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Many quantum systems are being investigated in the hope of building a large-scale quantum computer.

All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates.

Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized

topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially

at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific

system to achieve better error tolerance can be extremely laborious. We describe a tool, AUTOTUNE,

capable of performing this optimization automatically, and give two highly distinct examples of its use

and extreme outperformance of unoptimized TQEC. AUTOTUNE is designed to facilitate the precise study

of real hardware running TQEC, with every quantum gate having a realistic, physics-based error model.
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Many quantum algorithms now exist, including factor-
ing [1], searching [2], simulating quantum physics [3],
problems in knot theory [4], and much more [5]. Large-
scale simulations of topological quantum error correction
(TQEC) indicate that gate error rates between 0.2% and
0.5% are sufficiently low to enable practical overhead,
highly reliability quantum computation [6,7]. This is tan-
talizingly close to experimentally achieved two-qubit gate
error rates of 2% [8], the best achieved to date in a system
with the potential to implement the required 2D array of
qubits. This motivates the serious study of mapping TQEC
schemes to physical hardware to enable realistic engineer-
ing trade-offs to be determined and optimizations found.
We would very much like to collaborate with any exper-
imentalist with a potentially 2D qubit system and an interest
in making use of TQEC. Given the transversely invariant
nature of TQEC, experiments involving as few as two qubits
can be sufficient to determine whether a system could
successfully implement TQEC (see Appendix A).

Neutral atoms in optical lattices [9] motivated the devel-
opment of TQEC. Optical lattices lack the ability to easily
implement arbitrary patterns of two-qubit gates, making
them unsuitable for other types of quantum error correction
[10–14]. 2D architectures designed for TQEC have since
been developed for phosphorus atoms in silicon [15],
nitrogen-vacancy color centers in diamond [16], supercon-
ducting circuits [17], quantum dots probabilistically
entangled using linear optics [18], quantum dots determin-
istically entangled using nonlinear optics [19], and ion
traps [20,21]. Basic TQEC has been experimentally

demonstrated using linear optics [22]. In short, the best
architectures in all scalable quantum computer technolo-
gies now make use of TQEC.
Every effort has been made to make this paper self-

contained. The required quantum information background
is provided in Sec. I. In Sec. II, TQEC is defined and
examples given. Automated methods of analyzing and
visualizing the propagation of errors when using TQEC
are presented in Sec. III. The extreme performance differ-
ence of unoptimized TQEC and autotuned TQEC is
numerically demonstrated in Sec. IV. Section V concludes
with a discussion of our planned future extensions of
AUTOTUNE.

I. QUANTUM INFORMATION

Quantum computers manipulate quantum systems with
two relatively stable quantum states that are denoted j0i
and j1i. These quantum systems are called qubits. Unlike
classical bits, which can be either 0 or 1, qubits can be
placed in arbitrary superpositions j�i ¼ �j0i þ �j1i,
where �;� 2 C and j�j2 þ j�j2 ¼ 1. The quantities
j�j2 and j�j2 represent the probabilities that the qubit, if
measured, will be observed to be j0i or j1i, respectively.
In addition to initialization to j0i and measurement, we

will initially be interested in two quantum gates, Hadamard
and controlled-NOT (CNOT). To define their action, we
first define

j0i ¼ 1

0

 !
; (1)

j1i ¼ 0

1

 !
; (2)

leading to
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j�i ¼ �j0i þ �j1i ¼ �

�

 !
: (3)

Given two qubits in states j�1i ¼ �1j0i þ �1j1i and
j�2i ¼ �2j0i þ �2j1i, the state j�1ij�2i corresponds to
the outer product

j�1i � j�2i ¼

�1�2

�1�2

�1�2

�1�2

0
BBBBB@

1
CCCCCA: (4)

Given the above definitions, Hadamard (H) is a single-
qubit gate

H ¼ 1ffiffiffi
2

p 1 1

1 �1

 !
; (5)

and CNOT (or CX) is a two-qubit gate:

CX ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBBBB@

1
CCCCCA: (6)

Note that H and CNOT are unitary matrices. This is a
general property of quantum gates other than initialization
and measurement. In this instance, H and CNOT are also
Hermitian, and therefore self-inverses. As defined above,
CNOT flips the value of the second (target) qubit if the
value of the first (control) qubit is j1i and does nothing
otherwise.

Very general quantum errors can be expressed in terms
of only X and Z errors [10], where

X ¼ 0 1

1 0

 !
; (7)

Z ¼ 1 0

0 �1

 !
: (8)

A state j�i that contains an X error and is then acted on by
H results in the following state: HXj�i ¼ HXHHj�i ¼
ZHj�i. This can be verified by simple matrix multiplica-
tion. In other words, an X error commuted through an H
gate transforms into a Z error. Similarly,

Z!H X; (9)

I � X!CX
I � X; (10)

X � I!CX
X � X; (11)

I � Z!CX
Z � Z; (12)

Z � I!CX
Z � I: (13)

For brevity, where clear from context, outer products such
as X � I are frequently written as XI. We shall use the
above rules for propagating errors extensively.
Quantum circuits provide a convenient notation for ex-

pressing complex sequences of quantum gates. Figure 1
defines common circuit symbols. Two simple periodic
quantum circuits are shown in Fig. 2. When the measure-
ment value of these periodic circuits changes value, the
local presence of one or more errors is indicated. These
measurement value changes are called detection events.
Two similar (sometimes identical) but conceptually dis-
tinct circuits are always required to detect all quantum
errors requiring correction. We arbitrarily label one of
these primal and the other dual. Primal (dual) detection
circuits lead to primal (dual) detection events. Errors that
lead to primal (dual) detection events are called primal
(dual) errors.

initialization

measurement

Hadamard

CNOT

H

M

0

control

target

CPHASE

FIG. 1. Quantum circuit symbols for initialization, measure-
ment, Hadamard, CNOT, and CPHASE.
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FIG. 2. Examples of error detection circuits. Errors lead to a
permanent change in the periodic circuit measurement value. A
detection event is associated with any sequential pair of mea-
surements that differ in value.
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II. TOPOLOGICAL QUANTUM ERROR
CORRECTION

For the purposes of this paper, TQEC is defined to be a
collection of quantum circuitry on an arbitrary dimen-
sional, nearest-neighbor-coupled lattice of qubits with the
property that a single error leads to a pair of primal and/or
dual detection events unless the error is near a boundary
of the lattice. Near boundaries, a single error can lead to

just a single detection event. A 2D planar circuit with
these properties is shown in Fig. 3. This circuit is asso-
ciated with the surface code [23–28]. Examples of errors
resulting in a pair of detection events and a single detec-
tion event are shown in Fig. 4. Note that error-correction
codes have traditionally been defined in terms of stabil-
izers [29]; however, our definition in terms of quantum
circuits is both more general and how AUTOTUNE works
internally.
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FIG. 3. An eight-layer sequence of quantum gates comprising a single round of surface code quantum error detection. White circles
represent data qubits, black circles represent syndrome (error detection) qubits. Grey edges are guides for the eye with no physical
significance. Definitions of all quantum gates are given in Fig. 1.
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The notion of a detection event as defined above can be
significantly generalized. Defining measurement to report
the results þ1 and �1 for j0i and j1i, respectively, a
detection event can be associated with a set of measure-
ments with product �1. Examples of appropriate sets are
shown in Fig. 5(a). This figure also contains arrows indi-
cating nearby temporal and spatial boundaries. This infor-
mation, namely, set definitions and their boundaries, is
required by AUTOTUNE to correctly construct detection
events and associate single detection events with the cor-
rect boundary.

Armed with these definitions, we can also consider more
complex TQEC schemes, such as 3D topological cluster
states [26,30,31]. A cluster state [32,33] can be prepared in

two stages by first initializing a number of qubits to jþi ¼
ðj0i þ j1iÞ= ffiffiffi

2
p

. Physically, this typically corresponds to
initializing the qubits to j0i and applying Hadamard.
Next, controlled-phase (CPHASE or CZ) gates are applied
to pairs of qubits, where

CZ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

0
BBBBB@

1
CCCCCA: (14)

A topological cluster state has the form shown in Fig. 5(b).
This basic structure is tiled in 3D.

When all topological cluster-state qubits are measured in
the X basis, typically achieved by applying Hadamard and
then measuring, errors can be detected by multiplying the
measurement results in sets of the form shown in Fig. 5(b).

As above, a�1 product indicates a detection event. This is
discussed in more detail in [31]. Exactly why this is true is
not important for the purposes of this paper. The only
feature of TQEC required to read this paper is that detec-
tion events are associated with particular locations in
space-time and that single errors lead to detection events
that are local to one another.
If two errors would lead to a detection event at the same

location, their contributions cancel and no detection event
is observed at the shared location. Instead, an error chain is
formed, with detection events only at the endpoints of
the chain. Assuming some characteristic error rate p and

time

X

(a)

X

(b)

FIG. 4. 2D surface code (grey). Time runs vertically. Squares
represent initialization to j0i, circles represent Z-basis measure-
ment. Slashed squares represent initialization to jþi, slashed
circles represent X-basis measurement. (a) A single error leading
to a pair of detection events (green ellipses encircle each pair of
measurements with differing values associated with each detec-
tion event). Red lines show the paths of error propagation, using
Eq. (10). (b) An error leading to a single detection event due to
its proximity to a boundary of the lattice.
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M

M

M

M

M
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FIG. 5. (a) 2D surface code (grey). Time runs vertically. In the
front left corner, the transversely invariant initialization, 4
CNOT, measurement pattern is shown. For clarity, only the
measurement gate of this pattern is shown elsewhere in space-
time. Long ovals encircle pairs of measurements and represent
sets. Arrows indicate associations with boundaries. The bottom
layer of sets is associated with the initial time boundary. The
second layer left and right rows of sets are associated with the
left and right spatial boundaries, respectively. (b) A single 3D
topological cluster-state cell. Sets contain six measurements
away from the boundaries of the lattice. Dots represent qubits
initialized to jþi, heavy black lines connecting dots represent
CPHASE gates. The order of application of CPHASE gates is
irrelevant as they commute.
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independent errors, long error chains are exponentially
unlikely. Assuming a low error rate, a typical pattern of
detection events consists of well-isolated pairs as shown in
Fig. 6(a). The higher the error rate, the more difficult it is to
guess the location of the errors leading to the detection
events. A high error rate pattern of detection events is
shown in Fig. 6(b).

A number of different algorithms exist, taking detection
events in topological codes and determining locations to
apply corrections [34–40]. Edmonds’ minimum-weight
perfect matching algorithm [7,41–43] is the fastest known
algorithm capable of handling practical circuits of the
form described in this section. Minimum-weight perfect
matching is conceptually simple—after connecting detec-
tion events in pairs or individually to nearby boundaries,
such that the total length of connecting paths is minimal,
corrections are applied along the connecting paths. The
errors leading to the detection events in Fig. 6(a) would be
corrected with high probability; those in Fig. 6(b) may not
be successfully corrected. The error rate at which adding
additional qubits fails to improve the probability of suc-
cessful correction is called the threshold error rate pth. In
minimal gate-count fault-tolerant implementations of the
surface code, simulations indicate pth � 1% [7,44], which
is consistent with the proven lower bound to the threshold
error rate of 7:4� 10�4 [45].

AUTOTUNE uses our own implementation of minimum-

weight perfect matching [7,43]. The details of this imple-
mentation lie outside the scope of this discussion as
AUTOTUNE itself treats matching as a black-box process.

The primary question we wish to address is how to define
the distance between two detection events. If we assign
coordinates to detection events such that neighboring
events v1; v2 of the same type (primal or dual) differ by
one unit in one coordinate, the default metric is the
Manhattan metric:

Dðv1; v2Þ ¼ ji1 � i2j þ jj1 � j2j þ jk1 � k2j: (15)

This metric was used in early TQEC works [25,27,46].

III. TRACKING AND VISUALIZING ERRORS

The Manhattan metric takes no details of the underlying
gate sequence or error models of each gate into account. If
we imagine every potential location of a primal or dual
detection event in space-time, namely, the location of each
primal or dual set, the Manhattan metric can be visualized
as a cubic lattice. Figure 7 shows the Manhattan lattice
associated with the primal sets shown in Fig. 5(a). Each
cylinder represents a weight 1 path. A similar lattice exists
for the dual sets. The distanceD between any given pair of
sets is defined to be the shortest (lowest weight) connecting
path through the corresponding lattice. Cylinders appar-
ently leading to nowhere actually lead to spatial or tempo-
ral boundaries. Given a lattice and randomly generated
detection events, minimum-weight perfect matching can
be used to match detection events to one another or to
nearby boundaries such that the total weight of all con-
necting paths through the lattice is minimal.
Manhattan lattices are trivial to construct for the surface

code and topological cluster states. However, as we shall
see in detail in Sec. IV, Manhattan lattices lead to very
suboptimal performance. The reason for this can be de-
duced from Fig. 4(a), in which a single error can be seen to
lead to a pair of detection events separated by two units of
space and one unit of time. In other words, when using a
Manhattan lattice, this single error is treated the same way
as some three-error chains. In [47], we showed that this
shortcoming leads to a given size surface code only being
able to guarantee the correction of half the number of
errors it is theoretically capable of always correcting.
This shortcoming was removed by laboriously analyzing
the surface code circuits and error models by hand and

(a) (b)

FIG. 6. (a) Typical low error rate pattern of detection events.
Such patterns are easy to correct. (b) Typical high error rate
pattern of detection events with significant probability of
unsuccessful correction.

FIG. 7. Manhattan primal lattice of a distance 4-surface code
with depolarizing noise. Time runs vertically. Cylinder endpoints
represent points in space-time where detection events can occur.
Each cylinder has equal diameter, representing an assumed equal
probability of detection events at the endpoints of each cylinder.
Vertical cylinders leading to nowhere connect to the initial time
boundary. Horizontal cylinders leading to nowhere connect to
spatial boundaries of the qubit array.
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including diagonal weight 1 links (additional diagonal
cylinders with the same diameter) in the lattice wherever
necessary.

Weight 1 links do not take into account the relative
probability of different pairs of detection events.
Generally speaking, diagonally separated pairs of detection
events are less probable than pairs separated only along
one axis of the cubic lattice. In [44], with even more
laborious analysis by hand, all distinct types of errors
were propagated through the surface code and polynomial
expressions were obtained for the probability of each link
as a function of a characteristic physical gate error rate p.
This analysis was performed only for the body of the
lattice, and not attempted near the boundaries. Links to
the spatial boundaries were simply assigned the same
probability as a horizontal link of an appropriate direction
from the body of the lattice. It was deemed too complex
and laborious to perform this analysis for the different
types of boundaries and corners of the lattice.

When given an arbitrary TQEC circuit and arbitrary
stochastic error models for each gate, AUTOTUNE performs
a full analysis of the propagation of all errors through all
parts of the circuit to determine the probability of all pairs
of local detection events. As this is not conceptually com-
plex, we shall not describe the details of how this is
achieved here. A description of the AUTOTUNE algorithm
can be found in Appendix B. The analysis typically takes
less than 1 s. A lattice is then constructed with link weights
equal to � lnðplinkÞ, where plink is the total probability of
all errors leading to a given link; this is discussed in more
detail in Appendix B 5. This ensures that low probability
links have larger positive weights and are therefore
used less often. It also ensures that the sum of weights
along a path through the lattice is related to the product

of probabilities along that path. Figure 8 shows the
AUTOTUNE-generated lattice corresponding to Fig. 5(a).

Cylinders now have a diameter proportional to the proba-
bility of that link, which we find more useful than the
weight for visualization purposes. Note the varying diam-
eters of cylinders to the boundary.
Figure 8 was created with a standard depolarizing error

model. Initialization and measurement produce or report
the wrong state with probability p; identity and Hadamard
gates introduce an X, Y ¼ XZ, or Z error each with
probability p=3; and CNOT introduces one of the 15 non-
trivial outer products of I, X, Y, and Z, each with proba-
bility p=15. Figure 9 shows a lattice generated with
measurement error rate 10p, identity error rate 0:1p, and
a CNOTwith total probability of error p but with any error
containing Y or Z 100 times more likely than an error
containing only I and X. Note the much thicker vertical
cylinders due to the high measurement error rate.
AUTOTUNE is designed to handle absolutely any set of

stochastic error models. Note that after the first few layers,
the structure of the lattice repeats. Exactly the same pattern
of links and probabilities will be generated since the TQEC
circuit is repetitive. This means that we do not need to
endlessly perform an analysis of the propagation of all
errors; rather, we perform the analysis until it becomes
repetitive, then simply continue to generate the repetitive
structure without the analysis.

IV. UNOPTIMIZED VERSUS AUTOTUNED TQEC

Whenwe simulate the surface code, we study the situation
of a lattice of finite spatial extent and potentially infinite

FIG. 8. AUTOTUNE-generated primal lattice of a distance 4
surface code with depolarizing noise. Note that in contrast to
Fig. 7, cylinders do not have equal diameter, accurately repre-
senting the diverse range of probabilities of various pairs of
detection events. Note also the many additional diagonal cylin-
ders, which are associated with errors that propagate to space-
time locations separated by more than one unit of space and/or
time (see Fig. 4).

FIG. 9. AUTOTUNE-generated primal lattice of a distance 4
surface code with measurement error rate 10p, identity error
rate 0:1p, and a CNOT with total probability of error p but with
any error containing Y or Z 100 times more likely than an error
containing only I and X. Note that the increased measurement
error probability has led to fat vertical cylinders, representing the
increased probability that consecutive measurements will differ
leading to vertically aligned detection events. Such vertically
aligned detection events will be preferentially matched together
instead of to nearby boundaries.
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temporal extent. In practice, the lattice is generated dynami-
cally as gates are simulated and randomerrors generated.We
are interested in the logical error rate per round of error
detection. A logical error is a chain of errors after correction
that connects distinct boundaries. These errors can be de-
tected in simulations as changes in the logical state.

The distance d of a code is the minimum number of
operations required to change the logical state. For each
ðd; pÞ pair, we typically let our simulation run until 10 000
logical state changes are observed. Fewer state changes are
occasionally permitted at very low p and high d as the
runtime of the simulations increases rapidly due to the very
low logical error rate and consequent large number of
required rounds of simulated error detection. We have
recently developed fast analytic methods to calculate the
low-p logical error rate for arbitrary even d [48].

The logical-X error rate per round of error correction for
a range of values of d and p when using Manhattan lattices
is shown in Fig. 10. This should be contrasted with the
performance when using AUTOTUNE-generated lattices,
which is shown in Fig. 11.

The parallel asymptotic curves for distances 5 and 7 in
Fig. 10 are correct. In Fig. 4(a), an example of a single error
leading to detection events separated by two units of
space and one unit of time is shown. When using the
Manhattan lattice, three corrections must be inserted to
pair such detection events. Said another way, when using
the Manhattan lattice, this single error is indistinguishable
from a three-error process. A logical error occurs when
detection events are incorrectly matched, forming a logical
operator of errors and corrections. Logical operators are
associated with paths through the lattice connecting oppos-
ing boundaries. The shortest paths make use of the same
number of links as the code distance. There exist logical

operators in a d ¼ 5 code that do not follow a shortest path
and are associated with a total of 9 links and incorporate
two single-triple errors. Given the detection events associ-
ated with these single-triple errors, matching will choose to
match incorrectly (inserting 3 corrections) rather than cor-
rectly (which would require 6 corrections), forming a
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FIG. 10. Probability of logical logical-X error per round of
error correction for various code distances d and physical error
rates p when using a Manhattan lattice. The asymptotic curves
(dashed lines) are linear, quadratic, quadratic, and cubic for
distances d ¼ 3, 5, 7, and 9, respectively.
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FIG. 11. Probability of logical logical-X error per round of
error correction for various code distances d and physical error
rates p when using an AUTOTUNE-generated lattice. The asymp-
totic curves (dashed lines) are quadratic, cubic, and quartic for
distances d ¼ 3, 5, and 7, respectively.
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FIG. 12. A unit cell of the first layer of the interaction pattern
of a double layer of qubits generating a 3D cluster state. Small
black dots correspond to qubits. The qubits in the second layer
have been omitted for clarity. The numbers at the top right and
bottom left of each qubit indicate the time steps in which it is
initialized and measured, respectively. Each line corresponds to a
CZ gate and is labeled with the time step(s) in which this gate is
applied. The second layer comprises an identical ordering of
qubits and gates, but is shifted in time by three steps (such that a
gate labeled 2 is executed in time step 5 and vice versa, etc.) and
shifted north, east, and up as indicated by the arrow. Upward CZ

gates in the first layer become downward after shifting.
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logical error. This is why the asymptotic curve for d ¼ 5 is
only quadratic. Similarly, a d ¼ 7 code contains logical
operators consisting of 11 links incorporating two single-
triple errors and matching will choose to match incorrectly
(inserting 5 corrections) rather than correctly (6 correc-
tions). Fewer combinations of two single-triple errors lead
to failure in a d ¼ 7 code, explaining the lower logical
error rate. AUTOTUNE lattices do not suffer the shortcom-
ings described in this paragraph as they include all neces-
sary diagonal links and therefore guarantee correction of
bðd� 1Þ=2c errors.

If we focus on physical error rates of p ¼ 10�3, a
reasonable medium-term goal for scalable two-qubit inter-
actions, the distance d ¼ 5 autotuned logical error rate is
nearly a factor of 10 lower than the Manhattan logical error
rate. At d ¼ 7, the improvement is over a factor of 40. The
ratio of out performance continues to grow with d. The
ratio of out performance also grows rapidly as p is de-
creased. At p ¼ 10�5, the out performance is already a
factor of 100 at d ¼ 3, and over 5 orders of magnitude at
d ¼ 7. This extreme performance difference makes
AUTOTUNE an essential tool for analyzing the surface code.

Turning our attention to topological cluster states, the
first step is to describe a way to progressively build the
cluster state using only a 2-D lattice of qubits and nearest-
neighbor interactions. We start with a double layer of
qubits. The required sequence of initialization, measure-
ment, and CZ gates is somewhat complex; however, an
attempt to convey this clearly can be found in Fig. 12. An
appropriate single layer of qubits and interactions capable
of implementing the same sequence is shown in Fig. 13.
We assume the same error model as that used for the

surface code, including the explicit use of Hadamard gates
and initialization and measurement in the Z basis only. The
primal nest resulting from the described gate sequence and

FIG. 13. A single-layer implementation of the two layers used
to progressively generate a 3D topological cluster state. Note
that while some interactions cross, they are still technically
nearest neighbor.

FIG. 14. AUTOTUNE-generated primal lattice of a distance 4
topological cluster state with depolarizing noise.
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FIG. 15. Probability of logical primal error per round of error
correction for various topological cluster-state code distances d
and physical error rates p when using a Manhattan lattice. The
asymptotic curves (dashed lines) are quadratic, quadratic, and
cubic for distances d ¼ 3, 5, and 7, respectively.
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FIG. 16. Probability of logical primal error per round of error
correction for various topological cluster-state code distances d
and physical error rates p when using an AUTOTUNE-generated
lattice. The asymptotic curves (dashed lines) are quadratic,
cubic, and quartic for distances d ¼ 3, 5, and 7, respectively.

FOWLER et al. PHYS. REV. X 2, 041003 (2012)

041003-8



error model for a distance 4 topological cluster state is
shown in Fig. 14. Figures 15 and 16 show the Manhattan
lattice and autotuned lattice error-correction performance,
with the distance 5 logical error rate, in particular, show-
casing the advantage of using AUTOTUNE. Note the parallel
asymptotic curves for d ¼ 3 and 5 in the Manhattan case,
caused by single errors leading to detection events sepa-
rated by two links.

V. CONCLUSION

We have described a tool, AUTOTUNE, that is capable of
handling, in a natural manner, both fully fault-tolerant
surface codes and 3D topological cluster states, with the
full code distance achieved in both cases. This generality is
achieved through the definition of sets of measurements
that are used to detect error-chain endpoints. Arbitrary
syndrome measurement circuits are supported along
with arbitrary stochastic error models for each gate. The
details of the measurement circuits and gate error models
are analyzed before simulation begins to ensure high error-
correction performance. The algorithms upon which
AUTOTUNE is based are highly efficient, with a per round

runtime that is comparable to that reported in [43].
In future work, we plan to take correlations between

errors into account, improve the efficiency of AUTOTUNE’s
handling of qubit loss, parallelize the core matching en-
gine, and develop the capability to analyze complex logical
circuits consisting of many braided defects, including the
precise simulation of the complete quantum state.
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APPENDIX A: TWO-QUBIT EXPERIMENTS
DEMONSTRATING TQEC

This Appendix describes generic experiments requiring as
few as two qubits that are sufficient to prove that a physical
system is capable of implementing TQEC. A large 2D array
of qubits is not required, provided the experiment is done in a
scalable manner. It must be clear where an arbitrarily large
number of additional qubits will go, where all of the control
lines will go, where all of the control electronics will go, how
scalable cooling will be achieved, and how all aspects of the
construction and maintenance of the complete large-scale
hypothetical quantum computer will be achieved. No issues
can be ignored. This is best achieved with a modular design,
such as that described in [16].

The simplest possible modular structure capable of being
assembled into a large 2D array of qubits contains just a
single qubit with the ability to connect to four neighboring
modules. Two such modules connected together are suffi-
cient to demonstrate initialization, measurement, identity,
and single- and two-qubit gates. If the error rates of all of
these quantum gates are below approximately 1%, the
experiment will have demonstrated that nature permits
large-scale quantum computation. We believe that the im-
portance of such an experiment cannot be overstated.
A number of trade-offs are possible. For example,

measurement error rates of approximately 10% are accept-
able provided two-qubit interactions, CNOT or CZ, are
possible with an error rate of approximately 0.1%.
Precise trade-offs can be determined for specific hardware
using AUTOTUNE.
Each module need not be a physically separate device. A

pair of solid-state modules may consist of a pair of coupled
qubits together with coupling hardware for the six addi-
tional nearest-neighbor qubits, which may or may not
themselves actually be present. At least the coupling hard-
ware needs to be present to ensure that control and deco-
herence challenges associated with scaling have indeed
been overcome. It is possible that additional qubits and
coupling hardware may need to be present if the mecha-
nism achieving qubit interactions significantly couples
more than just nearest-neighbor qubits.
To take a specific example, consider a scalable ion-trap

quantum computer based on a regular array of interaction
regions connected by a square grid of transport paths.
Provided the design is truly scalable, it would be sufficient
to build just two unit cells of the scalable array containing,
in total, perhaps just two interaction regions and two trans-
port junctions. Four ions would be required, two data ions
and two sympathetic cooling ions. One would then need to
demonstrate high fidelity (> 0:99) initialization, measure-
ment, and single-qubit rotations. Most challenging, one
would need to demonstrate an interaction process consist-
ing of the transport of one ion to the other interaction region,
sympathetic cooling if necessary, combination, high-
fidelity interaction, separation, transport, more sympathetic
cooling if necessary, and then prove that the entire process
had fidelity greater than 0.99. One would also need to show
that an identity gate of duration equal to the interaction
process could be achieved with fidelity greater than 0.99.
Finally, onewould need to show that ion loss and leakage to
noncomputational states are low probability events, pref-
erably less than 1% per interaction process or other gate. An
experiment of this formwould put a price tag on a qubit and
enable one to calculate, using AUTOTUNE, the precise size,
cost, and performance of a large-scale quantum computer
based on many of the experimentally demonstrated unit
cells. This would reduce the problem of building a quantum
computer to one of price performance, a problem sure to
attract significant industry interest.
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We would be delighted to have arbitrarily detailed
discussions with anyonewishing to design a ‘‘nature permits
quantum computation’’ experiment with any type of
hardware.

APPENDIX B: AUTOTUNE ALGORITHM

The purpose of AUTOTUNE is to enable the precise
analysis of real hardware running TQEC. This is achieved
by taking user-defined error models for every quantum
gate and user-defined quantum circuits implementing
TQEC and working out exactly where every possible error
on every gate would be detected in space-time and which
errors lead to the same detection events. When simulating
the operation of the hardware stochastically, the detailed
error propagation information produced by AUTOTUNE can
be used to reliably guess which errors led to the observed
detection events. This results in the extremely effective
correction of physical errors. In this Appendix, we de-
scribe how AUTOTUNE represents error models, how these
errors are propagated through quantum circuits, how er-
rors are detected (sets of measurements), how the detailed
error information is visualized (nests of balls and sticks),
and how the detailed error information can be reduced to
simpler structures that can be generated efficiently during
stochastic simulation (lattices of dots and lines).

1. Error models and tracking

AUTOTUNE is capable of handling any error model with

outcomes that can be described by a single integer e per
qubit. For example, I ¼ 0, X ¼ 1, Z ¼ 2, Y ¼ 3, leaked to
a noncomputational state ¼ 4, qubit lost ¼ 5. Only single-
qubit and two-qubit gate error models are currently sup-
ported; however, this could easily be extended. The user
can specify how e is transformed by each gate, for ex-
ample, controlling whether a CNOT between a leaked
qubit and a nonleaked qubit results in two leaked qubits,
or results in no effect on the nonleaked qubit, or any other
effect describable by single integers.

An example of a Pauli channel CNOT error model file is
shown below.

2

1:0

6

81 0 3

14 1 0

13 2 1

28 2 2

78 3 0

30 3 2

1

(B1)

The first line states the number of qubits nq the gate is

applied to. The second line states the value x that the
relative strengths si of the various errors should be nor-
malized to sum to. This makes it easy to handle different
gates with different overall probabilities of error, e.g.,
x1q ¼ x2q=10. The third line states the number of different

errors ne in the model. The next ne lines contain nq þ 1

integers specifying the relative strength si of that error and
the value of e to apply to each qubit. The user can specify
exactly how different errors combine e1e2 ¼ e3. Each time
a quantum gate is called, it is passed an error rate p, and an
error of any kind is applied with probability px. Error i is
then applied with relative probability si=�si. The final line
is the gate duration in arbitrary units. For discussion pur-
poses, we include the internal representation of the error
model below, which makes use of explicit relative proba-
bilities rather than integers.

2

1:0

6

0:332 0 3

0:057 1 0

0:053 2 1

0:115 2 2

0:320 3 0

0:123 3 2

1

(B2)

Error models are not only used to generate stochastic
errors. Every time a gate is applied, all possible errors are
generated and added to the list of errors on each qubit
touched by the gate. The probability pxsi=�si is recorded
in each error data structure. Each error is given a unique
label. Multiple-qubit errors are represented by single-qubit
errors on each qubit, each with the same label. If one
executes a long sequence of unitary gates, the number of
errors per qubit that need to be tracked will grow (linearly)
without bound. Each unitary gate transforms all errors
present on all of the qubits it touches. An H gate will
transform X errors into Z errors and vice versa. Multiple-
qubit gates can create new propagated errors that will have
the same label as the original and can combine or cancel
multiple errors on a single qubit with the same label. For
example, CNOTðq1; q2; p ¼ 0:01Þ applied to qubits

q1 ! ðX; 0:005 00; 0Þ
,! ðZ; 0:002 38; 1Þ; (B3)

q2 ! ðY; 0:002 38; 1Þ; (B4)

where (A; psr; L) represents the error type, scaled relative
probability, and label, and the arrows represent a linked
list, will result in
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q1 ! ðX; 0:005 00; 0Þ
,! ðX; 0:000 57; 3Þ
,! ðZ; 0:000 53; 4Þ
,! ðZ; 0:001 15; 5Þ
,! ðY; 0:003 20; 6Þ
,! ðY; 0:001 23; 7Þ; (B5)

q2 ! ðX; 0:005 00; 0Þ
,! ðY; 0:002 38; 1Þ
,! ðY; 0:003 32; 2Þ
,! ðX; 0:000 53; 4Þ
,! ðZ; 0:001 15; 5Þ
,! ðZ; 0:001 23; 7Þ: (B6)

2. Sets of measurements

AUTOTUNE currently supports only single-qubit mea-

surements in the X and Z bases. MX applied to Eq. (B6)
will create a measurement:

m ! ðZ; 0:002 38; 1Þ
,! ðZ; 0:003 32; 2Þ
,! ðZ; 0:001 15; 5Þ
,! ðZ; 0:001 23; 7Þ: (B7)

The X errors and X components of the Y errors have been
removed. All errors will be removed from the qubit. To use
the qubit again it must be explicitly initialized. If the qubit
does not need to be used immediately after being mea-
sured, AUTOTUNE provides a dead gate that advances the
qubit in time but does not generate or track any errors. This
models incoherent evolution.

Every measurement is associated with either two sets
or a single set and a boundary. A set of measurements has
the property that the product of the measurement results
(þ 1 or �1) indicates whether a chain of errors has ended
nearby. In the standard surface code, sets contain consecu-
tive pairs of syndrome qubit measurements. In a 3D topo-
logical cluster state, sets contain the measurements on the
faces of individual primal and dual cells. See Fig. 5. Sets
must be specified by the user.

Sets can also be associated with boundaries. The bottom
layer of the sets in Fig. 5(a) is associated with the primal
initial time boundary. In the second layer of sets, the sets in
the left row are associated with the left primal boundary;
those in the right row are associated with the right primal
boundary. We use the terminology primal and dual instead
of rough and smooth as used in [27] to ensure uniform
terminology when discussing both the surface code and 3D
topological cluster states. Note that the middle row of sets

in the second layer is not associated with any boundary.
The association of sets with boundaries is currently manu-
ally user specified.

3. Detection events

When all measurements in a set have been performed,
further processing is triggered. A measurement may con-
tain many errors. A set may contain many measurements.
AUTOTUNE determines which errors with the same label

appear an odd number of times. For each such label, a
detection event is generated. Figure 4(a) contains an ex-
ample of a single error leading to a pair of detection events.
Detection events are stored in a hash table to enable one to
quickly determine whether a detection event with a given
label has already been generated. Pairs of detection events
immediately trigger the creation of sticks, which are
described in the following subsection.
Errors near a boundary can lead to single detection

events [Fig. 4(b)]. Such single detection events must
generate sticks leading to the nearby boundary. One must
decide with care when to conclude that a detection event is
unique and that no matching detection event will be gen-
erated in the future. To deal with this, we define a measure
of error-detection progress, big_t, to increment only when
every stabilizer of the code has been measured at least
once. An example of an error leading to detection events
two big_t in the future is shown in Fig. 17. This is the
maximum delay possible. Detection events three big_t in
the past that are unique are guaranteed to remain so.
Detection events can be primal or dual depending on

whether they are associated with primal or dual sets, which
are in turn associated with primal or dual stabilizer
measurements. It is a good idea to design stabilizer

X

0

1

2

bi
g_

t

FIG. 17. Example of a single error leading to two detection
events two big_t in the future. A detection event has a big_t
equal to that of its latest measurement. big_t increments after all
stabilizers have been measured at least once (circles represent
measurement, squares represent initialization).
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measurement circuits with the property that single errors
do not lead to the creation of more than one pair of primal
and one pair of dual detection events. This ensures that
minimum-weight perfect matching [41,42] is well suited to
correcting errors generated during the execution of the
circuits.

4. Nests of balls and sticks

When a set is processed to generate detection events, it is
said to be finalized. At this point in time, a ball is generated
and associated with the finalized set. This ball represents a
location in space-time. A pair of detection events leads to
the creation of a stick between its associated balls. A stick
represents a potential connection between a pair of space-
time locations arising from a single error. Many single
errors can lead to the same stick [6]. The probability of a
given stick, given a list of errors leading to it each with its
own probability ðei; piÞ, is therefore, to first order

pstick ¼
X
i

pi

Y
j�i

ð1� pjÞ: (B8)

We have a simple Blender-based visualization tool for
nests, which is used to generate Figs. 7–9 and 14. A nest
contains the full tracking information of which gate leads
to which collection of errors and which of those errors
leads to which sticks. This is highly useful, however, it is
also computationally cumbersome. AUTOTUNE deletes all
errors, measurements, sets, detection events, and balls and
sticks when they are no longer required, which keeps total
memory required finite; however, it remains challenging to
generate the nest fast enough to obtain good statistics in
simulations, let alone keep pace with a real quantum com-
puter. Note that nest generation is computationally efficient
in the computer science sense, with constant memory and
Oðn2Þ time required to generate each layer of the nest on n2

qubits; however, mere efficiency is insufficient for practi-
cal purposes.

5. Exploiting regularity

Motivated by the difficulty of rapidly generating nests,
we first cut down the data stored therein to the minimum
required by the minimum-weight perfect matching algo-
rithm. For every ball in a nest we create a dot, which again
simply represents a space-time location. For every stick,
we create a line. Lines connect the dots corresponding to
the balls that the stick connected; however, they contain
just one number, the weight w ¼ � lnðpstickÞ.

The lattice is kept for much longer than the nest. With
low probability, the matching algorithm can require all
prior matching history to correctly match the latest data.
A sufficiently long history must be kept to ensure that the
probability of requiring more is negligible. This is possible
as the probability of requiring additional data in the past
decreases exponentially with kept history size. The sim-
plicity of the lattice keeps the memory required low.

All the nests shown have a great deal of regularity in
their structure. This can be exploited to enable direct
generation of lattices, avoiding the need to generate ex-
pensive nests on the fly. During a boot-up phase,
AUTOTUNE analyzes each new stick and stores new unique

sticks as an offset that contains only the geometric infor-
mation associated with the stick—just enough to create a
line. Furthermore, each new ball is analyzed to determine if
it corresponds to a new pattern of offsets. Such unique
patterns are stored as blocks of offsets. Finally, each round
of error detection is analyzed with structurally unique
rounds stored as layers of blocks. All data is then stored
in a recipe that contains all necessary information to rap-
idly create any part of the lattice.
Currently, AUTOTUNE is capable of analyzing either error

detection circuitry that eventually leads to identical re-
peated layers or a finite number of rounds of error detection
that can have any structure whatsoever. The former could
easily be extended to a finite number of cyclically repeated
layers; however, it remains unclear whether one could
avoid generating full nests when simulating probabilistic
error detection in which all syndrome measurements can
take a randomly variable amount of time.
The performance of AUTOTUNE has been described else-

where [43]. Its complexity is optimal, requiring onlyOðn2Þ
time to simulate and perform the necessary classical pro-
cessing associated with each round of error detection on an
array of n2 qubits. Given constant computing power per
unit area, all algorithms within AUTOTUNE can be paral-
lelized to Oð1Þ. This optimal parallelization is a direct
consequence of the topological nature of the codes used
and the fact that, on average, this implies that one only
needs local information to correctly process a given space-
time region of measurement results. The local runtime does
not depend in any way on the global size of the computer.
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