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We show that the improper ferroelectric phase transition in the multiferroic hexagonal manganites

displays appropriate symmetry-breaking characteristics for testing the Kibble-Zurek mechanism origi-

nally proposed to describe early-universe phase transitions. We present an analysis of the Kibble-Zurek

theory of topological defect formation applied to the hexagonal manganites, discuss the conditions

determining the range of cooling rates in which Kibble-Zurek behavior is expected, and show that recent

literature data are consistent with our predictions. Finally, we explore experimentally the crossover out of

the Kibble-Zurek regime and find a surprising reversal of the scaling behavior.

DOI: 10.1103/PhysRevX.2.041022 Subject Areas: Cosmology, Materials Science, Strongly Correlated Materials

I. INTRODUCTION

The formation of topological defects such as
cosmic strings during phase transitions in the early uni-
verse [1–5] was proposed by Kibble [6], who derived the
symmetry requirements for their formation. In systems
where such topological defects are allowed by the symme-
try requirements, the defect density can be estimated using
the Zurek mechanism [7], which uses causality arguments
to develop scaling laws for the density of defects formed
as a function of the rate of quenching across the phase
transition. The resulting combination of symmetry require-
ments and scaling laws is termed the Kibble-Zurek mecha-
nism and in principle should describe a phase transition in
any system with the required symmetry properties, pro-
vided that other effects do not dominate the kinetics of
topological-defect formation.

Attempts to demonstrate Kibble-Zurek scaling in
condensed-matter systems have proved challenging, how-
ever, and the ‘‘ideal Kibble-Zurek system’’ has previously
remained elusive. Zurek’s original paper [7] discussed
the analogue between cosmic strings and the vortex cores
formed in a quench-induced phase transition from normal-
state to superfluid 4He. However, the corresponding ex-
periment [8,9] yielded large deviations from the predicted
behavior, probably because of thermal effects [10]. In 3He,
the symmetry breaking is closer to that postulated for the
early universe [11,12], but the density of topological de-
fects can only be inferred indirectly, and many assumptions
must be made to compare with predictions. In supercon-
ducting Nb rings, the density of vortex cores in the super-
conducting current led to a different scaling exponent
than that predicted by the Kibble-Zurek mechanism—
Again, experimental artifacts were held responsible [13].

Bose-Einstein condensates could in principle provide a
suitable system but are so far subject to experimental
limitations [14]. Perhaps the most promising candidates
to date are high-Tc superconductors and liquid crystals. In
high-Tc superconductors, scaling has been demonstrated
and some aspects of the Kibble-Zurek mechanism con-
firmed, although with large uncertainties [15]. And in
liquid crystals, successful studies of defect dynamics
have been performed [16], and the diffraction-pattern for-
mation in nonlinear optic experiments has been shown to
exhibit a power-law scaling [17]. Strong interactions be-
tween the defects continue to cause difficulties, however.
Here we propose the multiferroic hexagonal magnanites,

RMnO3 (R ¼ Sc, Y, Dy to Lu) as a model system for
testing the Kibble-Zurek mechanism. The hexagonal man-
ganites have attracted interest because of their unusual
geometrically driven improper ferroelectricity, which al-
lows for the simultaneous occurrence of magnetic ordering
[18,19], as well as unusual couplings [20–22] and func-
tionalities [23] at their domain walls. In this work we show
that the unusual nature of the improper geometric ferro-
electric phase transition also sets both the correct symme-
try conditions for Kibble-Zurek behavior, as well as the
physical properties for readily detecting that behavior. In
addition, the relevant time, temperature, and length scales
fall into a range that allows exploration of the Kibble-
Zurek regime, as well as the crossover out of it.

II. SYMMETRYAND PHYSICAL
PROPERTIES OF RMnO3

First, we describe the properties of RMnO3 that are
relevant for testing the Kibble-Zurek mechanism, particu-
larly the symmetry properties of the phase transition. The
structure of RMnO3 consists of planes of MnO5 trigonal
bipyramids separated by planes of R ions which form a
hexagonal mesh [Fig. 1(a)] [24]. In the high-temperature
paraelectric phase, the space group is centrosymmetric
P63=mmc. At the Curie temperature TC � 1400 K (the
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exact value depends on the R ion), a spontaneous symme-
try breaking occurs, with the condensation of primarily two
phonon modes with distinct irreducible representations of
the high-symmetry structure [19,25]. The first is a mode of
K3 symmetry, which involves a trimerizing tilt of the
trigonal bipyramids and is the primary-order parameter
[Fig. 1(b)]. Since the K3 mode can condense about three
different origins, and the tilt can be in the ‘‘in’’ or ‘‘out’’
direction, six trimerization domains are formed; these have
been shown using high-resolution transmission electron
microscopy to meet at vortex cores [22]. Importantly
(and unusually), while this mode lowers the symmetry to
that of a polar space group, it carries no net polarization, as
any net local polarity vanishes macroscopically due to the
nonzero-mode wave vector. A secondary mode of ��

2

symmetry (referring to the parent space group), which
does not further lower the symmetry, provides the ferro-
electric polarization [Fig. 1(c)]. The orientation of this
secondary ferroelectric polarization is set by the in or out
tilt of the K3 mode, and so it does not result in additional
domains. It is essential for our experiments, however, as it
allows the straightforward imaging of the domain structure
using piezoresponse force microscopy (PFM). Indeed,
PFM measurements reveal that domains of alternating po-
larization are locked to the trimerization domains around
vortex cores [22,26], yielding appealing sixfold patterns
[Fig. 1(d)]. Electric-field poling experiments have shown
that the vortex cores are protected in the sense that they
cannot be annihilated or driven out of the system by an
electric field [22,26]. Surprisingly, the domain structure and
density of these topological defects when viewed from the
side of the sample are similar to those characteristics viewed

from the top in spite of the layered crystal structure and
uniaxial ferroelectricity [26] [Fig. 1(d)]. This absence of
anisotropy in the domain structure allows for straightfor-
ward determination of the defect densities from two-
dimensional top-view scans of their areal density, rather
than requiring a complex three-dimensional analysis.
First-principles calculations [19] and Landau-theory

analysis [27] have shown that, for small magnitudes of
the trimerizing K3 mode, the polar mode appears only as a
third-order term, and so the magnitude of the ferroelectric
polarization just below TC is vanishingly small. The van-
ishingly small ferroelectric polarization is important for
our discussion for two reasons: First, the formation of the
domain structure at TC is not influenced by the system’s
attempts to minimize the depolarizing field from the fer-
roelectric polarization. Strong evidence for this lack of
influence is given by the large numbers of electrostatically
unfavorable head-to-head and tail-to-tail domain walls that
form in RMnO3 but that rarely occur in conventional ferro-
electrics [23]. Second, first-principles calculations show
that the energy lowering provided by the condensation of
the K3 mode is independent of the angle of the tilt until the
polar mode subsequently develops [27]. This observation
means that the potential below the phase-transition tem-
perature is given by the continuous ‘‘Mexican-hat’’ form
(Fig. 2). The atomic nature of the lattice does not manifest
itself until at lower temperatures when the domain struc-
ture is already determined. As a result, we can use the
mathematics of continuous symmetries, which are usually
assumed in the Kibble-Zurek mechanism and are a condi-
tion for the discussion of topological defects. In this lan-
guage, the full rotational symmetry is broken when the

FIG. 1. (a) High-symmetry P63=mmc structure of RMnO3 before the onset of trimerization. (b) Action of the K3 trimerization mode
on the R ions and MnO5 trigonal bipyramids. The insets below the image of the main structure emphasize that outward trimerization
results in a downward shift of the corresponding R ion, whereas inward trimerization results in an upward shift. (c) The subsequent
additional displacements of the R ions (blue arrows) in the ��

2 mode provide the ferroelectricity. Note that, once the orientation of the

trimerization mode is set, the spontaneous polarization can emerge in only one direction. (d) Typical domain structure measured using
piezoresponse force microscopy. The black and white regions correspond to opposite orientations of the ferroelectric polarization
along the z axis. Note that the domain structure is isotropic, in spite of the layered crystal structure.
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polyhedrons tilt in the 2� range of angles, resulting in a
Uð1Þ vacuum. We note also that the Landau free energy
derived in Ref. [27] already gives a signature of topological
protection as a 2� rotation of the trimerization angle around
the vortex core crosses a branch cut in the free energy.

For larger magnitudes of the K3 mode, obtained on
temperature decrease, a crossover to linear coupling with
the polar ��

2 mode occurs, and the polarization becomes
measurably large. This result lifts the degeneracy of the
angle of the K3 mode and fixes the polyhedrons into
discrete tilt angles of 0, 2�=3, or 4�=3, described by Z3

symmetry. The additional degeneracy provided by the
direction (in or out) of the polyhedral tilting gives an
additional Z2 symmetry reduction, resulting in Z2 � Z3 ¼
Z6. It is an open experimental question whether the onset of
the ��

2 mode, which is observed approximately 300 K
below TC is an ‘‘emergence’’ or an additional isosymmetric
phase transition [19,25].

III. KIBBLE-ZUREK MECHANISM FOR RMnO3

In this section, we first show that the symmetry of
RMnO3 results in topologically protected vortex cores as
described by the Kibble mechanism. We then analyze the
vortex cores using the Zurek mechanism to determine the
density of topological defects that should be produced as a
function of the cooling rate through the phase transition.
We use first-principles density-functional theory to evalu-
ate the relevant parameters, and show that our predictions
are in agreement with literature data.

A. Kibble mechanism and the formation
of topological defects

The requirements for the formation of topological de-
fects at a phase transition within the Kibble mechanism [6]
are (i) a spontaneous symmetry breaking and (ii) a change
in symmetry across the phase transition that corresponds to
a nontrivial homotopy group. The trimerization transition
in RMnO3 clearly fulfills the first condition; next, we show
that it also fulfills the second.

As discussed earlier, in the temperature range just
below the phase transition, RMnO3 exhibits a continuous

symmetry. This fact allows us to use the methods and
results of homotopy theory—which have been developed
for continuous-symmetry groups—to assess the topology
of RMnO3. It is established within homotopy theory that
the symmetry characteristics of the order parameter, in
our case, Uð1Þ, can be used to assess the topological
characteristics of a phase transition. To make the assess-
ment, the order-parameter symmetry is first mapped onto
an n-dimensional sphere. In the case of Uð1Þ symmetry,
this map is a one-dimensional circle, S1. Next, we define a
function called the homotopy group, �k, which describes
the topological nature of the order-parameter symmetry. If
�k differs from the identity, then it is nontrivial and topo-
logical defects are formed. It has been known since the
1960s [28] that �kðS1Þ is indeed nontrivial and in fact
produces one-dimensional topological singularities, called
strings or vortex cores [29]. Therefore, the vortex cores in
RMnO3 are mathematically topologically protected, in
concordance with their physical topological protection—
their resistance to annihilation by an electric field—that we
discussed earlier [22,26]. We also note that within the
Kibble mechanism the topological defects are remnants
of the parent phase trapped within the lower symmetry
phase. For RMnO3, this observation implies that the high-
symmetry paraelectric phase is preserved at the meeting
point of the six domains defining a vortex core.

B. Zurek mechanism for RMnO3

Within the Zurek mechanism, the density of topological
defects formed during a spontaneous symmetry-breaking
phase transition described by the Kibble mechanism fol-
lows a power-law dependence on the rate at which the
transition is crossed [7,30]. In this section, we first relate
the material properties of RMnO3 to the parameters in the
Zurek mechanism. We then evaluate their magnitudes to
calculate quantitatively the temperature dependence of the
defect formation within the Kibble-Zurek mechanism.
Zurek’s approach relies on the notion of competing time

scales: The first relevant time scale is the time it takes for
one region of the system to communicate its choice of
vacuum state with another. This scale sets a ‘‘sonic hori-
zon’’ within which the order parameter chooses the same
vacuum state. This communication time becomes diver-
gently long as the critical temperature is approached and
the correlation length diverges, a phenomenon termed
‘‘critical slowing down.’’ The second relevant time scale
is the quench time �q that the system spends cooling

through the phase transition. The size of the domains is
set at the temperature Tf ¼ TC þ �Tf where the commu-
nication distance across which information can be trans-
ferred during the progressing phase transition becomes
equal to the correlation length �ðTÞ (Fig. 3). As the tem-
perature further approaches TC, the correlation length �ðTÞ
continues to diverge but the communication length remains
unchanged, and the system is unable to adapt to the

FIG. 2. Mexican-hat potential-energy surface of the hexagonal
manganites. At high energy (the peak of the hat), the energy is
independent of the angle of trimerization, and the system has
continuous Uð1Þ symmetry. At lower energy (in the brim of the
hat), six of the trimerization angles become favorable (white
circles), and the symmetry reduces to the sixfold discrete sym-
metry described by Z6.
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increase in correlation length. As a consequence a
‘‘freeze-out’’ occurs in the temperature interval between
TC þ�Tf and TC � �Tf: The size of the correlated re-
gions is unable to increase and so the domain size is fixed at
the value �ðTC þ�TfÞ (Fig. 3). For fast cooling through
the transition, the distance over which information can be
transferred during the transition is small, and becomes
equal to the correlation length at small values of �ðTÞ.
Therefore, freeze-out occurs when the domain size is small
(and consequently the number of topological defects is
large). In contrast, for slow cooling, the distance for infor-
mation transfer is large, and does not become equal to �ðTÞ
until close to the phase transition temperature, where �ðTÞ
is large. In this case, large domains, with fewer topological
defects, form.

Here, we summarize the derivation of the density of
topological defects as a function of quench rate through
the phase transition within the Kibble-Zurek mechanism.
For a detailed derivation, we recommend particularly
Ref. [31]. First, we use critical scaling: As the system
approaches TC, the correlation length, �, and relaxation
time, �, diverge as

�ðTÞ ¼ �0

�
�
�
�
�
�
�
�

1� T

TC

�
�
�
�
�
�
�
�

��

; �ðTÞ ¼ �0

�
�
�
�
�
�
�
�

1� T

TC

�
�
�
�
�
�
�
�

��

;

where �0 is the zero-temperature correlation length and �0
is the zero-temperature time, which is equal to �0 divided
by the speed of information transfer in the system. Both �0

and �0 are system-dependent quantities. � and � are
critical exponents that are determined by the universality
class of the phase transition, that is, its general behavior as
determined by the symmetry properties of the phase tran-
sition, irrespective of the material properties of the specific
system.
Assuming that the temperature varies linearly with time

near the phase transition, and taking t ¼ 0 at T ¼ TC, it is
clear that T ¼ TC � ðt� rqÞ, where rq is the cooling rate.

Rearranging this expression yields

�
�
�
�
�
�
�
�

1� T

TC

�
�
�
�
�
�
�
�

¼ rq
TC

t ¼ t

�q
;

where �q ¼ TC

rq
is called the ‘‘quench’’ time.

The speed at which information is transferred in the
material is then given by the characteristic velocity,

cðTÞ ¼ �ðTÞ
�ðTÞ ¼

�0

�0

�
�
�
�
�
�
�
�
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�
�
�
�
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���

;

and the corresponding distance over which information can
propagate in time t is

Z t

0
c½Tðt0Þ�dt0 ¼ �0

�0

Z t

0

�

t0

�q

�
���

dt0

¼ 1
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�0
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�
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�
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�
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�
�
�
�
�
�

1þ���

;

where in the last step we have substituted t ¼ j1� T
TC
j�q.

Equating the distance over which information can
propagate to the correlation length yields an expression
for the freeze-in temperature, Tf ,

1

1þ�� �
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�
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;

so

�
�
�
�
�
�
�
�

1� Tf

TC

�
�
�
�
�
�
�
�

¼
�

ð1þ�� �Þ �0
�q

�
1=ð1þ�Þ

:

At temperature Tf , the domain sizes are frozen in with
a characteristic length scale given by the information-
propagation distance correlation at the freeze-in temperature:

�f ¼ �0ð1þ�� �Þ½��=ð1þ�Þ�
�

�q
�0

�ð�=1þ�Þ
:

Vortex strings then form at the intersections of these do-
mains with a density of around one �f of length in a volume
of �3

f . The number of vortex intersections per unit area, n,
is then approximately equal to the length of vortex strings
per unit volume, 1

�2
f

, giving

d(T<) = ξ f < ξ(T<)

d(TC+∆Tf) = ξ ξ(TC+∆Tf) ≡ f

d(T>) = ξ(T>)

T>TC+∆TfTC−∆Tf T<TC

Temperature

C
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tio
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ng
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T
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ξ f
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FIG. 3. Domain formation and the Kibble-Zurek mechanism.
Above TC, fluctuating regions of lateral extension d occur with
uniform orientation of the emerging order parameter (fuzzy
patches). At high temperature (T> > TC þ�Tf), the size of
the correlated regions is determined by the correlation length
(purple curve). At temperature Tf ¼ TC þ�Tf , a freeze-out of
the lateral extension d begins, and below the freeze-out tem-
perature, the lateral extension of the fluctuating regions can no
longer match the diverging correlation length. The size of
the fluctuating regions at temperatures T< < TC þ�Tf is set
by the correlation length at the freeze-out temperature, �f ¼
�ðTC þ�TfÞ, and corresponds to the ‘‘communication length,’’
which is the distance that information propagates during the time
in which the system cools from TC þ�Tf to TC ��Tf (red
vertical lines). Below TC ��Tf , stable domains of lateral ex-
tension �ðTC þ�TfÞ form (indicated by solid black domain
boundaries).
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n � 1

�2
0

�

�0
�q

�ð2�=1þ�Þ
:

To apply the scaling law that we have derived above to
the hexagonal manganites, we next identify the relevant
time and length scales in the system, and evaluate their
magnitudes. Our electronic-structure calculations have
been performed using density-functional theory within
the local density þ Hubbard U approximation following
the Liechtenstein approach [32] with the double-counting
corrections treated in the fully localized limit. Following
previous literature studies [19], we set the parameters of
local density approximationþ Hubbard U ðLDAþUÞ on
the Mn 3d orbitals to U ¼ 8 and J ¼ 0:88 eV, respec-
tively, and enforce an A-type antiferromagnetic ordering.
We use the projector-augmented wave method for core-
valence partitioning [33], which significantly reduces the
required plane-wave energy cutoff, and have carefully
tested the convergence of plane-wave-cutoff and k-point
sampling.

The zero-temperature correlation length, �0, is usually
equated with the zero-temperature domain-wall width in
ferroelectrics. In order to extract this value, we perform
density-functional calculations within the LDAþU
method using the VASP code [34,35]. We construct super-
cells containing two 180� domain walls and, in turn, 120,
180, 240, and 300 atoms. We initialize a different trimeri-
zation phase and ferroelectric orientation within adjacent
domains, and fix the lattice constants of the supercells to
those of the corresponding relaxed single-domain super-
cells. We then perform full relaxations on the structures,
optimizing the internal positions until the forces acting on

all atoms converge to less than 0:01 eV= �A, respectively; in
all cases, the system remains in the metastable multido-
main state. For all supercell sizes, we have found that the
structural phase defined by either the tilt of the MnO
bipyramids or the direction of off-centering of the Y ions
changes abruptly at the domain walls, indicating an effec-
tive domain-wall width close to zero. This finding sets an
upper limit on �0 of the interatomic spacing of approxi-

mately 1 �A. While unusually narrow for a ferroelectric
domain wall, such abrupt walls are not atypical for anti-
phase boundaries, and indeed our calculated value is con-
sistent with a recent experimental electron-microscopy
study at room temperature [36], indicating that our calcu-
lated zero-kelvin value is relevant over a wide temperature
range. As an additional check, we have repeated our cal-
culations for walls between domains of different trimeri-
zation phase and the same ferroelectric orientation, as
well as between domains of opposite polarity but the
same phase, and in all cases have obtained abrupt bounda-
ries [37].

To calculate the characteristic time scale of the

system, �0 ¼ �0

s , we require s, which is the speed at which

the system communicates the lattice distortion as it

passes through the phase transition. For structural phase
transitions in solid-state systems, s is given by the relevant
speed of sound. To calculate the speed of sound at zero
kelvin, we use the ABINIT [38] software package [39,40] to
optimize the structure of a 10-atom unit cell and then
calculate the full phonon band structure using frozen-
phonon techniques. We constructed a supercell with dou-
bling and trebling in each of the directions required to
sample the first Brillouin zone, and then we made
symmetry-distinct displacements to construct the full ma-
trix of interatomic force constants. The dynamical matrix is
diagonalized along each of the high-symmetry lines shown
in the phonon band structure using Fourier interpolation
[41,42]. We then extract the speed of sound from the
calculated phonon band structure by fitting the acoustic
branch with a polynomial, and then we evaluate the group
velocity:

vg ¼ @!

@ ~k

�
�
�
�
�
�
�
� ~k¼0

:

Because we analyze the vortex density in the ab plane as a
function of quench rate, the relevant velocity for our
Kibble-Zurek fit is the doubly degenerate branch with the
atoms displacing in plane and the wave vector propagating
in plane. For this branch, we obtain vg ¼ 640 m s�1. We

note that the measured lattice constants change only a
small amount between low temperature and the phase-
transition temperature, indicating that beyond-harmonic
lattice-dynamic effects are unimportant, and the calculated
zero-kelvin value is also relevant for the scaling regime.
For comparison with quenching experiments, we also

need the Curie temperature, TC, which relates �q to the

cooling rate, rq through rq ¼ TC

�Q
. This value is known

experimentally to be about 1400 K, with the exact number
depending on the R ion.
Finally, we extract the critical exponents by identifying

that the RMnO3 transition belongs to the universality class
of the 3D XY model. Here, we use the result of Ref. [27],
which is that, before the emergence of the polarization, the
trimerization has full XY symmetry, with a 3D order
parameter that can be modulated in all three spatial dimen-
sions. (2D XY behavior can also be discounted: first,
because the 2D XY model does not give a phase transition,
and second, because our studies of the side faces of
YMnO3 samples show the same domain-formation pat-
terns as the top faces [23].) The values of the critical
exponents for the 3D XY universality class have been
calculated using Monte Carlo simulations [43] to be � ¼
0:6717 and � ¼ 1:3132, giving a Kibble-Zurek scaling
exponent of �

1þ� � 0:29. This value is very close to the

experimental value of 0.27, found by best fitting to the K3-
mode order parameter [44]. Taking the values introduced
so far, with our upper limit for �0, we find that domains of
5-�m width should be formed for a quench time of �q �
40 min (corresponding to a cooling rate of about 0:5 K=s),
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and domains of 40 �m for a quench time of around one
month (cooling rate approximately 1:5 K=hour). These
cooling rates are readily accessible experimentally.

In Fig. 4(a), we compare our calculated scaling behavior
with recently reported vortex densities measured as a
function of cooling rate in ErMnO3 (red triangles) [45].
We obtain the best match with a value of zero-temperature

correlation length of 0:06 �A (red line), consistent with the
approximately zero domain-wall width obtained in our
density-functional calculations. The agreement in scaling
behavior between the experiment and the Kibble-Zurek
prediction is clear, with the scaling exponent, in particular,
matching the theoretical prediction well.

We thus find a unique situation in RMnO3.
Topologically, it is a model system for the experimental
verification of the Kibble-Zurek mechanism. In the tem-
perature range where the Kibble-Zurek mechanism is
expected to govern the formation of domains and the
distribution of vortex-core singularities, the unwanted
ferroelectric polarization that could influence domain for-
mation is effectively absent. However, at room tempera-
ture, the coupling of the distortive order parameter to the
now finite ferroelectric polarization allows straightforward
imaging of the topology and vortices via spatially resolved
measurements of the ferroelectric domain structure. And
finally, we obtain a distinguishable range of domain sizes
and hence defect densities for an experimentally accessible
range of cooling rates through the primary distortive phase
transition at TC.

IV. BEYOND THE KIBBLE-ZUREK LIMIT

The Kibble-Zurek mechanism applies only to the regime
in which the system has time to respond adiabatically to the
cooling until the freeze-out temperature, TC þ �Tf is
reached. For faster quenching, it is expected that the
Kibble-Zurek mechanism should break down and be re-
placed by a dynamics that is largely unknown [46–49].

Therefore, in the final part of this work, we perform
quenching experiments at rates more rapid than those ex-
plored in Ref. [45] to investigate whether Kibble-Zurek
behavior continues, or whether an evolution out of the
Kibble-Zurek regime occurs.
For our experiment, we choose YMnO3 rather than the

ErMnO3 that was used in Ref. [45] because of the greater
thickness of our YMnO3 samples. The experimental pro-
cedure applied to the flux-grown, c-oriented single crystal
YMnO3 platelets is shown in Fig. 5. For our annealing
experiments, we use a conventional chamber furnace,
which allows for temperatures from room temperature up

5 mµ

(b)

3 K/min 195 K/min 1360 K/min

(c) (d)

5 mµ 5 mµ
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FIG. 4. (a) Areal vortex-core density as a function of cooling rate for slow cooling (red triangles, Ref. [45]) and fast cooling (blue
circles, this work). Note the turnover in the cooling-rate dependence of the vortex-core density occurring at around 10 K=min. The red
solid line is the result of our ab initio application of the Kibble-Zurek mechanism with parameters from first-principles calculations.
(b)–(d) Distribution of ferroelectric domains in z-oriented YMnO3 samples after annealing cycles at different cooling rates. The
images, which are obtained using PFM on an area 30� 30 �m2, reveal a striking ‘‘anti–Kibble-Zurek’’ behavior, with higher cooling
rates leading to larger domains.

FIG. 5. Sketch of the annealing procedure. After preannealing,
the samples are heated to 1420 K with a hold time of 24 h and
subsequent cooling at rates between 0.1 and 1360 K=min. After
the annealing cycle, the samples are thinned by 5–10 �m by
polishing in order to access the domain structure formed in the
true three-dimensional bulk of the sample.
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to 1550 K, exceeding considerably the TC � 1270 K of
our YMnO3 samples. First, we perform a preannealing at
1420 K for 24 h under constant oxygen flow of 0:2 l=min.
Second, the samples are annealed again with a different
cooling rate. Up to 8 K=min, the temperature gradient is
controlled by the furnace; higher rates are obtained by
removing the fused-silica cell with the sample from the
furnace and are measured by an infrared camera. Since the
domain structure and density of defects at the surface could
in principle be different from those properties in the bulk,
we have thinned each sample by 5–10 �m after annealing,
using Al2O3 and polishing with a chemical-mechanical
SiO2 slurry with 32-nm grain size. Last, we image the
ferroelectric domain structure using PFM [26,45]. We use
a commercial scanning-force microscope (NTEGRA
Solaris, NT-MDT) operating in contact mode and apply
an AC-voltage of 14 Vpp at a frequency of about 40 kHz to

a conductive Pt-Ir–coated probe (NSC35, Mikromasch).
We record the out-of-plane component of the piezoelectric
response by the in-phase output channel of an external
lock-in amplifier (SR830, Stanford Research Systems)
with a typical sensitivity of 200 �V and time constant of
10 ms. Finally, we extract the area density of vortices from
the PFM images.

We cool our samples at two rates that overlap with the
fastest quenches performed in Ref. [45]—0.3 and
3 K=min—to verify that we obtain a comparable density
of defects in our experiments. The good agreement be-
tween the vortex densities formed in ErMnO3 (Ref. [45])
and those formed in YMnO3 [this work, two leftmost blue
points in Fig. 4(a), domain structure shown in Fig. 4(b)]
when quenched at the same rates confirms the indepen-
dence of the vortex-core density from the choice of R.
Subsequently, we quench the same samples at higher cool-
ing rates of 195 and 1360 K=min [rightmost blue points in
Fig. 4(a)], resulting in the domain structures shown in
Figs. 4(c) and 4(d), respectively. Surprisingly, an increase
in the cooling rate leads to a lowering of the density of
vortex cores and thus to larger domains. This behavior is
opposite to that predicted by the standard Kibble-Zurek
mechanism and may be described as ‘‘anti–Kibble-Zurek’’
behavior. The crossover between the two regimes occurs at
a cooling rate of about 10 K=min.

This crossover point corresponds to a correlation length
(and hence a crossover domain size) of about 1:1 �m and a
relaxation time of about 3:1� 10�3 s, with a characteristic
information transfer velocity of about 3:5� 10�4 m=s,
considerably reduced from the speed of sound by the
critical slowing down.

We emphasize that the observed behavior is highly
reproducible: We have repeated our measurements on
YMnO3 samples grown in different batches and have
verified that there are no cumulative effects in consecutive
annealing cycles. The error bars in Fig. 4(a) describe the
variation of the vortex density when a sample from a

different batch is used and when a data point for slow
cooling rates is reproduced after taking the data point at
the highest cooling rate. We therefore conclude that our
results suggest an evolution out of the Kibble-Zurek re-
gime at a cooling rate of about 10 K=min in the hexagonal
manganites.

V. DISCUSSION: POSSIBLE ORIGINS OF THE
CROSSOVER BETWEEN THE KIBBLE-ZUREK
AND THE ‘‘ANTI–KIBBLE-ZUREK’’ REGIMES

A number of possible deviations from Kibble-Zurek
behavior have been discussed in the literature, but none
of them is consistent with our measurements. Zurek [46]
showed that vortex–antivortex annihilation becomes sig-
nificant at fast quench rates where domains are smaller
and topological defects are closer together. Such vortex–
antivortex annihilation causes a leveling off of the rate at
which the density of vortex cores increases with cooling
rate, but it does not cause the decrease in density that we
observe. The effect of nonlinearity in the quench rate on
the density of defects has been calculated to yield a modi-
fied scaling law [50], which again would not cause our
observed turnaround at fast cooling rates. In addition,
inhomogeneous cooling, and departures from linear cool-
ing, which are both more likely in the fast-quench regime,
have been shown to result in a suppression of defect for-
mation [51,52] but again should result in a leveling off
rather than our observed pronounced downturn. The au-
thors of Ref. [45] suggested that the observed production of
defect–antidefect pairs could be the result of a Kosterlitz-
Thouless transition [53], in which vortex–antivortex pairs
are formed above the transition temperature and are anni-
hilated as the system is cooled. As a result, more vortex
cores survive during a fast quench when the pairs do not
have time to be annihilated. This behavior is the opposite
of our observed fast-quenching behavior. In addition, a
Kosterlitz-Thouless system would show a dramatic change
in the density of vortices after repeated annealing cycles, as
well as a dependence on the temperature at which the
quench begins, neither of which we observe in our experi-
ment [54].
A possible extrinsic influence on the domain structure

could be differences in chemical-defect concentration
caused by the different cooling rates, such as off-
stoichiometry, antisite formation, or charge screening at
the domain walls. To test for this possibility, we heat our
samples to within 2% of the transition temperature, and
anneal them at this temperature for six hours under the
conditions described above. No changes in the domain
structure have been observed on heating until the samples
reach 1270 K (just below TC), when minor isolated
domain-wall movements, and, once, the formation of a
vortex–antivortex pair have been observed. On heating
the samples to 1320 K (just above TC), we obtain a
completely new, but statistically consistent domain pattern.
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These data and the aforementioned reproducibility of our
data points in Fig. 4 suggest that chemical drift effects do
not play a role.

We conclude, therefore, that our observed transition out
of the Kibble-Zurek regime is likely intrinsic. One possi-
bility for the origin of the transition is a breakdown of the
Kibble-Zurek assumption that the system responds adia-
batically as it cools from high temperature to the freeze-out
temperature, which would in turn cause a breakdown of the
scaling behavior. A second possibility is that ultrafast
cooling causes the discrete sixfold symmetry of the crystal
lattice to manifest at the transition temperature, so that
the continuous symmetry of the 3D XY model, and in
turn its scaling exponents, are no longer applicable.
The behavior we observe in the fast-cooling regime—
slower cooling leading to a larger number of smaller
domains—is of course reminiscent of nucleation-
dominated behavior, with an activation energy for forma-
tion of the low-symmetry phase from the high-symmetry
phase. Nucleation-dominated phase transitions show char-
acteristic first-order behavior, and a longer time spent at the
transition allows a larger number of smaller domains to
nucleate. We note that, at the freeze-out temperature cor-
responding to the crossover quench rate, the order parame-

ter for the trimerization, � ¼ ðT�TC

TC
Þ�, has already reached

0.5% of its saturation value, taking the experimental value
of � ¼ 0:27 [44]. It is possible that this discontinuity is
sufficient to induce a first-order response. An alternative
scenario is the fluctuation-induced first-order behavior
proposed for prototypical second-order phase transitions
such as the normal-to-superconducting transition and for
the nematic-smectic transition in liquid crystals [55], both
of which belong to the same universality class—the 3D XY
model—as the hexagonal manganites. With either origin,
such an induced first-order transition could also explain the
current controversy regarding the order of the trimerization
transition in the hexagonal manganites, with most experi-
ments showing second-order behavior, but occasional re-
ports of first-order characteristics.

VI. SUMMARY

We have shown that the multiferroic hexagonal man-
ganites, RMnO3, are model systems for testing the Kibble-
Zurek mechanism. Mathematically, they fulfill the symme-
try requirements for the formation of topological defects,
and, practically, the defects are readily detectable, the
quench rate can be varied over a wide range of relevant
time scales, and extrinsic factors that might influence the
phase-transition behavior are absent. Our quantitative cal-
culations of topological defect density as a function of
cooling rate using the conventional Kibble-Zurek model
and parameters obtained using density-functional theory,
agree with literature data in the slow cooling limit where
the conventional Kibble-Zurek mechanism is applicable.
Our measurements of defect density at fast cooling rates,

however, reveal a surprising, apparently ‘‘anti–Kibble-
Zurek’’ behavior in which faster cooling yields lower
defect densities, reminiscent of a nucleation-dominated
phase transition.
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[26] T. Jungk, Á. Hoffmann, M. Fiebig, and E. Soergel,
Electrostatic Topology of Ferroelectric Domains in
YMnO3, Appl. Phys. Lett. 97, 012904 (2010).

[27] S. Artyukhin, K. T. Delaney, N.A. Spaldin, and M.
Mostovoy, Landau Theory of Topological Defects in
Multiferroic Hexagonal Manganites, arXiv:1204.4126v1.

[28] M.A. Kervaire and J.W. Milnor, Homotopy Groups of
Spheres: I, Ann. Math. 77, 504 (1963).

[29] T.W. B. Kibble, in Topological Defects and the Non-
Equilibrium Dynamics of Symmetry Breaking Phase

Transitions, edited by Y.M. Bunkov and H. Godfrin,
NATO Science Series C Vol. C549 (Kluwer Academic,
Dordrecht, Netherlands, 2000), pp. 7–31.

[30] M. Hindmarsh and A. Rajantie, Defect Formation and
Local Gauge Invariance, Phys. Rev. Lett. 85, 4660 (2000).

[31] T.W.B. Kibble, in Patterns of Symmetry Breaking:
Proceedings of the Conference of the NATO Advanced
Study Institute, Cracow, Poland, 2002, edited by H. Arodź,
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