of d, called d̂. This

estimator d̂ is any statistical estimator whose expectation

value is d. The variance of d̂ is bounded from below by the
Cramér-Rao bound (CRB), or Var½d̂� ≥ IðdÞ−1. Thus, the
Fisher information sets the minimal possible estimate on
the uncertainty of d, for any unbiased estimator.
To illustrate how this formalism works, let us consider a

Gaussian distribution for pðfxigjdÞ that will describe N
independent measurements fxig of an unknown mean with
known variance σ2 for each measurement

PGðfxigjdÞ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
− ðxi − dÞ2

2σ2

�
: (3)

In this example, the score is given by S¼P
N
i¼1ðxi−dÞ=σ2,

so indeed hSi ¼ 0, and the Fisher information is given by

IGðdÞ ¼ Nσ−2: (4)

Thus, the CRB on the variance is simply σ2=N.
Consequently, the minimum resolvable signal dmin will
be of the order of dmin ∼ σ=

ffiffiffiffi
N

p
. In order to achieve this

minimum bound on the variance, the optimal unbiased
estimator d̂opt (often called the efficient estimator) must be
used. We can find it with maximum-likelihood methods by
setting the score to zero and replacing d by d̂opt. In the case
of PG, we have

Sðd → d̂optÞ ¼
XN
j¼1

ðxj − d̂optÞ=σ2 ¼ 0; (5)

so we find the efficient estimator

d̂opt ¼ ð1=NÞ
XN
j¼1

xj; (6)

which is simply the average of the data in this case. We can
check that the variance gives the CRB: hðd̂opt − dÞ2i ¼
ð1=N2ÞPN

i;jhxixji ¼ σ2=N. In an optical context, this
variance corresponds to the “standard quantum limit”
scaling with N, which we can interpret as the photon
number. Here, the parameter d can be interpreted as the
displacement of a beam with transverse width σ. One can
immediately see that, in absence of noise or pixelation,
the maximum Fisher information occurs for the smallest
allowable beam waist. This result is intuitively obvious.
If a beam of very small waist experiences a small shift
in its mean value, a position-sensitive detector (e.g., a split
detector) would see a large change in intensity as a function
of its position compared to a beam with a large waist. In the
rest of this paper, we will consider coherent Gaussian
distributions for simplicity. While this assumption is some-
what restrictive, it is also quite reasonable since most of the
experiments have been performed using coherent Gaussian
probability densities. This Gaussian approach is also quite
nice theoretically, owing to the fact that the log-likelihood
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function is twice differentiable, and we can use variations
of the simple form of the Fisher information derived above.

III. REAL WEAK VALUES AND POSTSELECTION

To apply the above results to recent optical experiments,
we briefly recall a few facts about weak values [21]. If a
quantum system is prepared in an initial state jii, has a
system operator A that is measured by weakly interacting
with a meter prepared in a state of spatial variance σ2, and is
then postselected in a final state jfi with probability
γ ¼ jhfjiij2, the meter degree of freedom will be shifted
by a multiplicative factor

Aw ¼ hfjAjii=hfjii; (7)

where Aw is the weak value of the operator A, while leaving
the width σ unchanged. (For the moment, we consider the
real weak-value case for simplicity.) Such behavior is in
contrast to the nonpostselected case, where if the initial
state is an eigenstate of A, so that Ajii ¼ aijii, the average
meter shift is aid, which can be much smaller in size than
the weak-value shift Awd. These results are based on
assuming a system-meter unitary evolution of the form
U ¼ expð−idpAÞ, where d is the weak interaction param-
eter and p is the conjugate momentum of the meter degree
of freedom. This type of evolution can be obtained, for
example, with a Hamiltonian of the form HðtÞ ¼ dpAδðtÞ.
This process gives rise to a (normalized) Gaussian meter

probability distribution consisting of N0 ¼ γN measure-
ment events fx0ig

P0
Gðfx0igjdÞ ¼

YN0

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
− ðx0i − AwdÞ2

2σ2

�
: (8)

Computing the CRB on the variance as before gives the
score to be S ¼ Aw

P
N0
i¼1ðx0i − AwdÞ=σ2, so the Fisher

information is

IGðdÞ ¼ ðAwÞ2N0σ−2 ¼ hfjAjii2Nσ−2: (9)

Note that the postselection probability γ cancels out.
Therefore, the Fisher information is the same as before,
except for a factor hfjAjii2, a number that can be arranged
to approach 1 for a two-level system with a judicious choice
of operator, pre- and postselection (see the Appendix). This
result is consistent with the SNR analysis of Ref. [1].
Similar points were made by Hofmann et al. [22]. We can
then extract all the Fisher information from the weak value,
showing that, ideally, the weak-value technique can put all
of the Fisher information into the postselected events,
which matches the Fisher information in the standard
methods using all of the events. We note that it is not
surprising that considering any subensemble gives less
information than the whole ensemble. What is surprising is
that using this particular small subensemble gives one

asymptotically all the Fisher information. This fact alone
gives us technical advantages, as we shall see.
Following the maximum-likelihood method presented in

Eqs. (5) and (6), the weak-value efficient estimator is given
by d̂WV ¼ ð1=AwN0ÞPN0

j¼1 x
0
i.

IV. TYPE-ONE TECHNICAL NOISE:
DISPLACEMENT NOISE

We first treat a special case of the noise model of Knee
and Gauger [15], who consider the application of arbitrary
non-time-correlated technical noise to meter wave func-
tions of any shape. We restrict the analysis to having both
the N random variables and the technical noise normally
distributed with mean 0. The former have variance σ2, and
the latter have covariance J2δij. We note that similar
models have also been previously discussed in
Refs. [1,10,17]. Knee and Gauger comment that this kind
of noise might represent transverse beam-displacement
jitter (in a collimated beam), for example. We call this
model type-one technical noise. The measured signal will
be the sum of si ¼ xi þ ξi, so the distribution function for
si is pðfsigjdÞ ¼

R
DxDξpðfxigÞpðfξigÞδðsi − xi − ξiÞ,

where
R
Dx ¼ Q

N
i¼1

R
dxi integrates over all variables.

Integrating over xi gives the distribution of the measured
results as a convolution of the two distributions

pðfsigjdÞ ¼
YN
i¼1

Z
dξiN exp

�
− ðd − si − ξiÞ2

2σ2

�
e−ξ2i =2J2

¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2 þ J2Þ

p exp

�
− ðd − siÞ2
2ðσ2 þ J2Þ

�
;

(10)

whereN is a normalization constant. Calculating the Fisher
information as before, for N independent measurements
(photons), gives

IKG ¼ N
σ2 þ J2

: (11)

The technical noise simply broadens the width, decreas-
ing the Fisher information. In the weak-value case, we
follow the same procedure, except that d → Awd, and
N → N0 ¼ γN, where γ is the postselection probability.
We add the same technical noise to the resulting distribu-
tion of postselected events fsi0g and get

p0ðfs0igjdÞ¼
YN0

i¼1

Z
dξN exp

�
−ðdAw−si0− ξiÞ2

2σ2

�
e−ξ2i =2J2

¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2þJ2Þ

p exp

�
−ðdAw−si0Þ2

2ðσ2þJ2Þ
�
:

(12)
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Calculating the Fisher information for the postselected case
(which must be reduced by γ, the postselection probability)
gives

I 0
KG ¼ γA2

wN
σ2 þ J2

¼ hfjAjii2N
σ2 þ J2

; (13)

where we use the weak-value formula (7). Consequently, as
before, we find the Fisher information is modified by a
factor of order 1 (which will decrease or keep the Fisher
information the same, as discussed before). Such an
analysis is the same conclusion reached by Knee and
Gauger [15] and Ferrie and Combes [16], that the weak-
value amplification offers no increase of Fisher information
for technical noise. This result was previously found by
Feizpour, Xingxing, and Steinberg [10], who noted that
this type-one technical noise could not be suppressed by the
real weak-value technique. However, as we will show in
Sec. VII, this disadvantaging result is not the case for
techniques implementing an imaginary weak value.
We go on to find the efficient estimator in the postselected

case, following the maximum-likelihood method presented in
Eqs. (5) and (6). The efficient estimator is given by d̂KG ¼
ð1=AwN0ÞPN0

j¼1ðx0i þ ξiÞ. In other words, one can efficiently
estimate the parameter from the SNR. We note that in either
the standard or WVA scheme, the Fisher information can be
further improved by reducing the width of the meter state, but
only until σ ∼ J, after which the technical noise dominates the
variance. We will return to this point in Sec. VII.

V. TYPE-TWO TECHNICAL NOISE:
CORRELATED NOISE MODEL OF FEIZPOUR,

XINGXING, AND STEINBERG

In order to achieve the CRB, the Fisher information must
not only be calculated but the associated estimator must also
be practical to implement. The point of practicality of the
efficient estimator can be strongly made by considering the
analysis of Feizpour, Xingxing, and Steinberg [10]. Consider
an experiment with single photons, such that the measure-
ment is only triggered by the photon detection at the detector
and consists of N measured variables ϕj described by an
average ϕ̄ plus a noise term ηj that is correlated in general
hηiηji ¼ Cij. (We define this behavior as type-two technical
noise.) The noise term contains both quantum and technical
noise. It is then straightforward to check that the average is
given by ð1=NÞPN

i¼1 ϕi ¼ ϕ̄ and the variance is given by
V ¼ ð1=N2ÞPijhϕiϕji. The two limits considered in
Ref. [10] are (i) the white-noise limit Cij ¼ Cδij and (ii) the
fully correlated limit Cij ¼ C. In case (i), we have
V ¼ C=N, while in case (ii), we have V ¼ C. The SNR
is given by R ¼ ϕ̄=

ffiffiffiffi
V

p
; thus, averaging helps the SNR for

white noise but not for fully correlated noise.
Now, consider the postselected case, where ϕ̄ → ϕ̄Aw

and N → N0 ¼ γN. In case (i), the variance is now C=N0,
while the signal is Awϕ̄, so the SNR scales like Aw

ffiffiffi
γ

p
, so

the small postselection probability drops out, indicating
there is no advantage to using postselection in this case
(exactly as we calculated in the previous sections for type-
one technical noise). However, in case (ii), the signal is
boosted the same amount, while the variance remains C in
the fully correlated case. Consequently, the SNR shows
an advantage over the nonpostselected case. Feizpour,
Xingxing, and Steinberg go on to consider a particular
noise model consisting of a combination of white and time-
correlated noise, showing this advantage remains so long as
the correlation time remains long compared to the photon-
production rate (as it is in many optical implementations).
We can now revisit this model in the context of

the Fisher-information metric to see how it compares to
the SNR metric. The joint probability distribution of all
of the variables ϕi can be written, assuming Gaussian
statistics, as

PSðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞN detC
p exp

�
− ðx − μÞT ·C−1 · ðx − μÞ

2

�
:

(14)

Here, x is a vector of elements ϕi, and μ is a vector of the
means. (In this case, μ ¼ ϕ̄1 is a vector with the same mean
in every element.) The matrix C is the covariance matrix
and has elements Cij. C−1 is the inverse of the covariance
matrix, and detC is its determinant.
In this case, we may calculate the Fisher information (2)

about ϕ̄ contained in this distribution and obtain

IS ¼ ∂ϕ̄μ
T · C−1 · ∂ϕ̄μ ¼

XN
i;j¼1

C−1
ij : (15)

Notice this Fisher information contains a double sum of the
elements of the inverse covariance matrix. The “diagonal”
terms describe the self-correlation terms and scale propor-
tionally to N, recovering the independent trials for the case
when the covariance matrix is diagonal. However, for
strong correlations, such as the type Feizpour, Xingxing,
and Steinberg consider, each element of the inverse
covariance matrix can be of comparable value, so the
Fisher information can scale at most like N2, giving a much
larger Fisher information than for uncorrelated noise. The
reason is because of the correlations between the different
measurements that the SNR metric misses.
When we go to the postselected case, the dimension of

the matrix shrinks from N to γN, while the mean is boosted
by Aw ∼ γ−1=2. The Fisher information is boosted by 1=γ as
before, but the double sum in Eq. (15) now only goes to γN
in the upper limit IS

0 ¼ A2
w
PγN

i;j Cij
0−1. The covariance

matrix is different, in general, since it now describes only
the correlations between the postselected photons.
Consequently, for white noise, the Fisher information is
the same, up to a factor of order 1, while for highly
correlated noise, the Fisher information scales at most as
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N2γ, so it is actually decreased by a factor of γ by the weak-
value technique, compared to the nonpostselected case. It is
easy to see why: The correlations of any single postselected
photon with any rejected photon are lost in the detection
scheme (unless further processing of the correlated missing
photons is done) and consequently cannot be harnessed to
further suppress the noise. In contrast to this correlated
noise case, if the photon is correlated only with itself, then
taking a random postselection will not hurt, and the Fisher
information can stay the same.
However, this analysis is not thewhole story.Wemust ask

what estimator should be used that saturates the CRB and
whether it is practical to implement it. We can find this
estimator using maximum-likelihood methods described
earlier [Eqs. (5) and (6)] to find the estimator ϕ̂. We assume
that thecovariancematrix ispositivedefinite, symmetric, and
invertible. It then follows that its inverse is also symmetric.
We find the estimator in the nonpostselected case to be

ϕ̂S ¼
P

N
i;j¼1 C

−1
ij ϕjP

N
i0;j0¼1

C−1
i0j0

: (16)

We can check that the variance of this estimator matches
the CRB

hðφ̂S − φ̄Þ2i ¼
P

i;j;k;lC
−1
ij C

−1
kl hðφj − φ̄Þðφl − φ̄Þi

ðPi0;j0C
−1
i0j0 Þ2

(17)

because the correlation of the two randomvariables gives the
elements of the covariance matrix Cjl, which cancels one of
the inverse matrices in the sums, giving one factor of the
denominator, resulting in the CRB we found above, the
inverse of Eq. (15).
However, there is a difficulty in this result: The experi-

ment implementing the estimator (16) must multiply
every data point ϕj by a different weighting factor fj ¼P

N
i¼1 C

−1
ij =

P
N
i0;j0¼1

C−1
i0j0 that knows about the rest of the

data points. The experimenter must know exactly what the
correlations are and how many data points are being
collected, and must be able to weight each data point by
a different factor in order to extract the maximal informa-
tion in the data average. This procedure is generally a very
challenging experimental task. Therefore, the SNR, which
treats every type of noise on equal footing (so the weighting
assignment is fj ¼ 1=N for all j), is usually the most
practical option. Consequently, the SNR, although sub-
optimal as a means for estimating in this case, is still
advantageous since the optimal estimator is impractical to
implement for typical experiments. This reason is why the
SNR is used by experimentalists: A complete categoriza-
tion of the noise correlations is a formidable task requiring
detailed knowledge of noise correlations and extensive
postprocessing. If we go on to consider non-Gaussian-
correlated noise, such as 1=f noise, the problem of
implementing the estimator becomes even worse.

VI. TYPE-THREE TECHNICAL NOISE: AIR
TURBULENCE

Another type of technical noise that is very important in
open-air experiments is turbulence, which we refer to here
as type-three technical noise. While we will not give a
quantitative analysis of this effect here, it gives additional
beam-width broadening beyond the diffraction limit
because of beam breathing (on a short time scale) and
beam wander (on a longer time scale) because of the
propagation through the random medium [23]. This broad-
ening becomes an important problem when there is a large
optical path length from the position where the deflection
occurs to the detector where it is measured. Beam jitter
from turbulence cannot be underestimated when dealing
with extremely small deflections. The beam-wander effects
become important on time scales longer than the ratio of the
beam width to the typical air velocity. Typical experiments
can run between seconds and hours, so this effect must be
accounted for. The weak-value schemes have a distinct
advantage over the standard beam-deflection measurement
in having short optical path lengths. We will see this
advantage in detail in the next section.

VII. IMAGINARY WEAK VALUES AND
TECHNICAL ADVANTAGES

We proceed to consider situations where imaginary
WVA has technical advantages for combined technical
noise types. Kedem points out that in the case of imaginary
weak values, noise in the average position does not appear
in making measurements in the momentum basis, and that
noise on the average momentum helps the SNR [17]. We
focus on a different effect unique to imaginary weak values.
For definiteness, consider beam-deflection measurements
for a coherent Gaussian beam using standard deflection
techniques versus a Sagnac-interferometer weak-value
experiment. Most experiments used to date that show
advantages use imaginary weak values.
To start, assume that the system has no technical noise.

The unknown parameter of interest is the deflection k of the
beam, which can be interpreted as the transverse momen-
tum kick given by a mirror. Treps et al. showed that one can
interfere a local oscillator of a first-order TEM mode to
achieve the optimal Fisher information [24]. However, for
simplicity and to understand the role of beam diameters, we
consider a more standard approach. A tilt or deflection on a
beam requires propagation to observe a displacement. The
standard method of measuring an unknown mirror tilt k
with a beam of width σ is to propagate the light and focus it
with a lens, thereby taking the Fourier transform of the
beam by measuring the beam with a split detector in the
back focal plane of the lens [see Fig. 1(a), assuming q ¼ 0].
The lens transforms the tilt k into a displacement fk=k0 on
the detector, where f is the focal length and k0 is the wave
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number. The lens takes the beam width σ at the mirror to a
beam width at the focus given by σf ¼ f=2k0σ.
The single-photon probability-distribution function is

then

pHðxjkÞ ¼ N exp

�
− ðx − fk=k0Þ2

2σ2f

�
; (18)

where N is a normalization. If we send N independent
photons to measure k, this procedure yields a Fisher
information of

IH ¼ Nðf=k0Þ2
σ2f

¼ 4Nσ2; (19)

which is an intuitive result. In order to get the smallest
beam waist in the back focal plane, one wants the largest
beam waist possible before the lens. We now compare
Eq. (19) with the Sagnac-interferometer weak-value result.
We note that Eq. (19) is also the quantum CRB [25].
The weak-value technique for measuring the beam

deflection [Fig. 1(b) with q ¼ 0] gives the postselected
distribution that, when properly normalized, is a Gaussian
distribution with mean 4kσ2=ϕ and width σ2. Here, ϕ is the
phase difference of clockwise and counterclockwise photons
in the interferometer applied by the Soleil-Babinet compen-
sator (SBC). This phase difference applies only to the
postselected fraction N0 ¼ γN of the photons that satisfy
the postselection criterion, where γ ¼ ϕ2=4. The postse-
lected single-photon probability-distribution function is then

p0
HðxjkÞ ¼ N 0 exp

�
− ðx − 4kσ2=ϕÞ2

2σ2

�
: (20)

The Fisher information for the postselected measurements,
reduced by the postselection probability γ (N → γN), is then
found to be

I 0
H ¼ ðγNÞ4σ4=ðγσ2Þ ¼ 4σ2N: (21)

Thus, in the noise-free situation, the weak values and
standard method result in the same amount of classical
Fisher information, as also discussed in the Appendix [26]. It
is important to realize that this calculation is only valid in the
regime of small angles sin2ðϕ=2Þ ≈ ϕ2=4. In other words, in
the small-angle or weak-value regime, all of the Fisher
information is in the photons leaving the dark port of the
interferometer.
So, how does noise affect the Fisher information for the

two methods? As a first step, we will assume that there is
no transverse beam-deflection jitter but only transverse
detector jitter. In other words, there is a small transverse
deflection k with no technical noise on the beam, but the
detector used to measure the beam has a transverse jitter ξ
that we only sample at the photon-arrival times, giving
type-one technical noise. We first consider the standard
method. As before, the new likelihood function is the
convolution of the technical noise-free likelihood function
with a Gaussian of width J. This transverse detector jitter
simply increases the average beam waist at the detector byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2f þ J2

q
, resulting in a Fisher information

IN ¼ Nðf=k0Þ2
σ2f þ J2

¼ 4Nσ2

1þ ð2k0σJf Þ2 : (22)

This result is very interesting. It means that this approach
can achieve the maximum Fisher information (as if there
were no noise at all), but only in the limit of large focal
length (f ≫ 2k0σJ). A large focal length is equivalent to
opting for a larger displacement (fk=k0) while allowing for
a large focal spot (σf ≫ J). This result is once again
intuitive: If a very small focal spot lands on a detector that
has Gaussian random shifts, large differential intensity
fluctuations will occur, due to detector jitter, compared with
a large focal spot.
For the imaginary weak-value approach, the results are

quite different. The beam waist for this case is given by σ,
not the focused beam waist σf. This case gives a Fisher
information of

I 0
N ¼ 4Nσ4

σ2 þ J2
: (23)

Therefore, since σ ≫ σf and there is freedom to choose σ as
large as one wishes, we can make the beam waist much
larger than J, which both suppresses J and increases the
Fisher information (21). This result shows that Fisher
information for the imaginary weak-value approach remains

(a) (b)

FIG. 1 Two strategies to detect an unknown constant momen-
tum kick k given angular jitter of momentum q. (a) Standard
method: After the momentum kick, the beam propagates a
distance l1 before getting a momentum kick k from the mirror,
which is the parameter we wish to estimate. The beam
then passes through a lens with a focus f ¼ l2, chosen to equal
the distance traveled until it comes to the split detector, where the
beam reaches its focus at a PSD. (b) Weak-value-type method:
After the momentum jitter kick q, the light enters a Sagnac
interferometer, comprised of a 50=50 beam splitter (BS) and a
SBC, which introduce a relative phase shift ϕ between the paths,
other mirrors, including the one that has the momentum kick kwe
wish to measure. The beam ends at a PSD.
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unchanged in the presence of transverse detector jitter, while
the focused beam approach requires long focal lengths.
Hence, the measurement geometry plays a very important

role in several ways. Ideally, one would like a detector with a
continuous detection distribution, but practical considera-
tions mean there will always be dead space between finite-
width detectors. A simple method for obtaining nearly
optimal beam detection is split detection. However, even
in this case, there is always a gap between the detectors,
which sets a minimum beam diameter and thus a finite
propagation through horizontal turbulence. These problems
do not exist for weak values since the detector can be placed
immediately after the last beam splitter, which mitigates the
type-three technical noise while also suppressing type-one
technical noise. The standard method operating in the regime
where type-one noise is completely ameliorated will suffer
from the type-three technical noise.

VIII. TYPE-FOUR TECHNICAL NOISE:
ANGULAR BEAM JITTER

We now consider angular beam jitter by modeling it as a
random momentum kick q given to the beam before it
enters the interferometer, or before it approaches the signal
mirror in the standard method. This kick could be from air
turbulence or mirror jitter.

A. Standard-method results for angular jitter

We first consider the standard method of measuring
the beam displacement illustrated in Fig. 1(a). The Fourier
optics of this geometry is described by a series of unitary
operators that act on the transverse degree of freedom in the
paraxial approximation. Starting from an initial transverse
state jψi that we take to be a Gaussian in transverse position
with zero mean and variance σ2, the unitaryUq ¼ expðiqx̂Þ
gives the first random momentum kick q to the beam. This
kick is followed by a propagation of distance l1, given by
the unitary Ul1 ¼ expð−ip̂2l1=2k0Þ, where k0 is the wave
number of the light. This propagation is followed by a
momentum kick k described byUq→k and then the lens that
gives a quadratic phase front Uf ¼ expð−ik0x̂2=2fÞ. The
final propagation Ul2 puts the beam at the measurement
device, which is a position-sensitive detector (PSD).
Taken together, we can describe the final state as

ψdðxÞ ¼ hxjUl2UfUkUl1Uqjψi: (24)

To obtain an explicit form for the state, and the expectation
of the position and its variance in this state, a series of
complete sets of states is inserted between the unitaries. As
an intermediate step, let us define state ψ i as the state after
the k momentum kick but before the lens. The action of the
lens is diagonal in the position basis, but the subsequent
propagation is diagonal in the momentum basis. Defining
the coordinate at the detector as x, the state at the detector
ψdðxÞ is given by

ψdðxÞ ¼
Z

dp
2π

Z
dyψ iðyÞe−ik0y2=2f−ipye−ip2l2=2k0þipx:

(25)

We can reverse the order of integration and perform the p
integration first, giving us

ψdðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k0

2πil2

s Z
dyψ iðyÞe−ik0y2=2fþiðy−xÞ2k0=2l2 : (26)

Let us choose l2 ¼ f, so the quadratic terms in the
exponential cancel out, which will lead to focusing the
beam. This choice leaves the state as

ψdðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k0

2πil2

s
eik0x

2=2f

Z
dyψ iðyÞe−iyk0x=f; (27)

which simply gives the scaled Fourier transform of ψ i but
with a particular value of the momentum ~ψ iðp → k0x=fÞ.
The remainder of the solution involves finding the

intermediate state. This task is straightforward in the
momentum basis because the first three operators are
diagonal in this basis. Therefore, the momentum-space
expression for ψ i is given by

~ψ iðpÞ ¼ ð8πσ2Þ1=4 exp½−σ2ðpþ qþ kÞ2
− il1ðpþ kÞ2=2k0�: (28)

Putting these results together, we find that the final state at
the detector gives a Gaussian distribution in position x with
average and variance of

hxi¼−ðkþqÞf=k0; hðx− hxiÞ2i¼ f2=ð2σk0Þ2: (29)

The net result is that the random momentum kick q simply
adds to the signal k. Averaging this distribution of Gaussian
random jitter of momentum q with zero mean and variance
Q2 gives another Gaussian distribution for x, of mean
−kf=k0 and wider variance f2½1=ð2σk0Þ2 þQ2=k20�. Thus,
the Fisher information, for N independent measurements,
about k in this distribution is given by

Id ¼
4Nσ2

1þ ð2σQÞ2 : (30)

B. Weak-value treatment of angular jitter

A similar analysis can be carried out for the weak-value
interferometer case. In addition to the momentum kick and
the propagation steps, there are two unitaries that depend
on the which-way operator Ŵ ¼ j↻ih↻j − j↺ih↺j, where
the states j↻i and j↺i are clockwise- and counterclock-
wise-moving photon states inside the Sagnac interferom-
eter. Superpositions of these states are created by the 50=50
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beam splitter operating on the incoming beam. The
unitaries are the relative phase-shift operator
Uϕ ¼ expðiϕŴ=2Þ, induced by the SBC, and the which-
path momentum-kick operator UWk ¼ expðikŴ x̂Þ deliv-
ered by the signal mirror.
As shown in Fig. 1(b), starting in the state jΨii ¼

jψiðj↻i þ ij↺iÞ= ffiffiffi
2

p
and ending in state jΨfi ¼

jxiðj↻i − ij↺iÞ= ffiffiffi
2

p
, we seek the transition amplitude

hΨfjUl2UkWUϕUl1UqjΨii; (31)

which describes photons entering in one interferometer port
and exiting the other interferometer port. Fortunately, the
which-path states pass through all but two of the operators,
so this amplitude may be simplified to eliminate the which-
path states and operators, giving the state of the transverse
beam at the detector ψWVðxÞ to be

ψWVðxÞ ¼ hxje−ip̂2l2=2k0 sinðkx̂þ φ=2Þe−ip̂2l1=2k0eiqx̂jψi:
(32)

The detailed calculation of this state involves inserting
complete sets of states, resulting in a complicated expres-
sion. The result is simplified by expanding to linear order in
ϕ and k since we assume the weak-value ordering of
parameters kσ < ϕ < 1. We must renormalize the post-
selected distribution by the probability γ of a photon exiting
the dark port, given by

γ ¼ ðϕ=2Þ2 þ k2σ2 þOðk2q2Þ þOðϕkqÞ þ � � � : (33)

We drop the other terms compared with ðϕ=2Þ2, so the
phase shift ϕ controls the postselection. This procedure
gives an average displacement of

hxi ¼ 4kσ2

ϕ
þ kl1ðl1 þ l2Þ

k20ϕσ
2

þ qðl1 þ l2Þ
k0

þ � � � ; (34)

where we suppress higher-order terms in k, q, and ϕ. The
first term of order k is the usual weak-value term, amplified
by 1=ϕ [5]. The second term comes from the diffraction
effects, which gives a small correction to the first term
because we take σ2 ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ l2Þ

p
=2k0. The remaining

term qðl1 þ l2Þ=k0 is just the free propagation from the
momentum kick and has a geometric optics interpretation of
the imparted deflection angle q=k0 times the total length of
propagation. We note that the way q enters into the average
displacement has a very different form than Eq. (29). Wewill
return to this point shortly. The displacement variance at the
detector may be similarly calculated to find

hðx − hxiÞ2i ¼ σ2 þ
�
l1 þ l2
2k0σ

�
2

; (35)

plus further corrections of order k2. Thus, we see that the
diffraction effects broaden the width of the beam,

proportional to the total path length. If we approximate
the distribution as a Gaussian with the mean and variance
discussed above, the Fisher information about k can be
found by averaging over q as before to find

IWV ¼ 4Nσ2

1þ ðl1þl2
2k0σ2

Þ2½1þ ð2σQÞ2� : (36)

Consequently, even if σQ is large compared to 1, so as to
degrade the Fisher information in the standard method (30),
in the weak-value technique, there is an additional
suppression factor of the amount of diffraction
ðl1 þ l2Þ=ð2k0σ2Þ ≪ 1, indicating that the weak-value tech-
nique outperforms the standard method when dealing with
angular jitter. This result can be understood intuitively
because the angular jitter directly adds to the detected
deflection in the standard measurement case, whereas it is
only a small correction to the deflection that is controlled by
diffraction in the weak-value technique.
The rather remarkable properties associated with imagi-

nary weak-value experiments may not be entirely attributed
to weak values but to geometric terms associated with the
experiments. These terms, such as beam-waist diameter, arise
even when WVA is small. However, it is important to note
only in the limit of large WVA that almost all of the
information in the measurement can be placed in the
measured photons and that optimal estimation of the param-
eter can be made. Therefore, these geometric terms andWVA
work hand in hand to achieve the technical noise suppression.

IX. FISHER INFORMATION
FOR RECYCLED PHOTONS

We can also consider the possible benefit to the Fisher
information of the recent photon-recycling proposal of
Dressel et al. [27]. Considering photons as a resource, one
can ask what is the maximum amount of information that
can be extracted from a given set of photons. In much the
same way as a high-finesse cavity can increase phase
sensitivity in an interferometer, recycling photons from the
bright port of a weak-value experiment can increase the
information about a parameter. The central idea is to
postselect all of the photons while keeping the large
weak-value amplification. The scheme is to recycle the
rejected (non informative) photons by closing off the
interferometer, so the remaining N1 ¼ N − N0 photons
are reinjected (N0 ¼ γN) and once again sample the
unknown parameter k. The authors show that it is critical
that the rejected light be reshaped to once again be in its
original profile; otherwise, all amplification of the split-
detector SNR is erased over many cycles. Below, we
consider the simplest version, where no propagation effects
are included. In that case, the second round of postselected
light has exactly the same distribution on the detector, with
the same postselection probability γ, so the Fisher infor-
mation for this cycle is I1 ¼ ðγN1Þ4σ4=ðγσ2Þ ¼ 4σ2N1.
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This process is now repeated many times, where Ni is the
number of rejected photons on the ith round, and we define
N0 ¼ N. The uniform postselection probability indicates
that Ni ¼ Ni−1ð1 − γÞ, implying that Ni ¼ Nð1 − γÞi.
Since each measurement is independent from the last, the

Fisher information simply adds, giving a total of

I tot ¼ 4σ2
X∞
i¼0

Ni ¼ 4σ2N
X∞
i¼0

ð1 − γÞi ¼ 4σ2N
γ

: (37)

Therefore, the Fisher information has been boosted by a
factor of 1=γ compared to the standard method, or the
single-pass weak-value method. Here, we are considering
the photon number N as the resource. Of course, as is
pointed out in Ref. [27], one could have been sending more
light onto the detector using the standard method in the
time taken for the light recycling or employed other
standard schemes, but there could be many technical
reasons why this course of action may be impossible or
inadvisable, given a laboratory setup. There may be a
minimum quiet time between laser pulses, for example. We
note that the profile-reshaping process actually removes
information about the parameter k but does so in a way
that the estimator can be approximately implemented as the
split-detection SNR. Together with the technical advan-
tages already discussed, this strategy is an important
improvement over previous techniques. When further
combined with quantum light techniques, this method
gives a powerful advantage for estimating a parameter.
The fact that all photons are now collected permits one to
further mine interphoton correlations for noise suppression.

X. CONCLUSIONS

We have shown how weak-value-based measurement
techniques can give certain technical advantages to preci-
sion metrology. First and foremost, the Fisher information
in a weak-value measurement (which uses a small fraction
of the available light) can be as large as the Fisher
information of a standard measurement (which uses all of
the available light). This saturation in the Fisher information
is remarkable because the remaining light can be sent to
another experiment [11] or recycled [27] to give even higher
amounts of Fisher information.
We have also explored technical advantages the weak-

value experiments can have over standard measurement
techniques. Obvious advantages, such as when the detec-
tors saturate at a certain light intensity, have been pointed
out in previous works [1,5]. The possible advantages for
different types of technical noise should be investigated on
a case-by-case basis. There are cases where the weak-value
technique gives advantages, and other cases where it is at a
disadvantage, and yet other cases where there is no
difference. It is clear, for example, that dephasing noise
will reduce the size of the weak value, which will be

detrimental to this technique [28]. We have shown how
detector noise, together with air turbulence, can both be
eliminated by a weak-value deflection measurement,
whereas the conventional standard method must suffer
from turbulence jitter if detector noise is suppressed in
open-air experiments. We also demonstrated that for
angular jitter, the weak-value technique for beam-deflection
measurements can have much higher Fisher information
than the standard technique and approach the quantum
CRB in noisy environments. Considering the wide range of
experiments that have now successfully employed weak-
value techniques to make high-precision measurements
[1–7,9–13], this conclusion should not be too surprising.
Another conclusion we reach is that it is not sufficient to

show an estimator does not reach the CRB to decide it
should be rejected. Rather, the optimal estimator should be
found and must be practically implementable. If it is not,
the inefficient—but practical—estimator is advantageous.
We have argued that time-correlated technical noise is one
example where the difficulty of implementing the optimal
estimator is outweighed by the option of implementing the
postselection with amplification using the SNR.
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APPENDIX: WEAK VALUE FOR
A TWO-LEVEL SYSTEM

Our calculations are based on an interaction of the type
U ¼ expð−idpAÞ, where d is the unknown small param-
eter. Tracking and measurements of the meter degree
of freedom x after the postselection give a SNR of
R ¼ ð ffiffiffiffi

N
p

d=σÞ × jhfjiiReðAwÞj. If, instead, measurements
of the conjugate momentum p are performed, the result is
R ¼ ð ffiffiffiffi

N
p

d=σÞ × jhfjiiImðAwÞj [17]. We will show that
under the right choices for pre- and postselection,
jhfjiiReðAwÞj ¼ 1 or jhfjiiImðAwÞj ¼ 1.
We choose to consider the operator A such that

Aj�i ¼ �j�i, where jþi and j−i form an orthonormal
basis for the Hilbert space of a two-level system. The initial
state of the system can be written as

jii ¼ cos

�
Θ
2

�
jþi þ eiΦ sin

�
Θ
2

�
j−i; (A1)

where 0 < Θ < π and 0 < Φ < 2π represent the qubit state
on the surface of the Bloch sphere. The postselection state
for the system is defined as
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jfi ¼ sin

�
Θ
2
þ θ

�
jþi − eiðΦþ2ϕÞ cos

�
Θ
2
þ θ

�
j−i;

(A2)

where θ and ϕ are angles representing the deviation (in both
angular directions on the Bloch sphere; see Fig. 2) from the
state orthogonal to jii.
The probability of the postselection on jfi and the weak

value take the form

γ ≈ jhfjiij2 ¼ cos2ϕsin2θ þ sin2ðΘþ θÞsin2ϕ; (A3)

ReðAwÞ ¼
sin θ sinðΘþ θÞ

jhfjiij2 ; (A4)

ImðAwÞ ¼ −
sinΘ sinðΘþ 2θÞ sinð2ϕÞ

2jhfjiij2 : (A5)

Note that the angles θ and ϕ are the respective generators
of the real and imaginary parts of the weak value. For
example, a pure imaginary weak value can be obtained,
making θ ¼ 0, so γ ¼ sin2Θ sin2 ϕ and Aw ¼ −i cotϕ. In
order to maximize γ, we choose Θ ¼ π=2, so the results are
jii¼½jþiþeiΦj−i�= ffiffiffi

2
p

and jfi¼½e−iϕjþi−eiΦþiϕj−i� ffiffiffi
2

p
.

Finally, in the small-angle approximation, γ ≈ ϕ2 and
Aw ≈ −i=ϕ, making jhfjiiImðAwÞj ≈ 1. On the other side,
a pure real weak value can be obtained, making ϕ ¼ 0, so
γ ¼ sin2 θ and Aw ¼ sinðΘþ θÞ= sin θ. In order to
make Aw large for this case, we choose again Θ ¼ π=2.
The preselection is identical to the former case

jii ¼ ½jþi þ eiΦj−i�= ffiffiffi
2

p
, and the postselection takes the

form jfi¼ sinθ½jþiþeiΦj−i�= ffiffiffi
2

p þ cosθ½jþi−eiΦj−i�=ffiffiffi
2

p
. Taking the small-angle approximation for this case,

we obtain a similar result to the pure imaginary weak-value
case: γ ≈ θ2, Aw ≈ 1=θ, and jhfjiiReðAwÞj ≈ 1.
Setting Θ ¼ π=2 turns out to be the best choice for

practical purposes. We therefore calculate the products
jhfjiiReðAwÞj and jhfjiiImðAwÞj for such a choice and plot
them in Fig. 3. It is shown in Fig. 3(a) that the largest value
jhfjiiReðAwÞj ¼ 1 is closest reached if ϕ ¼ 0 and jθj ≪ 1,
which corresponds to a pure real weak value and an almost
orthogonal postselection. Similarly, Fig. 3(b) shows that
jhfjiiImðAwÞj ≈ 1 only if θ ¼ 0 and jϕ ≪ 1, defining a
pure imaginary weak value with almost orthogonal
postselection.
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