
Information Processing and the Second Law of Thermodynamics:
An Inclusive, Hamiltonian Approach

Sebastian Deffner* and Christopher Jarzynski†

Department of Chemistry and Biochemistry and Institute for Physical Science and Technology,
University of Maryland, College Park, Maryland 20742, USA

(Received 31 May 2013; published 17 October 2013)

We obtain generalizations of the Kelvin-Planck, Clausius, and Carnot statements of the second law of

thermodynamics for situations involving information processing. To this end, we consider an information

reservoir (representing, e.g., a memory device) alongside the heat and work reservoirs that appear in

traditional thermodynamic analyses. We derive our results within an inclusive framework in which all

participating elements—the system or device of interest, together with the heat, work, and information

reservoirs—are modeled explicitly by a time-independent, classical Hamiltonian. We place particular

emphasis on the limits and assumptions under which cyclic motion of the device of interest emerges from

its interactions with work, heat, and information reservoirs.
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I. INTRODUCTION

Three classic expressions of the second law of thermo-
dynamics are formulated in terms of cyclic processes. The
Kelvin-Planck statement asserts that [1,2]

no process is possible whose sole result is the
extraction of energy from a heat bath, and the
conversion of all that energy into work.

The Clausius statement reads [3],

no process is possible whose sole result is the
transfer of heat from a body of lower temperature
to a body of higher temperature.

Finally, the Carnot statement declares that [4]

no engine operating between two heat reservoirs
can be more efficient than a Carnot engine oper-
ating between those same reservoirs.

These formulations refer to processes involving the
exchange of energy among idealized subsystems: one or
more heat reservoirs; a work source—for example, a mass
that can be raised or lowered against gravity; and a device
that operates in cycles and affects the transfer of energy
among the other subsystems. All three statements follow
from simple entropy-balance analyses and offer useful,
logically transparent reference points as one navigates
the application of the laws of thermodynamics to real
systems.

This paper concerns extensions of these classic state-
ments to situations involving information processing. In
addition to the above-mentioned elements, wewill consider
an information reservoir—a system that exchanges infor-
mation but not energy with the device. As wewill show, the
Kelvin-Planck, Clausius, and Carnot statements are each
generalized in a natural way in the presence of such a
reservoir. Although these generalized statements can be
derived ad hoc, simply by including the Shannon entropy
of the information reservoir in the entropy-balance analysis,
our aim is to obtain these results directly frommicroscopic,
Hamiltonian dynamics, highlighting the assumptions and
approximations that are made along common idealizations.
Among the various connections that exist between in-

formation theory and thermodynamics, two are relevant in
the present context. The first involves the relationship
between the thermodynamic entropy defined via the
Clausius relation

R
}Q=T ¼ �S and the Shannon entropy

of information theory [5]

H ¼ �trf� ln�g � �
Z

� ln�; (1)

where
R
denotes an integral over phase space. Since these

definitions coincide for a system in canonical equilibrium
with a heat reservoir [6], it is highly tempting to use Eq. (1)
to define the entropy of a nonequilibrium state. Indeed, if a
system in contact with one or more thermal reservoirs
evolves from an initial statistical state �i to a final state
�f—neither of which is assumed to correspond to thermal

equilibrium—then the Clausius-like inequality

Z f

i

}Q

T
� �trf�f ln�fg þ trf�i ln�ig � �H (2)

can be established from microscopic principles, as shown
in Ref. [7] under assumptions similar to those we will make
in the present paper; see also Refs. [8–21] for related
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results and alternative derivations. On the other hand, for
an isolated classical system, the Shannon entropy H
remains constant with time (by Liouville’s theorem),
which conflicts with the observation that the entropy of
an isolated physical system increases until equilibrium is
attained. Such considerations show that, at the very least,
onemust be careful when identifying Shannon entropywith
thermodynamic entropy, away from thermal equilibrium.

The second connection involves the question of whether
information about molecular-scale motions, gained by ex-
ternal observation, can be used to subvert the second law,
in the sense suggested by Maxwell’s famous thought ex-
periment [22]. In an illuminating refinement of the
Maxwell demon framework, Szilárd described a hypotheti-
cal scenario in which an intelligent being takes advantage
of microscopic observations to manipulate a single-particle
gas, so as to extract energy systematically from a reservoir
and convert it to work [23]. Szilárd explicitly raised the
possibility that this humanlike intelligence could be re-
placed by a purely physical device, in apparent violation of
the Kelvin-Planck statement. By current consensus, the
resolution of this paradox resides in Landauer’s principle
[24], which assigns a minimal thermodynamic cost to the
erasure of the information gathered by the device; see
Refs. [25–27] for details, Ref. [28] for an experimental
treatment, Refs. [19,29–35] for illustrative models, and
Refs. [36–39] for dissenting perspectives.

These topics have gained recent prominence in the con-
text of microscopic feedback control. Sagawa and Ueda
have analyzed the amount of work that can be delivered
by the measurement and manipulation of small, fluctuating
systems [40–44]. Their predictions have been verified ex-
perimentally using trapped colloidal particles [45] and
mathematically illustrated for a solvable system with a
linear feedback protocol with a Kalman filter [46]. Their
analyses are based on an approach considering an integral
fluctuation theorem. The corresponding detailed fluctuation
theorems are discussed in Refs. [47–50]. These results have
been extended to systems prepared in initial nonequilibrium
stationary states [51–54] and to quantum systems [55–57].
Alternative treatments of feedback control, which do not
rely on fluctuation theorems, can be found in Refs. [58–62]
with applications to theoretic models [63–66] and experi-
mental systems [67,68].

In the feedback control paradigm, the microscopic state
of the system of interest (or of a measurement device [69])
is observed, and on the basis of those observations, a
protocol is adapted to manipulate the system. Implicit in
this paradigm is an external agent or apparatus—the de-
mon or feedback controller [19]—who makes these obser-
vations and implements the feedback. The results derived
within this approach are thus expressed as relationships
between thermodynamic quantities such as work and
information-theoretic quantities that measure the quality
of the observations.

In this paper, we aim at a treatment that does not involve
an external agent. Instead, we consider a self-contained
universe, a composite system containing the elements men-
tioned earlier: a device, one or more thermal reservoirs, a
work source, and an information reservoir; cf. the illustra-
tion in Fig. 1. This composite system evolves autonomously
under Hamilton’s equations of motion, and any effective
feedback control arises entirely from the interplay of the
subsystems. Within this inclusive framework, we will ob-
tain inequalities that generalize the Kelvin-Planck,
Clausius, and Carnot statements to processes involving
the exchange of information.
We will begin in Sec. II by specifying our theoretical

framework and terminology. In Sec. III, we will obtain
formal inequalities, which will then be combined in
Sec. IV with physical interpretations, to obtain generalized
statements of the second law for the cyclic process. In
order to complete the analysis, we will derive a generalized
maximum work theorem for the noncyclic process in
Sec. V. Finally, we will conclude in Sec. VI. In obtaining
these results, we will make a number of assumptions and
approximations, reflecting idealizations that commonly
arise in analyses of thermodynamic principles, and we
will discuss the roles of these assumptions in our treatment.

II. THERMODYNAMICS WITHIN A
HAMILTONIAN FRAMEWORK

In this section, we describe our framework, beginning
with concepts and terminology. For our purposes, systems
are categorized as devices, heat sources, work sources, and
information sources. It is important to understand this
categorization as an idealization of real physical systems
with one dominant behavior.
A heat source (or sink) is a system that exchanges energy

with other systems, in the form of heat but not work.
Relaxation processes within a heat source are generally as-
sumed to occur rapidly, implying that its temperature remains
well defined throughout anyprocess under consideration [70].
Moreover, if its heat capacity is sufficiently large, then that

FIG. 1. Thermodynamic setup: A device exchanges heat with
thermal reservoirs and work with a work source. The process is
observed by a Maxwell demon.
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temperature remains effectively constant and the heat source
can be viewed as a heat reservoir. Because we wish to make
contact with the usual formulations of the Kelvin-Planck,
Clausius, and Carnot statements, we will use the term heat
reservoir in the analysis that follows. In particular, wewill see
that the assumption of a large heat capacity is crucial for the
emergence of cyclic motion of the device.

Analogously, a work source (or sink) can exchange
energy in the form of work but not heat, and its internal
relaxation processes are again assumed to be rapid [70]. As
a result, the entropy of the work source remains constant
and can be neglected. The assumption of rapid relaxation
will appear implicitly in our treatment: We will model the
work source as a single degree of freedom—effectively, a
collective coordinate such as the center of mass of a macro-
scopic system—while ignoring its internal degrees of free-
dom; this assumption prevents the energy of the work
source from being lost to internal dissipation. If the inertia
of a work source is sufficiently large, then its motion is
largely unaffected by interactions with other systems and it
can be viewed as a work reservoir. In order to model cyclic
processes, we will assume a work source with an effec-
tively infinite inertia; we will return to this point in greater
detail shortly.

Heat and work sources are convenient conceptual ideal-
izations, familiar from classic thermodynamic treatments
[2,71]. To this list, we add an information source, a system
that exchanges information but not energy with other
systems. The information source can exist in a number of
physically distinct accessible states with identical free
energies. A useful example is a memory register with N
bits, hence 2N energetically degenerate states. The capacity
of the information source is measured by the natural loga-
rithm of the number of accessible states, i.e., N ln2 in the
case of the memory register. When this capacity is suffi-
ciently large, the information source becomes an informa-
tion reservoir.

Finally, we will consider a device, or (sub)system, of
interest, which interacts with the above-mentioned ele-
ments. These interactions give rise to the exchange of
energy with the heat and work sources, and they influence
the dynamics of the information source among its degen-
erate states. As a result, data relating to the evolution of the
device may become encoded in the information source. It
is precisely this possibility that adds a new element to the
standard analyses of the Kelvin-Planck, Clausius, and
Carnot statements.

A. First law of thermodynamics

We proceed by formulating the first law of thermody-
namics within our classical, Hamiltonian framework. To
begin, we restrict the analysis to include only a device, a
work source, and a single heat source (later, we will add
multiple heat sources and an information source), and we
model these elements with a Hamiltonian

Hunið�Þ ¼ H0ðx;p;XÞ þ hðx;p; �;’Þ
þHworkðX; PÞ þHheatð�;’Þ; (3)

with � ¼ ðx;p; �;’;X; PÞ, and where Huni is our notation
for the Hamiltonian of the universe. Here, ðx;pÞ denotes
the microstate of the device, and ð�;’Þ is that of the heat
reservoir. The bold letters indicate vectors in the configu-
ration and momentum spaces of these subsystems. We use
ðX; PÞ to specify the microstate of the work reservoir,
which we model with a single degree of freedom.
Finally, � denotes a point in the full phase space, describ-
ing the combined microstate of all three subsystems.
We view the first term on the right side of Eq. (3) H0 as

the bare Hamiltonian for the device, parametrized by the
configuration of the work source X. The second term h
gives the interaction between the device and the heat
source, and the third and fourth terms are the bare
Hamiltonians for the work and heat sources. Defining

Hdevðx;p; �;’;XÞ � H0ðx;p;XÞ þ hðx;p;�;’Þ; (4)

we have

Huni ¼ Hdev þHheat þHwork: (5)

We interpret the three terms on the right side of Eq. (5) to
be the instantaneous energies of the device, heat source,
and work source, respectively. In our accounting, all inter-
action terms contribute to the energy of the device.
The microscopic evolution of our composite system is

described by a Hamiltonian trajectory �ðtÞ, along which
the value of Huni remains constant:

d

dt
Huni½�ðtÞ� ¼ dHdev

dt
þ dHwork

dt
þ dHheat

dt
¼ 0: (6)

The three subsystems exchange energy among themselves,
with the total energy remaining fixed. The heat and work
sources are not directly coupled to one another, but each is
coupled to the device. Therefore, the rate at which the work
source loses energy is interpreted as the rate at which work
is performed on the device:

dW

dt
� � dHwork

dt
: (7)

Similarly, energy lost by the heat source is equated with
heat absorbed by the device:

dQ

dt
� �dHheat

dt
: (8)

Combining Eqs. (6)–(8), we arrive at

_Hdev ¼ _W þ _Q; (9)

where the dots indicate derivatives with respect to time.
Equation (9) constitutes the first law of thermodynamics in
our framework.
By direct evaluation—using Hamilton’s equation for the

work source _X ¼ @Huni=@P, _P ¼ �@Huni=@X, together
with Eq. (3)—we obtain
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d

dt
HworkðX; PÞ ¼ _X

@Hwork

@X
þ _P

@Hwork

@P
¼ � _X

@H0

@X
: (10)

Thus, with Eq. (7), the work performed on the device from
time t1 to t2 is given by

W ¼
Z t2

t1

dt _X
@H0

@X
; (11)

which is the familiar integral of displacement� force used
in thermodynamics [72].

B. Work reservoir

As mentioned earlier, there are two assumptions one
might make about the properties of the work source: rapid
self-equilibration and large inertia. We have built the first
assumption into our framework by modeling the work
source with a single degree of freedom X. We will now
also make the second assumption, which will allow us to
address cyclic processes.

To formalize the assumption of large inertia, let us con-
sider a specific example, in which a massive piston (the
work source) confines a rarefied gas (the device) within a
cylinder. The bare Hamiltonian for the work source is

HworkðX;PÞ ¼ P2

2M
þM!2X2

2
; (12)

where the potential energy term models an ideal spring
attached to the piston, as illustrated in Fig. 2. The piston
begins in a microstate ðX0; P0Þ, then evolves together with
the gas and the surrounding thermal reservoir over a time
interval 0< t < tf, where tf specifies the duration of the

process in which we are interested.
In the limit M ! 1, with initial conditions

ðx0;p0; �0;’0;X0; P0=MÞ held fixed, the motion of the
massive piston becomes unaffected by the remaining de-
grees of freedom and is given by its free dynamics

lim
M!1XðtÞ ¼ X0 cosð!tÞ � V0

!
sinð!tÞ; (13a)

lim
M!1VðtÞ ¼ V0 cosð!tÞ þ X0! sinð!tÞ; (13b)

where V ¼ P=M is the piston speed. (See Appendix A for
details.) Thus, for sufficiently large M, we can treat the

motion of the piston as fully prescribed, given the initial
conditions. This observation allows us to simplify the
description of the total system. The piston now evolves
independently, and the device and heat source evolve under
a Hamiltonian with an externally imposed time depen-
dence determined by XðtÞ. Introducing the notation

H0ðx;p; tÞ ¼ H0½x;p;XðtÞ�;
Hdevðx;p;�;’; tÞ ¼ Hdev½x;p;�;’;XðtÞ�;

(14)

with XðtÞ given by Eq. (13a), we now define

Htotð� ;tÞ�Hdevðx;p;�;’;tÞþHheatð�;’Þ
¼H0ðx;p;tÞþhðx;p;�;’ÞþHheatð�;’Þ; (15)

where � ¼ ðx;p;�;’Þ specifies a point in the reduced
phase space of the device and heat source. The
Hamiltonian Htot gives the combined energy of these two
subsystems and generates their motion via Hamilton’s
equations. Because it is explicitly time dependent, its value
is not preserved. Rather, the net change in Htot along a
trajectory �ðtÞ corresponds to the work performed on the
device. This conclusion follows from energy conservation
in the full phase space [ _Htot¼ _Hdevþ _Hheat¼� _Hwork¼ _W;
see Eqs. (6) and (7)] as well as directly from Eq. (11):

W ¼
Z t2

t1

dt _X
@H0

@X
���!M!1Z t2

t1

dt
@H0

@t
¼

Z t2

t1

dt
@Htot

@t

¼ Htot½�ðt2Þ; t2� �Htot½�ðt1Þ; t1�: (16)

Here, we have made use of the Hamiltonian identity
dHtot=dt ¼ @Htot=@t [73].
By construction, Htotð� ; tÞ is a periodic function of time,

with period � ¼ 2�=!. The limit of large inertia [Eq. (13)]
thus takes us from an inclusive description involving three
subsystems (the device, the heat source, and the work
source) to a reduceddescription inwhich the device, coupled
to the heat source, is subjected to time-periodic external
driving. We will continue our analysis within the reduced
framework, making use of time-periodic Hamiltonians of
the form given by Eq. (15). However, we emphasize that the
explicit time dependence of Htot is entirely induced by the
dynamics of the massive work source.
We have used the piston and spring as an illustrative

example, but the work source can equally well be modeled
using a generic one-dimensional potential, provided the
limit M ! 1 is taken (as above) with P0=M held fixed.
Thus, the time dependence of the coordinate XðtÞ, while
periodic, need not be sinusoidal. In the remainder of the
paper, we will use � to denote the period of the motion of
the coordinate X (in the large-inertia limit), whether it is
harmonic or not.

C. Heat reservoir

The limit of large work-source inertia gives us time-
periodic driving, as we have just argued, but does not yet
guarantee that the device itself relaxes to a time-periodic

FIG. 2. Example of a work reservoir: The spring is attached to
a piston with large mass M and confining a rarefied gas in a
cylinder. The gas is in thermal contact with a heat bath of
temperature ��1.
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steady state. For that, wewill require two assumptions about
the heat source, namely, that it is self-equilibrating and has a
large heat capacity. In classical, macroscopic thermody-
namics, these properties are among the defining properties
of an idealized heat reservoir [70]. We now discuss these
assumptions in the context of our explicitly microscopic
setup and we formulate a plausibility argument for the
emergence of a periodic steady state [Eq. (19)].

A large heat capacity implies that the number of degrees
of freedom of our heat source Nheat far exceeds that of the
device. This statement can be formalized by considering
the thermodynamic limit Nheat ! 1 while holding fixed
the intensive properties of the heat source—its tempera-
ture, density, and chemical composition. In this limit, the
characteristic energy exchanged between the device and
the heat source, during the process in question, becomes a
negligible fraction of the total energy of the heat source.
Therefore, its intensive properties, and particularly its
temperature, remain unchanged.

We take the assumption of self-equilibration to mean the
following: From a generic initial microstate and in the
absence of external influences, the heat source evolves
to a microstate that—for the purpose of subsequent
calculations—can be treated as a random sample from an
equilibrium probability distribution [74]. A first-principles
justification of this assumption involves issues that
are well beyond the scope of this paper [75,76].
Empirically, however, macroscopic systems do relax to
equilibrium when left undisturbed (leaving aside special
cases such as glassy systems), and these equilibrium states
are accurately modeled by the standard probability distri-
butions of classical statistical mechanics. We will therefore
assume that the heat source satisfies the property of self-
equilibration, and we will investigate the consequences of
this assumption.

Let us first consider the extreme limit, in which relaxa-
tion to equilibrium occurs on a time scale that is much
faster than any other relevant time scale in our problem. In
this case, even when the heat source interacts and ex-
changes energy with the device, its microstate at any
instant can be treated as a random sample from an equi-
librium ensemble. Effectively, then, the heat source
evolves through a sequence of equilibrium states, as it
absorbs or releases energy. Moreover, in the limit of infi-
nite heat capacity, its temperature remains constant

�� ���!Nheat!1
�0, as discussed in a previous paragraph.

Now, let zn ¼ ½xðn�Þ;pðn�Þ� denote the microstate of
the device at the start of the nth period, and similarly define
Zn ¼ ½�ðn�Þ;’ðn�Þ� for the heat source. The evolution of
the combined system from one period to the next is given
by the iteration of a deterministic mapping:

���!ðzn�1;Zn�1Þ!ðzn;ZnÞ!ðznþ1;Znþ1Þ!��� : (17)

Each microstate �n in this sequence is reached from the
previous one, by evolving under Hamilton’s equations for

one period of the time-dependent HamiltonianHtotð� ; tÞ. In
the limit of extremely rapid self-equilibration of the heat
source, the Zn’s effectively become uncorrelated random
samples from a fixed equilibrium distribution. Abstractly,
we can view Zn as a set of freshly generated random
numbers that collectively determine the value of znþ1,
given zn; in the next iteration, a new set of random num-
bers Znþ1 determines the transition from znþ1 to znþ2, and
so forth. Adopting this perspective, the stroboscopic evo-
lution of the device from one period to the next

� � � ! zn�1 ! zn ! znþ1 ! � � � (18)

is given by the iteration of a stationary, stochastic,
Markovian mapping. This Markov chain relaxes to a
unique stationary state described by a fixed, generally
nonequilibrium distribution ��devðx;pÞ. (This result is a
consequence of the Perron-Frobenius theorem [77], under
standard assumptions.) Therefore, the time-dependent
probability distribution for the device relaxes to a periodic
steady state

�devðx;p; tþ �Þ ¼ �devðx;p; tÞ; (19)

where �devðx;p; n�Þ ¼ ��devðx;pÞ.
To reach Eq. (19), we have assumed that the self-

equilibration of the heat source occurs, in effect, infinitely
rapidly. Now, we loosen this assumption by allowing the
relaxation time scale of the heat source to be comparable to
other time scales in the problem. In this case, Znþ1 in
Eq. (17) may be statistically correlated with Zn and with
zn. Nevertheless, it is reasonable to assume that there exists
some integer K > 0, such that ZnþK is statistically uncor-
related with Zn and zn. In other words, a time interval of
duration K� is sufficient for the heat source to ‘‘forget’’ its
microstate. Then, the stroboscopic evolution of the device
in time increments K�

� � � ! zn�K ! zn ! znþK ! � � � (20)

is a Markov chain. The Zn’s are no longer necessarily
sampled from equilibrium. However, if the heat source
itself reaches a stationary state, in which the energy ex-
changed with the device is transported at a fixed rate to
more distant regions of the heat source, then Eq. (20)
becomes a stationary Markov chain, and the final argu-
ments of the previous paragraph continue to apply: The
device eventually relaxes to a periodic steady state.
As mentioned, the reasoning of the preceding para-

graphs is intended as a plausibility argument for the emer-
gence of cyclic motion of the device, under the conditions
and limits we have discussed: The large inertia of the work
source induces a time-periodic Hamiltonian for the device,
and the large heat capacity and self-equilibration of the
heat source cause the relaxation of the device into a time-
periodic steady state. For the remainder of this paper, we
will assume that these arguments apply—hence, the device
reaches a periodic steady state—and we will explore their
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consequences. As suggested at the beginning of Sec. II, we
will henceforth use the terms work reservoir and heat
reservoir.

We note that once the device has reached a periodic
steady state, both its internal energy and its Shannon
entropy become time periodic as well:

hHdevðtþ�Þi¼hHdevðtÞi; H devðtþ�Þ¼H devðtÞ: (21)

We will make use of this observation in our later analysis.

D. Information reservoir

In the preceding subsections, work and heat reservoirs
have been discussed within a classical, Hamiltonian frame-
work. We now complete this framework by introducing the
possibility of information processing. In effect, we aim to
describe thermodynamic processes in the presence of a
physical device capable of acting like Maxwell’s demon,
performing microscopic measurements and feedback on
the other subsystems in our picture. The key feature that
we wish to capture is the demon’s memory, where it stores
information that it has gathered. To this end, we introduce
an idealized information reservoir, representing the de-
mon’s memory. All other components of the mechanical
demon are implicitly treated as belonging to the device of
interest.

To describe the complete system consisting of device,
heat reservoir, and information reservoir, the total
Hamiltonian (15) is extended to read

Htotð�;�;�; tÞ ¼ Hdevðx;p;�;’; tÞ þHheatð�;’Þ
þHinfoð�;�Þ þ hð� ;�;�Þ; (22)

where ð�;�Þ is the microstate of the information reservoir
and Hinfo is its bare Hamiltonian. The term hð� ;�;�Þ
describes the interaction between the information reservoir
and the device and thermal reservoir. The assumption
that the information and thermal reservoirs are coupled is
important for the following discussion.

Let us first describe the information reservoir in the
presence of a single thermal reservoir, at inverse tempera-
ture �, before discussing its interaction with the device.

For specificity, we will take the information reservoir to
be a memory register consisting of N bits [78]. A single bit
is physically implemented using a large collection of atoms
or molecules, whose total magnetization (or some other
collective observable) acts as a binary order parameter. We
will distinguish between the microstate of the information
reservoir c � ð�;�Þ and its informational state �. The
microstate c is a point in the phase space of the entire
collection of atoms and molecules comprising the memory
register, whereas the informational state � is a given
sequence of bit values, e.g., 0110 � � � 10. We assume that
each microstate c corresponds to a particular informa-
tional state �, and we will use the function �̂ðc Þ to specify
the informational state associated with the microstate c .

The variables c and � thus represent fine-grained and
coarse-grained descriptions of the state of the information
reservoir.
The function �̂ðc Þ partitions the phase space of the

information reservoir into 2N distinct regions, each corre-
sponding to one informational state. To guarantee a stable
and reliable memory register, we assume these regions are
separated by large free-energetic barriers, so that over the
time scales that concern us, the probability of a sponta-
neous, thermally driven transition from one informational
state to another is negligible. It then becomes useful to
consider a constrained equilibrium state, described by a
conditional probability distribution

peqðc j�Þ ¼ ��;�̂ðc Þ expð��½Hinfoðc Þ � F�
info�Þ: (23)

Here, the Kronecker � function acts as an indicator vari-
able; hence, peqðc j�Þ is simply a canonical probability
distribution, restricted to the region of phase space corre-
sponding to the information state �. The free energy F�

info

is determined by normalization
R
dcpeqðc j�Þ ¼ 1, and in

the usual manner, we can define an equilibrium internal
energy and entropy

hHinfoieq;� ¼
Z

dcpeqðc j�ÞHinfoðc Þ;

H eq;�
info ¼ �

Z
dcpeqðc j�Þ lnpeqðc j�Þ:

(24)

Equation (23) represents the statistical state of the infor-
mation reservoir, when it has been left undisturbed in
the informational state �, in the presence of a thermal
reservoir.
Following Bennett [79], we will refer to the N bits as

information-bearing degrees of freedom, or IBD, and the
remaining microscopic variables as non-information-
bearing degrees of freedom, or NBD. Using this terminol-
ogy, Eq. (23) represents an equilibrium state of the NBD
(c j�) for a given state of the IBD (�).
Let us now consider the behavior of the information

reservoir in the presence of the device of interest. We
explicitly assume that interactions with the device can
give rise to transitions among the informational states. In
this manner, information about the evolution of the device
of interest becomes encoded in the IBD. Let us further
assume that (1) the 2N informational states have the same
equilibrium energies and entropies and (2) after a transition
from one informational state to another, thermal equilibra-
tion of the NBD occurs rapidly. Under these assumptions,
the energy of the information reservoir effectively remains
constant, aside from equilibrium thermal fluctuations. In
the presence of the device of interest and thermal reservoir,
the evolution of the information reservoir is a sequence of
transitions from one equilibrated informational state to
another.
The total information encoded in the reservoir is quan-

tified by its Shannon entropy, which can formally be

SEBASTIAN DEFFNER AND CHRISTOPHER JARZYNSKI PHYS. REV. X 3, 041003 (2013)

041003-6



decomposed into contributions from the information-
bearing and non-information-bearing degrees of freedom:

H infoðtÞ¼�trf�infoðtÞln�infoðtÞg¼H IBD
info ðtÞþH NBD

info ðtÞ;
(25)

as we show in Appendix B. Moreover, under the assump-
tions of the previous paragraph, H NBD

info ðtÞ does not vary

with time and is given simply by the equilibrium entropy of
the microscopic, non-information-bearing degrees of free-
dom (again, see Appendix B for details). As a result, any
change in the Shannon entropy of the information reser-
voir, resulting from its interactions with the device over an
interval of time, is entirely captured by the net change in
the probability distribution of the mesoscopic,
information-bearing degrees of freedom:

�H info ¼ �H IBD
info : (26)

In Secs. III, IV, and V below, we will use the notation
�H info rather than �H IBD

info , to avoid clutter, but it will be
understood that the net change in the Shannon entropy of
the information reservoir refers to the change in its
information-bearing degrees of freedom.

III. NON-NEGATIVITY OF
INFORMATION EXCHANGE

The rest of this paper is devoted to investigating specific
thermodynamic processes within the framework intro-
duced above. To this end, we begin by obtaining an in-
equality for the sum of changes of the Shannon entropy for
the individual subsystems [Eq. (33)] from which we derive
an inequality related to the behavior of our system in the
periodic steady state [Eq. (43)]. The latter result and its
generalization [Eq. (44)] will then be exploited in Sec. IV.
As in the recent work of Hasegawa et al. [15,17] and
Esposito et al. [16,18], our approach in this section will
draw on properties of the canonical distribution, the
Shannon entropy, and the Kullback-Leibler divergence
[80], as well as assumptions about the initial state of the
system.

We adopt an explicitly statistical perspective, in which
we consider an ensemble representing different possible
microscopic realizations of the process. The probability
distribution in the full phase space at an initial time t ¼ 0
reflects the preparation of the system prior to this time, and
we now spell out the assumptions that we make regarding
this preparation. As in Refs. [7,8,15–18], we assume that
the total system begins in a product state

�totð� ;�;�; 0Þ ¼ �devðx;p; 0Þ
� �heatð�;’; 0Þ�infoð�;�; 0Þ: (27)

This assumption does not substantially restrict the general-
ity of the following discussion, as we expect the device to
relax into a time-periodic steady state that is independent

of its initial preparation (see Sec. II). For the time being, we
restrict ourselves to considering only a single thermal
reservoir, but as discussed below, the results generalize
easily to multiple reservoirs; see, e.g., Eq. (44).
We take the initial state of the heat reservoir to be given

by the canonical distribution

�heatð�;’; 0Þ ¼ 1

Zheat

exp½��Hheatð�;’Þ� � �
eq
heatð�;’Þ;

(28)

with free energy Fheat ¼ ���1 lnZheat. For the distribution
�infoð�;�; 0Þ, we assume that the microscopic, non-infor-
mation-bearing degrees of freedom are in equilibrium with
the thermal reservoir (see Sec. II D), whereas the distribu-
tion of the mesoscopic, information-bearing degrees of
freedom reflects the manner in which the information
reservoir was prepared. For instance, the memory register
might be initialized in a blank state 000 � � � 0, in which
case H IBD

info ¼ 0. At the other extreme, it may be prepared
so that every possible N-bit sequence (informational state)
is equally likely; hence,H IBD

info ¼ N ln2. We will not place
any restrictions on the initial statistical state of the device
�devðx;p; 0Þ.
After the initial preparation, the full system evolves

under the time-periodic Hamiltonian given by Eq. (22).
In general, the total density at time t > 0, �totð�;�;�; tÞ,
will not be a product state, and the reduced densities for
device, heat reservoir, and memory are obtained by inte-
grating out the other subsystems. Thus, for the device, we
have

�devðx;p; tÞ ¼
Z

d�d’
Z

d�d��totð�;�;�; tÞ; (29)

and similarly for the heat and information reservoir. We
can use these reduced densities to define the Shannon
entropy [81] of each subsystem, e.g.,

H devðtÞ ¼ �trf�devðtÞ ln�devðtÞg
� �

Z
dxdp�devðx;p; tÞ ln�devðx;p; tÞ; (30)

and analogously for the heat and information reservoir.
By Liouville’s theorem, the Shannon entropy of the total

system remains constant under Hamiltonian dynamics:
H totðtÞ ¼ H totð0Þ. Moreover, since the system is pre-
pared in a product state (27), we have

H totð0Þ ¼ H devð0Þ þH heatð0Þ þH infoð0Þ: (31)

At later times t, we have

H totðtÞ � H devðtÞ þH heatðtÞ þH infoðtÞ; (32)

due to the subadditivity of the Shannon entropy [81].
Subtracting Eq. (31) from Eq. (32), we obtain

�H dev þ�H heat þ�H info � �H tot ¼ 0; (33)
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where �H dev denotes the net change in the Shannon
entropy of the device of interest, and similarly for the other
subsystems.

For the heat reservoir, we can write

H heatðtÞ ¼ �trf�heatðtÞ ln�heatðtÞg
¼ �EheatðtÞ � �Fheat �Dð�heatðtÞ k �eq

heatÞ;
(34)

where

EheatðtÞ � trfHheat�heatðtÞg (35)

is the average energy of the reservoir, and Dð� k �Þ denotes
the Kullback-Leibler divergence [80]

Dð� k �Þ ¼ trf� ln�g � trf� ln�g � 0: (36)

Combining Eq. (34) with our assumption that the heat
reservoir is prepared in equilibrium [Eq. (28)], we get

�H heat ¼ �EheatðtÞ � �Eheatð0Þ �Dð�heatðtÞ k �
eq
heatÞ

� �ðEheatðtÞ � Eheatð0ÞÞ ¼ ��Eheat; (37)

using Eq. (36). This result in turn combines with Eq. (33)
to give

�H dev þ ��Eheat þ �H info � 0: (38)

Note that we have taken two distinct steps to arrive at
Eq. (38). First, we have obtained Eq. (33) from our as-
sumption that the subsystems are statistically uncorrelated
at the initial time [Eq. (27)]. In fact, the left side of Eq. (33)
quantifies the degree to which correlations develop be-
tween the subsystems because of their mutual interactions;
Esposito et al. [16] have explicitly interpreted this buildup
of correlations as representing entropy production. Next, to
get to Eq. (38), we have used the assumption that the
reservoir is initialized in the canonical distribution
[Eq. (28)], together with the non-negativity of the
Kullback-Leibler divergence. Similar manipulations ap-
pear in Refs. [15–18]. We will now use Eq. (38) to arrive
at inequalities that characterize the behavior of our system
in the periodic steady state.

A natural time scale for our process is given by the
driving period � (Sec. II B). Let us set t ¼ n� > n0�, where
n0 is the number of periods needed for the device to relax
into its periodic steady state. Then, the process in question
can be divided into a transient interval (0 ! n0�) followed
by an interval of time-periodic behavior (n0� ! n�).
Expressing each term in Eq. (38) as a sum of contributions
from these two intervals, we get

�H 0!n0
dev þ ��E

0!n0
heat þ�H 0!n0

info þ �H n0!n
dev

þ ��E
n0!n
heat þ �H n0!n

info � 0; (39)

which can further be rewritten as

�H 0!n0
dev þ ��E0!n0

heat þ�H 0!n0
info

þ ðn� n0Þð��Ecyc
heat þ �H cyc

infoÞ � 0; (40)

where

�Ecyc
heat ¼

�E
n0!n
heat

n� n0
(41)

is the average heat absorbed by the heat reservoir, per
cycle, in the periodic steady state, and

�H cyc
info ¼

�H n0!n
info

n� n0
(42)

is the average change in the Shannon entropy of the infor-
mation reservoir, per cycle, in the periodic steady state.
Note that the similarly defined quantity �H cyc

dev vanishes,

by Eq. (21). Dividing both sides of the inequality in
Eq. (40) by ðn� n0Þ, then taking the limit n ! 1, we
finally obtain

��E
cyc
heat þ �H cyc

info � 0: (43)

In Sec. IV, we will exploit this result [or its generalization,
Eq. (44)] to obtain generalized versions of the Kelvin-
Planck, the Clausius, and the Carnot statements of the
second law.
Equation (43) has a simple interpretation: The first term

on the left represents the net change in the thermodynamic
entropy of the heat reservoir, and the second term is the
net change in the Shannon entropy of the information
reservoir, specifically, its information-bearing degrees of
freedom. Either term can be positive, negative, or zero, but
their sum must be non-negative.
In the preceding analysis, for convenience, we have

restricted ourselves to a single heat reservoir. The argu-
ments are readily generalized to the case of multiple heat
reservoirs by replacing the change of Shannon entropy for
one reservoir by a sum over all reservoirs, in Eq. (33), and
by assuming that each heat reservoir is independently
prepared in a canonical distribution corresponding to a
particular temperature. In particular, for one hot and one
cold reservoir, Eq. (43) becomes

�hot�E
cyc
hot þ �cold�E

cyc
cold þ �H cyc

info � 0: (44)

In the case of multiple reservoirs, we will assume
that the information reservoir is coupled only to a single
thermal reservoir, and its microscopic degrees of freedom
remain in equilibrium at the corresponding temperature.
The results that we derive in the following section do not
depend on which reservoir is selected for this role.

IV. THE SECOND LAWAND
INFORMATION PROCESSING

In the periodic steady state, hHdevðtþ �Þi ¼ hHdevðtÞi
[Eq. (21)]. Therefore, by the first law of thermodynamics,
integrating Eq. (9) over a single cycle, we have
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hWcyci þ hQcyci ¼ 0; (45)

where Wcyc is the net work performed on the device, and
Qcyc is the net heat absorbed by the device (from one or
more heat reservoirs) over one cycle in the periodic steady
state, and angular brackets denote averages over many
realizations. By Eq. (8), the heat absorbed by the system
is defined as the net decrease in the bare energies of the
heat reservoir(s); hence, Eq. (45) becomes

hWcyci ¼ �Ecyc
heat: (46)

Kelvin-Planck statement.—The Kelvin-Planck statement
[1] expresses the observation that in cyclic, isothermal
processes, the average work is always non-negative
hWcyci � 0. To generalize this statement, we consider a
device of interest, coupled to a single heat reservoir at
inverse temperature�, a work reservoir, and an information
reservoir. Equation (46) then combines with Eq. (43) to give

�hWcyci � ��H cyc
info; (47)

which constitutes a generalized version of theKelvin-Planck
statement. For processes duringwhich information iswritten
to the information reservoir (�H cyc

info > 0), the net work

over one cycle can be negative. In other words, there can
be a systematic transfer of energy from the heat reservoir to
the work reservoir, provided the Shannon entropy of the
information reservoir increases. This conclusion is consis-
tent with the current consensus regarding the Maxwell de-
mon paradox [25–27,31]. For processes during which
information is erased (�H cyc

info<0), Eq. (47) becomes

equivalent to Landauer’s principle [8,15,17,18,24], placing
a lower limit on the amount ofwork thatmust be expended in
order to accomplish this erasure.

Clausius statement.—To generalize the Clausius
statement, we consider a device interacting with two heat
reservoirs, one hot and one cold, as well as a work reservoir
and an information reservoir. As above, these interactions
produce exchanges of both energy and information. In gen-
eral, the net work performed on the device over one cycle
can have either sign, and the device may be able to operate
as either a heat engine or a refrigerator. For the Clausius
statement, we restrict our attention to processes for which
hWcyci ¼ 0. In this case, Eq. (46) becomes

0 ¼ �Ecyc
hot þ�Ecyc

cold: (48)

Consequently, Eq. (44) can be written as

ð�cold � �hotÞhQcyc
hot i � ��H cyc

info; (49)

which generalizes the Clausius statement. Note that the left
side of Eq. (49) represents classical thermodynamic entropy,
i.e., the heat exchanged over temperature, whereas the rights
side quantifies the internal information gain in the memory.
Since �cold >�hot, Eq. (49) allows for processes during
which heat flows systematically from cold to hot (hQhoti<
0< hQcoldi), provided information is written to the memory,

as illustrated schematically in Fig. 3. Conversely, if informa-
tion is to be erased, then the right side of the inequality is
positive, and we get a lower bound on the amount of heat that
must flow from the hot to the cold reservoir. For the erasure of
one bit of information per cycle �H cyc

info ¼ � ln2, the aver-
age heat flow must satisfy

hQcyc
hot i � ð�cold � �hotÞ�1 ln2; (50)

which represents a modified version of Landauer’s principle
[35].
Carnot statement.—The Carnot statement asserts that

the efficiency of a heat engine is always less than the
Carnot efficiency 	 � 	C � 1� �hot=�cold [4]. To gen-
eralize this result, we again consider a device interacting
with two heat reservoirs, a work reservoir, and an infor-
mation reservoir, but now we consider processes for which
the work performed on the device over one cycle is nega-
tive (in other words, the device delivers work) and the heat
absorbed from the hot reservoir is positive; hence, the
device operates as a heat engine, with efficiency 	 ¼
�hWcyci=hQcyc

hot i> 0. Equation (44) takes the form

� �hothQcyc
hot i � �coldhQcyc

coldi þ�H cyc
info � 0; (51)

and Eq. (45) can be written as

hQcyc
coldi ¼ �hWcyci � hQcyc

hot i: (52)

Combining these equations, we obtain

��hothQcyc
hot iþ�coldhWcyciþ�coldhQcyc

hot iþ�H cyc
info�0:

(53)

After rearrangement of terms, we find that the efficiency
must satisfy

	�
�
1� �hot

�cold

�
þ �H cyc

info

�coldhQhoti¼	Cþ �H cyc
info

�coldhQhoti : (54)

Thus, for cyclic processes in which information is system-
atically written to the memory, the efficiency can exceed
the Carnot limit. Note that Eq. (54) does not depend on
whether the information reservoir is coupled to the hot or
the cold heat reservoir.

FIG. 3. Illustration of the generalized Clausius statement
[Eq. (49)]. Heat can flow from the cold to the hot reservoir if
information is written to memory.
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V. MAXIMUM WORK THEOREM

In Sec. IV, we considered only cyclic processes. Now, let
us briefly consider what happens when we relax this re-
striction. For noncyclic processes in the presence of a single
heat reservoir, the second law is formulated in terms of the
Helmholtz free energy F ¼ E� ��1S, where E ¼ hHi is
the mean internal energy, F the free energy, and S the
thermodynamic entropy of the system in question, in a state
of thermal equilibrium. If the system begins in one equilib-
rium state and ends in another, then the average work
performed on the system during the process satisfies hWi �
�F, where the equality holds for reversible processes.
Equivalently, the decrease in free energy gives the maxi-
mum usable, i.e., extractable, work during such a process.

To generalize this result, we consider a device of inter-
est, coupled to a single heat reservoir, a work reservoir, and
an information reservoir, without assuming cyclic motion.
As before, we assume an initial product state [Eq. (27)]
without imposing any restrictions on the initial state of the
device and we imagine observing the entire system over
some interval of time. Integrating Eq. (9) over this interval,
we get

�Edev � h�Hdevi ¼ hWi þ hQi ¼ hWi ��Eheat; (55)

averaging over many realizations of the process.
Combining this result with Eq. (38), which was derived
without assuming cyclic processes, we obtain

�H dev � ��Edev þ �hWi þ�H info � 0: (56)

In order to further simplify Eq. (56), we introduce the
information free energy

F ¼ Edev � ��1H dev ¼ FþDð� k �eqÞ; (57)

which generalizes the equilibrium free energy to an arbi-
trary nonequilibrium state characterized by a probability
distribution �. This nonequilibrium free energy has pre-
viously appeared in both Hamiltonian treatments [15–17],
for instance, to derive Landauer’s principle [18], as well as
stochastic treatments [19,82–85]. A generalized free en-
ergy of this form has also appeared in the thermodynamic
description of open system dynamics [86]. More recently,
it was shown that F is a Lyapunov function for nonequi-
librium stationary states [54].

In terms of this quantity, Eq. (56) becomes

�hWi � ��F � �H info; (58)

which is a generalized version of the maximum work theo-
rem. If the device begins and ends in equilibrium, �F is
replaced by the equilibrium free energy difference �F.

Equation (58) is similar to a version of the maximum
work theorem applicable to systems with external feedback
control [42,52,54,66,69]:

�hWi � ��F� hIi: (59)

Here, hIi denotes the mutual information that quantifies
the quality of the measurements that are performed by an
external agent. In Eq. (58), by contrast, �H info is the
change of Shannon entropy of an explicitly modeled sub-
system (our information reservoir), without reference to
feedback control. See Ref. [19] for a treatment that com-
bines both perspectives.

VI. CONCLUDING REMARKS

By categorizing thermodynamics systems as devices,
thermal reservoirs, work reservoirs, and information reser-
voirs, we have developed an inclusive approach for inves-
tigating the thermodynamics of information processing, in
which all participating subsystems are explicitly modeled.
This approach is based on autonomous evolution under a
time-independent Hamiltonian, supplemented by a number
of limits, approximations, and assumptions, spelled out in
Sec. II. Our main results in Sec. IV generalize the Kelvin-
Planck, Clausius, and Carnot statements for cyclic thermo-
dynamic processes and they support the consensus view
[24–27] that the Shannon entropy in a random data set (as
encoded by a memory register’s information-bearing de-
grees of freedom, for instance) should be placed on the
same footing as the Clausius entropy when analyzing the
second law of thermodynamics. Thus, for example, work
can systematically be extracted from a single heat bath,
heat can flow from cold to hot, and the Carnot efficiency
can be exceeded, provided these entropy-decreasing con-
sequences are compensated by the writing of information
to a memory register. Section V extends these results to
noncyclic processes in the form of a generalized maximum
work principle.
As mentioned, our derivations have elements in

common with previous treatments, particularly those of
Refs. [15–19]. However, our focus on a fully autonomous,
inclusive framework, on cyclic processes, and on the desig-
nation of an information reservoir as a separate element in
thermodynamic analyses distinguishes our approach. In the
spirit of a fully inclusive framework, Maes and Tasaki [21]
have derived the maximum work statement of the second
law of thermodynamics using a time-independent
Hamiltonian. Their emphasis is on a mathematically rigor-
ous treatment and does not focus on information processing.
Very recently, Tasaki [87] has analyzed a Hamiltonian

model of Maxwell’s demon, involving an engine and a
memory that interact by the exchange of information,
and Barato and Seifert [88] have investigated feedback
control with an explicit information reservoir, within the
framework of stochastic thermodynamics.
Finally, it is worth mentioning that, at least formally, the

present analysis can be extended to quantum-mechanical
systems. In place of Hamiltonian dynamics, one would use
the unitary dynamics of the ‘‘universe’’ under considera-
tion, the Shannon entropy would be replaced by the
von Neumann entropy, and classical ensemble averages
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would be replaced by quantum expectation values taken
with respect to density operators. Aside from these mod-
ifications, the mathematical steps in the derivation remain
the same. However, because our analysis in this paper has
relied heavily on classical reasoning and interpretation, it is
not clear whether formally analogous quantal manipula-
tions lead to physically meaningful results. These concep-
tual difficulties may perhaps be addressed by an appeal to
decoherence by an external environment, so as to induce
classicality [89], but such a treatment is beyond the scope
of our approach, which is based on a self-contained, iso-
lated universe. We leave these subtle interpretational issues
to future work.
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APPENDIX A: WORK RESERVOIR

In this Appendix, we analyze the illustrative example
sketched in Fig. 2. A rarefied gas is confined by a cylinder,
whose piston is coupled to a harmonic oscillator. The
Hamiltonian of the work source is

HworkðX;PÞ ¼ P2

2M
þM!2X2

2
; (A1)

where M is the mass of the piston and ! the angular
frequency of the spring. From Hamilton’s equations ap-
plied to the total Hamiltonian [Eq. (3)], we get for the
piston

_X ¼ V; _V ¼ �!2X � 1

M

@H0

@X
; (A2)

where V ¼ P=M is the piston velocity. In the limit
M ! 1, with the initial position X0 and velocity V0 held
fixed, the last term above can be neglected. The work
source then becomes a work reservoir whose time depen-
dence is given by its free dynamics

lim
M!1XðtÞ ¼ X0 cosð!tÞ � V0

!
sinð!tÞ;

lim
M!1VðtÞ ¼ V0 cosð!tÞ þ X0! sinð!tÞ; (A3)

which are the periodic solutions used in Sec. II B.

APPENDIX B: INFORMATION RESERVOIR

Here, we provide justification for Eqs. (25) and (26),
drawing on the assumptions that we have made about the
information reservoir.

Given an arbitrary probability distribution pðc Þ on the
phase space of the information reservoir, we define mar-
ginal and conditional distributions

p� ¼
Z

dc��;�̂ðc Þpðc Þ; pðc j�Þ ¼ ��;�̂ðc Þ
pðc Þ
p�

:

(B1)

p� is the probability distribution of informational states;
pðc j�Þ is the conditional probability distribution of micro-
states, given an informational state �; and

pðc Þ ¼ X
�

p�pðc j�Þ: (B2)

Introducing the shorthand notation
R
� dc . . . �R

dc��;�̂ðc Þ . . . , we obtain

H info ¼ �
Z

dcpðc Þ lnpðc Þ

¼ �X
�

p�

Z
dcpðc j�Þ ln

�X
�0
p�0pðc j�0Þ

�

¼ �X
�

p�

Z
�
dcpðc j�Þ ln½p�pðc j�Þ�

¼ �X
�

p� lnp� �X
�

p�

Z
�
dcpðc j�Þ lnpðc j�Þ

¼ H IBD
info þ

X
�

p�H NBD
info ð�Þ; (B3)

where H NBD
info ð�Þ is the Shannon entropy associated

with the conditional distribution pðc j�Þ. Defining
H NBD

info � P
�p�H NBD

info ð�Þ, we get the decomposition

given by Eq. (25).
Making use of the assumption that the NBD equilibrate

rapidly with the thermal reservoir, we replace H NBD
info ð�Þ

with its equilibrium value [see Eq. (24)]:

H info ¼ H IBD
info þ

X
�

p�H
eq;�
info : (B4)

Combining this result with the assumption that the equili-
brated informational states all have the same entropy

(H eq;�
info ¼ H eq;�0

info ), we conclude that, of the two terms

on the right of Eq. (B4), only the first one changes as the
distribution p� evolves with time. This conclusion finally
justifies Eq. (26).

[1] Sir W. Thomson, Mathematical and Physical Papers
(Cambridge University Press, Cambridge, England, 1882).

[2] M. Planck, Thermodynamik (Walter de Gruyter, Berlin,
1954).

[3] R. Clausius, Abhandlungen über die mechanische
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