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We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible

superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports

quantized vortices that have a size characterized by the healing length �. We show that, for the divergence-

free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be

decomposed into an ultraviolet regime (k � ��1) having a universal k�3 scaling arising from the vortex

core structure, and an infrared regime (k � ��1) with a spectrum that arises purely from the configuration

of the vortices. The Novikov power-law distribution of intervortex distances with exponent �1=3 for

vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov

k�5=3 power law, which is consistent with the existence of an inertial range. The presence of these k�3 and

k�5=3 power laws, together with the constraint of continuity at the smallest configurational scale k � ��1,

allows us to derive a new analytical expression for the Kolmogorov constant that we test against a

numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical

simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we

introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign

of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding

two-dimensional quantum turbulence and interpreting similarities and differences with classical two-

dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional

quantum fluids via vortex position and circulation measurements.
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I. INTRODUCTION

Turbulence in three-dimensional (3D) classical fluids is
associated with a cascade of energy from large length
scales defined by the details of an energy-forcing mecha-
nism, to small length scales where viscous damping re-
moves kinetic energy from the fluid. This range of length
scales, and the range of associated wave numbers k, define
the inertial range of energy flux [1]. As shown by
Kolmogorov in 1941 [2], the energy cascade corresponds

to a kinetic-energy spectrum that is proportional to k�5=3 in
the inertial range. Turbulence in a 3D fluid is also often
associated with the decay of large patches of vorticity into
ever smaller regions of vorticity; this Richardson cascade
of vorticity provides an important visual picture of the fluid
dynamics involved in 3D turbulence [3].

Remarkably, two-dimensional (2D) incompressible
classical fluids exhibit very different turbulent flow char-
acteristics due to the existence of an additional inviscid
invariant: In the absence of forcing and dissipation, the
total enstrophy [4] of a 2D fluid is conserved in addition to

the fluid’s kinetic energy [5–9]. The fluid dynamics
during forced 2D turbulence are highly distinctive when
compared with 3D flows: Rather than decaying into
smaller patches, vorticity aggregates into larger coherent
rotating structures [10] (see [11] for a more detailed picture
in terms of turbulent stress imposed on small-scale vorti-
ces). Accompanying these 2D fluid dynamics is an inverse
energy cascade in which energy moves from a small forc-
ing scale to progressively larger length scales, defining an
inertial range for energy transport with energy flux in a
direction opposite that of 3D turbulence. Eventually,
energy is transported into flows characterized by length
scales that are on the order of the system size [12], for
which dissipation may occur. Additionally, there is an
enstrophy cascade, in which enstrophy is transported
from the forcing scale to progressively smaller scales
[13]. Thus, in 2D turbulence, the kinetic-energy distribu-
tion contains at least these two distinctly different spectral
regimes.
Quantum turbulence (QT) [14] involves chaotic flow in a

superfluid [15–19] and is often associated with a random
vortex tangle in 3D [15]. In general, the quantization
of circulation strongly constrains the velocity fields
allowed in quantum turbulence, which must be irrotational
everywhere within the fluid; yet inertial ranges with

k�5=3 spectral dependence are still found in 3D quantum
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turbulence [20]. In an incompressible superfluid (such as
HeII), the vortex core diameter can be neglected for all
practical purposes, inspiring the study of point-vortex
models of superfluid dynamics. Such a model was used
by Onsager to first predict the aggregation of vortices
within inviscid 2D fluids, and was the context for his
prediction of the quantization of vortex circulation in a
superfluid [21]. Despite the historical importance of this
approach in stimulating advances in 2D classical turbu-
lence [22], characteristics of 2DQT remain little known,
due in part to the difficulty of achieving the necessary 2D
confinement for incompressible superfluids. The increas-
ing relevance of 3D turbulence concepts to dilute-gas
Bose-Einstein condensate (BEC) experiments [23–25]
and recent theoretical work on 2DQT [19,26–31] have
highlighted the need for a treatment of turbulence in 2D
superfluid systems that incorporates the concept of com-
pressibility from the outset. Motivated by recent experi-
mental demonstrations of the confinement needed to study
2DQT in dilute-gas BECs [32,33], our aim in the present
paper is to present a new approach to solving some of the
open problems of 2DQT in the context of such a system.

In a BEC, the vortex core size is non-negligible, and
stems from the healing length �, a scale of fundamental
importance in BEC dynamics that is typically about 2
orders of magnitude smaller than the system size [34].
Compressibility also allows for a rich array of physical
phenomena in these superfluids; in particular, a vortex
dipole [32] (comprised of two vortices of opposite sign
of circulation) can recombine, releasing vortex energy as a
burst of acoustic waves. The opposite process of vortex
dipole generation from sound may also efficiently occur.

Recent theoretical studies of decaying quantum turbu-
lence in 2D BECs have shown that when the vortex dipole
annihilation process is dominant it sets up a direct cascade
of energy over the scales associated with the dipole decay,
suggesting that this annihilation mechanism could prohibit
an inverse energy cascade from occurring in a compress-
ible superfluid [29,30]. Moreover, enstrophy in a quantum
fluid is associated with the number of vortex cores; if
vortices annihilate, then enstrophy may not be conserved,
bringing into question the existence of energy and ens-
trophy cascades in 2DQT, and the universal nature of 2D
turbulence and its correspondence with 2DQT.

The general characteristics of 2D quantum turbulence in
compressible quantum fluids, including the capacity for
these systems to show an inverse energy cascade, enstro-
phy conservation, and vortex aggregation have thus re-
mained largely unknown. However, a recent study of the
formation of vortex dipoles during the breakdown of su-
perfluid flow around an obstacle in a highly oblate BEC
experimentally and numerically observed the aggregation
of like-sign vortices into larger-scale coherent structures
[32], and found time scales over which the vortex number
and hence enstrophy may remain constant. The vortex

clustering effect inhibits the dipole-decay mechanism by
keeping vortices distant from antivortices (vortices of op-
posite circulation), and suggests that an inverse cascade
might be observed under the right conditions of forcing.
System dynamics consistent with the existence of an in-
verse energy cascade were indeed found in a recent study
of forced 2DQT in a BEC [33].
In this article, we address 2D quantum turbulence in a

compressible quantum fluid from an analytical perspective.
We determine the kinetic-energy spectra of vortex distri-
butions in a homogeneous compressible superfluid in a
quasiexact manner via an analytical treatment of the
physics of the vortex core. We are thus able to study the
properties of vortex configurations and their resulting spec-
tra in BEC. We develop a technique to sample spatially
localized vortex distributions with power-law behavior
over a well-defined scale range. We are thus able to iden-
tify the conditions for an inertial range in fully polarized
and neutral systems. A polarized cluster is sampled using
a specific exponent for the vortex locations relative to the
cluster center, which is size and scale dependent. The
specific radial exponent is shown to determine the velocity
distribution in the classical limit, and we thus identify
an expanding inertial range with a steepening velocity
distribution.
Making use of the universality of the spectral region

generated by the vortex core, we identify an analytical
form of the Kolmogorov constant that we test against
dynamical simulations of the damped Gross-Pitaevskii
equation (GPE). The derivation of the Kolmogorov con-
stant occurs for a highly idealized vortex distribution.
Thus, the complex flows generated by real forcing require
that we introduce a new parameter called the clustered
fraction, and modify our ansatz to account for imperfect
clustering, based on the universality of the Kolmogorov
constant. The modified ansatz agrees well with the numeri-
cal simulations of grid turbulence, supporting our analyti-
cal identification of the Kolmogorov constant.

II. BACKGROUND

The starting point for much of BEC theory is the GPE,
which provides a capable description of trapped Bose-
Einstein condensates at zero temperature [34]. Our model,
outlined below, consists of a damped GPE (dGPE) descrip-
tion of a finite-temperature BEC which can be derived
from the stochastic GPE theory [35,36]. In this section,
we develop a link between the dGPE and the classical
Navier-Stokes equation (NSE), identifying a quantum
viscosity arising from the damping. The corresponding
Reynolds number is defined in direct analogy with classical
fluids. We then state some key properties of a single
quantum vortex, and define the decomposition of
kinetic energy into its compressible and incompressible
components.
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A. Damped Gross-Pitaevskii theory

The damped Gross-Pitaevskii equation of motion for the
quantum fluid wave function c ðr; tÞ has been obtained
phenomenologically [37], within Zaremba-Nikuni-Griffin
theory [38], and via a microscopic reservoir theory
[35,39,40], and we will consider it within the context of
the latter framework, for which the full equation of motion
is the stochastic projected Gross-Pitaevskii equation
(SPGPE). The SPGPE is derived by treating all atoms
with energies above an appropriately chosen energy cutoff
�cut as thermalized, leading to a grand-canonical descrip-
tion of the atoms below �cut. A dimensionless temperature-
dependent rate � describes Bose-enhanced collisions
between thermal reservoir atoms and atoms in the BEC.
Neglecting the noise, we obtain the equation of motion for
the condensate wave function (in the frame rotating with
the chemical potential �):

i@
@c ðr; tÞ

@t
¼ ði�� 1Þð��LÞc ðr; tÞ: (1)

For atoms of mass m in an external potential Vðr; tÞ, the
operator L gives the GPE evolution:

L c ðr; tÞ �
�
� @

2

2m
r2 þ Vðr; tÞ þ gjc ðr; tÞj2

�
c ðr; tÞ;

(2)

where the interaction parameter is g ¼ 4�@2a=m, for
s-wave scattering length a. This equation of motion has
been used extensively in previous studies of vortex dynam-
ics [38,39,41,42] and provides a capable description of
dynamical BEC phenomena. In general, the damping pa-
rameter is small (� � 1), and it is typically much smaller
than any other rates characterizing the evolution.

Defining the Gross-Pitaevskii Hamiltonian,

HC ¼
Z

d3r

�
@
2

2m
jrc ðr; tÞj2 þ Vðr; tÞjc ðr; tÞj2

þ g

2
jc ðr; tÞj4

�
; (3)

and condensate atom number,

NC ¼
Z

d3rjc ðr; tÞj2; (4)

the equation of motion (1) evolves the grand-canonical
Hamiltonian KC ¼ HC ��NC according to

dKC

dt
¼ � 2�

@

Z
d3rjð��LÞc ðr; tÞj2: (5)

The stationary solution minimizing KC is the ground state
satisfying�c 0ðrÞ � Lc 0ðrÞ. This is a consequence of the
nonlinear form of the damping in (1). The damping term
arises from collisions between high-energy atoms that lead
to a Bose-enhanced growth of the matter wave field, with
instantaneous energy determined by L. The equation of

motion thus describes a system coupled to a thermal res-
ervoir in the chosen frame of reference.
The SPGPE provides a rigorous framework for the

dGPE derivation, originating from a microscopic treatment
of the reservoir interaction. In particular, � can be calcu-
lated explicitly [36] for a system with well-defined reser-
voir parameters �, T, and �cut, i.e., a system close to
thermal equilibrium. In essence, it is computed via a
reduced Boltzmann collision integral that accounts for all
irreversible s-wave interactions that can change the con-
densate population by interacting with the thermal cloud. If
the thermal cloud is 3D (i.e.,��1 � kBT is greater than the
potential well mode spacing in each spatial dimension) the
damping takes the explicit form

� ¼ �0

X1
j¼1

e��ðjþ1Þ

e2�j�cut
�

�
e��

e�j�cut
; 1; j

�
2
; (6)

where �½z; s; �� is the Lerch transcendent, and

�0 ¼ 8a2=�2
dB; (7)

with �dB � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@2=mkBT

p
, the thermal de Broglie wave-

length. The dimensionless rate �0 provides a useful esti-
mate of the full damping strength when the cutoff �cut is
unknown. Equation (6) is independent of position, and
valid over the region Vðr; tÞ � 2�cut=3, provided the po-
tential can be treated semiclassically [36]. The summation
gives Bose-enhancement corrections due to the Bose-
Einstein distributed reservoir atoms, and is typically of
order 1–20 in SPGPE simulations with a consistently
determined energy cutoff [43]. Typically �� 5	 10�4

in 87Rb experiments [42,44].

B. Heuristic derivation of a quantum Reynolds number

In this section, we consider the role of dissipation within
the dGPE description, and show how to recover the cele-
brated NSE. In doing so, we find an explicit expression for
the viscosity which has a microscopic quantum origin,
stemming from s-wave scattering of incoherent reservoir
particles with a coherent superfluid. While not offering a
practical reformulation (the GPE and its generalizations
are capable numerical workhorses), this indicates a con-
nection between the dGPE and the NSE in the hydrody-
namic regime, allowing the identification of a parameter
analogous to the kinematic viscosity of classical fluids.
The fluid dynamics interpretation of the Gross-

Pitaevskii equation is based on the Madelung transforma-
tion, which we now apply to the damped GPE (1), writing

c ðr; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðr; tÞp

exp½i�ðr; tÞ�, where 	ðr; tÞ is the num-
ber density of the superfluid (number of atoms per unit
volume), and �ðr; tÞ is the macroscopic phase of the
quantum fluid. The velocity is then given by vðr; tÞ ¼
@r�ðr; tÞ=m. The resulting equations of motion (with
implicit t and r dependence) for density and velocity are
then given by
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@	

@t
þr 
 ð	vÞ ¼ 2	�

@
ð��UeffÞ; (8)

m
@v

@t
¼ �r

�
Ueff � @�

2	
r 
 ð	vÞ

�
; (9)

where an effective potential Ueff is defined as

Ueffðr; tÞ ¼ mv2

2
þ V þ g	� @

2

2m

r2 ffiffiffiffi
	

pffiffiffiffi
	

p : (10)

The last term is called the quantum pressure, which is very
small except where 	 changes sharply, such as near vortex
cores. By neglecting this term in the absence of dissipation,
we are considering the so-called hydrodynamic regime.

We now consider the � term in (9):

@�

2
r
�
1

	
r 
 ð	vÞ

�
¼ @�

2

�
rðr 
 vÞ þ r v 
 r	

	

�
: (11)

Note that v 
 r	 � 0 for an isolated quantum vortex. In the
absence of acoustic energy, this will also be a good ap-
proximation for a system of vortices provided their cores
are well separated, since the density gradient of each vortex
is localized to a region where the velocity is dominated by
the single-vortex velocity field. It should thus be a reason-
able approximation to neglect the second term in (11). In a
superfluid, the curl term in the expansion rðr 
 vÞ ¼
r 	 ðr 	 vÞ þ r2v may also be consistently neglected
away from vortex cores; similarly, we neglect the curl
term in rðv 
 vÞ ¼ 2ðv 
 rÞvþ 2v	 ðr	 vÞ when taking
the gradient of (10). We then find that (9) reduces to a
quantum Navier-Stokes equation for the velocity field,

@v

@t
þ ðv 
 rÞv ¼ � 1

m
rðV þ g	Þ þ 
qr2v; (12)

where the kinematic quantum viscosity is


q � @�

2m
; (13)

which is in analogy with classical fluids. In this regime,
(12) is coupled to the continuity equation

@	

@t
þr 
 ð	vÞ ¼ 2	�

@
ð��UHÞ; (14)

with hydrodynamic potential

UHðrÞ � mv2

2
þ V þ g	: (15)

The source term in (14) drives the system toward particle-
number equilibrium with the reservoir. In the Thomas-
Fermi regime ��UHðrÞ � 0, restoring approximate
particle-number conservation.

Making use of (7), we can give an order-of-magnitude
estimate for the viscosity:


0
q � @�0

2m
¼ 2a2kBT

�@
: (16)

We can also estimate a quantum Reynolds number as

Re 0
q � UL


0
q

¼ �@

2a2
UL

kBT
(17)

for BEC flow with characteristic speed U and length scale
L. We can write the quantum Reynolds number as

Re 0
q ¼ �2

dB

a2
mUL

4@
: (18)

We note that temperature only enters the expression
through the de Broglie wavelength of the matter wave field,
in the ratio �dB=a, which is typically very large for a BEC.
Note that strong scattering corresponds to strong damping,
and hence, a low Reynolds number. A large de Broglie
wavelength corresponds to a relatively cold system, which
is hence expected to be weakly damped and have a high
Reynolds number.
We thus have a dimensionless ratio in the form

Re 0
q � ½deBrogliewavelength�2

½scattering length�2 
 ½flowmomentum�
½quantummomentum� ;

(19)

where @=L is interpreted as the quantum momentum asso-
ciated with the transverse length scale of the flow.
A concrete example is provided by a recent experimental

study of 2DQT generated by stirring a highly oblate, tor-
oidally confined BEC [33]. The initial system consists of
approximately 2:6	 106 atoms of 87Rb at a temperature of
approximately 100 nK. Using these numbers in our analy-
sis, the dimensionless damping parameter �0 � 6	 10�4

gives a kinematic quantumviscosity
0
q�6	10�2�m2s�1.

The trapping potential confines the flow to an annular
channel of width L� 30 �m. The nominal flow speed
can be estimated from numerical simulations of the dGPE
[33], giving a valueU� 5 �ms�1 as the peak value occur-
ring in the bulk flow during the stirring sequence. These
values give an estimate Re0q � 600. We can alternatively

estimate a Reynolds number at the scale of the forcing
in the experiment, which is of order of the size of the
vortex dipoles nucleated, d� 10�, with healing length
�� 0:5 �m. Such dipoles have a characteristic speed
vd � 146 �ms�1, for which we estimate the Reynolds
number of the forcing scale as �vdd=


0
q ¼ 6:2	 103.

These large values suggest that turbulent flow in a finite-
temperature BEC may exist across a wide range of length
scales if the analogy is made with the classical Reynolds
numbers that correspond to turbulent flow [1]. This inter-
pretation is broadly consistent with the experimental and
numerical observations of chaotic vortex dynamics [33].
We emphasize that the quantum Reynolds number esti-

mate proposed here is applicable to a finite-temperature
weakly interacting superfluid and may provide a general
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condition in analogy with classical fluids that is indepen-
dent of dimension. However, taking the zero-temperature
limit gives an infinite value for Re0q, and in this regime the

superfluid dissipation stems from vortex reconnections (or
annihilation in two dimensions) and coupling to the sound
field [45–47]. The detailed description of criteria for super-
fluidity in the crossover from the zero-temperature to high-
temperature regimes is an open problem [48]. Furthermore,
due to the reversed direction of energy transfer in 2DQT,
the scales of interest have to be reexamined; we do not
pursue this here. Our aim is to establish a conceptual
link between the dGPE and the NSE, which is given by
Eq. (12). In doing so, we have shown how to identify the
equivalent viscosity in a finite-temperature BEC.

C. Two-dimensional vortex wave function

In the remainder of this work, we limit our analysis to
homogeneous, compressible, quantum fluids in two dimen-
sions, and redefine our spatial and velocity coordinates
accordingly: r ¼ ðx; yÞ ¼ rðcos�; sin�Þ and v ¼ ðvx; vyÞ.
We thus confine our attention to the regime of an effective
2D GPE, with a modified interaction parameter. While
2D BEC systems can be created through extremely tight
confinement in one dimension, a regime of effective 2D
vortex dynamics can also be accessed in less oblate
systems, giving a 2D analysis wider applicability. For
example, although the BECs of Refs. [32,33] were three-
dimensional, the confinement along one dimension was
strong enough to limit vortex motion to a plane and sup-
press vortex bending and tilting away from the tight-
trapping direction. Aspects of BEC dimensionality in
regards to vortices and Kelvin waves were analyzed in
[44], further indicating that sufficiently oblate 3D BECs
may be considered 2D as far as vortex dynamics and
turbulence are concerned. At the same time, such systems
can remain far enough away from the quasi-2D limits
in which a Berezhkinski-Kosterlitz-Thouless transition
has been observed [49], and this physics may thus be
neglected.

For our analysis of kinetic-energy spectra, we require
certain properties of a quantized vortex, namely, the
asymptotic character of the wave function for large and
small length scales. The Gross-Pitaevskii equation describ-
ing the homogeneous (V ¼ 0) 2D Bose gas is obtained
from (1) by taking � ¼ 0 and using an interaction parame-
ter g2 ¼ g=l, where l is the characteristic thickness of the
3D system [30]:

i@
@c ðr; tÞ

@t
¼

�
� @

2r2
?

2m
þ g2jc ðr; tÞj2

�
c ðr; tÞ: (20)

For example, in a system with harmonic trapping in the z
direction characterized by trapping frequency !z, the

length scale is l ¼ ffiffiffiffiffiffiffi
2�

p
lz where lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!z

p
is the

z-axis harmonic oscillator length, and the confinement is

assumed to be sufficient to put the wave function into the
z-direction single-particle ground state.
For solutions with chemical potential � containing a

single vortex at the origin (with circulation normal to the
plane of the quantum fluid), we can write [50]

c 1ðr; tÞ ¼ ffiffiffiffiffi
n0

p
e�i�t=@�ðr=�Þe�i�; (21)

where � ¼ @=mc is the healing length for speed of sound

c ¼ ffiffiffiffiffiffiffiffiffiffiffi
�=m

p
, and n0 ¼ �=g2 is the 2D particle density for

r � � and is taken to be a constant. The vortex radial
amplitude function �ðÞ, where  ¼ r=� is a scaled radial
coordinate, is a solution of

ð��1@@ þ �2Þ� ¼ 2ð�� �3Þ: (22)

The boundary conditions are �ð0Þ ¼ 0, and the derivative
�0 � d�=d evaluated at  ¼ 0 must be chosen such that
it is consistent with �ð1Þ ¼ 1 and �0ð1Þ ¼ 0. The value

� � �0ð0Þ ¼ lim
r!0

�ffiffiffiffiffi
n0

p
��������dc 1

dr

�������� (23)

is determined numerically to be � ¼ 0:8249 . . . . The state
(21) has the velocity field of a quantum vortex:

v ðrÞ ¼ @

mr
ð� sin�;� cos�Þ: (24)

D. Kinetic-energy decomposition

We make use of the decomposition of the kinetic energy
into compressible and incompressible parts [28,51]. The
2D case of the Gross-Pitaevskii energy functional (3) can
be decomposed as E ¼ EK þ EV þ EI þ EQ, where

EK ¼ m

2

Z
d2r	ðr; tÞjvðr; tÞj2; (25)

EV ¼
Z

d2r	ðr; tÞVðr; tÞ; (26)

EI ¼ g2
2

Z
d2r	ðr; tÞ2; (27)

EQ ¼ @
2

2m

Z
d2rjr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðr; tÞ

q
j2: (28)

Respectively, these define the components of energy that
can be attributed to kinetic energy, potential energy, inter-
action energy, and quantum pressure. We are interested in
the kinetic energy, EK. We define a density-weighted ve-

locity field uðr; tÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðr; tÞp

vðr; tÞ, then decompose this
into uðr; tÞ ¼ uiðr; tÞ þ ucðr; tÞ, where the incompressible
field ui satisfies r 
 ui ¼ 0, and the compressible field uc

satisfies r	 uc ¼ 0. We can further decompose the
kinetic energy as EK ¼ Ei þ Ec, where the portion of
EK attributed to compressible or incompressible kinetic
energy is defined as
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Ec;i ¼ m

2

Z
d2rjuc;iðr; tÞj2: (29)

The compressible component is attributed to the kinetic
energy contained in the sound field, while the incompress-
ible part gives the contribution from quantum vortices.
Our analysis below only involves Ei. Because we focus
on vortex configurations at instants in time, we drop the
explicit time dependence from the remainder of our
expressions.

In k space, the total incompressible kinetic energy Ei is
given by

Ei ¼ m

2

X
j¼x;y

Z
d2kjF jðkÞj2; (30)

where

F jðkÞ ¼ 1

2�

Z
d2re�ik
rui

jðrÞ: (31)

The one-dimensional spectral density in k space is given in
polar coordinates by integrating over the azimuthal angle
to give

EiðkÞ ¼ mk

2

X
j¼x;y

Z 2�

0
d�kjF jðkÞj2; (32)

which, when integrated over all k, gives the total incom-
pressible kinetic energy Ei ¼

R1
0 dkEiðkÞ.

III. INCOMPRESSIBLE
KINETIC-ENERGY SPECTRA

A. Incompressible kinetic-energy spectrum of a vortex

We now consider the kinetic-energy spectrum of a single
quantum vortex in a 2D BEC. For an arbitrary wave
function, the decomposition into compressible and incom-
pressible parts must be performed prior to carrying out the
transformation to the spectral representation. However, for
a quantum state containing a single-vortex and no acoustic
energy [i.e. the single-vortex wavefunction c 1 (21)] we
note that the wave function is automatically incompress-
ible, i.e., the compressible part is identically zero:

r 
 ½
ffiffiffiffiffiffiffiffiffi
	ðrÞ

q
vðrÞ� ¼ v 
 r

ffiffiffiffiffiffiffiffiffi
	ðrÞ

q
þ

ffiffiffiffiffiffiffiffiffi
	ðrÞ

q
r 
 v � 0: (33)

The first term vanishes due to the orthogonality of the
density gradient and velocity of a vortex, and the second
due to the form of (24). Thus, the incompressible spectrum
is the entire spectrum for a single quantum vortex.

For a single vortex, we can thus ignore the incompress-
ible decomposition and cast the kinetic-energy spectrum in
terms of the properties of the radial amplitude function

�ðÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð�Þ=n0

p
obtained from (22). We have

F xðkÞ ¼ � @

2�m

Z
d2re�ik�r

ffiffiffiffiffiffiffiffiffi
	ðrÞp
r

sin�

¼ i@

m

d

dk

Z 1

0
dr

ffiffiffiffiffiffiffiffiffi
	ðrÞp
r

J0ðkrÞ

¼ �i@
ffiffiffiffiffi
n0

p
�

m

1

k�

Z 1

0
d�0ðÞJ0ðk�Þ; (34)

where J0 is the zeroth-order Bessel function of the first
kind. A similar analysis gives F yðkÞ ¼ �F xðkÞ. We can

thus find the one-vortex spectrum [see (32)]

E1
i ðkÞ ¼ ��3Fðk�Þ; (35)

where we define the dimensionless core spectral function

Fðk�Þ � 1

k�

�Z 1

0
d�0ðÞJ0ðk�Þ

�
2
; (36)

and we have introduced the unit of enstrophy

� � 2�@2n0
m�2

; (37)

giving ��3 as the natural unit for the kinetic-energy
density. The core spectral function has the small-k�
asymptotic form

Fðk�Þjk��1 ¼ 1

k�

�Z 1

0
d�0ðÞ

�
2 ¼ 1

k�
: (38)

For k� � 1, J0ðk�Þ is highly oscillatory except at ¼ 0,
where it is unity, and the Taylor expansion of �0ðÞ can be
truncated at zeroth order to give

Fðk�Þjk��1 ¼ �2

k�

�Z 1

0
dJ0ðk�Þ

�
2 ¼ �2

ðk�Þ3 : (39)

We thus have the asymptotic spectra for a single vortex

E1
i ðkÞjk��1 ¼ ��3

k�
; (40)

E1
i ðkÞjk��1 ¼ �2 ��3

ðk�Þ3 : (41)

The k� � 1 regime arises purely from the irrotational
velocity field of a quantum vortex, while the k� � 1
regime is a property of the core of a compressible quantum
vortex. The k� � 1 regime explicitly depends on the slope
of the wave function at the core of a vortex. The crossover
between these regions occurs in the vicinity of k� � 1;
hence, we take k� ¼ 1 as distinguishing the infrared
(k� < 1) and ultraviolet (k� > 1) regimes in the remainder
of our analysis. The scale k� ¼ 1 thus serves to define an
important length scale of the problem, namely, lv � 2��.
In Fig. 1 we see that at this distance from the vortex core,
the deviation of the amplitude from the background value
is very small. This is the scale beyond which the details of
the core structure are no longer important in characterizing
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the wave function, or equivalently that the fluid density has
approximately reached its bulk value. The irrotational
velocity field in Eq. (24) is the only remaining signature
of a vortex at this range from its center and beyond. We
note that our derivation of the k�3 power law stemming
from the quantum-vortex core structure is consistent with
the recent analysis of the Kelvin-wave cascade in 3D [52].

Now that we have identified the properties of a single
vortex, it is natural to ask whether a unit of enstrophy can
be attributed to a single quantum vortex, and to compare
this with the quantity defined in (37). The point-vortex
model suggests that this can be done, but gives a singular
result, which is nevertheless known to be proportional to
the number of vortices [30]. The problem is also evident if
we attempt to evaluate the enstrophy of a single vortex
from the spectrum (35). Multiplying by k2 to produce an
enstrophy spectral density and integrating this over the
ultraviolet regime k� > 1, we are faced with the singular
integral

R1
1 dk=k.

In this work, we therefore define a new asymptotic
quantity with units of enstrophy as

� � lim
k!1

k3EiðkÞ: (42)

This quantity plays a fundamental role for a compressible
superfluid because it completely specifies the large-k re-
gion of the incompressible kinetic-energy spectrum.
Because the spectrum in this region of k space is deter-
mined by the core structure of quantized vortices, we call
this unit the onstrophy to both recall Onsager’s contribu-
tion to our understanding of quantized vorticity in a super-
fluid and emphasize the difference between enstrophy in
classical and quantum fluids. For a single quantum vortex
we find, using (35), the onstrophy

�1 ¼ �2�; (43)

which differs from (37) by the factor �2 ¼ 0:6805 . . . , a
property of the vortex core in a compressible superfluid.

B. Vortex wave function ansatz and
kinetic-energy spectrum

To study 2D kinetic-energy spectra, we will make ex-
tensive use of an algebraic ansatz for the wave function of a
single vortex in a homogeneous superfluid. A numerical
evaluation of the exact core function (36) is not straightfor-
ward due to the highly oscillatory integrand, and the
need to determine the vortex amplitude �ðÞ extremely
accurately over a large range of length scales. In order to
accurately represent the spectrum, it will be crucial that our
ansatz have the correct asymptotic properties for small and
large length scales described immediately above (23).
Making use of the slope at the origin computed for the
exact solution in (23), we use the ansatz wave function:

�vðrÞ ¼ ffiffiffiffiffi
n0

p re�i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð��1�Þ2p : (44)

The general form of this ansatz has been previously used to
describe the shape of a vortex core [50], but here we use a
length scale ��1� that enforces matching the slope of the
ansatz density distribution to the exact value at the center
of the core. The state (44) has the irrotational velocity field
of a quantum vortex specified in (24) and reproduces the
asymptotic slope of the exact solution near the origin, as
shown in Fig. 1.
We now compute the kinetic-energy spectrum for a

single vortex by evaluating (31) using the ansatz, Eq. (44).
Taking ��1� ¼ b for brevity, we have

F xðkÞ ¼
i@

ffiffiffiffiffi
n0

p
m

d

dk

Z 1

0

drJ0ðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p

¼ i
@

ffiffiffiffiffi
n0

p
b

2m

�
I1

�
kb

2

�
K0

�
kb

2

�
� I0

�
kb

2

�
K1

�
kb

2

��
;

(45)

where Ij and Kj are modified Bessel functions of the first

and second kind, respectively, of order j. Since jF yj2 ¼
jF xj2, we find the incompressible energy spectrum of a
single vortex:

E1
i ðkÞ ¼ ��3F�ðk�Þ; (46)

where

F�ðk�Þ � ��1fðk���1Þ; (47)

and where we define

fðzÞ � ðz=4Þ½I1ðz=2ÞK0ðz=2Þ � I0ðz=2ÞK1ðz=2Þ�2: (48)

The function fðzÞ has the following asymptotics: for z � 1:

fðzÞ ¼ 1

z
þ

�
��þ ln

�
z

4

��
z

2
þ 
 
 
 ; (49)

where �� ¼ 0:577 21 . . . is the Euler-Masceroni constant; for
z � 1,

FIG. 1. Amplitude of the wave function for a single-vortex
solution of the Gross-Pitaevskii equation. The numerical solu-
tion of (22) (solid line) is compared with the ansatz (44) (dashed
line). The inclined dashed line shows the slope � of the exact
solution at the origin. The vertical line is the point  ¼ 2�.
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fðzÞ ¼ 1

z3
þ 3

z5
þ 
 
 
 : (50)

The function F�ðk�Þ thus has the following asymtotics:

F�ðk�Þjk��1 ¼ 1

k�
; (51)

F�ðk�Þjk��1 ¼ �2

ðk�Þ3 ; (52)

which are identical to those of Fðk�Þ. The two functions are
very similar, with only small differences evident in the
crossover region k�� 1, as seen in Fig. 2. We use F�ðk�Þ
instead of Fðk�Þ for describing the kinetic-energy spectrum
for a vortex core in the remainder of this work as it
is numerically expedient and does not alter any of the
physical consequences of our analysis. Toward the end of
this paper we will compare the asymptotic results of our
analysis with spectra determined numerically from forced
dGPE dynamics.

The spectrum of a single vortex is shown in Fig. 3, and
compared with the spectrum of a vortex-antivortex pair
(a vortex dipole) and that for two vortices of the same sign
(a vortex pair). These two-vortex spectra are analyzed in
the following section.

C. Two-vortex spectra

Extension of the discussion in Sec. III A leads us to
conclude that a wave function that only contains vortices
(i.e., no sound field) separated by more than a few healing
lengths will thus be approximately incompressible accord-
ing to the decomposition. The approximation breaks down

through the nonorthogonality of v and r ffiffiffiffiffiffiffiffiffi
	ðrÞp

near a
vortex core due to the velocity field induced by the other
vortices. However, in the close vicinity of a vortex core,

where r ffiffiffiffiffiffiffiffiffi
	ðrÞp

is significant, the velocity is dominated by
the velocity field of that vortex core. An arrangement of

vortices separated by more than a few healing lengths will
thus be approximately incompressible. In the following
analytical treatment, we will neglect any compressible
part that arises from an assembly of vortices described by
the ansatz (44).
A two-vortex state in a homogeneous system with

no boundaries has a density-weighted velocity field,ffiffiffiffiffiffiffiffiffi
	ðrÞp ½v1ðrÞ þ v2ðrÞ�, where vj is the velocity field around

vortex j ¼ 1; 2 taken separately. If the vortex cores are
separated by d � �, it will also be a very good approxi-
mation to write 	ðrÞ ¼ 	1ðrÞ	2ðrÞ=n0, with

	jðrÞ ¼
n0jr� rjj2

jr� rjj2 þ ð���1Þ2 : (53)

The density-weighted two-vortex velocity field can then be
written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	1ðrÞ	2ðrÞ
n0

s
½v1ðrÞ þ v2ðrÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffi
	1ðrÞ

q
v1ðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
	2ðrÞ

q
v2ðrÞ þ K12ðrÞ: (54)

The final term is

K12ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	1ðrÞ	2ðrÞ

n0

s 0
@v1ðrÞ

2
41�

ffiffiffiffiffiffiffiffiffiffiffi
n0

	2ðrÞ
s 3

5

þ v2ðrÞ
2
41�

ffiffiffiffiffiffiffiffiffiffiffi
n0

	1ðrÞ
s 3

5
1
A; (55)

which is only significant when considering the velocity
field of one vortex in the close vicinity of the other vortex
core. K12 is therefore a negligible correction to the spec-
trum for widely separated vortices. This approximation
may be trivially generalized to arbitrary numbers of vorti-
ces provided the cores do not overlap appreciably. This
approximation is central to our treatment, as it allows for

FIG. 2. Comparison of the numerically computed kinetic-
energy spectrum [(35), blue solid line] and that obtained from
the core function F�ðk�Þ [(46), red dashed line] in the crossover
regime k�� 1. The asymptotic expressions (38) and (39) are
shown by the black and green lines, respectively.

FIG. 3. Incompressible kinetic-energy spectra for a single vor-
tex (chain line), a vortex dipole (solid line), and a vortex pair
(dashed line). The vortex dipole and pair are both shown for
vortex separation d ¼ 20�, and the wave number kd � 2�=d is
shown as a vertical dashed line. The crossover scale k� ¼ 1 is
given by the solid vertical line.
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the recovery of familiar pointlike vortex physics in the
infrared regime k� � 1. Strict validity is limited to the
regime where the intervortex spacing d is bounded below
by approximately lv ¼ 2��, the scale at which the core
structure becomes evident (see Fig. 1).

We require the transform

F d
j ðkÞ ¼

1

2�

Z
d2re�ik�r

� ffiffiffiffiffiffiffiffiffiffiffi
	1ðrÞ

q
v1ðrÞ

�
i

j

þ 1

2�

Z
d2re�ik�r

� ffiffiffiffiffiffiffiffiffiffiffi
	2ðrÞ

q
v2ðrÞ

�
i

j
; (56)

where the superscript d denotes the case of a vortex dipole,
and subscript j ¼ x; y indicates the x and y components of
the density-weighted velocity fields of each vortex. As
above, the subscripts 1 and 2 denote vortices 1 and 2,
and the superscript i denotes that it is the incompressible,
or divergence-free portion of the density-weighted field
that is of interest here. To account for the opposite signs
of circulation for the two vortices, without loss of general-
ity, we choose vortex 1 as positively charged, located at
r0 ¼ ðd=2Þx̂, so that v1ðrÞ ¼ vðr� r0Þ, where vðrÞ is the
central vortex velocity field (24). Vortex 2 has velocity
field v2ðrÞ ¼ �vðrþ r0Þ. We then have

F d
j ðkÞ ¼

1

2�

Z
d2re�ik
ðrþr0Þ

� ffiffiffiffiffiffiffiffiffi
	ðrÞ

q
vðrÞ

�
i

j

� 1

2�

Z
d2re�ik
ðr�r0Þ

� ffiffiffiffiffiffiffiffiffi
	ðrÞ

q
vðrÞ

�
i

j
: (57)

For a vortex dipole we can then write

F d
j ðkÞ ¼ F jðkÞe�ik
r0 �F jðkÞeik
r0 ; (58)

whereF is the spectrum of a single vortex. Using (45), and
the fact that F yðkÞ ¼ �F xðkÞ, we find the following for a

vortex dipole:

Ed
i ðkÞ ¼ 2��3F�ðk�Þ½1� J0ðkdÞ�: (59)

The spectrum of a pair of vortices of the same circulation
separated by d is calculated similarly to be

Ep
i ðkÞ ¼ 2��3F�ðk�Þ½1þ J0ðkdÞ�: (60)

The spectra (59) and (60) are shown in Fig. 3. It is clear that
for scales less than the vortex-separation distance d there is
interference in k space, leading to oscillations in the spec-
trum. The difference between the dipole and pair is that the
interference fringes are offset, and the infrared asymptotics
are different, a feature we discuss further below. The
spectrum of the vortex pair is clearly similar to that of
the single vortex in the far-infrared region, but the addi-
tional kinetic energy of the vortex pair state is observed
throughout the spectrum.

D. Kinetic-energy spectrum of N-vortex configurations

Extending the above analysis, for a general system of N
singly quantized vortices with circulation signs �p ¼ �1

located at rp, the kinetic-energy spectrum is given by

EN
i ðkÞ ¼ ��3F�ðk�Þ

XN
p¼1;q¼1

�p�qJ0ðkjrp � rqjÞ: (61)

We note the resemblance to point-vortex results that also
have the Bessel function dependence [29,53]. The function
F�ðk�Þ gives the incompressible limit for small k [J0ðkrÞ
approaches unity for small k and finite r], and introduces
the physics of compressible superfluids for 1 & k�.
We can write (61) as

EN
i ðkÞ ¼ N��3F�ðk�ÞGNðkÞ; (62)

where

GNðkÞ � 1þ 2

N

XN�1

p¼1

XN
q¼pþ1

�p�qJ0ðkjrp � rqjÞ (63)

is a purely configurational function involving the summa-
tion of M ¼ NðN � 1Þ=2 distinct intervortex distances.
This function has the following limits:

lim
k!1

GNðkÞ ¼ 1; (64)

lim
k!0

GNðkÞ ¼ 1þ 2

N

XN�1

p¼1

XN
q¼pþ1

�p�q ¼ �2

N
; (65)

where the total dimensionless circulation is defined by

� � m

@

I
C
v 
 dl ¼ XN

p¼1

�p ¼ Nþ � N� (66)

for any contour C enclosing all Nþ positive and N� ¼
N � Nþ negative vortices.
We then find that the onstrophy for the N-vortex

system is

�N ¼ lim
k!1

k3EN
i ðkÞ ¼ N�2� ¼ N�1; (67)

and consequently,

EN
i ðkÞjk��1 ¼ �N

k3
¼ N�2��3

ðk�Þ3 : (68)

This is one of our central results: The ultraviolet regime
k� � 1 has a universal asymptotic form that is indepen-
dent of the vortex configuration, and that resembles the
ultraviolet spectrum of classical 2D turbulence that is
identified with a direct cascade of enstrophy. If we try to
evaluate the classical definition of enstrophy, the result is
singular, yet the onstrophy definition (42) gives a well-
defined additive quantity that is singularity-free and de-
pends only on the total number of vortices in the system.
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E. Infrared behavior

When � � 0, the far-infrared limit (65) gives

EN
i ðkÞjk��1 ¼ ��3�2

k�
: (69)

This configuration-independent k�1 power law arises from
the far-field velocity distribution of a collection of point
vortices, which becomes equivalent to that of a single
vortex of charge � at sufficiently large scales.

When � � 0, we use the small-argument expansion
J0ðzÞ ’ 1� z2=4, and the asymptotic form (49), to find
the k� � 1 behavior determined by the configurational
information contained in the intervortex distances
jrp � rqj:

EN
i ðkÞjk��1 ¼ ���2k

2

XN�1

p¼1

XN
q¼pþ1

�p�qjrp � rqj2: (70)

The simplest case involves a single-vortex dipole and has
only one length scale, namely, the vortex separation, and
the low-k form Ed

i ðkÞ ’ ��2d2k=2, as shown in Fig. 3. In
general, when � ¼ 0, the infrared region of the spectrum is
sensitive to the vortex configuration, but approaches a
power-law for low k that has a configuration-independent
exponent. The linear decay of kinetic energy as k ! 0
stems from the cancellation of the far-field velocity profiles
for length scales greatly exceeding the largest intervortex
separation in any neutral configuration of vortices.

IV. KOLMOGOROV SPECTRUM

In the previous section, we obtained an explicit expres-
sion (62) for the incompressible kinetic-energy spectrum
that incorporates the compressible nature of individual
vortex cores through the function F�ðk�Þ (derived via an
ansatz for the vortex core profile), which captures the
essential physics of the corresponding exact solution
Fðk�Þ defined in (36). For both functions, point-vortex
physics is recovered at large length scales (k� � 1). If
the dynamical evolution is such that an inertial range
associated with an inverse energy cascade develops, we

should expect a Kolmogorov power law EiðkÞ / k�5=3 over
the inertial range. It is clear from the form of (62) that this
law can only depend on the spatial configuration of the
vortices. We now seek to understand the simplest situations
that may show evidence for the existence of such an inertial
range. We consider forcing occurring via vortex and energy
injection at a forcing scale kF � ��1, and describe vortex
configurations that do and do not lead to a Kolmogorov law
for k < ��1.

We now assume an idealized case in which the infrared
spectrum is continuous with the universal k�3 law of the
ultraviolet spectrum at the scale k� � 1. This constraint
imposes a strong restriction on the infrared spectrum,
completely determining its form in the case that it satisfies
a power law. In this respect, the universal ultraviolet region

has significant physical consequences. The power-law
approximation to the universal ultraviolet region based on
(67) has the form

EN
i;UðkÞ ¼ �2 N��3

ðk�Þ3 ¼ �Nk
�3: (71)

The number of vortices determines the N-vortex onstrophy
�N (67), from which the power-law approximation to the
ultraviolet energy spectrum is completely determined. This
power law is a very good approximation, as will be seen by
sampling different vortex configurations below. The infra-
red or configurational regime is then given by the k� � 1
regime of F�ðk�Þ:

EN
i;CðkÞjk��1 ¼ N��3

k�
GNðkÞ: (72)

At this point we consider the consequences of assuming

that a turbulent system will have a k�5=3 law in the con-
figurational regime, and that this power law is continuous

with (71) at k� ¼ 1. We suppose that EN
i;CðkÞ / k�5=3.

Continuity at k ¼ 1=� then requires EN
i;Cð1=�Þ ¼

EN
i;Uð1=�Þ, and gives the infrared spectrum:

EN
i;CðkÞ ¼ �2 N��3

ðk�Þ5=3 ¼ �N�
4=3k�5=3: (73)

Thus, the constraint that the universal regime is continuous
at the crossover scale k ¼ ��1 completely constrains the
form of the configurational spectrum. Physically, this may
correspond to an inertial range that extends upwards from
the smallest scale of the infrared region given forcing at a
wave number of kF � ��1. Note that this expression (73)
has no reference to the signs of the vortex circulations, the
degree of circulation polarization, or vortex clustering. By
assuming continuity at k� ¼ 1 with a UV spectrum that
has a universal N-vortex form, we have implicitly assumed
that allN vortices are involved in determining the spectrum
of the inertial range.
We might expect that this will give a very good descrip-

tion for a completely polarized system exhibiting fully
developed turbulence. When there is clustering in mixtures
of different sign vortices, the spectrum may well still
approach a Kolmogorov law, but there is no reason to
expect that it will cross over so smoothly. We return to
this problem when we compare our analysis with numeri-
cal simulations of forced turbulence in Sec. VC.
It is useful at this point to give a simplified reiteration of

Novikov’s argument for the power law for the vortex
distribution being �1=3 in Kolmogorov turbulence [53].
To obtain power-law behavior we must consider the spec-
trum for a vortex distribution involving many length scales.
For simplicity, we assume all vortices have the same sign
of circulation, �p � �. The configuration function (63)

has M ¼ NðN � 1Þ=2 terms in the summation, and can
be written as
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GNðkÞ ¼ 1þ 2

N

XM
p¼1

J0ðkspÞ; (74)

in terms of an average over distinct vortex separations si.
We introduce the intervortex-distance distribution PðsÞ
such that PðsÞds is the fraction of intervortex distances in
the range ½s; sþ dsÞ. In the continuum limit

GNðkÞ /
Z

PðsÞJ0ðksÞds: (75)

We seek a distribution PðsÞ that will generate a
Kolmogorov law from the N-vortex spectrum (62) for
scales larger than the vortex core, k � ��1, in the
large-N regime. We then find from (72) that

EN
i;CðkÞjk��1 � 1

k

Z 1

�
PðsÞJ0ðksÞds; (76)

’ 1

k

Z 1

0
PðsÞJ0ðksÞds: (77)

The scale invariance of turbulence naturally leads to the
assumption that the intervortex-separation distribution is a
power law PðsÞ � s�� over the scale range of interest. The
requirement of a power law in the kinetic energy then gives
the following scaling relation:

EN
i;CðkÞ �

1

k�
� 1

k

Z 1

0
s��J0ðksÞds

¼ 1

k2��

Z 1

0
���J0ð�Þd�: (78)

The integral is convergent for �1=2<�< 1, allowing

1<�< 5=2: (79)

In particular, the universal Kolmogorov law � ¼ 5=3
occurs for

PðsÞ � s�1=3 (80)

as obtained by Novikov [53] for point vortices. Wewill test
this scaling argument for the exponent in a numerical
sampling of localized vortex configurations in the follow-
ing sections. Testing if this intervortex-separation power
law holds in simulations and experiments may give a
quantitative measure of fully developed 2D turbulence in
a compressible superfluid, and a way to identify the inertial
range as the scale range over which this power law can be
identified.

In 2D classical turbulence, a k�3 region of the kinetic-
energy spectrum is often associated with a direct-enstrophy
cascade. We note that this exponent � ¼ 3 is ruled out
by (79). Hence, within this continuum analysis the k�3

power-law spectrum cannot occur in the configurational
region for 2D quantum turbulence, as long as the vortex
distribution follows a simple power law. This result sug-
gests that if a direct-enstrophy cascade were to occur in the

configurational region of the spectrum, a different type of
vortex distribution would be necessary. This makes intui-
tive sense, since direct-enstrophy cascades may be associ-
ated with the stretching of patches of vorticity in the 2D
plane. Furthermore, direct-enstrophy cascades and energy
spectra proportional to k�3 have been noted in simulations
of superfluid helium thin films [54,55]. Nevertheless, since
we have also shown that the k� > 1 range is determined
entirely by the core structure, this gives a strong indication
that a direct-enstrophy cascade cannot occur in this region
in compressible 2DQT.
It is clear that configurations containing one or a few

characteristic length scales, such as a vortex dipole or a
vortex lattice, cannot lead to a power-law spectrum for
EN
i;CðkÞ. In the case of a vortex lattice, the intervortex-

distance distribution has many discrete peaks [36]. The
vortex dipole and a vortex pair each have a single length
scale and this leads to characteristic interference fringes in
the energy spectrum seen in Fig. 3.

A. Sampling spatial vortex distributions

We now test our analysis of the spectrum by numerically
sampling several vortex distributions frp; �pgNp¼1 and eval-

uating (62). A straightforward test of the statistical argu-
ment for the Kolmogorov power law to occur involves
sampling the power law (80) and evaluating (74). Indeed,

it is easily verified that this generates a k�5=3 spectrum in
the configurational region. However, the connection of
such a sampling to particular spatial vortex distributions
is not clear, and in fact the mapping is not unique. To make
this connection concrete, we require a way of sampling
finite, localized, spatial vortex distributions for which the
vortex separations are power-law distributed.
In an ideal, infinitely extended vortex configuration

exhibiting the power law (80), the system is translationally
invariant and the coordinate origin can be placed at any
particular vortex, yielding the same power law for the
radial distribution of vortices from the origin. In a finite
system, the scale invariance can only persist up to scales of
order of the largest vortex separation. Furthermore, the
vortices must be separated by a minimum distance to
satisfy the assumptions used in deriving the energy spec-
trum from the point-vortex model. In practice it is neces-
sary to use a self-consistent sampling scheme in order to
generate the correct power-law distributions for localized
finite configurations.
Our sampling scheme for a configuration ofN vortices is
(1) Sample the radial distance rp of each vortex from

the coordinate origin according to a power-law
probability distribution / r� ��

p . The exponent �� is

distinct from � due to the finite system size and
localization of the distribution.

(2) Assign each vortex a randomly chosen, uniformly
distributed angle �p 2 ½0; 2�Þ. The Cartesian coor-

dinates for vortex p are then
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ðxp; ypÞ ¼ rpðcos�p; sin�pÞ: (81)

(3) For a given N, compute the kinetic-energy spec-
trum, averaging over ns ¼ 100 samples of vortex
position data found via the foregoing routine. Iterate
until the spectral power law of interest is found.

We will sample a power-law distribution of vortex
distances from the origin. In practice, there is a lower
(rmin � �) and upper (rmin � R ¼ system size) cutoff
for power-law scaling. We thus wish to sample the
distribution,

P ��ðrÞ ¼ 1� ��

r1� ��
max � r1� ��

min

r� ��; (82)

that is normalized on the interval rmin � r < rmax.
We sample r values from this distribution using uniform
random variates x 2 ½0; 1Þ via the following transforma-
tion [56]:

r ¼ ½r1� ��
max xþ r1� ��

min ð1� xÞ�1=1� ��: (83)

Note that when ��< 1, as is always the case in this work,
some kind of ultraviolet cutoff is required for the distribu-
tion to be normalizable. Here, we have made a choice that
gives a power-law distribution over a well-defined scale
range (See, e.g., Ref. [56] for other common choices).

B. Classical velocity distribution of a large cluster

A fully polarized configuration of vortices with a given
radial power law forms a quantum analogue of the coherent
vortices of forced 2D turbulence in classical fluids. As an
arrangement of many vortices, the velocity distribution
must approach a classical limit, according to Bohr’s cor-
respondence principle, in much the same way that a
rotating Abrikosov lattice generates a velocity field that
approaches that of a rotating rigid body [50]. In what
follows, we find the classical velocity field and identify
the physical significance of the radial exponent ��.

To determine the velocity field, we first compute the
fraction of vortices enclosed by a circular contour around
the origin, with radius r, for the distribution (82). Taking
rmin ¼ �, rmax ¼ R, and considering scales � � r � R
we have

fr ¼
Z r

�
P ��ðuÞdu

¼ N
Z r

�

du

u �� ¼ N
1� ��

ðr1� �� � �1� ��Þ ’
�
r
R

�
1� ��

;

(84)

where we used the fact that N �1 ¼ R
R
� s

� ��ds ¼
ð1� ��Þ�1ðR1� �� � �1� ��Þ ’ R1� ��=ð1� ��Þ normalizes the
distribution up to the largest scale R. Considering the
average azimuthal velocity component v�ðrÞ, the circula-

tion is

I
v 
 dl ¼ h

m
n ¼ v�ðrÞ2�r; (85)

where n ¼ frN is the number of vortices enclosed by the
contour of radius r. Using (84), we obtain the velocity
profile

v�ðrÞ ’ cN

ðR=�Þ1� ��ðr=�Þ �� : (86)

This inertial cluster has a power-law velocity profile de-
termined by the specific radial exponent ��. In contrast, the
velocity profile of an Abrikosov vortex lattice rotating at
frequency ! approaches that of a rigid body v�ðrÞ ¼ !r,

and a single quantum vortex has profile v�ðrÞ ¼ @=mr.

The inertial cluster velocity profile (86) is compared with
sampled distributions (see below) in Fig. 4.

C. Scale expansion of a large cluster

We now illustrate the role of the radial power-law
exponent �� and the classical velocity distribution by sam-
pling a large cluster. We vary our choice of scale range for
the vortices [rmax in Eq. (82)], and investigate how the

range of k�5=3 changes.
A characteristic wave number measuring the cluster size

for a sample involving nc vortices in a given cluster is
given by

�k � 2�=�r; (87)

where �r ¼ 1
nc

Pnc
p¼1 rp. In the figure, we plot the scale �k to

give an indication of the range of k�5=3 scaling. We also
plot kmax corresponding to the largest vortex-separation
scale in the system:

kmax ¼ 2�=maxjrp � rqj: (88)

For k < kmax, the velocity field approaches that of a single
vortex.
In Fig. 4, vortex distributions are sampled for N ¼ 100

vortices of the same sign using the sampling scheme (81)
and (83) for rmin ¼ � and different values of rmax.
Individual samples are shown to indicate the spread of
vortices, and the velocity profiles and kinetic-energy spec-
tra are computed by averaging over ns ¼ 100 samples. The
mean azimuthal velocity compares well with Eq. (86),
showing that the specific radial exponent �� in (82) also
determines the power law of the azimuthal velocity field, as
seen in (86). For scales larger than rmax, v�ðrÞ returns to
the r�1 scaling for a charge N vortex [clearly seen in
Fig. 4 ðaÞ]. N ¼ 100 vortices distributed up to rmax ¼
60�� gives an inertial range in the kinetic-energy spectrum
of approximately 1 decade, for �� ¼ 0:4 (as the number of
vortices in a given scale range increases, �� ! 1=3).
Increasing the upper scale cutoff to rmax ¼ 400��,
4000�� gives �� ¼ 0:65, 0.83, with 1.5 and 2 decades of
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inertial range, respectively. Thus, expanding the scale
range of power-law behavior expands the inertial range,
but requires the azimuthal velocity profile to steepen. In the
UV region of the spectrum, the k�3 law always holds
[Eq. (71)], while the inertial range holds for �k & k &
��1, and single-vortex behavior is apparent for k < kmax.

D. Clustering in a neutral distribution

We now consider the role of increasing clustering in
expanding the inertial range of the kinetic-energy spec-
trum. First, in ns ¼ 100 samples, we distribute Nþ ¼
N� ¼ 100 vortices over a uniform periodic domain; one
such sample is shown in the inset of Fig. 5(a). The
corresponding kinetic-energy spectrum shows the correct
UV-region spectrum given by Eq. (71), and also ap-
proaches the EiðkÞ / k form for k < kmax, given by
Eq. (70). For kmax & k & ��1 the spectrum is less

steep than k�5=3 and the system lacks an inertial range.

In Fig. 5(b), the vortices are sampled as 40 clusters of

nc ¼ 5 vortices of the same sign according to (81) and

(83), with �� ¼ 0:8, and rmin ¼ �, rmax ¼ 10��. The 10

positive and 10 negative cluster centers are uniformly

distributed as in Fig. 5(a), as seen in the sample (inset).

This distribution yields a k�5=3 power-law kinetic-energy

spectrum over approximately 1 decade of wave numbers.

By further expanding the scale of clustering while re-

ducing the number of clusters to preserve Nþ and N�,
we find the inertial range can be extended. In Fig. 5(c)

samples consist of nc ¼ 20 vortices in each cluster,

distributed between rmin ¼ ��1 and rmax ¼ 100��,
with �� ¼ 0:75, and giving approximately 2 decades of

inertial range. We note that, compared with Fig. 4, �k,
shown in Figs. 5(b) and 5(c), does not correspond so well

with the lower bound on the inertial range, presumably

because of the significant space between clusters in the

neutral system.

FIG. 4. Locations ofN ¼ 100 vortices for particular samples (left), with velocity distributions [middle, with the analytical result (86)
(dashed line)], and kinetic-energy spectra (right, blue curves), averaged over ns ¼ 100 samples distributed according to (81) and (82),
with rmin ¼ �, and (a) rmax ¼ 60��, �� ¼ 0:4; (b) rmax ¼ 400��, �� ¼ 0:65;, and (c) rmax ¼ 4000��, �� ¼ 0:83. The increasing scale
range of power-law behavior gives an inertial range in the corresponding kinetic-energy spectrum of approximately 1, 1.5, and 2
decades, respectively.
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V. FORCED 2D QUANTUM TURBULENCE

A. Scenario of forced turbulence in a
compressible 2D superfluid

The canonical model of 2D classical turbulence consists
of a velocity field described by the 2D Navier-Stokes
equation:

@v

@t
þ ðv 
 rÞv ¼ � 1

	
rpþ 
r2v� �vþ fv: (89)

The density 	 of the incompressible fluid is held constant
by the pressure field p, 
 is the kinematic viscosity, fv is a

forcing term, and � represents linear frictional damping
arising from irreducible 3D aspects of the system in which
the 2D flow resides. If the fluid is subjected to suitable
forcing it will develop an inverse energy cascade and a

direct-enstrophy cascade, with associated k�5=3 and k�3

power laws, respectively [13]. An inverse energy cascade
induced by small-scale forcing can be steady because the
��v term damps energy at large length scales [9]. For a
homogeneous compressible superfluid subject to forcing
from an external potential, (12) can be written as

@v

@t
þ ðv 
 rÞv ¼ � g

m
r	þ 
qr2vþ fv; (90)

where the forcing fv � �rVðr; tÞ=m is assumed to be
spatially localized. The lack of a ��v frictional damping
term means, in the classical case, that if an inverse energy
cascade develops as a result of steady forcing, it is not
expected to be stationary. In the superfluid case, the
compressibility of the fluid allows vortex-antivortex anni-
hilation, which couples energy into the sound field. This
interaction between the sound and vorticity fields
renders the calculation of energy fluxes in compressible
superfluid systems particularly difficult and somewhat am-
biguous [30].
As we have shown above, in contrast with the classical

Kraichnan scenario utilizing a 2D Navier-Stokes analysis,
a k�3 spectrum for k > ��1 for a 2D quantum fluid is not
caused by a direct-enstrophy cascade but is rather a con-
sequence of the vortex core structure, and thus should not
be interpreted in terms of vortex configuration dynamics
(note that vortex core shape excitations can be neglected,
since they constitute a component of the sound field).
Given forcing at a wave number kF � ��1, and minimal
vortex-antivortex annihilation, the incompressible kinetic
energy can only move toward the infrared. This scenario is
shown schematically in Fig. 6.
It has been shown that dipole recombination provides a

route for a direct-energy cascade to develop in 2D GPE
dynamics [30]. This mechanism provides a means for
opposite-sign vortices to approach zero distance, coupling
vortex energy to the sound field during vortex annihilation.
However, if the forcing leads to significant clustering of
like-sign vortices faster than recombination occurs, or prior
to recombination occurring, dipole decay will be strongly
inhibited. This suggests that under the right conditions of
forcing, an inverse energy cascade can become the domi-
nant mechanism of energy transport between distinct
length scales.

B. Kolmogorov constant and clustered fraction

By making use of the universal onstrophy and the con-

dition of continuity at k� � 1, we have found that the k�5=3

power-law given by (73) describes the spectrum of numeri-

cally sampled vortex configurations that exhibit a s�1=3

power law for the vortex-separation data. While individual

FIG. 5. Kinetic-energy spectra for Nþ ¼ 100 and N� ¼ 100
vortices, averaged over ns ¼ 100 samples (blue curves). The
vortices are distributed (a) uniformly over the ð600�Þ2 square
domain (inset), and clusters are sampled according to (81) and
(82), with (b) nc ¼ 5 vortices in each cluster, rmin ¼ �, rmax ¼
10��, and (c) nc ¼ 20 vortices in each cluster and rmax ¼
100��, with each cluster center uniformly distributed over the
periodic domain as in (a). The power-law sampling in panels (b)
and (c) requires a radial exponent of �� ¼ 0:8 and 0.75, and gives
a Kolmogorov k�5=3 region in the corresponding kinetic-energy
spectrum of approximately 1 and 2 decades, respectively.
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spectra and configurations do not give information about
dynamics, in particular, the direction in k space of any
energy cascades, the power law suggests the existence of
an inertial range comprised of vortices. In a cascade, such a
configuration will transfer incompressible energy between
scales while conserving energy. Assuming the infrared
portion of our double-power-law analysis, namely, (73),
will also describe such a cascade, we can cast it as a
statement about the Kolmogorov constant in terms of the
one-vortex onstrophy and the slope of the radial wave
function at the vortex core.

To write (73) in standard form, we introduce the unique
N-vortex quantity with dimensions energy, mass, and time
that can be constructed from ��2, m, and @=��2:

�N � ð��2Þ2
m@

N3=2: (91)

We then find

EN
i;CðkÞ
m

¼ �C2D�
2=3
N k�5=3; (92)

where the remaining quantities have been absorbed into the
dimensionless Kolmogorov constant:

�C 2D � �2

�
�

��2

�
1=3

; (93)

� ¼ @
2=m�2 in the homogeneous system, and the bar

notation distinguishes the quantum system. In the dilute
Bose gas, the 2D interaction parameter is �=n0 ¼ g2 ¼
4�@2a=ml, where l is the characteristic thickness of the
three-dimensional system [30,57]. In terms of this length
we find

�C 2D ¼ �2

�
mg2
2�@2

�
1=3 ¼ �2

�
2a

l

�
1=3

: (94)

We emphasize that the physical input needed to arrive at
this form of the Kolmogorov constant is (i) accounting for
the structure of a compressible quantum vortex in deter-
mining the ultraviolet spectrum, and (ii) imposing continu-
ity of the ultraviolet spectrum at k� ¼ 1 to a Kolmogorov
power law in the infrared. In classical turbulence, C2D ’ 7
[58]. To give an example of how �C2D may be evaluated for
a compressible superfluid exhibiting 2DQT, we consider a
87Rb BEC that is homogeneous in the x-y plane, and that is
harmonically trapped in the z dimension with trap fre-
quency !z¼2�	5000Hz. We use m¼1:44	10�25 kg,

a ¼ 5:8 nm, for which l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@=m!z

p ¼ 0:38 �m and
g2 ¼ 0:197@2=m. For these values, �C2D ¼ 0:212. Note
also that by defining the configurational rate constant
(91), we have confined this discussion to a scale invariant
distribution involving N vortices. This expression suggests
that such a configuration can support an inverse energy
cascade at the rate �N .
The foregoing discussion involves an ideal distribution

of N vortices configured with the � ¼ 1=3 power law. It is
clear from Fig. 5 that the vortices do not have to all have
the same sign of circulation, but they must be configured
into clusters of vortices with the same sign. The universal-
ity of C2D in classical turbulence in incompressible fluids
leads us to postulate that the condition that all N vortices
are power-law clustered can be further relaxed. For fully
developed quantum turbulence involving N vortices, we
interpret N as the participation number, representing the
number of vortices in a scale-free turbulent configuration,
which is maximal in the case of a fully polarized cluster.
Imperfect clustering involves fewer vortices in power-law
cluster configurations, and an effective participation num-
ber that is the number of clustered vortices Nc < N,
namely, the number with nearest neighbors of the same
sign. Making the replacement N ! Nc in (73), we propose
the ansatz spectrum,

EN
i;CðkÞ ¼ �2 Nc��3

ðk�Þ5=3 ; (95)

as a more general definition for systems that have incom-
plete clustering in the inertial scale range. We test this
hypothesis in the next section in dynamical simulations
of the forced dGPE.
It is important to note that the condition of continuity

at k� ¼ 1 is no longer exactly met, since only the value

Nc � N will produce an infrared spectrum with k�5=3 that

FIG. 6. Illustration of an inertial range (nonshaded region) for
the incompressible portion of kinetic energy in forced compress-
ible 2DQT. The EðkÞ / k�3 region arises from the structure of
the vortex core and thus is not a signature of vortex configura-
tions and vortex turbulence. This ultraviolet region can thus not
support energy cascades, nor does this region correspond to
enstrophy cascades. Net energy injected at kF � ��1 in the
form of vortices can only move toward the infrared. The
Kolmogorov law EðkÞ / k�5=3 occurs in the inertial range of
fully developed turbulence. The far-infrared region is given by
EðkÞ / k for a system with no net vorticity, and is evident for
k � L�1 where L is the largest intervortex distance. For forcing
at smaller wave numbers, the spectrum may be more complex,
possibly involving other forms of energy and enstrophy flux.
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is continuous with the ultraviolet power-law approxima-
tion at k ¼ 1=�. We also note that a more general measure
of clustering, namely, the polarization index (P) was in-
troduced in Ref. [59] and measured the degree and type
of spatial clustering of like-sign vortices in 3DQT. The

Kolmogorov k�5=3 spectrum was found to correspond to
the partially polarized value P ¼ 1=3, while other scaling
laws yield differing polarizations. The clustered fraction
used in the present work is a simpler (global) measure of
polarization as it does not contain information about the
spatial distribution of vortices, but it is only relevant for
2DQT.

We can also write down an expression for �C2D for a
general energy spectrum that may be computed numeri-
cally from simulation data, by making use of the ansatz

(95). This is equivalent to using (92) with N ! Nc, from
which we can define the following function:

�C 
2DðkÞ ¼ EN

i;CðkÞ
ðk�Þ5=3
Nc��3

�
�

��2

�
1=3

: (96)

In a region where the spectrum is approximately k�5=3,
�C
2DðkÞ will be approximately constant, and it may be

compared with the prediction (93). We test this numeri-
cally in the next section.
We note that in 3DQT, an energy bottleneck has been

predicted for the direct-energy cascade [59,60], and also
observed in GPE simulations [61]. It occurs due a mis-
match between the rates of energy transport at large length
scales (hydrodynamic regime) and small length scales

FIG. 7. Time evolution of grid turbulence in damped GPE. Left: Particle density (rescaled to the peak density). Center: Vortices
colored by charge, with total (N) and clustered (Nc) numbers of vortices. The field of view is ð1024�Þ2. Right: Incompressible energy
spectra (circles), with the Kolmogorov ansatz [Eq. (95), red line], the ansatz for a polarized cluster of N vortices [Eq. (73), dashed
line], and the universal k�3 region [Eq. (71), blue line].
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(Kelvin-wave cascade). The mismatch causes energy to
pile up at the length scale where the two cascades meet.
This raises the possibility of a bottleneck in 2D, although
Kelvin waves are disallowed in 2DQT, so this particular
mechanism would not be relevant. However, for a given
forcing mechanism, it is possible that the rate of trans-
porting energy to large length scales may not be high
enough to remove all of the vortex energy introduced at
the forcing scale. Thus, a bottleneck could still occur, and
our assumption of continuity of the spectrum at k� ’ 1
may not hold in general. We return to this question in
Sec. VC, where we find some indication of an energy
bottleneck at the forcing scale in numerical simulations.

C. Damped Gross-Pitaevskii dynamics

We now consider a simulation of the forced dGPE that
generates significant clustering of vortices of the same
sign. The system consists of a homogeneous superfluid
with periodic boundary conditions, stirred by dragging
four Gaussian obstacle beams through it at a constant speed
[32], thus modeling grid turbulence in a BEC. When an
obstacle is dragged through a superfluid sufficiently rap-
idly, superfluidity cannot be maintained. For slowly mov-
ing obstacles, the superfluid will adapt to the forcing, and
vortices are not formed. Above a critical velocity vc [62],
vortex dipoles are periodically formed in the wake of the
obstacle, injecting linear momentum into the superfluid.
Sufficiently rapid motion (v � vc) causes many vortices to
be nucleated behind the obstacles in a chaotic fashion [63],
involving the clustering of like-sign vortices. Our choice of
obstacle speed puts the system dynamics in the latter
category.

We work in units of �, �, and �=c for energy, length,
and time, respectively. In these units, the specific parame-
ters we choose (see Sec. VB) are g2 ¼ 0:197��2, corre-
sponding to homogeneous density n0 ¼ �=g2 ¼ 5:26��2,
and Ntot ¼ 5:5	 106 particles in a homogeneous 2D sys-
tem of side length L ¼ 1024�. The Gaussian potentials

each have fixed 1=e2 width of w0 ¼
ffiffiffi
8

p
�, and height

V0 ¼ 100�, and are initially located at x ¼ �L=2þ 8�,
y ¼ �L=8, and �3L=8. Numerically, we proceed by
first finding a ground state of (1), for a homogeneous
system with periodic boundary conditions, subject to
the localized obstacle beams. We then Galilean transform
into a frame translating at v0 ¼ 0:8c, and maintain the
obstacle locations relative to this frame, creating a drag-
ging grid of stirring beams. A small amount of initial
noise is added to the wave function to break the reflection
symmetries of the system. We thus evolve the system
according to (1) for the same potential, but with the
Galilean transformed nonlinear operator L!Lþ i@v0@x.
During evolution, the dimensionless damping rate is set to
� ¼ 0:003.

The time evolution of the system is shown in Fig. 7 at 3
times, at approximately ð1=3; 2=3; 1ÞL=v0, so as to avoid

any periodic flow effects in the x direction. The four
obstacle beams generate many vortices (up to N � 103),
and significant clustering (Nc=N * 0:6). The incompress-
ible kinetic-energy spectrum shows a wide region that is

well described by the k�5=3 form of Eq. (95). For later
times [Figs. 7(b) and 7(c)], the spectrum shows a signifi-
cant pile up around the forcing scale kF � ��1, suggesting
a mismatch between the rates of injection and transport of
incompressible kinetic energy.
In Fig. 8, we compare the function �C

2DðkÞ [Eq. (96)] as
numerically computed from our simulation data, with
the analytical prediction of the Kolmogorov constant �C2D

[Eq. (94)]. The region of k�5=3 appears as a broad flat
region that is in close agreement with �C2D ¼ 0:212 per-
taining to our simulation parameters.

VI. CONCLUSIONS

To summarize, we have investigated relationships be-
tween the concepts of 2D turbulence in classical fluids and
the emerging topic of 2D quantum turbulence of vortices,
specifically as it relates to Bose-Einstein condensates. We
established a link between the hydrodynamic limit of the
damped GPE and the Navier-Stokes equations, providing
an estimate of a quantum Reynolds number for superfluid
flows in BECs. We have given a theoretical treatment of the
incompressible kinetic-energy spectrum that explicitly in-
corporates the vortex core structure in a compressible
superfluid. The incompressible kinetic-energy spectrum
for a compressible superfluid is deconstructed in terms of
single-vortex contributions determining a unique ultravio-
let power law where the energy spectrum scales as k�3, and
a contribution that depends on the configuration of vortices
within the fluid that determines the infrared region of the
spectrum. For the configurational regime we find
(1) The spectrum only depends on the distribution of

vortex separations and the sign of the circulation of
each quantum vortex. If the distribution of vortex
separation s for a system of vortices of the same sign

FIG. 8. Plot of �C
2DðkÞ [see Eq. (96)] computed from the grid

turbulence kinetic-energy spectra of Fig. 7. The horizontal
dashed line gives �C2D from Eq. (94).
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is a power law / s�� with exponent � ¼ 1=3, the
kinetic-energy spectrum will take the universal

Kolmogorov form / k�5=3, as shown for point vor-
tices [53]. Localized clusters of N vortices of the
same circulation with this power-law distribution
can be constructed by sampling using a specific
radial exponent �� that depends on the number of
vortices and the scale range over which they are
distributed.

(2) The azimuthal velocity field of a large cluster is
determined by ��. By inflating the scale range of a
cluster, we find that �� increases, the velocity field is
steepened, and the inertial range expands to larger
scales. In a neutral system, the inertial range can be
extended by increasing the size of clusters while
decreasing their number.

(3) The universal form of the UV region of the kinetic-
energy spectrum imposes a strong constraint. If
the Kolmogorov power law occurs in the infrared
region, then the postulate of continuity between
the infrared and ultraviolet regions completely
determines the spectrum when the ultraviolet and
infrared regions are approximated as power laws.
Physically, this corresponds to the inertial range
extending down to the smallest configurational scale
of the system, approximately �. We note that the
postulate of continuity may not be relevant for all
systems or forcing mechanisms.

(4) We infer an analytical value for the Kolmogorov
constant [Eq. (93)] under the conditions of spectral
continuity at the crossover scale for a system of
vortices of the same sign. To assess the validity of
this inference for dynamical situations, we compare
our analytical results with spectra from a numerical
simulation of the forced dGPE for the specific case
of dragging a grid of obstacles through an otherwise
homogeneous BEC. We find reasonable agreement
provided we introduce the concept of a clustered
fraction Nc=N � 1, which is the fraction of vortices
that have same-sign nearest neighbors. This mea-
sure discounts all vortex dipoles from the configura-
tional analysis. We then observe good agreement
between our Kolmogorov ansatz [Eq. (95)] and the
spectrum calculated from the dGPE data. We also
find that the predicted value of the Kolmogorov
constant is in close agreement with the numerical
simulations [Fig. 8].

We note that while our analysis indicates that vortex posi-
tions and circulations are enough to determine an approxi-
mate incompressible kinetic-energy spectrum, the reverse
is not necessarily true: A Kolmogorov spectrum does not
carry information about specific vortex distributions.
Nevertheless, our analysis does indicate that the number
of vortices in a quantum fluid can, in principle, be directly

determined from the ultraviolet energy spectrum.
Moreover, the concept of a cascade in turbulence implies
system dynamics and energy transport, yet aside from our
numerical simulation example, our analytical approach is
an instantaneous measure. Importantly, one must deter-
mine ways of characterizing vortex motion and relate
such dynamics to the cascade concept.
The field of 2D quantum-vortex turbulence is relatively

new, compared with the much longer histories of 3D
superfluid turbulence, 2D classical turbulence, and even
dilute-gas Bose-Einstein condensation. Point-vortex mod-
els have been extensively used in descriptions of superfluid
dynamics as well as in 2D classical turbulence, although
point-vortex distributions can only serve as approximate
models of real 2D classical flows. Our approach merges
concepts from each of the above subjects in order to
develop a new understanding of 2D quantum turbulence.
By considering the compressibility of a dilute-gas BEC, we
find an analytical expression for the ultraviolet incom-
pressible kinetic-energy spectrum and an N-vortex equiva-
lent of enstrophy in a quantum fluid, which we term the
onstrophy. For the infrared region, point-vortex models are
sufficient, and vortex configurations serve to identify spec-
tra as summarized above. Taken together, the primary new
outcome of our analysis is a link between vortex distribu-
tions, vortex-core structure, and power-law spectra for 2D
compressible quantum fluids.
Future work on 2D quantum-vortex turbulence will in-

volve numerical simulations and comparisons with our
analytical results; extension of this analysis to confined
and inhomogeneous density distributions; characterization
of vortex dynamics and the time-dependence of energy
spectra particularly in relation to clustering [64], inverse
energy cascades, and the nonthermal fixed point [31,65],
and investigation of connections with weak-wave turbu-
lence in BEC [16,18,19,66–69]. We also believe that ob-
serving vortex distributions such as the� ¼ 1=3 power law
for localized clusters may provide a new means of quanti-
tatively characterizing 2D quantum-vortex turbulence
through direct experimental observations of vortex loca-
tions in a forced 2D superfluid, and we are working toward
realizing such experimental observations.
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