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A laser generates light through stimulated emission of radiation and requires population inversion.

Quantum interference can yield lasing without inversion. However, such phase-sensitive quantum

amplification still requires some atomic population in the excited state. Here, we present a new kind

of quantum amplifier based on collective superradiant emission which does not need any population in

the excited state. We show that parametric resonance between the driving (e.g., infrared) field and

collective superradiant oscillations of the atomic polarization can yield light amplification at high

(e.g., XUV) frequencies. To achieve gain, one must suppress a time-dependent Stark shift caused by the

driving field. The resulting superradiant amplifier is many orders of magnitude more efficient than

the usual nonlinear multiphoton excitation and holds promise for a new kind of generator of high-

frequency coherent radiation. In addition to a detailed analytical analysis, confirmed by numerical

simulations, we provide a physically appealing explanation of the quantum amplification by super-

radiant emission of radiation (QASER) operation in terms of coupled classical oscillators. We also

present an experiment that demonstrates the QASER amplification mechanism in an electronic circuit,

which, to the best of our knowledge, is the first experimental demonstration of the difference

combination resonance.
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I. INTRODUCTION

Phase matching between intense classical laser fields is
an essential feature of nonlinear optics. But with the advent
of giant nonlinearities made possible by electromagneti-
cally included transparency and ultraslow light, we were
asked the following question: Can we have phase matching
at the single-photon level? Our answer is yes, and this
interesting question stimulated much of the recent work
on single-photon superradiance, which focuses on collec-
tive, virtual, and nonlocal effects [1–15]. In particular, in
the Dicke model of N two-level (jai and jbi) atoms [16], in
a small atomic sample of radius R much less than the
radiation wavelength �, the symmetric state with only
one atom excited,

j�si ¼ 1ffiffiffiffi
N

p XN
j¼1

jb1; b2 . . .aj . . . bNi; (1)

decays to the ground state jb1; b2 . . . bj . . . bNi at the rate

�s ¼ N�, where � is the single-atom spontaneous decay
rate. Dicke called this ‘‘the greatest radiation anomaly’’ of
superradiance. However, if R � �, the state (1) will trap
light, decreasing the emission rate.

Nevertheless, it is possible to prepare a phased (timed)
state excited by a photon of wave vector k0 and frequency
�0 [1],

j�pi ¼ 1ffiffiffiffi
N

p XN
j¼1

eik0�rj jb1; b2; . . . aj . . .bNi; (2)

which, to a good approximation, decays with the enhanced
rate �p ffi N��2=R2. Physically, the phase factors in

Eq. (2), expðik0 � rjÞ ¼ expði�0�tjÞ, where �tj ¼
k̂0 � rj=c, arise from the fact that atoms at the front of the

sample are excited first and atoms further downstream at
position rj are excited later [1].

However, when the cloud radius is large compared to the
superradiant pulse length c=�p, the situation becomes even

more interesting [3,7,15]. In such a case, the emitted
photon is reabsorbed and reemitted many times, as shown
in Fig. 1. This limit is the essence of cavity QED, where
photons in a cavity resonantly interact with a single atom.
If initially there are Nph photons and the atom is in the

ground state, then the probability of finding an excited
atom oscillates as

Pcavity ¼ sin2
�
}

@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
@�Nph

�0Vph

s
t

�
; (3)

where } is the atomic transition matrix element, @� is the
photon energy, and Vph is the cavity volume. However, in

the present case, when a single photon interacts with a
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large cloud of N atoms in free space, the probability of
finding an excited atom is [3,15]

Pcloud ¼ sin2
�
}

@

ffiffiffiffiffiffiffiffiffiffiffi
@�N

�0V

s
t

�
; (4)

where the cavity volume Vph and the photon number Nph

are replaced by the cloud volume V and the number of
atoms N.

The following question naturally arises: The stimulated
emission implied by Eq. (3) is the basis for the laser. Does
Eq. (4) suggest a corresponding new but different
(since collective spontaneous emission is different from
stimulated emission) source of coherent radiation? As we
shall see, the answer is yes,modulo certain somewhat subtle
considerations. In particular, we show here, for the first
time, that by utilizing collective superradiant emission,
we can generate coherent light at high frequency in the
UV or x-ray bands by driving the atomic system with a
low-frequency (e.g., infrared) source. This process involves
a phase-dependent quantum gain, as in the case of lasing
without inversion (LWI), which is another example of
quantum amplification. We call the present device that
generates high-frequency light through quantum amplifica-
tion by superradiant emission of radiation the ‘‘QASER.’’

To set the stage, let us first recall the equations that
describe conventional lasing and superradiance. We con-
sider a medium composed of two-level (jai and jbi) atoms,
with the population of the excited and ground states being
�aa and �bb, respectively. We are interested in the evolu-
tion of a weak laser (superradiant) pulse at the atomic
transition frequency !ab that propagates along the z axis.
Since the pulse is weak, the populations �aa and �bb can
be treated as constant. In the semiclassical approach, evo-
lution of the envelope �s of the superradiant pulse is
described by the Maxwell-Schrödinger equations

�
@

@t
þ c

@

@z

�
�s ¼ i�2

a�
s
ab; (5)

_� s
ab ¼ ��tot�

s
ab þ i�sð�bb � �aaÞ; (6)

where

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n�2

ab�c

8�

s
(7)

is a collective atomic frequency, n ¼ N=V is the atomic
density, �ab is the wavelength of the a-b transition, � is the
spontaneous decay rate of a single atom, �s

ab is slowly

varying envelope of atomic coherence, � ¼ }ab �E=@ is
the Rabi frequency corresponding to electric field E,
}ab ¼ hajerjbi is the matrix element of the electric
dipole moment, and �tot is the decoherence rate. �a is
the collective frequency with which the resonant pulse is
absorbed and reemitted by the medium [3,15,17].
Taking the time derivative of both sides of Eq. (5) and

using Eq. (6), we obtain for the pulse envelope �s the
following linear equation with constant coefficients:�
@

@t
þ �tot

��
@

@t
þ c

@

@z

�
�s þ�2

að�bb � �aaÞ�s ¼ 0: (8)

One can look for the solution of Eq. (8) in the form

�s ¼ A expðikz� i�tÞ; (9)

where A is a constant, � is the envelope frequency which is
essentially the detuning of the superradiant field from the
atomic transition frequency, and k is the envelope wave num-
ber. Ifwe treat k as real, then the imaginary part of� gives gain
(absorption) per unit time G ¼ Imð�Þ for a mode with wave
number k and�s / eGt. Plugging (9) into Eq. (8) yields

�¼ 1

2

�
�i�tot þ ck�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði�tot þ ckÞ2 þ 4�2

að�bb ��aaÞ
q �

;

(10)

which, for the mode with k � �a=c, gives the gain

G ¼ �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aa � �bb

p
; G � �tot; (11)

G ¼ �2
a

�tot

ð�aa � �bbÞ; G � �tot: (12)

If there is population inversion, �aa > �bb, then gain is
positive and the weak seed field grows exponentially with
time. The limit G � �tot corresponds to superradiance in
which the pulse evolves on a time scalemuch faster than the
single-atom decay time. In such a limit, G� ffiffiffi

n
p

. On the
other hand, if �aa ¼ 0 (all population is in the ground state)
and �tot ¼ 0, then Eq. (11) yields imaginary G, which
means �s oscillates with collective frequency �a. Such
oscillations describe collective absorption and superradiant
reemission of light by the atomic system [3,15,17].
During the last two decades, lasing without inversion

(LWI) has beendiscussed in the literature for various schemes
[18–21]. Typically, LWI is achieved by quantum interference
in emission or absorption channels. Such interference

FIG. 1. For a very large cloud, the photon is reabsorbed and
reemitted many times, and the atomic state oscillates with a
frequency that goes as

ffiffiffiffi
N

p
. This behavior is to be compared to

the cavity QED scenario in which an atom is cycled between the
ground and excited states with a frequency that goes as

ffiffiffiffiffiffiffiffi
Nph

p
,

where Nph is the number of photons in the cavity. P is the

probability that an atom is excited.

SVIDZINSKY, YUAN, AND SCULLY PHYS. REV. X 3, 041001 (2013)

041001-2



appears in systems with coherence created by an external
source. However, LWImodels require nonzero population of
atoms in the excited state.

Here, we go further and show that light amplification
(gain) can be obtained even if initially �aa ¼ 0. This can
occur in the superradiant regime because of a resonance
between the driving-field frequency �d and collective
polarization oscillation at �a. Before going into details
and lengthy calculations, we next motivate the present
gain mechanism in a simple way. Let us assume that
in Eq. (8) population is periodically modulated with
frequency �d such that

�bb � �aa ¼ 1� � cosð2�dtÞ; (13)

where � � 1 is a small modulation amplitude. Writing the
slowly varying envelope �sðt; zÞ in the form

�sðt; zÞ ¼ �sðtÞ exp
�
ik

�
z� ct

2

��
; (14)

where k is the envelope wave number, and neglecting
decoherence, we obtain the simple equation for �sðtÞ,

€� s þ ~�2
a½1� ~� cosð2�dtÞ��s ¼ 0; (15)

where

~� 2
a ¼ �2

a þ c2k2

4
(16)

and ~� ¼ �2
a�= ~�

2
a. Equation (15) is known as the Mathieu

equation [22], which yields exponentially growing
oscillations in the vicinities of parametric resonances

when �d 	 ~�a=m, m ¼ 1; 2; 3; . . . [see Fig. 2(a)]. In par-

ticular, for the (strongest) first-order resonance (�d ¼ ~�a),
gain per unit time is given by [23]

G ¼
~� � ~�a

4
¼ � ��2

a

4�d

: (17)

Equation (16) implies that the wave number of the
exponentially growing mode is

k ¼ � 2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d ��2

a

q
: (18)

Hence, if the driving-field frequency obeys the condition

�d >�a; (19)

there is a mode that is in parametric resonance with �d.
Such a mode grows exponentially with gain given by
Eq. (17). In other words, the system yields gain at the
high atomic frequency with no population in the excited
state. For example, for the 41P ! 11S transition of the He
atom, �ab ¼ 52:2 nm and spontaneous decay rate is � ¼
2:4
 108 s�1. Then, for atomic density n ¼ 1020 cm�3,
Eq. (7) shows that the collective atomic frequency lies in
the infrared band �a ¼ 0:48
 1014 s�1 while the atomic
frequency is in the XUV range !ab ¼ 0:36
 1017 s�1.
A key point of this article is that we have discovered a

new mechanism of atomic excitation by means of collec-
tive resonance. This mechanism is different from the well-
known multiphoton resonant excitation of an atom, which
occurs when the driving-field frequency �d ¼ !ab=m,
m ¼ 1; 2; . . . . Ordinary multiphoton resonant excitation
is a single-atom phenomenon rather than a collective
effect. In the present case, there is a resonance between
�d and collective oscillations, which occurs for �d * �a.
Excited-state population �aa grows with time differently

in the two cases. For multiphoton resonance and a weak
driving field, we have for �aa � 1 [24]

�aa 	
�
�d

!ab

�
2m�2ð�dtÞ2; (20)

FIG. 2. (a) Superradiant field as a function of time, obtained by numerical solution of Eq. (15) with ~� ¼ 0:1, �d ¼ ~�a and initial
condition _�lð0Þ ¼ 0. (b) Input and output superradiant pulse �s as a function of time after it propagates through the sample of length
L ¼ 100c=�a. Atoms are driven by the electric field with Rabi frequency (26) and by the magnetic field (33), which compensates the
atomic Stark shift. The superradiant pulse is sent in the same direction as the driving field. Plots are obtained by numerical solution of
Eqs. (B65)–(B69), with !ab ¼ 5:2�d, �d ¼ 0:64�a, and �d ¼ �a. Units of �s are arbitrary. (c) The same as in Fig. 2(b) but for the
backward-propagating superradiant pulse.
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where �d is the Rabi frequency of the driving field.
However, the present work is based on the collective para-
metric resonance and, as we show below, the growth is
exponential (see Appendix D for details):

�aa 	 j�abð0Þj2 exp
� ffiffiffi

2
p
3

�2
d

!2
ab

�at

�
; (21)

where �abð0Þ is the initial-seed atomic coherence
(produced by the seed XUV pulse).

Finally, excitation by multiphoton resonance yields
emission of light at high atomic frequency !ab in the
direction of the driving field. In contrast, in the present
case, the emission occurs in the opposite direction.

II. QUANTUM GAIN BY COLLECTIVE
SUPERRADIANT RESONANCE

Next, we present a rigorous analysis that demonstrates
the possibility of having quantum gain by collective super-
radiance. We consider the same medium composed of
two-level (a and b) atoms with frequency !ab, which are
modulated by a coherent driving field propagating along
the z axis and having Rabi frequency �driveðt; zÞ. We
suppose that the driving-field frequency �d � !ab and
j�drivej � !ab, so that modulation is weak.

In Appendix A, we derive the propagation equation for
the weak high-frequency pulse �s and obtain

�
@

@t
þ i�!abðtÞþ2�drive _�drive�

!2
ab

��
c
@

@z
þ @

@t

�
�s

þ�2
a

�
1�2�drive

aa �2j�drivej2
!2

ab

� i
4�drive

!ab

Im½�drive
ab �

�
�s

¼ 0; (22)

where

�!abðtÞ ¼ 2j�driveðt; zÞj2
!ab

is the (undesirable) time-dependent Stark shift of the atomic
transition frequency proportional to the instantaneous
intensity of the driving field.

Equation (22) shows that the driving field produces
several effects that contribute to evolution of the super-
radiant pulse �s. The time-dependent Stark shift �!abðtÞ
caused by the drive is the leading contribution since it is
proportional to 1=!ab. Such a term suppresses collective
resonance, which is governed by the next-order correc-
tions. As a result, in order to obtain gain at the high atomic
frequency, one should compensate the unwanted Stark
shift. This can be done in several ways, which we discuss
next.

For example, in the present two-level atom model,
the time-dependent Stark shift can be eliminated if the
driving field is nearly circularly polarized so that the
Rabi frequency has the form

�driveðt; zÞ ¼ �1e
i�dt�ikdz þ�2e

�i�dtþikdz; (23)

where �1 and �2 are real constants and kd is the wave
number of the driving field. Such a situation can be realized
for the elliptically polarized driving fieldEdrive if the dipole
matrix element of the two-level atom is

d ab ¼ dxx̂þ idyŷ; (24)

where dx and dy are real. This is, e.g., the case if the excited

state a corresponds to a px þ ipy atomic orbital and b is an

s state.
As we show in Appendix B 1, for a uniform driving field

(kd ¼ 0) and a certain ratio of �2=�1, the Stark shift
vanishes. Namely, to suppress the unwanted Stark shift,
we should choose

�2

�1

¼ �2
a

2�d!ab

: (25)

Under such conditions, Eq. (22) yields exponential grow of
the seed laser pulse, with gain G ¼ �a�

2
1=2!

2
ab. This

example demonstrates the possibility of having gain in a
simple model in which the Stark shift is compensated by
driving two-level atoms with a field of certain polarization.
In the general case, the driving field and the growing

XUV modes depend on spatial coordinates. In Appendix B
2, we explore such a situation for a different model
in which atoms are driven by linearly polarized light
propagating along the z axis,

�driveðt; zÞ ¼ �d cosð�dt� kdzÞ; (26)

and the time-dependent Stark shift is compensated by
applying an additional magnetic field HðtÞ with Rabi fre-
quency �HðtÞ ¼ �H=@. In this model, the magnetic field
produces a time-dependent Zeeman shift�HðtÞ of the level
a, which can compensate the unwanted Stark shift of the
a-b transition frequency. We find that if the Stark shift is
compensated by a magnetic field, then the XUV pulse
grows exponentially, provided that

ckd < �d (27)

and

�2
d � �d

�d � ckd
�2

a: (28)

Maximum gain per unit time is

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d � ckd�d

q
2�d � ckd

�a

2

�2
d

!2
ab

; (29)

while gain per unit length is given by

GL 	 j�d � ckdj
2c

�2
d

!2
ab

: (30)

In particular, Eqs. (29) and (30) show that there is no gain
in the direction of the driving field (when ckd ¼ �d).

SVIDZINSKY, YUAN, AND SCULLY PHYS. REV. X 3, 041001 (2013)

041001-4



However, there is gain in the backward direction

(when ckd ¼ ��d), provided that �d >�a=
ffiffiffi
2

p
, namely,

G ¼ �a

3
ffiffiffi
2

p �2
d

!2
ab

(31)

and

GL 	 �d

c

�2
d

!2
ab

: (32)

Finally, we investigate numerically how the weak XUV
pulse evolves, assuming that atoms are driven by linearly
polarized light (26) with kd ¼ �d=c and the Stark shift is
compensated by applying an additional magnetic field
(for details, see Appendix B 3). The field (26) is turned
on adiabatically. In calculations, we take !ab ¼ 5:2�d,
�d ¼ 0:64�a, and �d ¼ �a. We send a weak XUV pulse
of Gaussian shape into a sample of length L ¼ 100c=�a

and calculate how it evolves, provided that the Stark shift is
compensated by choosing �H as

�Hðt; zÞ ¼ 2

!ab

½�driveðt; zÞ�2: (33)

The numerical results are shown in Fig. 2(b) (for an
XUV pulse propagating in the same direction as the driving
field) and Fig. 2(c) for backward propagation. Figure 2(b)
demonstrates that there is no gain in the forward direction.
However, the XUV pulse grows in the backward direction,
and its intensity increases by several orders of magnitude
after propagation through the sample, in agreement with

our analytical findings. We also performed numerical
simulations of the Maxwell-Schrödinger equations without
making the slowly varying amplitude approximation, and
we obtained similar results.

III. ELECTROMECHANICAL
ANALOGY OF THE QASER

Gain with no excited-state population produced by
superradiant emission of radiation can be illustrated in a
system of two pendulums weakly coupled by a spring, as
shown in Fig. 3(a). Because of the weak coupling,
mechanical energy flows back and forth between pendu-
lums on a time scale much longer than the oscillation
period of each pendulum. This process is analogous to
photon absorption and reemission by atoms occurring
with collective frequency�a. Thus, in the present analogy,
the first pendulum corresponds to the XUV field, while the
second one represents the atomic system.
One can obtain excitations of the atomic and radiation

oscillators by periodical modulation of the coupling
strength. Typically, such modulation also yields an un-
wanted periodic change in the oscillator frequency, which
is analogous to the time-dependent Stark shift. One can
avoid this shift in an arrangement in which the second
pendulum is driven with a force F ¼ F0 cosð�dtÞ	1 pro-
portional to the displacement of the first pendulum 	1.
Such a force can be generated by the electrical feed-
back mechanism shown in Fig. 3(a), which yields the
following equations of motion for the coupled pendulums
(see Appendix C for details):

FIG. 3. (a) Electromechanical analog of the QASER. Masses M are attached to conducting rods, which are pivoted at points O. The
pendulums are weakly coupled with each other by a conducting spring. Pendulum 1 corresponds to the field and pendulum 2 to the
atoms. A metallic sphere is attached to the top of the second pendulum, while the upper end of the first pendulum slides without
friction along the resistor R connected to the ac voltage supply VðtÞ. The middle point of the resistor is grounded. A charge q, placed at
a fixed position, interacts with the charge on the metallic sphere QðtÞ, which is proportional to VðtÞ and to the displacement 	1 of the
first pendulum from equilibrium. This interaction modulates the coupling strength between the pendulums. (b) Gain for a single
oscillator as a function of modulation frequency �d obtained by numerical solution of Eq. (36) with �2=!2

0 ¼ 0:25 and � ¼ 0:4. The
vertical axis has a logarithmic scale. (c) Gain for compensated coupled oscillators as a function of modulation frequency �d obtained
by numerical solution of Eqs. (34) and (35) with �2=!2

0 ¼ 0:25 and � ¼ 0:4.
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€	 1 þ!2
0	1 ��2	2 ¼ 0; (34)

€	 2 þ!2
0	2 ��2½1þ � cosð�dtÞ�	1 ¼ 0; (35)

where!0 is the frequency of the free pendulums,� � !0

is the coupling constant, and � � 1 is the modulation
amplitude of the coupling strength.

Next, we compare gain for the single and coupled oscil-
lators, assuming the same driving force for both systems.
Namely, we assume that the two coupled pendulums are
described by Eqs. (34) and (35), while evolution of the
single oscillator obeys the Mathieu equation

€	þ ½!2
0 ��2� cosð�dtÞ�	 ¼ 0: (36)

In Figs. 3(b) and 3(c), we plot gain per unit time as a
function of modulation frequency �d obtained by the
numerical solution of Eq. (36) [Fig. 3(b)] and Eqs. (34) and
(35) [Fig. 3(c)]. In simulations, we take�2=!2

0 ¼ 0:25 and
� ¼ 0:4. For a single oscillator, the modulation yields
exponential grow of the oscillation amplitude in the
vicinity of parametric resonances �d ¼ 2!0=m, where
m ¼ 1; 2; 3; . . . . However, gain for higher-order reso-
nances (when m> 1) becomes very small [see Fig. 3(b)].
In other words, if the driving frequency �d is much smaller
than !0, then excitation of a single oscillator is very
inefficient. On the other hand, as is seen from Fig. 3(c),
for coupled oscillators, there is strong resonance at the
driving frequency

�d ¼ �2

!0

¼ 0:25!0: (37)

At such a frequency, we see that gain G ¼ 0:012!0 is
comparable to those for �d 	 2!0.

This simple mechanical example shows that a coupled
system can be excited with high efficiency even if the
driving frequency �d is much smaller than the frequency
of the system’s oscillations. Similarly, in the case of super-
radiant gain, the coupled field-atom system is efficiently
excited by a low-frequency coherent drive, provided that
we compensate for the deleterious time-dependent Stark
shift.

IV. QASER PHYSICS FROM A
GENERALIZED PERSPECTIVE

The QASER is a device that generates high-frequency
coherent radiation by driving an atomic ensemble with a
much smaller frequency. The amplification mechanism of
the QASER is governed by the difference combination
parametric resonance that occurs when the driving-field
frequency matches the frequency difference between two
close high-frequency normal modes of the coupled light-
atom system. The atoms interact with light collectively,
which yields superradiant emission and reabsorption of
the high-frequency radiation. This collective interaction

determines the spacing between the system’s normal
modes and QASER gain.
The single oscillator described by Eq. (36) provides a

simple example of parametric resonance. Such an oscilla-
tor has two natural frequencies (normal modes), �!0.
If we choose �d close to the difference between the
natural frequencies, that is, �d 	 2!0, the oscillator
phase-locks to the parametric variation and undergoes the
first-order parametric resonance, absorbing energy at a rate
proportional to the energy it already has.
Figure 3(b) shows that gain for the higher-order reso-

nances occurring at lower frequencies, �d 	 2!0=m, m ¼
2; 3; . . . , is very small, and thus, excitation of the system by
the higher-order resonances is inefficient. Nevertheless, as
we show, it is possible to effectively excite high-frequency
oscillations with a low-frequency drive if the system has a
pair of high-frequency normal modes with small spacing.
Modulation of parameters of such a system at a small
frequency equal to the spacing between the two close
normal modes can display the first-order parametric
resonance and, thus, yield an efficient excitation of the
high-frequency oscillations.
Two weakly coupled harmonic oscillators, described

by Eqs. (34) and (35) with � � !0, give an example of
such a system. This system has a pair of close normal-

mode frequencies, !� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 ��2
q

	 !0 ��2=2!0. If

the modulation frequency matches the frequency differ-
ence between those modes, namely, �d ¼ !þ �!� 	
�2=!0, the system displays resonance with high gain
[see Eq. (C10)],

G ¼ � � �d

8
; (38)

which is proportional to �, rather than �m (m> 1), which
would be the case for the higher-order resonances. This
result is illustrated in Fig. 3(c).
The QASER operates by the same principle. Indeed,

propagation of light [having Rabi frequency �ðt; rÞ]
through the medium of two-level atoms is described by
the coupled Maxwell-Schrödinger equations, which, with-
out making the slowly varying amplitude approximation,
read

�
@2

@t2
� c2r2

�
�ðt; rÞ ¼ �2

�2
a

!ab

@2�ab

@t2
; (39)

@�ab

@t
þ i!ab�ab ¼ i�ðt; rÞð�bb � �aaÞ: (40)

Equations (39) and (40) describe two coupled oscilla-
tors. To find the normal modes of the coupled system for a
weak atomic excitation, one can look for the solution of
Eqs. (39) and (40) in the form �, �ab / expðikz� i�tÞ,
which, for weak coupling and a mode with the wave
number k near !ab=c, yields two close frequencies,
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�� ¼ 1

2

�
!ab þ ck�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!ab � ckÞ2 þ 4�2

a

q �
; (41)

where we assume that initially the atoms are in the ground
state, that is, �bb � �aa 	 1. Thus, if we modulate the
system’s parameters at the small frequency

�d ¼ �þ � �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!ab � ckÞ2 þ 4�2

a

q
� ��; (42)

the high-frequency modes �� can be excited with large
gain via the first-order parametric resonance. Since in the
present problem the wave number k is a continuous
parameter, one can satisfy the resonance condition for
�d � 2�a. Namely, for such �d, there are always two
normal modes (value of k) that are in resonance with the
driving field.

Terms in the right-hand side of Eqs. (39) and (40)
describe the coupling between two oscillators.
Nonlinearity of the coupling allows us to modulate the
coupling strength by driving atoms with a low-frequency
field, which serves as an energy source for the QASER
operation. Such driving, however, also produces an un-
wanted ac Stark shift of the atomic transition, which
must be compensated in order to achieve gain.

The amplification mechanism of the QASER, namely,
the difference combination parametric resonance between
two close normal modes, can appear in various physical
systems. In principle, such a mechanism can be used to
generate coherent gamma radiation in nuclear ensembles
and to control propagation of gamma rays through crystals
on a picosecond time scale; we will discuss this possibility
elsewhere [25].

The study of variable-parameter (or parametric) pro-
cesses in electronic circuits in the 1950s led to the discov-
ery of a frequency-conversion mechanism in which the
energy is fed from the source that modulates the circuit
parameters at frequency �d to two circuit-normal modes of
lower frequencies,!1 and!2, obeying the relation [26,27]

�d ¼ !1 þ!2: (43)

This yields amplification of frequencies !1 and !2.
A variable inductor or a capacitor suitably coupled to two
resonance circuits is an example of such a parametric
amplifier [26]. A few years later, the principle of para-
metric amplification was proposed for generation of light
waves at frequencies !1 and !2 in nonlinear optical crys-
tals [28–30]. The first successful attainment of parametric
oscillation at optical frequencies was reported in 1965 in
LiNbO3 [31]. The progress in parametric amplification and
oscillation has been the subject of many review papers
(see, e.g., [32–34]). Nowadays, the optical parametric
oscillators (OPOs) are commercially available.

An OPO converts an input laser wave with frequency �d

into two output waves of lower frequency satisfying
Eq. (43) by means of the second-order nonlinear optical
interaction in crystal. The phase matching plays a decisive

role here. However, QASER operation does not require
phase matching, and in contrast to an OPO, it generates
light at frequencies obeying the relation

�d ¼ !2 �!1: (44)

It seems that the study of the electronic circuits back in the
1950s largely missed the possibility of generating such
frequencies. This omission is not surprising because the
QASER mechanism requires compensation of the ac fre-
quency shift (Stark shift) and asymmetric modulation of
the coupling between oscillators [see Eqs. (34) and (35)],
which is usually not the case.
Resonances described by Eqs. (43) and (44) are known

in applied mechanics as combination resonances. They
affect the dynamic stability of structures and appear in
systems having multiple degrees of freedom. The literature
on combination resonances in such systems is abundant
(see, e.g., [35–37]). In particular, the sum (43) and the
difference (44) combination resonances have been theo-
retically studied in connection with the parametric insta-
bility of a cantilevered column under periodic loads [38]
and shear-deformable laminated plates [39]. It has also
been suggested that the failure of the high-pressure com-
pressor of jet engines (which was occurring in the past) can
be due to the difference combination resonance when the
rotating speed of the rotor matches the difference between
natural frequencies of the rotating and static seals [40].
One should mention that combination resonances can

occur only under certain conditions. Small oscillations in
modulated systems with many degrees of freedom can be
described by coupled differential equations, which in
matrix notation read

€qþ C _qþ ½Aþ B cosð�dtÞ�q ¼ 0; (45)

where q is a vector of generalized coordinates, while A, B,
and C are matrices. A is a diagonal matrix, while matrix C
denotes gyroscopic terms and is usually antisymmetric. It
has been shown that if C ¼ 0 and B is a symmetric matrix
(as is the case in many applications), then the difference
combination resonance does not occur. If B is symmetric,
then Eq. (45) can be derived from a potential function,
and hence, terms Bq are conservative forces. In such
Hamiltonian systems, only the sum combination reso-
nances (43) can be excited [41,42], which is the reason
why the sum combination resonance is a frequent
phenomenon.
In other words, if the difference combination resonance

is possible in systems with no gyroscopic terms, then the
system must be nonconservative [43]. This is the case for
the electromechanical analog of the QASER shown in
Fig. 3(a), which possesses dissipation in resistor R. The
results are changed as soon as gyroscopic terms are in-
volved [41]. Now, the difference parametric resonance can
occur even if B is symmetric. Hamiltonian systems with
gyroscopic forces (e.g., the Lorentz magnetic force) can
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have both the sum and the difference combination
resonances.

While there is plenty of literature on combination reso-
nances, there do not seem to be any experimental ex-
amples of difference resonances [43]. In fact, such a
device might be somewhat strange. If we had !1 	 !2,
then �d ¼ !2 �!1 would be small, perhaps several
orders of magnitude smaller. So, a difference combination
resonance would generate a high frequency from a
low-frequency excitation.

In the next section, we present an electronic circuit
experiment that has just such a property. The experiment
can be easily described theoretically in a somewhat ideal
electronic circuit model, shown in Fig. 4. The model con-
sists of two ideal LC circuits that are weakly coupled by an
inductor L0 and a multiplier M. The output voltage Vout of
the multiplier is proportional to the product of the two
input voltages VðtÞ and V1: Vout ¼ 
VðtÞV1, where 
 is
the gain of the multiplier and VðtÞ ¼ V0 cosð�dtÞ is the
voltage produced by a function generator. The multiplier
makes coupling between the two LC circuits nonrecipro-
cal; in other words, matrix B in Eq. (45) is not symmetric
for such a system. The multiplier has high input resistance,
so one can disregard its input current.

Let the electric charges of the capacitors be Q1 and Q2.
Applying Kirchhoff’s laws to the system, we obtain
(for notation, see Fig. 4)

L1ð €Q1 þ _I0Þ þQ1

C1

¼ 0; (46)

L2ð €Q2 � _I0Þ þQ2

C2

� 

Q1

C1

VðtÞ ¼ 0; (47)

L0
_I0 ¼ Q1

C1

�Q2

C2

: (48)

Elimination of _I0 from Eqs. (46)–(48) yields two coupled
equations,

€Q 1 þ Q1

L1C1

�
1þ L1

L0

�
� Q2

L0C2

¼ 0; (49)

€Q2 þ Q2

L2C2

�
1þ L2

L0

�
� Q1

L0C1

�
1þ 


L0

L2

VðtÞ
�
¼ 0: (50)

Assuming that L1¼L2¼L, C1 ¼ C2 ¼ C and introducing
the notations

!2
0 ¼

1

LC

�
1þ L

L0

�
; (51)

�2 ¼ 1

L0C
; � ¼ 
V0

L0

L
; (52)

one can write Eqs. (49) and (50) as

€Q 1 þ!2
0Q1 ��2Q2 ¼ 0; (53)

€Q 2 þ!2
0Q2 ��2½1þ � cosð�dtÞ�Q1 ¼ 0; (54)

which are identical to Eqs. (34) and (35) of the previous
section; thus, the present electronic circuit model displays
similar parametric excitation.
The two LC circuits are weakly coupled, provided that

L0 � L. Driving the system with small frequency �d 	
�2=!0 ¼ !0L=L0 � !0 yields the difference resonance
that results in the efficient excitation of oscillations in the
LC circuits at the high natural frequencies!0ð1� L=2L0Þ.
In Appendix E, we perform a computer experiment and
demonstrate in detail how the high-frequency oscillations
are generated in a realistic electronic circuit model that
includes resistance and internal capacitance of the induc-
tors. In numerical simulations, we choose parameters
of the circuit elements that are readily available in an
undergraduate electronics laboratory.

V. EXPERIMENTAL DEMONSTRATION OF THE
QASER AMPLIFICATION MECHANISM IN

AN ELECTRONIC CIRCUIT

In this section, we present an experiment that illustrates
the QASER amplification mechanism in an electronic
system, as shown in Fig. 5. The system consists of two
RLC circuits weakly coupled by a capacitor and a
multiplier M that makes coupling nonreciprocal. In our
experiment,M is an AD633JN analog multiplier connected
as a linear amplitude modulator. Its output voltage Vout is
given by

Vout ¼ V1 � VðtÞ
10V

þ VðtÞ; (55)

FIG. 4. Electronic circuit analog of the QASER. Two LC
circuits weakly coupled by an inductor L0 correspond to the
atoms and to the field. Modulation of the coupling strength is
provided by a feedback mechanism in which voltage V1 from the
capacitor C1 is applied to the input terminal of the multiplier M;
its output voltage Vout is proportional to the product of the two
input voltages VðtÞ and V1, where VðtÞ ¼ V0 cosð�dtÞ is the
voltage produced by a function generator.
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where VðtÞ is the voltage produced by the DS345 synthe-
sized function generator, which is fed to the carrier
input of AD633JN, and V1 is the voltage applied to
the modulation input (see Fig. 5). The circuit is set up
on a breadboard using an apparatus that is available in
an undergraduate electronics laboratory. The circuit
parameters are indicated in Fig. 5. The breadboard has
self-capacitance of a few pF.

The circuit parameters are chosen such that the system’s
natural frequencies are close to each other. To compensate
for the capacitance of the multiplier, we designed the

RLC circuits with different C’s. We measured the natural
frequencies of the system to be !1 ¼ 196 kHz and
!2 ¼ 222 kHz. Thus, the frequency difference between
normal modes is �! ¼ 26 kHz. The quality factor of the

circuit isQ ¼ ffiffiffiffiffiffiffiffiffiffi
L=C

p
=R 	 400, which yields the resonance

bandwidth 0.5 kHz.
In our experiment, we modulate the coupling between

the RLC circuits by applying sinusoidal voltage of
frequency �d and amplitude V0,

VðtÞ ¼ V0 cosð�dtÞ; (56)

to the multiplier input and measure the voltage VAðtÞ at the
point A of the circuit (see Fig. 5) using the Tektronix TDS
210 oscilloscope. We examine how VAðtÞ changes under
variation of �d and V0.
We find that when �d ¼ �! ¼ 26 kHz and V0

is greater than a threshold value, the system starts to
oscillate at high frequencies. The measured spectrum of
such oscillations is given in Fig. 6(a) for V0 ¼ 0:9 V
(solid lines). The spectrum has a peak at the low driving
frequency �d ¼ 26 kHz and several high-frequency com-
ponents at ! ¼ !1;2, plus two sidebands at !1 � �d ¼
170 kHz and !2 þ �d ¼ 248 kHz. In the figure, vertical
dashed lines indicate the position of higher harmonics
of the driving frequency. Clearly, the observed high-
frequency oscillations are not produced by the higher
harmonics of �d, which do not overlap with the generated
spectral components.
Amplification of the high-frequency oscillations occurs

when parametric gain (which depends on V0) exceeds
losses. To demonstrate such a threshold behavior, we
measured the system’s oscillation amplitude at the
natural frequency !2 ¼ 222 kHz as a function of V0 for

FIG. 5. Experimental setup: Two RLC circuits are connected
by a capacitor and a multiplier M, which yields nonreciprocal
coupling between the two circuits. The transfer function of the
multiplier is given by Eq. (55). Sinusoidal voltage from a
function generator is applied to one of the multiplier’s inputs,
which produces modulation of the coupling strength. Voltage
VAðtÞ at the point A is measured by an oscilloscope.

FIG. 6. (a) Measured spectrum of the system’s oscillations for driving frequency �d ¼ 26 kHz and driving amplitude V0 ¼ 0:9 V
(solid lines). Vertical dashed lines at ! ¼ m�d, m ¼ 1; 2; . . . , indicate the position of higher harmonics of the driving frequency.
(b) Dependence of the system’s oscillation amplitude at the natural frequency !2 ¼ 222 kHz on V0 for �d ¼ 26 kHz. (c) Dependence
of the system’s oscillation amplitude at the natural frequency !2 ¼ 222 kHz on �d for V0 ¼ 0:825 V. In all plots, the voltage is
measured at the point A (see Fig. 5).
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�d ¼ 26 kHz. The results are shown in Fig. 6(b) (dots).
For V0 < 0:814 V, there is no amplification at any fre-
quency, while for V0 � 0:814 V, the net gain becomes
positive and high frequencies are efficiently generated by
the low-frequency drive.

Finally, to illustrate the resonant nature of the amplifi-
cation mechanism, we measured the system’s oscillation
amplitude at the natural frequency !2 ¼ 222 kHz as a
function of �d for V0 ¼ 0:825 V [see Fig. 6(c)]. We found
that high-frequency generation occurs only when �d is near
�! ¼ 26 kHz or 2!2 ¼ 444 kHz. This result agrees with
our theoretical findings displayed in Fig. 3(c).

To the best of our knowledge, the present results
provide the first experimental demonstration of differ-
ence combination resonance, that is, where the system
generates oscillations at high natural frequencies !1 and
!2 when forced with a low frequency �d ¼ !2 �!1.
Such a mechanism holds promise for generating
high-frequency electromagnetic oscillations in electronic
circuits (e.g., developing THz generators) and high-
frequency (XUV or x-ray) coherent light by means of a
low-frequency drive.

VI. SUMMARYAND OUTLOOK

We have found a new way to obtain quantum gain with
no population in the excited state by means of quantum
amplification by superradiant emission of radiation
(QASER). In our approach, light amplification occurs be-
cause of the difference combination parametric resonance
between collective oscillations of the coupled light-atom
system and the external (e.g., infrared) driving field, which
can yield exponential growth of the seed pulse at high
(e.g., XUV) atomic frequency. To achieve gain, one must
suppress the unwanted time-dependent Stark shift of the
atomic transition energy, which can be realized in various
schemes (see Appendix F for details on the ac Stark shift
compensation in many-level atoms).

The QASER mechanism is different from the LASER
(which requires nonzero excited-state population) and the
well-known multiphoton resonant excitation (which is a
single-atom phenomenon rather than a collective effect).
In particular, excited-state population grows with time
differently for the multiphoton excitation and the
QASER, as indicated in Eqs. (20) and (21). We also
show that the QASER is analogous to excitation of a
system of two weakly coupled oscillators, which displays
the difference combination resonance when the low modu-
lation frequency matches the frequency difference between
two close normal modes of the coupled system.

We carried out an experiment that demonstrates the
QASER amplification mechanism in an electronic circuit.
To the best of our knowledge, the present experiment is the
first experimental demonstration of the difference combi-
nation resonance that yields excitation of high-frequency
oscillations by a low-frequency drive.

The QASER is different from the OPO in several
ways. The OPO requires phase matching, but the
QASER does not. QASER emission is backward relative
to the drive, while in the OPO, it is forward. The ac
Stark shift compensation is key to the QASER operation,
but not to the OPO. The QASER can operate in a gas,
but the OPO requires a noncentrosymmetric nonlinear
crystal. Finally, the OPO is a sum-frequency device;
namely, frequencies !1 and !2 produced by the OPO
from the driving field �d obey the relation �d ¼ !1 þ
!2. In other words, the OPO generates lower frequencies
than �d. The QASER is the difference frequency device
for which �d ¼ !2 �!1. More precisely, the QASER
can generate higher frequencies by means of superra-
diant resonance.
Such a superradiant resonance holds promise for devel-

opment of a new class of radiation sources that generate
high-frequency (e.g., XUV or x-ray) coherent light by
utilizing a low-frequency (e.g., infrared) coherent source.
However, as is always the case in research, the present
scheme surely involves many challenges, open questions,
and unknowns. For example, what about all the other level
pairs? Will the device tend to oscillate on all of these pairs?
We think not. One can select a narrow window of atomic
frequencies, e.g., by sending an XUV seed pulse, or com-
pensate the ac Stark shift only for a particular atomic
transition. This will be discussed further in forthcoming
papers.
Will ionization of the excited states by the intense

driving field be a problem? No. One can choose the
driving field to be weak enough so that we will not
have excessive multiphoton ionization. This result is
possible since the present collective resonant excitation
is a much stronger effect than the usual multiphoton
mechanism. Can we operate more efficiently at high
pressures and/or with shorter wavelengths of the driving
field, etc.? This is an open question. There are surely
many such open questions that need to be investigated.
In Appendix F, we discuss possible experiments that
could demonstrate QASER operation in a noble gas
(e.g., He) or a gas of alkali atoms (e.g., Rb or Na) by
using available laser technology.
The intent of the present paper is to stimulate interest in

this new approach to the generation of short-wavelength
coherent light. If we accomplish that goal, this paper will
have served its purpose.
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APPENDIX A: EVOLUTION EQUATION FOR
SUPERRADIANT PULSE

Under the influence of the electromagnetic field �,
atomic population and coherence �ab evolve according to
the equations

_� aa ¼ ���aa � ið���ab � c:c:Þ; (A1)

�aa þ �bb ¼ 1; (A2)

_� ab ¼ �ði!ab þ �totÞ�ab þ i�ð�bb � �aaÞ: (A3)

We consider the regime of superradiance. Thus, one can
omit spontaneous decay � and decoherence �tot, pro-
vided that their rates are small compared to gain per unit
time, G.

Here, we are interested in the generation of coherent
radiation at atomic frequency !ab, and we study the
evolution of a weak superradiant pulse �s with carrier
frequency !ab propagating along the z axis through
the medium. In Eqs. (A1)–(A3), one can write the total
field, the total coherence, and population of the excited
state as

� ¼ �drive þ�super; (A4)

�ab ¼ �drive
ab þ �super

ab ; (A5)

�aa ¼ �drive
aa þ �super

aa ; (A6)

where �super, �super
ab , and �super

aa are small, fast-oscillating

corrections that, in the slowly varying envelope approxi-
mation, have the form

�super ¼ �sðt; zÞe�i!abtþi!abz=c þ c:c:; (A7)

�super
ab ¼ �s

abðt; zÞe�i!abtþi!abz=c; (A8)

�
super
aa ¼ �s

aaðt; zÞe�i!abtþi!abz=c þ c:c: (A9)

Here, �sðt; zÞ, �s
abðt; zÞ, and �s

aaðt; zÞ are slowly vary-

ing functions as compared to the fast-oscillating
exponentials. Please note that �drive can be complex,
while we choose modes of the field �super to be real
functions.

Plugging Eqs. (A4)–(A9) into Eqs. (A1)–(A3) and
neglecting higher harmonics, we obtain the following
equations for �sðt; zÞ, �s

abðt; zÞ, and �s
aaðt; zÞ:

_� s
ab ¼ i�sð1� 2�drive

aa Þ � 2i�drive�s
aa; (A10)

i _�s
aa þ!ab�

s
aa ¼ �sð�drive

ab � c:c:Þ þ�drive��s
ab: (A11)

Since the emission field is weak (the regime of linear gain),
it does not affect the evolution of �drive

ab and �drive
aa , which

are governed by separate equations:

_� drive
ab ¼ �i!ab�

drive
ab þ i�driveð1� 2�drive

aa Þ; (A12)

_� drive
aa ¼ i�drive�drive

ba � i�drive��drive
ab : (A13)

Equations (A10)–(A13) should be supplemented by the
Maxwell equation for the superradiant pulse, which in
the slowly varying envelope approximation reads�

@

@t
þ c

@

@z

�
�s ¼ i�2

a�
s
ab: (A14)

In Eq. (A11), the term i _�s
aa can be treated as a small

perturbation. Then, Eq. (A11) gives

�s
aa 	 2iIm½�drive

ab � �s

!ab

þ�drive�

!ab

�s
ab

� i

!2
ab

d

dt
ð2iIm½�drive

ab ��s þ�drive��s
abÞ: (A15)

In this equation, we keep terms up to the order 1=!2
ab.

Since Im½�drive
ab � / 1=!ab, Eq. (A15) reduces to

�s
aa 	 2iIm½�drive

ab � �s

!ab

þ�drive�

!ab

�s
ab

� i

!2
ab

d

dt
ð�drive��s

abÞ: (A16)

Plugging Eq. (A16) into Eq. (A10) yields�
1þ 2

!2
ab

j�drivej2
�
_�s
ab

¼ �2

�
i

!ab

j�drivej2 þ�drive _�drive�

!2
ab

�
�s
ab

þ i

�
1� 2�drive

aa � i
4�drive

!ab

Im½�drive
ab �

�
�s: (A17)

Taking the time derivative from both sides of Eq. (A14),
using Eq. (A17), and keeping the leading-order terms, we
find the following evolution equation for the superradiant
pulse:

�
@

@t
þ i�!abðtÞþ 2�drive _�drive�

!2
ab

��
c
@

@z
þ @

@t

�
�s

þ�2
a

�
1� 2�drive

aa � 2j�drivej2
!2

ab

� i
4�drive

!ab

Im½�drive
ab �

�
�s

¼ 0; (A18)

where

�!abðtÞ ¼ 2j�driveðt; zÞj2
!ab

is the time-dependent Stark shift of the atomic transition
frequency that is proportional to the instantaneous intensity
of the driving field.
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APPENDIX B: GAIN PRODUCED BYCOLLECTIVE
PARAMETRIC RESONANCE

In order to achieve gain with no population in the excited
state, one should suppress the time-dependent Stark shift
�!abðtÞ that washes out the parametric resonance. This
suppression can be accomplished in several ways, which
we discuss in the present section.

1. Nearly circularly polarized driving field

The time-dependent Stark shift can be compensated if
the driving-field Rabi frequency has the form

�driveðt; zÞ ¼ �1e
i�dt�ikdz þ�2e

�i�dtþikdz; (B1)

where �1 and �2 are real constants and kd is the wave
number of the driving field. As we show below, for a
certain ratio of �2=�1, the Stark shift vanishes. Such a
situation can be realized for an elliptically polarized driv-
ing fieldEdrive if the dipole matrix element of the two-level
atom is

d ab ¼ dxx̂þ idyŷ; (B2)

where dx and dy are real. This is, e.g., the case if the excited

state a corresponds to a px þ ipy atomic orbital and b is an

s state.
We assume that j�drivej, �d � !ab, that is, the driving

field produces small modulations. Then, Eqs. (A12) and
(A13) yield that under the influence of the driving field
(which is turned on adiabatically), atomic coherence and
population evolve as

�drive
ab ¼ �1

!abþ�d

eið�dt�kdzÞ þ �2

!ab��d

e�ið�dt�kdzÞ; (B3)

�drive
aa 	 �2

1

ð!ab þ �dÞ2
þ �2

2

ð!ab � �dÞ2

þ 2
�1�2

!2
ab � �2

d

cosð2�dt� 2kdzÞ: (B4)

Coherence given by Eq. (B3) oscillates with the frequency
of the driving field �d � !ab, and hence, it does not
generate light at the atomic frequency !ab.

Taking into account Eqs. (B1) and (B3), we obtain

j�drivej2 ¼ �2
1 þ�2

2 þ 2�1�2 cosð2�dt� 2kdzÞ; (B5)

�drive _�drive� ¼ i�dð�2
2��2

1Þ�2�d�1�2sinð2�dt�2kdzÞ;
(B6)

Im ½�drive
ab � ¼

�
�1

!ab þ �d

� �2

!ab � �d

�
sinð�dt� kdzÞ:

(B7)

Assuming that �2 � �1 (a nearly circularly polarized
field), Eq. (A18) can be written as

�
@

@t
þ 2i�2

1

!ab

þ 4i�1�2

!ab

cosð2�dt� 2kdzÞ
��
c
@

@z
þ @

@t

�
�s

þ�2
a

�
1� 2�2

1

!2
ab

� 2�2
1

!2
ab

e2i�dt�2ikdz

�
�s ¼ 0: (B8)

To obtain quick insight on the gain conditions, we
consider a spatially uniform driving field (kd ¼ 0) and
look for solutions of Eq. (B8) in the form

�sðt; zÞ ¼ �sðtÞ; (B9)

which yields the following equation for �sðtÞ:�
@

@t
þ 2i�2

1

!ab

þ 4i�1�2

!ab

cosð2�dtÞ
�
@�s

@t

þ�2
a

�
1� 2�2

1

!2
ab

� 2�2
1

!2
ab

e2i�dt
�
�s ¼ 0: (B10)

Equation (B10) has the structure�
@

@t
þ �ðtÞ

�
@�s

@t
þ�2

afðtÞ�s ¼ 0: (B11)

Making a change of function

�s ¼ ~�s exp

�
� 1

2

Z t

0
�ðt0Þdt0

�
; (B12)

we obtain

@2 ~�s

@t2
þ

�
�2

afðtÞ � 1

2

@�ðtÞ
@t

� �2ðtÞ
4

�
~�s ¼ 0: (B13)

Since �ðtÞ is a small perturbation, one can omit the term
with �2ðtÞ. Using this formula, Eq. (B10) reduces to

@2 ~�s

@t2
þ�2

a

�
1� �� � cosð2�dtÞ

þ i�

�
2�d!ab

�2
a

�2

�1

� 1

�
sinð2�dtÞ

�
~�s ¼ 0; (B14)

where

� ¼ 2�2
1

!2
ab

� 1 (B15)

is the dimensionless amplitude of modulation of collective
oscillations. To suppress an unwanted Stark shift, one
should choose

�2

�1

¼ �2
a

2�d!ab

: (B16)

Then, Eq. (B14) becomes the equation of the parametric
harmonic oscillator,

@2 ~�s

@t2
þ�2

a½1� �� � cosð2�dtÞ� ~�s ¼ 0: (B17)

Near the parametric resonance �d 	 �a, the seed pulse
exponentially grows with time, �sðtÞ / eGt, and gain per
unit time is
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G ¼ � ��a

4
¼ �a

2

�2
1

!2
ab

: (B18)

2. Compensation of Stark shift by magnetic field

Here, we assume that two-level atoms are described by
the following model Hamiltonian:

Ĥ ¼ ½"!a ��HzðtÞ�jaihaj þ "!bjbihbj
� ðdabjaihbj þ dbajbihajÞEðtÞ; (B19)

implying that state a has a magnetic moment� along the z
axis that interacts with the z component of the magnetic
field. In addition, levels a and b are dipole coupled by the
electric field and, e.g., dab ¼ dðx̂þ iŷÞ. The magnetic field
produces a time-dependent Zeeman shift of the level a. As
a result, the atomic frequency in Eq. (A3) is replaced with
!ab ! !ab ��HðtÞ, where

�HðtÞ ¼ �HzðtÞ
@

:

The magnetic field produces a similar effect as the Stark
shift, and hence, they can compensate each other. Analysis
of the previous section can be applied here, and it yields the
same evolution equation (A18) for �s but with

�!abðtÞ ¼ 2j�drivej2
!ab

��H: (B20)

Here, we assume that the atomic medium is driven by a
strong linearly polarized laser pulse propagating along the
z axis,

�driveðt; zÞ ¼ �d cosð�dt� kdzÞ; (B21)

where �d � !ab and �d � !ab. Equations (A12) and
(A13) yield that, under the influence of the driving field
(which is turned on adiabatically), atomic population and
coherence evolve as

�drive
aa ¼ �2

d

!2
ab � �2

d

cos2ð�dt� kdzÞ; (B22)

�drive
ab ¼ �d

2

�
eið�dt�kdzÞ

!ab þ �d

þ e�ið�dt�kdzÞ

!ab � �d

�
: (B23)

In order to compensate for the Stark shift, the applied
magnetic field should have the form

�Hðt; zÞ ¼ �m cosð2�dt� 2kdzÞ: (B24)

Taking into account Eqs. (A18) and (B20)–(B24),
we obtain the following evolution equation for the
superradiant pulse �s:

�
@

@t
þ i!ab�þ ið!ab���mÞ cosð2�dt� 2kdzÞ

� �d� sinð2�dt� 2kdzÞ
��

c
@

@z
þ @

@t

�
�s

þ�2
a½1� 4�cos2ð�dt� kdzÞ��s ¼ 0; (B25)

where

� ¼ �2
d

!2
ab

� 1 (B26)

is the dimensionless modulation amplitude of collective
atomic oscillations.

a. Gain per unit time: Reduction to Mathieu’s equation

To find the exact analytical solution of Eq. (B25), we
first reduce it to Mathieu’s equation. Equation (B25) has
the structure�

@

@t
þ i!ab�þ �ðt� z=vdÞ

��
c
@

@z
þ @

@t

�
�s

þ�2
afðt� z=vdÞ�s ¼ 0; (B27)

where

vd ¼ �d

kd
(B28)

is the phase velocity of the driving field along the z axis.
We look for the solution of Eq. (B27) in the form

�sðt; zÞ ¼ eið��!ab�Þðt�z=cÞ�sð�Þ; (B29)

where � ¼ t� z=vd and � is complex. The imaginary part
of � gives gain per unit time G, provided that �sðt; zÞ
satisfies the proper initial condition. Namely, at t ¼ 0,
the function �sð0; zÞ should be finite at all z.
Plugging (B29) into Eq. (B27) yields

@2�sð�Þ
@�2

þ ½i�þ �ð�Þ� @�sð�Þ
@�

þ �2
afð�Þ

1� c=vd

�sð�Þ ¼ 0:

(B30)

Making a change of function

�sð�Þ ¼ ~�sð�Þ exp
�
� 1

2
i��� 1

2

Z �

0
�ð�0Þd�0

�
; (B31)

we obtain

@2 ~�s

@�2
þ

�
�2

afð�Þ
1� c=vd

� 1

2

@�ð�Þ
@�

� 1

4
½i�þ �ð�Þ�2

�
~�s ¼ 0:

(B32)

If the expression in (. . .) is a periodic function of �, then
Eq. (B32) is known as Hill’s equation.
Suppose that we find the solution of Eq. (B32) which

grows exponentially, namely,
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~� sð�Þ / eG1�: (B33)

Then, according to Eqs. (B29) and (B31), the function
�sðt; zÞ grows as

�sðt; zÞ / exp

��
i�

2
þG1

�
t

�


 exp

��
i�

�
1

2
� vd

c

�
�G1

�
z

vd

�
: (B34)

�sðt; zÞ satisfies the proper initial condition if �sð0; zÞ
remains finite at all z. This yields

Im ð�Þ ¼ 2cG1

2vd � c
: (B35)

Gain of the pulse per unit time is then given by

G ¼ G1 � Imð�Þ
2

¼ 2G1

�
c� vd

c� 2vd

�
: (B36)

Equation (B36) shows that there is no gain in the forward
direction (vd ¼ c).

Since�ð�Þ is a small perturbation, one can omit the term
with �2ð�Þ and write Eq. (B32) as

@2 ~�s

@�2
þ

�
�2

afð�Þ
1� c=vd

þ �2

4
� 1

2

@�ð�Þ
@�

� i�

2
�ð�Þ

�
~�s ¼ 0:

(B37)

Using this formula and taking into account that

�ð�Þ¼ ið!ab���mÞcosð2�d�Þ��d�sinð2�d�Þ; (B38)

fð�Þ ¼ 1� 4�cos2ð�d�Þ; (B39)

one can reduce Eq. (B25) to

@2 ~�s

@�2
þ

�
�2

a

1� c=vd

ð1� 2�Þ þ �2

4

þ
�
�2
d�� 2�2

a�

1� c=vd

þ 1

2
�ð!ab���mÞ

�
cosð2�d�Þ

þ i�d

�
!ab���m þ ��

2

�
sinð2�d�Þ

�
~�s ¼ 0; (B40)

which can be written in the form of Mathieu’s equation,

@2 ~�s

@�2
þ ~�2

a½1þ �0 cosð2�d�þ	Þ� ~�s ¼ 0; (B41)

where

~� 2
a ¼ �2

a

1� c=vd

ð1� 2�Þ þ!2

4
; (B42)

�0 ¼
��

�2
d�� 2�2

a�

1� c=vd

þ 1

2
�ð!ab���mÞ

�
2

� �2
d

�
!ab���m þ ��

2

�
2
�
1=2 1

~�2
a

; (B43)

and	 is an irrelevant constant. Since the imaginary part of
� (gain) is small, one can treat � in Eqs. (B42) and (B43) as
real. With the same accuracy, one can disregard the term
2� in Eq. (B42).

The condition of the first-order resonance �d ¼ ~�a

yields the following expression for the frequency of the
most unstable mode:

� ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d �

�2
a

1� c=vd

s
: (B44)

For such a frequency, gain per unit time is

G¼2G1

�
c�vd

c�2vd

�
¼2

�
c�vd

c�2vd

�
�0�d

4

¼ c�vd

c�2vd

�a

2�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c=vd

p



2
4�2�2

d�
0
@!ab���m�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

d�
�2

a

1�c=vd

s 1
A2

3
51=2

:

(B45)

Equation (B44) gives the following necessary condition
of existence of the first-order parametric resonance,

�2
d � vd�

2
a

vd � c
: (B46)

Equation (B45) predicts the following. If c=vd < 1
(which includes gain in the backward direction vd ¼ �c
or the case of uniform drive kd ¼ 0, that is, vd ¼ 1), then
the optimum value of�m whichmaximizes gain is given by

�m ¼ !ab�� 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d �

�2
a

1� c=vd

s
: (B47)

For such�m, gain is

G ¼ c� vd

c� 2vd

� ��a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c=vd

p : (B48)

b. Gain per unit length: Treatment in t, z coordinates

Here, we solve the original evolution equation (B25) for
the field and find how unstable modes grow in space.
Making in Eq. (B25) the change of function

�s ! �s exp

�
�i

�
t� z

c

�
!ab�

�
;

we obtain�
@

@t
þ �1�d sinð2�dt� 2kdzÞ þ i�3�d cosð2�dt� 2kdzÞ

�



�
c
@

@z
þ @

@t

�
�s þ�2½1þ �2 cosð2�dt� 2kdzÞ��s

¼ 0; (B49)

where
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� ¼ �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p

and

�1 ¼��; �2 ¼� 2�

1�2�
; �3 ¼ 1

�d

ð!ab���mÞ

are small numbers.
We look for a solution for �s in the form

�s ¼ ð1þ Ae2ið�dt�kdzÞÞeikz�i�t; (B50)

where A is a constant and � is the detuning of �s from the
transition frequency !ab. We assume that � is real. Then,
the imaginary part of k gives gain GL (absorption) per unit
length of the mode with frequency �. During propagation
of the seed pulse �s through the medium, it grows as
expðGLzÞ, where GL ¼ �ImðkÞ.

Substituting Eq. (B50) into Eq. (B49) and making the
rotating wave approximation, that is, replacing

cosð2�dt� 2kdzÞe�2ið�dt�kdzÞ ! 1

2
; (B51)

sinð2�dt� 2kdzÞe�2ið�dt�kdzÞ ! � i

2
; (B52)

and then eliminating A yields the following equation for k:

½ð��2�dÞðck���2ckdþ2�dÞþ�2�½�ðck��Þþ�2�
¼1

4
½�2�

2þð�1��3Þ�dðck��Þ�

½�2�

2�ð�1þ�3Þ�dðck���2ckdþ2�dÞ�: (B53)

Equation (B53) has the structure

ðk� k1Þðk� k2Þ ¼ Hðk; �Þ; (B54)

where k1 and k2 are real numbers given by the roots of
Eq. (B53) without the right-hand side, and

Hðk;�Þ ¼ ½�2�
2þð�1��3Þ�dðck��Þ�

c2½4ð�� 2�dÞ�þð�2
1��2

3Þ�2
d�


 ½�2�
2�ð�1þ�3Þ�dðck��� 2ckdþ 2�dÞ�

(B55)

is a small correction of the order of �2. The formal solution
of Eq. (B54) is

k ¼ 1

2
ðk1 þ k2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðk1 � k2Þ2 þHðk; �Þ

s
: (B56)

Gain is maximum when k1 ¼ k2. This condition gives two
equations for k and �,

ð�� 2�dÞðck� �� 2ckd þ 2�dÞ þ�2 ¼ 0; (B57)

�ðck� �Þ þ�2 ¼ 0; (B58)

which yield

� ¼ �d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d �

�2

1� ckd=�d

s
: (B59)

Plugging k and � into Eq. (B56), we obtain that gain per
unit length is given by

GL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Hðk; �Þp

¼ �j�d � ckdj
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ ð�2

3 � �2
1Þ�2

dð1� ckd=�dÞ
q



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � �1Þ2 � ð�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

�dðckd � �dÞ

r
� �3Þ2

s
:

(B60)

Plugging �1, �2, and �3 into the above equation, we finally
obtain for ð�2

3 � �2
1Þ�2

dð1� ckd=�dÞ � �2

GL 	 j�d � ckdj
2c

�
�2 � 1

�2
d

�
!ab���m

 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d þ

�2�d

ðckd � �dÞ

s �
2
�
1=2

: (B61)

The gain is maximum if the second term under the square
root is equal to zero, which yields the following expression
for the optimum magnetic field strength:

�m ¼ �2
d

!2
ab

0
@!ab  2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
d þ

�2�d

ðckd � �dÞ

s 1
A: (B62)

The maximum gain is

GL 	 j�d � ckdj
2c

�2
d

!2
ab

: (B63)

Gain exists if Eq. (B59) yields real �. This result imposes a
constraint on the driving field frequency,

�2
d >

�d�
2
a

�d � ckd
; (B64)

which coincides with Eq. (B46).

3. Numerical simulations

Next, we investigate numerically how the weak pulse
evolves in time and space. As in the previous section, we
assume that atoms are driven by linearly polarized light
and that the Stark shift is compensated by applying an
additional magnetic field. The total field, the total coher-
ence, and population of the excited state are given by
Eqs. (A4)–(A9) in which �drive is a fixed function. In the
presence of an additional magnetic field, shifting the level
a, the evolution of �drive

ab and �drive
aa is governed by

_� drive
ab ¼ �ið!ab ��HÞ�drive

ab þ i�driveð1� 2�drive
aa Þ;
(B65)
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_� drive
aa ¼ i�drive�drive

ba � i�drive��drive
ab : (B66)

Equations for slowly varying envelopes of quantities
associated with the superradiant field �sðt; zÞ, �s

abðt; zÞ,
and �s

aaðt; zÞ read
_�s
ab ¼ i�H�

s
ab þ i�sð1� 2�drive

aa Þ � 2i�drive�s
aa; (B67)

i _�s
aa þ!ab�

s
aa ¼ �sð�drive

ab � c:c:Þ þ�drive��s
ab; (B68)

�
c
@

@z
þ @

@t

�
�s ¼ i�2

a�
s
ab: (B69)

Here, we solve Eqs. (B65)–(B69) numerically. First, we
assume that�drive and�s depend only on time, and�drive

is turned on adiabatically as

�driveðtÞ ¼ �d

2
½1þ tanhð�3þ 0:2�atÞ� sinð�dtÞ; (B70)

while �H is chosen to compensate the Stark shift,

�HðtÞ ¼ 2

!ab

½�driveðtÞ�2: (B71)

We solve equations with initial conditions �aað0Þ ¼ 0,

�bbð0Þ ¼ 1, �abð0Þ ¼ 0, and _�sð0Þ ¼ 0. In simulations,
we take !ab ¼ 10:4�a, �d ¼ �a, and �d is chosen to
maximize gain. We find that gain is maximum for
�d ¼ 0:990�a; that is, !ab=�d ¼ 10:5 is far from the
multiphoton resonance. We plot the results of the numeri-
cal simulations in Fig. 7, which shows j�sj as a function of
time. The superradiant field undergoes exponentially grow-
ing oscillations, and gain per unit time is G ¼ 0:0018�a.

Figure 8 shows gain per unit time G for the optimal
driving field frequency �d (corresponding to the parametric
resonance) as a function of the strength of the driving
field �d. Parameters are the same as for Fig. 7. The plot

demonstrates that for small �d gain is proportional to
j�dj2. The j�dj2 dependence indicates that gain is not
governed by the multiphoton resonance.
To demonstrate the importance of Stark-shift compen-

sation, we calculate maximum gain as a function of �H.

Full compensation of the Stark shift occurs at �optimum
H , as

given by Eq. (B71). In Fig. 9, we plot maximum gain per

unit time as a function of �H=�
optimum
H . In numerical

calculations, we take !ab ¼ 10:4�a, �d ¼ 0:5�a, and
�d is chosen to maximize gain in the vicinity of parametric
resonance �d 	 �a. The figure shows that gain is positive
if �H lies in a narrow interval near the optimum value.
Outside this interval, the time-dependent Stark shift
suppresses gain.

FIG. 7. Evolution of the superradiant pulse as a function of
time obtained by numerical solution of Eqs. (B65)–(B71) with
�aað0Þ ¼ 0, �bbð0Þ ¼ 1, �abð0Þ ¼ 0, !ab ¼ 10:4�a, �d ¼ �a,
and �d ¼ 0:990�a.

FIG. 8. Maximum gain per unit time as a function of �d

obtained by numerical solution of Eqs. (B65)–(B71) (solid
line). Initially, all population is in the ground state b. In simu-
lations, we take !ab ¼ 10:4�a, and �d is chosen to maximize
the gain.

FIG. 9. Maximum gain per unit time as a function of the
magnetic field amplitude, which shifts energy of the excited
state a and compensates for the time-dependent Stark shift of the
a-b transition. Results are obtained by numerical solution of
Eqs. (B65)–(B69) with !ab ¼ 10:4�a, �d ¼ 0:5�a, and an
optimum value of �d that maximizes gain.
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APPENDIX C: COUPLED
PARAMETRIC OSCILLATORS

Here, we consider two coupled harmonic oscillators
described by the equations

€x 1 þ!2
0x1 ��2x2 ¼ 0; (C1)

€x 2 þ!2
0x2 ��2gðtÞx2 ��2fðtÞðx1 � x2Þ ¼ 0; (C2)

where!0 is the frequency of the free oscillator,� � !0 is
a coupling constant,

fðtÞ ¼ 1þ � cosð�dtÞ; (C3)

�d � !0 is the driving frequency, and � � 1 is a
modulation amplitude. The function fðtÞ describes the
modulation of the coupling strength between oscillators.
Such a modulation produces an unwanted time-dependent
frequency shift of the second oscillator. To compensate
such a shift, we additionally modulate the oscillator
frequency by introducing the function gðtÞ.

Making a slowly varying amplitude approximation, that
is, writing

x1 ¼ A1ðtÞei!0t; x2 ¼ A2ðtÞei!0t; (C4)

where A1;2ðtÞ are slowly varying functions on the time scale

1=!0, we obtain the following equations for A1ðtÞ and
A2ðtÞ:

2i!0
_A1 ��2A2 ¼ 0; (C5)

2i!0
_A2 ��2gðtÞA2 ��2fðtÞðA1 � A2Þ ¼ 0: (C6)

Taking the time derivative of both sides of Eq. (C5) and
using Eq. (C6), we find

€A 1 � i
�2

2!0

½fðtÞ � gðtÞ� _A1 þ �4

4!2
0

fðtÞA1 ¼ 0: (C7)

Equation (C7) shows that the frequency shift is the domi-
nant effect since it is proportional to 1=!0, while the term
producing parametric resonance is of the order of 1=!2

0. If

we compensate the unwanted frequency shift, that is,
choose gðtÞ ¼ fðtÞ, then Eq. (C7) reduces to the parametric
harmonic oscillator (Mathieu) equation

€A 1 þ �4

4!2
0

½1þ � cosð�dtÞ�A1 ¼ 0; (C8)

which yields exponentially growing oscillations in the
vicinities of parametric resonances. In particular, the first-
order parametric resonance occurs at the driving frequency

�d ¼ �2

!0

: (C9)

This frequency is much smaller than the oscillator
frequency !0. Nevertheless, Eq. (C8) yields large gain,

G ¼ � � �d

8
; (C10)

because �d corresponds to the first-order parametric
resonance.
Equations (C1) and (C2) describe small oscillations

of two pendulums connected by a spring in which modu-
lation of the coupling strength is provided by an electrical
feedback mechanism, as shown in Fig. 3(a). In this ar-
rangement, pendulums and the spring are made out of
conducting materials. A metallic sphere of capacitance C
is attached to the top of the second pendulum, while the
upper end of the first pendulum slides without friction
along the resistor R of length lR connected to the ac voltage
supply VðtÞ ¼ V0 cosð�dtÞ. The middle point of the resistor
is grounded (has zero electric potential). The electric
potential of the pendulums �, and thus the charge of
the metallic sphere Q ¼ C�, is determined by the
displacement 	1 of the first pendulum from equilibrium,
� ¼ VðtÞl1	1=lR [for notation, see Fig. 3(a)]. A charge q,
placed at a fixed position, produces the Coulomb force
F ¼ qQ=4�"0r

2 on the second pendulum. One can
write this force as F ¼ F0 cosð�dtÞ	1, where F0 ¼
qCV0l1=4�"0lRr

2 is approximately constant. The force
F is proportional to 	1 and modulates the coupling
strength between oscillators via the time dependence of
VðtÞ without producing an undesirable frequency shift.
The equation of the pendulum motion around the axis of

rotation reads

dðI _	Þ
dt

¼ ; (C11)

where I is the moment of inertia, _	 is the angular velocity,
and  is the torque on the pendulum. Applying this equa-
tion for pendulums 1 and 2, we obtain for a small deviation
from equilibrium

ML2 €	1 ¼ �MgL	1 þ kl2ð	2 �	1Þ;
ML2 €	2 ¼ �MgL	2 � kl2ð	2 �	1Þ þ F0l2 cosð�dtÞ	1;

(C12)

where k is the spring constant. Combining terms, one can
rewrite these equations as

€	 1 þ!2
0	1 ��2	2 ¼ 0; (C13)

€	 2 þ!2
0	2 ��2½1þ � cosð�dtÞ�	1 ¼ 0; (C14)

where

!2
0 ¼

g

L
þ kl2

ML2
; (C15)

�2 ¼ kl2

ML2
; (C16)

and

� ¼ F0l2
kl2

: (C17)
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APPENDIX D: GROWTH OFATOMIC
POPULATION IN THE QASER

Here, we derive Eq. (21), describing the growth of the
excited-state population �aa. Omitting spatial dependence,
Eq. (5) yields

�abðtÞ ¼ �i
_�sðtÞ
�2

a

: (D1)

Plugging in �sðtÞ ¼ �sð0Þ expðGtÞ, we find that the
atomic coherence grows as

�abðtÞ ¼ �abð0ÞeGt; (D2)

where �abð0Þ is the initial coherence generated by the seed
superradiant pulse. In the weak excitation limit �aaðtÞ 	
j�abðtÞj2 and using Eqs. (D2) and (31), we finally obtain

�aaðtÞ 	 j�abð0Þj2 exp
� ffiffiffi

2
p
3

�2
d

!2
ab

�at

�
: (D3)

Atomic excitation can start to grow out of the vacuum
fluctuations, or the growth can be triggered by the seed
pulse�sð0Þ. This growth can be understood by considering
the excitation of a pendulum with periodically modulated
frequency. The equation of motion for such a parametric
pendulum reads

€	þ!2
0½1þ � sinð�dtÞ�	 ¼ 0; (D4)

where 	 is a small angle describing the deviation from
equilibrium and � � 1 is the modulation amplitude. The
frequency modulation can be produced by periodically
changing the length of the pendulum.

If initially the pendulum is not excited, that is,

	ð0Þ ¼ _	ð0Þ ¼ 0, then Eq. (D4) yields the null solution

	ðtÞ ¼ 0: (D5)

Hence, in order to amplify pendulum oscillations, we
should first deposit a small amount of energy, e.g., shift
the pendulum from its equilibrium position by some
angle 	0. This is analogous to �abð0Þ in Eq. (D2). In the
zero-order approximation in parameter �, we then find

	ðtÞ ¼ 	0 cosð!0tÞ: (D6)

Plugging (D6) back into Eq. (D4), we obtain in first order
the equation of the forced harmonic oscillator,

€	þ!2
0	 ¼ 1

2
!2

0	0�ðsin½ð�d �!0Þt� � sin½ð!0 þ �dÞt�Þ:
(D7)

For �d ¼ 2!0, the first term in the right-hand side of
Eq. (D7) acts as a driving force having resonant frequency
!0, which yields growth of the pendulum oscillations.
However, the amplitude of the driving force is proportional
to 	0, and thus, it would vanish unless the pendulum is
initially excited.

APPENDIX E: ELECTRONIC CIRCUIT
ANALOG OF THE QASER

Here, we discuss a realistic electronic circuit model that
demonstrates the QASER amplification mechanism and
that can be set up in an undergraduate electronics labora-
tory. The model consists of two LC circuits, as shown in
Fig. 10, which are weakly coupled by a capacitor C0 and a
multiplier M. The output voltage Vout of the multiplier is
proportional to the product of the two input voltages VðtÞ
and V1: Vout ¼ 
VðtÞV1, where 
 is the gain of the multi-
plier and VðtÞ ¼ V0 sinð�dtÞ is the voltage produced by a
function generator. We assume that the multiplier has
negligible capacitance and high input resistance, so one
can disregard its input current. In a realistic model, induc-
tors have internal capacitance and resistance. As a conse-
quence, in the electronic scheme we add resistors R
connected in series with the inductors and a capacitance
connected in parallel.
Let the electric charges of the circuit capacitors be Q0,

Q1, and Q2. Applying Kirchhoff’s laws to the system, we
obtain (for notation, see Fig. 10)

L1ð €Q1 þ _I0Þ þ Rð _Q1 þ I0Þ þQ1

C1

¼ 0; (E1)

�Q2

C2

þ L2
_I3 � 


Q1

C1

VðtÞ þ RI3 ¼ 0; (E2)

L2
€I3 þ R _I3 þ 1

C3

ðI3 þ _Q2 � I0Þ ¼ 0; (E3)

FIG. 10. Electronic circuit analog of the QASER. Two LC
circuits weakly coupled by a capacitor C0 correspond to the
atoms and to the field. Modulation of the coupling strength is
provided by a feedback mechanism in which voltage V1 from the
capacitor C1 is applied to the input terminal of the multiplier M;
its output voltage Vout is proportional to the product of the two
input voltages VðtÞ and V1, where VðtÞ ¼ V0 sinð�dtÞ is the
voltage produced by a function generator.
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Q2

C2

þQ0

C0

¼ Q1

C1

: (E4)

To demonstrate gain produced by driving the system at
low frequency, we solve Eqs. (E1)–(E4) numerically for
the following realistic parameters:

C0¼15 pF; C1¼200 pF; C2¼C3¼100 pF; (E5)

L1 ¼ L2 ¼ 4 mH; R ¼ 10 �: (E6)

We assume that initially there is no current through
the inductors; the capacitor C1 has charge Q1ð0Þ,
while Q2ð0Þ ¼ 0:035Q1ð0Þ. If there is no drive, that is,
V0 ¼ 0 V, the system undergoes exponentially decaying
oscillations, as shown in Fig. 11. Because of the coupling
between two LC circuits, the system’s high-frequency
mode is split into !1 ¼ 165:1 kHz and !2 ¼ 177:9 kHz.
As a result, there is beating of the signal at the frequency
difference �! ¼ !2 �!1 ¼ 12:8 kHz.

Figure 12 shows the evolution of the charge Q2ðtÞ of the
capacitor C2 if the circuit is driven with frequency �d ¼
�! ¼ 12:8 kHz and amplitude 
V0 ¼ 0:1. The system
undergoes exponentially growing oscillations, and hence,
the high-frequency modes !1 and !2 are amplified by the
low-frequency drive. In Fig. 13, we plot gain per unit time
as a function of the driving frequency �d for the drive
amplitude 
V0 ¼ 0:1. When �d is equal to double the
normal mode frequencies, that is, �d ¼ 330:2 kHz and
355.8 kHz, the system experiences the first-order para-
metric resonances and gain has peaks. In addition, when
�d is equal to the frequency difference between the two
normal modes, that is, �d ¼ �! ¼ 12:8 kHz, there is also
strong first-order parametric resonance that exemplifies the
QASER amplification mechanism. It is interesting to note
that, in the present model, the value of gain at the low
driving frequency �d ¼ �! is greater than those at the
high frequencies. APPENDIX F: POSSIBLE EXPERIMENTAL

REALIZATION OF THE QASER

Here, we discuss possible experiments that can demon-
strate light amplification by collective parametric reso-
nance. To make the QASER work, we must compensate
the time dependence of the ac Stark shift produced by the
driving field for a particular atomic transition. Our analysis
shows that such compensation, in the general case, does not
suppress the transition modulation, which can lead to gain
at high frequencies.
In many-level systems, one can compensate the unwanted

Stark shift �!abðtÞ, e.g., by driving atoms with a specific
frequency or with a properly chosen elliptical polariza-
tion. We discuss these possibilities in the subsequent
sections.

1. Driving with specific frequency

Because the contribution to �!abðtÞ from different lev-
els can have opposite signs, one can compensate the Stark

FIG. 11. Evolution of the charge Q2ðtÞ of the capacitor C2 for
the electronic circuit of Fig. 10 with no drive. The circuit
parameters are given by Eqs. (E5) and (E6).

FIG. 12. The same as in Fig. 11, but now the circuit is driven
by frequency �d ¼ 12:8 kHz and amplitude 
V0 ¼ 0:1.

FIG. 13. Gain per unit time as a function of the driving
frequency �d for the drive amplitude 
V0 ¼ 0:1. The circuit
parameters are given by Eqs. (E5) and (E6).
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shift by a proper choice of the driving field frequency.
To be specific, we consider gas of neutral He atoms that
have energy levels as shown in Fig. 14. Initially, atoms are
in ground state 1 1S0, and driven by a linearly polarized

field EdriveðtÞ ¼ Ed cosð�dt� kdzÞ, which couples dipole-
allowed transitions, as shown in Fig. 14. The time-
dependent Stark shift of the 2 1P1 � 1 1S0 (a-b) transition
is given by the following expression:

�!abðtÞ ¼ jEdriveðtÞj2
@
2

�
2!abjdabj2
!2

ab � �2
d

� X
m�a;b

!majdamj2
!2

am � �2
d

�
;

(F1)

where !ma ¼ !m �!a. �!abðtÞ can be made zero if the
driving-field frequency has a proper value. Since the terms
under the sum in Eq. (F1) are typically larger than the first
term, one should choose �d to lie between two excited
levels (see Fig. 14). In this case, the terms under the sum
can compensate each other along with the first term.

For the 58.4-nm 2 1P1 � 1 1S0 transition (� ¼
1:8
 109 s�1) and atomic density n ¼ 1:6
 1020 cm�3,
which corresponds to the helium pressure of 6.6 atm
at room temperature T ¼ 300 K, the collective atomic
frequency is

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cn�2

ab�

8�

s
¼ 1:87
 1014 s�1: (F2)

The atom-atom collision frequency is given by

�coll ¼ Vthn�; (F3)

where the collisional cross section is

� 	 a2Bm
4 ¼ 0:45
 10�15 cm2: (F4)

m is the principal quantum number of the excited atomic
state, and aB is the Bohr radius. For room temperature,
atomic thermal velocity is

Vth ¼
ffiffiffiffiffiffiffiffiffi
kBT

M

s
¼ 7:87
 104 cm=s; (F5)

which yields

�coll ¼ Vthn� ¼ 5:7
 109s�1: (F6)

To fulfill the condition of collective parametric resonance,
the driving-field frequency should be

�d >
�affiffiffi
2

p ; (F7)

which is readily satisfied in the present scheme.
For driving-field intensity I ¼ 1014 W=cm2 (which is
below the ionization threshold for He atoms), the Rabi
frequency is

�d ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�I�ab

@!3
ab

s
¼ 6:6
 1014 s�1; (F8)

and gain per unit time in the backward direction can be
estimated [according to Eq. (31)] as

G 	 �a

3
ffiffiffi
2

p �2
d

!2
ab

¼ 2
 1010 s�1; (F9)

which is larger than collisional decoherence (this implies
applicability of the present analysis). For the wavelength of
the driving field, � 	 700 nm, Eq. (32) yields that gain per
unit length is

GL 	 �d

c

�2
d

!2
ab

¼ 30 cm�1; (F10)

which is large enough to achieve one path light conversion
into high-frequency radiation.

2. Driving with elliptically polarized light

One can also suppress the time dependence of the ac
Stark shift by a proper choice of the elliptical polarization
of the driving field. This can be understood from a three-
level model, as shown in Fig. 15. In the model, the ground
state b is dipole coupled with states a and c. For example,
the ground state can be an s state, while levels a and c are
px and py orbitals. We assume that the driving field Edrive

couples both transitions, namely, the x component of Edrive

drives the a-b transition, while the y component drives the
c-b transition. Our goal is to compensate the ac Stark

FIG. 14. Energy-level diagram of a He atom. FIG. 15. Three-level model of the QASER.
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shift of the a-b transition by a proper choice of elliptical
polarization ofEdrive. The time-dependent Stark shift of the
a-b transition is given by the following expression:

@
2�!abðtÞ ¼ 2!abjdabj2

!2
ab � �2

d

jEdrive
x ðtÞj2

þ!cbjdcbj2
!2

cb � �2
d

jEdrive
y ðtÞj2; (F11)

which can be made time independent if we choose Edrive
x ¼

A cosð�dt� kdzÞ and Edrive
y ¼ B sinð�dt� kdzÞ with

proper values of the amplitudes A and B. Despite the
compensation of the Stark-shift time dependence, the
strength of the a-b transition is yet modulated by
the driving field, leading to gain at high frequencies. We
show this effect in Appendix G for the three-level model.

Real atoms have many levels, and many of them con-
tribute to the Stark shift. Nevertheless, the mechanism of
the ac Stark-shift compensation remains the same. In the
presence of an external electric field E, the Stark shift of
the various magnetic sublevels of a particular electronic
state may be expressed in terms of scalar and tensor polar-
izabilities, �0 and �2, which can be measured experimen-
tally. If the atomic hyperfine structure is neglected, the
frequency shift of a particular magnetic sublevel may be
expressed in terms of its total angular momentum J and the
projection mJ along the quantization axis x as [44]

�!ðJ;mJÞ ¼�1

2
�0E

2� 1

4
�2

3m2
J � JðJþ 1Þ
Jð2J� 1Þ ð3E2

x�E2Þ:
(F12)

If the propagating driving field has Ex and Ey components,

then Eq. (F12) yields

�!ðJ;mJÞ ¼ � 1

2

�
�0 þ �2

3m2
J � JðJ þ 1Þ
Jð2J � 1Þ

�
E2
x

� 1

2

�
�0 � 1

2
�2

3m2
J � JðJ þ 1Þ
Jð2J � 1Þ

�
E2
y: (F13)

Equation (F13) shows that by a proper choice of time
dependence of Ex and Ey, one can make the Stark shift

time independent.
Let us consider the 5s 2S1=2–5p

2P3=2 transition (D2 line)

of the Rb atom (� ¼ 780:0 nm) as the light amplification
transition. Then, Eq. (F13) gives

�!ð5s2S1=2Þ ¼ � 1

2
�0ð5s2S1=2ÞðE2

x þ E2
yÞ;

�!ð5p2P3=2Þ ¼ � 1

2
�0ð5p2P3=2ÞðE2

x þ E2
yÞ

(F14)

� 1

2
�2ð5p2P3=2Þ

�
m2

J �
5

4

��
E2
x �

E2
y

2

�
;

(F15)

and the Stark shift of the transition frequency is

�! ¼ �!ð5p2P3=2Þ ��!ð5s2S1=2Þ
¼ � 1

2
ð�0ð5p2P3=2Þ � �0ð5s2S1=2ÞÞðE2

x þ E2
yÞ

� 1

2
�2ð5p2P3=2Þ

�
m2

J �
5

4

��
E2
x �

E2
y

2

�
: (F16)

To make �! time independent, one should choose Ex and
Ey such that

�xE
2
x þ �yE

2
y ¼ const; (F17)

where

�x¼�0ð5p2P3=2Þ��0ð5s2S1=2Þþ�2ð5p2P3=2Þ
�
m2

J�
5

4

�
;

(F18)

�y ¼ �0ð5p2P3=2Þ � �0ð5s2S1=2Þ
� 1

2
�2ð5p2P3=2Þ

�
m2

J �
5

4

�
: (F19)

This result, e.g., is achieved for elliptically polarized light,

Ex ¼ E0x cosð�dt� kdzÞ; (F20)

Ey ¼ E0y sinð�dt� kdzÞ; (F21)

with

E2
0x

E2
0y

¼ �y

�x

: (F22)

For the 5s 2S1=2 � 5p 2P3=2 transition of Rb, the experi-

mental values are �0ð5p2P3=2Þ��0ð5s2S1=2Þ¼136kHz=
ðkV=cmÞ2 and �2ð5p2P3=2Þ¼�40kHz=ðkV=cmÞ2 [45].

Then, Eq. (F22) gives

E2
0x

E2
0y

¼ 136þ 20½m2
J � 5

4�
136� 40½m2

J � 5
4�
: (F23)

For example, formJ ¼ 1=2 we obtain that the Stark shift is
independent of time if

E2
0x

E2
0y

¼ 0:66; (F24)

while for mJ ¼ 3=2,

E2
0y

E2
0x

¼ 0:62: (F25)

For the 780.0-nm 5s 2S1=2 � 5p 2P3=2 transition

(� ¼ 3:81
 107 s�1, !ab ¼ 2:4
 1015 s�1) and atomic
density n ¼ 1016 cm�3, the collective atomic frequency is

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cn�2

ab�

8�

s
¼ 2:9
 1012 s�1: (F26)

The atom-atom collision frequency is given by

�coll ¼ Vthn�; (F27)
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where the collisional cross section is

� 	 a2Bm
4 ¼ 1:7
 10�14 cm2 (F28)

and m ¼ 5 is the principal quantum number of the excited
atomic state. For temperature T ¼ 500K, we obtain for the
atomic thermal velocity,

Vth ¼
ffiffiffiffiffiffiffiffiffi
kBT

M

s
¼ 2:2
 104 cm=s; (F29)

which yields

�coll ¼ Vthn� ¼ 3:7
 106 s�1: (F30)

The Doppler broadening is given by

��D ¼ Vth

c
!ab ¼ 1:8
 109 s�1: (F31)

If we choose the driving-field intensity I ¼
1012 W=cm2, then the driving-field Rabi frequency is

�d ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�I�ab

@!3
ab

s
¼ 4:7
 1014 s�1; (F32)

and gain per unit time in the backward direction can be
estimated as

G 	 �a

3
ffiffiffi
2

p �2
d

!2
ab

¼ 2:5
 1010 s�1; (F33)

which is much larger than collisional decoherence and
Doppler broadening. One can drive Rb atoms with a com-
mercial CO2 laser having wavelength �d 	 10:6 �m
(�d ¼ 1:8
 1014 s�1). For such a driving field, the gain
per unit length is estimated as

GL 	 �d

c

�2
d

!2
ab

¼ 221 cm�1: (F34)

A similar experiment can be done in Na vapor. By
driving Na atoms with a CO2 infrared laser at wavelength
10:6 �m and choosing the proper elliptical polarization of
the driving beam, one can achieve generation of yellow
light produced by the sodium D line with wavelength
589 nm in a transition from the 3p to the 3s Na level.

APPENDIX G: THREE-LEVEL
MODEL OF THE QASER

Here, we consider a more realistic three-level model of
the QASER shown in Fig. 15. In the model, the ground
state b is dipole coupled with states a and c. For example,
the ground state can be an s state, while a and c states are
px and py orbitals. The total electric field

E ¼ Edrive þEsuper (G1)

is a sum of a low-frequency drive Edrive, which we assume
couples both transitions, and a weak high-frequency

superradiant field Esuper that couples only the a-b transi-
tion. For example, this can be the case if Edrive has both x
and y components, while Esuper is linearly polarized along
the x axis.
For the present model, the Schrödinger equation

yields the following evolution equations for the probability
amplitudes Cm to find atoms at the level m ¼ a, b, c
(we put !b ¼ 0):

_C a þ i!abCa ¼ i

@
½Edrive þEsuper�dabCb; (G2)

_C c þ i!cbCc ¼ i

@
EdrivedcbCb; (G3)

_C b ¼ i

@
½Edrive þEsuper�dbaCa þ i

@
EdrivedbcCc; (G4)

where !ab ¼ !a �!b, !cb ¼ !c �!b, and dnm are the
transition dipole matrix elements.
Introducing Rabi frequencies

� drive
cb ¼ 1

@
Edrive � dcb; (G5)

� drive
ab ¼ 1

@
Edrive � dab; (G6)

� super ¼ 1

@
Esuper � dab; (G7)

we obtain

_C a þ i!abCa ¼ i½�drive
ab þ�super�Cb; (G8)

_C c þ i!cbCc ¼ i�drive
cb Cb; (G9)

_C b ¼ i½�drive�
ab þ�super� �Ca þ i�drive�

cb Cc: (G10)

We assume that initially all atoms are in the ground state
b. Coherence of the a-b transition is

�ab ¼ CaC
�
b; (G11)

which yields

�
super
ab ¼ C

super
a Cdrive�

b þ Cdrive
a C

super�
b : (G12)

Equations (G8)–(G10) give the following equations of
atomic evolution under the influence of the driving field:

_C drive
a þ i!abC

drive
a ¼ i�drive

ab Cdrive
b ; (G13)

_C drive
c þ i!cbC

drive
c ¼ i�drive

cb Cdrive
b ; (G14)

_C drive
b ¼ i�drive�

ab Cdrive
a þ i�drive�

cb Cdrive
c ; (G15)

while for the quantities describing the high-frequency field,
we find
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_C
super
a þ i!abC

super
a ¼ i�superCdrive

b þ i�drive
ab C

super
b ; (G16)

_C super
b ¼ i�super�Cdrive

a þ i�drive�
ab Csuper

a : (G17)

Writing

�super ¼ �se
�i!abtþi!abz=c þ c:c:; (G18)

�
super
ab þ c:c: ¼ �s

abe
�i!abtþi!abz=c þ c:c:; (G19)

Csuper
a ¼ Cs

1ae
�i!abtþi!abz=c þ Cs

2ae
i!abt�i!abz=c; (G20)

C
super
b ¼ Cs

1be
�i!abtþi!abz=c þ Cs

2be
i!abt�i!abz=c; (G21)

where �s, �
s
ab, C

s
1a, C

s
2a, C

s
1b, and Cs

2b are slowly varying

functions as compared to the fast-oscillating exponentials,
we obtain

�s
ab ¼ Cs

1aC
drive�
b þ Cs

1bC
drive�
a þ Cs�

2aC
drive
b þ Cs�

2bC
drive
a :

(G22)

Equations (G16) and (G17) yield

_C s
1a ¼ i�sC

drive
b þ i�drive

ab Cs
1b; (G23)

_C s
2a þ 2i!abC

s
2a ¼ i��

sC
drive
b þ i�drive

ab Cs
2b; (G24)

_C s
1b � i!abC

s
1b ¼ i�sC

drive
a þ i�drive�

ab Cs
1a; (G25)

_C s
2b þ i!abC

s
2b ¼ i��

sC
drive
a þ i�drive�

ab Cs
2a: (G26)

Equations (G22)–(G26) have to be supplemented
by Maxwell’s equation for the high-frequency field
envelope �s, �

c
@

@z
þ @

@t

�
�s ¼ i�2

a�
s
ab; (G27)

where �a is the collective atomic frequency.
We assume that the driving field is weak and keep

only terms of the proper order in 1=!ab. Then,
Eqs. (G24)–(G26) yield

Cs
2a	

Cdrive
b

2!ab

��
sþ i

_Cs
2a

2!ab

	Cdrive
b

2!ab

��
sþ i

Cdrive
b

4!2
ab

_��
s ; (G28)

Cs
1b 	 ��drive�

ab

!ab

Cs
1a; (G29)

Cs
2b 	 �drive�

ab

!ab

Cs
2a 	

�drive�
ab

2!2
ab

Cdrive
b ��

s : (G30)

Taking this into account, one can rewrite Eq. (G22) as

�s
ab ¼ Cs

1a

�
Cdrive�
b ��drive�

ab

!ab

Cdrive�
a

�

þ jCdrive
b j2
2!ab

�s � i
jCdrive

b j2
4!2

ab

_�s: (G31)

In this equation, one should take jCdrive
b j2 	 1. Thus, the

two last terms in Eq. (G31) do not produce modulation, and
hence, they can be omitted. Taking the time derivative of
both sides of Eq. (G27), using Eqs. (G23), (G31), and
(G13)–(G15), one can reduce the evolution equation for
the high-frequency field envelope �s to�
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The unwanted ac Stark shift is compensated if we choose

2
j�drive

ab j2
!ab

þ j�drive
cb j2
!cb

¼ const: (G33)

Let us assume that �drive
ab is real and given by

�drive
ab ¼ �d cosð�dt� kdzÞ: (G34)

Then, if !ab ¼ !cb, the time dependence of the ac Stark
shift is compensated, provided that

�drive
cb ¼ ffiffiffi

2
p

�d sinð�dt� kdzÞ: (G35)

For such parameters, Eq. (G32) becomes�
@

@t
þ i

2�2
d

!ab

� �d�
2
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�
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!2
ab

�
�s ¼ 0; (G36)

which yields an exponentially growing solution if
�d * �a.
Our findings show that it is possible to compensate the

time dependence of the ac Stark shift by the proper choice
of the driving-field polarization. At the same time, the
transition strength is still modulated by the driving field,
which leads to the gain at high frequencies. The result
remains valid for realistic atoms with many levels.
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