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Dictionaries link a given word to a set of alternative words (the definition) which in turn point to further
descendants. Iterating through definitions in this way, one typically finds that definitions loop back upon
themselves. We demonstrate that such definitional loops are created in order to introduce new concepts
into a language. In contrast to the expectations for a random lexical network, in graphs of the dictionary,
meaningful loops are quite short, although they are often linked to form larger, strongly connected
components. These components are found to represent distinct semantic ideas. This observation can be
quantified by a singular value decomposition, which uncovers a set of conceptual relationships arising in
the global structure of the dictionary. Finally, we use etymological data to show that elements of loops
tend to be added to the English lexicon simultaneously and incorporate our results into a simple model for
language evolution that falls within the “rich-get-richer” class of network growth.
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L. INTRODUCTION

Words are the building blocks of language. By stringing
together chains of these simple lexical units, people can
convey complex thoughts and ideas. As language evolves
to meet society’s changing communication needs, new
words are constantly added to the lexicon. These additions
generally serve one of two purposes: The first is to increase
the rate at which a particular topic can be communicated by
introducing a new word to label a concept previously
represented by a string of existing words (the definition
of the concept). The second is to introduce a new, previ-
ously incommunicable concept to the language.

Because of language’s need to be both efficient and
conceptually deep, the human lexicon is not a simple
one-to-one mapping of concepts onto words but rather a
complex web of semantically related parts. In studying
language evolution, it is therefore convenient to represent
the lexicon as a network. With this approach, words are
considered to be the nodes of a graph with edges drawn
based on a variety of possible relationships such as word
co-occurrence in texts, thesauri, or word-association ex-
periments on human users. Such language networks tend to
be scale-free and exhibit the small-world effect (in which
nodes are separated from one another by a relatively small
number of edges), characteristics shared by many other
complex, empirically observed networks [1,2].

The lexicon is a natural object that encompasses all of
the relations between words and meanings that exist in a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOL

2160-3308/12/2(3)/031018(10)

031018-1

Subject Areas: Complex Systems, Statistical Physics

language, making it extremely difficult to work with in its
purest form. Dictionaries provide snapshot representations
of the lexicon and as such provide an extremely useful
model for studying the lexicon, and, in particular, the
relationship between words and concepts. Although dic-
tionaries link a given word to a single set of words (the
definition) that can express the same meaning, this set is in
fact not unique and differs between dictionaries. One might
just as well replace some subset of the words in the
definition of the original word in question with their re-
spective definitions. Dictionary graphs, in which directed
links are drawn from a word to the words in its definition,
thus allow one to identify sets of words with equivalent
meanings simply by selectively iterating through the de-
scendants of a given node.

Although the importance of using graph theory and
statistical mechanics to study dictionary graphs was rec-
ognized as early as the 1970s [3], the full structure of the
graph was analyzed only recently [4]. It was found that
dictionaries consist of a set of words, roughly 10% the size
of the original dictionary, from which all other words can
be defined. This subgraph was observed to be highly
interconnected, with a central, strongly connected compo-
nent, dubbed the core. The authors then studied the con-
nection of this finding to the acquisition of language in
children.

The strongly connected nature of the core suggests that
definitional loops play an important role in shaping the
underlying topology of the dictionary graph. Although
treelike graphs are usually more amenable to analytic
exploration and as such are often used to model lexical
and other real-world networks [5], the existence of loops
changes both the structure and the dynamics on a graph.
Indeed, such loops indicate that paths are no longer unique,
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and that dynamics imposed on a site may often be depen-
dent on that site’s own history, introducing a form of
memory in the system. In the context of human language,
loops are particularly intriguing, as they represent a form
of self-reference, a condition that has been used in classical
statements of logic (e.g., Russell’s paradox and Godel’s
theorem [6]).

Current research into the statistical physical properties
of networks follows along two complementary paths. The
first focuses on a variety of global properties that character-
ize the network, such as the shortest distance between two
nodes or probability-distribution functions of the number
of links pointing into the nodes (‘“‘in-degree’”) or out of
them (“‘out-degree”). This direction led to concepts such
as small world and scale-free or power-law networks [7].
This approach often uses graph models in which loops are
neglected and the network is approximated to be a treelike
graph. In random graphs, short loops are known to be
extremely rare [8], and so the presence of many short loops
is a clear indicator of nonrandom structure in any graph.
(See also Ref. [9].)

Our analysis goes along the second path to investigating
networks, which includes a growing body of research
examining local properties that characterize networks.
One example of this approach is the clustering coefficient
[10], which counts the number of triangles in a particular
location. A second example is the notion of network mo-
tifs, which identify the types of small loops that are func-
tionally important in a network, and, in particular, in
biological ones [11,12]. In previous work [13,14], we
described the curvature induced in a network by the clus-
tering of triangles and showed the importance of two-loops
in identifying nodes that contribute highly to this curva-
ture. Using this approach, we were then able to analyze
local structures in both the World Wide Web and Email
networks [13,14].

Here we investigate the role of loops in a large network,
looking at the construction of a dictionary. Language, as
represented by the dictionary, is an essential element of
human communication that has undergone evolution under
strict constraints. Within the semantic network created by
the dictionary, we have identified a new role for loops. We
introduce the idea of self-reference in a network, i.e., that
there are physical networks that must rely on a bootstrap
process for defining new elements. For such a network, the
loop is an essential element of the growth process, and in a
semantic context we show that new concepts can be intro-
duced only by the insertion of a loop into the graph.
Empirically, we observed that these loops occur in the
dictionary graph as short units that occasionally coalesce
to form larger connected components. Importantly, these
components remain semantically coherent, the giant
strongly connected core reported in Ref. [4] having been
found to be a by-product of semantic misinterpretation in
the construction of the dictionary graph. Finally, using

etymological data, we demonstrate that words within the
same loop tend to have been introduced into the English
language at similar times, and we incorporate our results
into a simple model for language evolution that falls within
the “rich-get-richer” class of network growth.

II. THEORETICAL MOTIVATION

Formally defining a concept is both difficult and con-
troversial [15,16]. In the context of a dictionary, one has
the intuition of a highly connected set of words that are
semantically linked, but formalizing this is far from trivial.
Kant [17] suggested that concepts are generated by per-
forming three types of logical operations on a set of mental
images (Vorstellungen): comparison, reflection, and ab-
straction. This suggestion implies that the emergence of a
concept requires the existence of a certain minimal set of
“images,” and the temporal order at which images are
acquired therefore determines when a concept will emerge
(i.e., when this minimal set becomes available). Our study
goes in a similar direction, but to avoid the need for a
precise definition of a concept itself, we consider the
structure of the graph and the dynamic process by which
the lexicon grows over time and new concepts are intro-
duced into language.

Our intuition is that, if during the growth of the lexicon a
group of words shows up, which is self-consistent and
closed in itself, then a quantal increase has occurred in
the capacity for representations available to the user of the
lexicon. We thus associate the introduction of a new con-
cept into language at a given time with the appearance of at
least one word at that time that was not definable at earlier
times.

Our first finding is that new concepts are introduced into
language by the formation of loop structures in our
graph—which are definitional loops in the dictionary.
This relationship between concepts and loops reflects our
basic intuition that new concepts must be self-contained
and as such the collection of words used to represent them
must be self-referential.

To formally prove our claim, we consider a discrete
growth model of the language, letting W, be the set of
words added to the language at time ¢. When a word w is
added to the dictionary, we assume for now only that its
definition D(w) is nonempty and allow existing words to
add w to their definitions with no other changes occurring
to the network. These rules allow both synchronous loops,
which consist exclusively of words added to the lexicon at
a particular time, and diachronic loops, which combine
words added at different times. We assume that the word
and its definition are equivalent and therefore interchange-
able. It follows that we can produce multiple equivalent
definitions for a word by iteratively substituting w —
Dy(w) for words in its definition where Dgy(w) represents
the original definition of a word w (the set of all nodes
within a directed path of length 1).
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In the context of an expanding lexical network, the
addition of a concept can be observed by the appearance
of an associated lexical structure (i.e., a group of connected
words) that increases the breadth of communicable ideas.
Stated more precisely, a concept is created at time ¢ if and
only if there exists a word at time ¢ that was not definable
before ¢ (i.e., a word whose meaning was incommunicable
before t). Formally, we consider a word w to be definable at
time ¢ if and only if there exists a definition D(w) of w for
which all elements are independent of the words added
after time ¢, or, graphically, a definition for which no
elements have a descendant (i.e., a node to which it can
be connected by a directed path) introduced after time 7.

With these definitions (applied to two simple toy graphs
in Fig. 1), it becomes clear that a new concept can be
created at time ¢ if and only if a loop was formed at ¢. If
we consider a loop created at time ¢ (i.e., a loop whose
youngest element was introduced at ¢), the meanings of all
its elements can no longer have been conveyable before ¢
for they now depend inseparably on a word or words added
to the lexicon at time ¢. Formally, if w, € W, is a member
of a loop, we know that for at least one word of D(w,) there
exists a directed path from an element of D(w,) to w,. Thus
w;, is not definable before time ¢, and a new concept was
indeed created.

On the other hand, if no loop was created at 7, we can
simply replace all elements of W, by their definitions and
then remove them from the dictionary, as we are guaran-
teed that these definitions are independent of the words
being defined. Stated more formally, for all words w for
which Dy(w) N W, is nonempty, we can make the substi-
tution w, — Dy(w,) for all w, € W, in their definition.

a Wa
Wp Wp
Wc Wd WC Wd
/ / \ / \\
/ \ ‘ \ / \
] Y \ / \
2 Nk | W/ N
(a) (b)
FIG. 1. Graph structure examples. Let W,,, = {w,}, W, =

{w,}, and W,_; = {w,, w,}, and consider the definability of
w,. In (a), we can substitute for w, its definition w, —
Dy(wp), and use it in the definition of w, so that D(w,) =
{w,, w,}. Since there is no directed path from w, or w, to wy,, we
see that w, was actually definable before time #; no new concept
was created by w,,. In (b), any definition of w, must include w,,
w,, or w,. Since w), is a descendant of all of these words, w, is
not definable before ¢, implying that a new concept was formed.
In fact, despite having originally been introduced at t — 1, w.
and w, are now undefinable before ¢, their meanings having
changed with the addition of w,,.

Since we are assuming that no elements of W, are in loops,
we are guaranteed that, for all such w,, no directed path
exists from an element of Dy (w,) back to w;,. It follows that
all words in the dictionary can be defined such that no
directed path exists from them to an element of W,, and
that they were therefore definable before time ¢. Thus no
new concept was created at time 7.

III. DICTIONARY CONSTRUCTION
AND TOPOLOGY

In order to search for definitional loops in an actual
dictionary, one must be able to link all of the words in a
given definition to their respective definitions. This requires
both the reduction of inflected words to their stems and the
resolution of polysemous words to their proper sense. We
therefore use as our primary dictionary the eXtended
WordNet, which provides semantically parsed definitions
for each WordNet 2.0 synset (set of synonymous words)
[18-20]. To reduce complexity, we have chosen to restrict
our attention to nouns as they are the part of speech gen-
erally most directly related to the main concepts within a
text [21]. We have verified our basic results using a lower-
resolution graph constructed from an online dictionary [22].

We treat the dictionary as a directed graph in which
WordNet synsets are designated as nodes, with a directed
link drawn from a node to all of the synset nodes that
appear in its definition. With this construction, each sense
of a word is represented by a separate node, corresponding
to the fact that nodes in our graph represent unique mean-
ings labeled by one or more words in the original dictio-
nary. The resulting graph consists of 79689 nodes and
285773 edges.

Decomposition of the graph into strongly connected
components (subgraphs in which every node is reachable
along a directed path from every other node) using Tarjan’s
algorithm [23], yielding a set of 1123 strongly connected
components (SCCs) with median size of 2. In keeping with
the results of Ref. [4], we found a single large component,
the “core,” consisting of 6296 nodes reachable along a
directed path from over 99% of nodes. Interestingly, as
illustrated in Fig. 2, definitional paths converge on the core
very quickly, accumulating only a very small number of
origin-specific synsets. After only 12 steps, most paths
have already encompassed half the core (inset to Fig. 2),
and by 30 steps, all descendants have already been reached,
indicating that the core is structured around a large number
of overlapping loops.

Before we analyze these loops in greater detail, it
is helpful to characterize the types of words that appear
in the dictionary’s strongly connected components.
Theoretically, the set of all words involved in loops should
be sufficient to define all words in the dictionary, albeit
with extensive paraphrasing, and thus can be thought of as
a simple vocabulary. Having identified these words by
purely computational means, it is interesting to compare
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FIG. 2. Definitional iteration of words in the dictionary. Using
a random sample of 100 words, the number of unique nodes that
could be reached within the given directed distance of each node
is recorded. Nearly all starting points lead to a strongly con-
nected component of 6296 words labeled as the core.

them to those found in other such vocabularies. We have
compared our core to Basic English [24], a set of 850
words that British linguist Charles Ogden claimed suffi-
cient for daily discourse, as well as to the English trans-
lations of the words in Joyod Kanji, the Japanese Education
Ministry’s list of 2136 characters required to be learned by
Japanese secondary school students (accessed from
Ref. [25]). As a control, we have also compared these lists
to the top 1000 most frequently used words in all books
found on Project Gutenberg (accessed from Ref. [26]). As
these lists were of course not sense-disambiguated, we
have temporarily reduced the resolution of our graph by
making the nodes words (instead of synsets) and by using
only the first sense of the definition. Again, we have
considered only nouns in all comparisons.

Our low-resolution set of 1595 core words does share
great overlap with all three lists. (See Table 1.) Notably,
however, the overlap never exceeds 50% of any word list.
A survey of those words in Basic English not found in the

TABLE I. Intersection of the core with other simple word lists.
Table entries represent the number of words in the intersection of
the sets, with percent overlap given in parentheses. The core is
obtained using a simplified WordNet dictionary graph, in which
nodes were words (not synsets), with only the first sense of the
definition considered. This method yields a graph with lower
resolution than the one obtained using the sense-disambiguated
data from eXtended WordNet. We use it because the lists we
compare to are not sense-disambiguated. Only nouns in each
word list are considered. Descriptions of the word lists are found
in the main text.

Core Basic English Joyo Kanji  Gutenberg
Core 1595 314 (52%) 403 (29%) 265 (39%)
Basic English 600 328 24%) 213 (32%)
Joyo Kanji 1376 319 (47%)
Gutenberg 673

core reveals a trend of potentially useful but perhaps defini-
tionally “overspecific”” words such as apple, brick, chalk,
hammer, and glove. While these words might come in
handy in daily life, as Ogden had intended, it is easy to
see how these words would be reduced in our dictionary
into more general words which in combination can com-
municate those more specific words. (For example, in the
case of apple, both fruit and red appear in our core.)

IV. THE LOOPS

In the theoretical discussion, we showed that the appear-
ance of loops in the dictionary can be associated with the
creation of new concepts. While we have made no assump-
tions about the interconnectivity of these loops, it seems
unlikely that the majority of concepts in language would be
interdependent as the existence of the core seems to sug-
gest. To better understand how definitional loops form in
the dictionary, we search for cycles in the dictionary graph.

A total of 9085 nodes are identified to be elements of
loops. Given the observed high degree of overlap among
loops, we have found it useful to classify these nodes and
the links that connect them according to the shortest loop in
which they appear. The corresponding distribution of loop
lengths, shown in Fig. 3, turns out to be particularly
illuminating. It appears that cycles in the dictionary fall
into two classes: short (=5) and long (>5). While the
appearance of long loops can be predicted solely based on
the in- and out-degree distributions of our graph (the
randomization in the figure), the short loops appear to be
a unique feature arising from meaningful connections be-
tween nodes. Inspection of individual loops confirms this
assessment. Whereas small cycles follow a very clear
conceptual path, large cycles are for the most part charac-
terized by one or more conceptual leaps, typically caused
by a misinterpretation of word sense, as the following
example illustrates:

0.2 T
= Real graph

. === Randomization

o
-
w

Frequency
o

0.05

40

Loop length

FIG. 3. Distribution of definitional loops in the dictionary. The
data represent counts of links in the core indexed by the shortest
loop in which they appear. For the randomization, links are
randomly redrawn between nodes while keeping the in-degree
and out-degree distributions of the graph constant.
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FIG. 4. Distribution of definitional loops for several diction-
aries. Both the Wiktionary and WordNet 3.0 graphs are con-
structed by considering only the first sense of a word in the event
of polysemy. However, in WordNet, the ordering of senses is
determined empirically according to usage frequencies in written
texts, while in Wiktionary, the ordering of senses is determined
somewhat arbitrarily, with the definition page as a whole repre-
senting a general consensus of users.

railcar — rails — bar — weapon — instrument — skill

- train — railcar.

Although the link between bar and weapon is perhaps
questionable, the link between skill and train clearly is a
case of mistaken sense, in this case, between train the verb
and train the noun. Such errors reflect the fact that the
semantic tagging in eXtended WordNet was done largely
computationally and is therefore subject to mistakes.
Figure 3 also shows a slight overabundance of links
involved in large loops in the dictionary as compared to
the randomization. This longer tail appears to result from
the fact that not all connections within a long loop are false,
as illustrated in the example loop above. It therefore takes

more connections for a false loop to form in the real data
than in the randomization, where every link is likely
wrong.

Given our finding that long loops are generally formed
from semantic misinterpretations, one might expect that,
the better the system for assigning links in cases of poly-
semy, the lower the ratio of large loops to small loops. To
test this intuition, we construct two additional graphs based
on the definitions in the English Wiktionary [22] and
WordNet 3.0 [27]. While both the Wiktionary and
WordNet 3.0 graphs have been constructed by considering
only the first sense of a word in the event of polysemy, in
WordNet, the ordering of senses was determined empiri-
cally according to usage frequencies in written texts while,
in Wiktionary, the ordering of senses is determined some-
what arbitrarily, with the definition page as a whole repre-
senting a general consensus of users. As illustrated in
Fig. 4, although the distribution of loop length for all three
graphs is similar in shape, the ratio of small to large
loops increases with the sophistication of the system used
for link assignment, suggesting that long loops would be
essentially nonexistent in a dictionary with completely
manual semantic tagging.

It is important to note that, given the high-degree of
connectivity between loops, meaningful longer loops do
exist. The links within these large loops, however, are
simultaneously involved in small loops, and as a result
the loops generally follow a logical progression of ideas.
Figure 5 provides a graphical view of the overlap among
loops, depicting a strongly connected component formed
by considering only links involved in small loops.

The finding that the dictionary graph contains many
false loops suggests that the core does not reflect large-
scale conceptual interdependence in the lexicon but rather

periphery
surface d
edge meteorological_conditions
. climate
Continuum ] . °
o cgion geography
.region atmosphere
area
degree
[ 2 ®
extent location rain
o
space ®expanse precipitation
position point o sleet

eouter_space

%s Ky

low_pressure

show

FIG. 5. An example of a large, strongly connected component in the decomposition. Arrows are drawn from a node to words in its
definition. Red links appear first in two-loops, green in three-loops, blue in four-loops, and orange in five-loops.
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TABLE II. Each column lists examples of strongly connected
components in the dictionary graph consisting of links involved
in short (= 5) cycles.

when counting paths so that the number of paths to a closer
cluster continues to grow in the time taken to reach a
farther one. This choice requires us to impose a bound on

emotion height bark injury winner the length of path we consider. We choose this upper limit
spirit end trunk violence contestant in path length as 5, in keeping with our finding that loops of
dejection dimension tree accident  competition  size greater than 5 usually emerge from semantic misinter-
melancholy length lumber pretations. Each node in the original graph can now be
feeling associated with a vector whose elements are the number of

exists as an artifact of imperfect dictionary construction.
Indeed, when we consider only the links in the core in-
volved in short loops (length = 5), we find that the core
decomposes into several hundred SCCs. Inspection of
these and other SCCs outside of the core reveals a high
degree of intracomponent semantic coherence (Table II),
not surprising given that SCCs by definition are sets of
words whose meanings are completely interdependent.
Although connected components in our decomposed
graph represent unique semantic ideas or concepts, they
are not completely independent of one another. Meaningful
connections between the connected components do of
course exist, our results suggesting simply that these con-
nections are generally acyclic in nature. In order to better
characterize the interactions among components and their
role in the lexicon as a whole, we wish to ‘“‘define’’ each
word in the dictionary in terms of these semantic units.
After ignoring SCCs outside of the core which we found
consist almost exclusively of highly technical scientific
words, we have identified 386 connected components con-
sisting exclusively of links involved in short loops to serve
as our conceptual vocabulary. To quantify the importance
of each component in a given word’s definition, we count
the number of paths in our original graph leading from the
word to a given cluster. In an attempt to increase the
definitional weight of clusters located close to the word
in question, we allow vertices and edges to be repeated

paths from that node to each of the 386 components.
Concatenating these vectors yields a sparse 79 689 X 386
matrix.

In analyzing this matrix, we have found that five
components appeared in over 80% of the vectors. Not
surprisingly, these components consist of very general
words (e.g., entity and group) and are thus ignored in
further analysis and removed from the matrix. In an
attempt to identify cohesive groups of connected com-
ponents, we perform singular-value decomposition on
our matrix. The resulting singular vectors (examples of
which can be found in Table III) show a striking ability
to capture major themes within the dictionary including
geography, life, and religion. It is, however, the connec-
tions between the elements in these singular vectors that
are most significant. Although normally obscured by
noisy connections in the dictionary, links among topics
such as the body, water, energy, and disease in our
singular vectors reflect powerful semantic chains under-
lying the conceptual lexicon.

V. LOOP ETYMOLOGY

As we have seen, definitional loops form the conceptual
basis of language. When one considers the evolution in
time of the lexicon, the question arises how these loops
came to exist. Using the Online Etymology Dictionary
[28], we have manually looked up the dates of origin for
words in definitional loops. Dates have been recorded only

TABLE III. Examples of the highest singular components for the dictionary. The elements in the singular components are the

semantically cohesive clusters of words obtained from decomposing the core. For table entries, word(s) representing the main theme of
each cluster are chosen. Clusters are listed in order of the absolute value of their coefficient in the singular component. Only clusters
whose coefficients have absolute values that are greater than 0.1 have been listed. Plain text and italics indicate the clusters that have
coefficients with positive and negative values, respectively. The third, fourth, and seventh highest singular components are very similar

to vectors already shown and are therefore not displayed.

Vector 1 Vector 2 Vector 5 Vector 6 Vector 8

Old World, oceans spine, brain grains body parts Jesus, Christianity

bodies of water body parts bodies of water flower, seed man, woman

The Americas Old World, oceans herbage tree, bark nucleus, DNA

influence, power energy flower, seed grains Roman Empire
pathology land nucleus, DNA student, teacher
narrative water spine, brain speaker, speech
cognition Gymnosperms Vatican, absolution

organic process bodies of water Old Testament

respiration pathology book
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when our manual inspection shows that the definitions in
the etymology dictionary indeed match the same sense of a
word as the one that appears in the loop. In the case of
synsets with multiple words, only the first word in the
synset is used, as we did for the data in Table I. Given
the considerable vagueness surrounding dates of emer-
gence in Old English, for the purposes of our analysis all
Old English words are recorded as having emerged in the
year 1150.

After eliminating proper nouns and compound words,
we have found dates for 971 words representing 310 non-
overlapping loops. As shown in Fig. 6(a), the distance
among dates of origin of words in the loops is for the
most part considerably smaller than that obtained by ran-
domly clustering these dates. Figure 6(a) clearly shows
that, in the real graph, the majority of the loops have dates
of origin of words that differ by no more than 150 years,
while, in the randomized data, the majority have more than
150 years between them.

While several loops do contain words with somewhat
disparate dates of origin, we have found that such excep-
tions often reflected fundamental changes in the under-
standing of a word after its introduction. For instance, the
word atom was first introduced to English in the late 15th

120 T
a
(@) —Real dates
100 - - =Randomizations| |
Z 80f
c
S 60t
o
IC 40t
20t
0 1 1
0 200 400 600 800
Median pairwise distance (years)
50

=

Frequency

1200 1400 1600 1800 2000
Date of origin

FIG. 6. Dates of origin of words in loops. For each loop, the
dates of origin of its element words (in the desired sense) were
looked up in the Etymology Dictionary. Compound words and
proper nouns were ignored, as well as polysemous words. The
median pairwise distance of elements (a) and the mean date of
origin (b) were calculated for each of the 310 distinct loops in
our analysis.

century to denote a hypothetical indivisible particle from
which all matter in the universe was built. With the dis-
covery of the atomic nucleus by Rutherford in the early
1900s, however, the concept of the indivisible atom was
fundamentally changed and with it a new sense of the word
nucleus was created.

The apparent coevolution of words in loops is quite
striking. While words in a loop are of course semantically
related, there is no a priori reason to assume that seman-
tically related words in general emerge around the same
time period. For instance, the word sneaker is clearly
closely related to the word shoe, yet it is not surprising
that the two words emerged at very different epochs. (The
Online Etymology Dictionary places sneaker in 1895 and
shoe in Old English.) The finding that words in loops are
typically introduced into language at the same time thus
appears to reflect the unique type of semantic relationship
they share and bolsters our claim that loops necessarily
appear in the lexical network since they allow for the
communication of new concepts.

Given this relationship between loops and concepts, it is
also interesting to consider the distribution of mean dates
of origin for the loops [Fig. 6(b)], as it is likely indicative of
major periods of conceptual expansion within the English
language. The distribution peaks between the 14th and
16th centuries, which corresponds to the transition from
Middle to Early Modern English, a period marked by the
development of the printing press and the establishment of
enduring English literature. A second, smaller influx of
largely scientific words has occurred in the past two cen-
turies, reflecting the prolific progress of modern science
and technology.

VI. MODEL FOR LEXICAL GROWTH

Using our results from the Online Etymology
Dictionary, we can now model the process by which new
words are added to the lexicon. The basic attachment rules
are manifested in P(k;,) and P(k,,), the probability dis-
tributions of the in-degree and out-degree, respectively. We
observe that, for the dictionary network, P(ky,) is de-
scribed by a Poisson distribution [Fig. 7(a)], in keeping
with the intuition that most definitions have roughly the
same number of words, while P(k;,) decays as a power
following P(k) ~ k~7, where y = 2.1 [Fig. 7(b)]. The fact
that P(k;,) follows a power law suggests that new words
preferentially link to existing words with high in-degrees
[7]. Indeed, preferential attachment is logical in the case of
the dictionary network if one treats the dictionary as a
corpus, for it is reasonable to assume that in defining a
new word we tend to use common words (i.e., high in-
degree) to ensure that the new word is easily understood.

A simple model to explain the growth of the lexical
network adds a new word to the dictionary at each time
step with K, outgoing edges, where K, (the number of
words in the word’s definition) is a Poisson-distributed
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FIG. 7. Extraction of model parameters. Probability distribu-
tions were measured for (a) in-degree, (b) out-degree, and
(c) strongly connected component sizes for the empirical
dictionary graph. The dashed lines in (a) and (c) have slopes
2.1 and 2.9, respectively, while the Poisson fit in (b) has
parameter 3.5. In the model, these statistics correspond to a
new word attractiveness ¢ = 0.4 and a probability of new SCC
formation p = 0.4.

random variable (K, ~ Poiss(A)) [29]. We define the new
word in terms of existing words by letting each new
directed edge point to an existing word i with probability
proportional to a + k;,(i), where a > 0. Here, a is the so-
called “‘attractiveness” of a new word [30], specifically
what allows a newly added word (with in-degree zero) to
be used in the definition of words at later time steps. It has
been shown [29] that, given these growth rules, the in-
degree distribution for this network decays as a power law
with

Plkiy) ~ ki@, (1)

where 6 = a/{ky,) = a/A. For appropriate choice of
the parameter a, this model is consistent with the observed
in- and out-degree distributions in the dictionary network
and generally explains how acyclic links are added to the
network.

To incorporate the formation of loops into the model, we
assume that the elements of loops are added to the lexicon
simultaneously based on our results with the Online
Etymology Dictionary. However, we must also explain
the existence of the larger strongly connected components
in the decomposed graph. It is unreasonable to assume that
these components, and the concepts they represent, must
always appear instantaneously in the network. Rather, ex-
isting concepts may be expanded by new discoveries as, for
example, occurred to the notion of a cell with the advent of
cellular and molecular biology. As such conceptual expan-
sion can be driven only by the addition of new loops to an
existing strongly connected component, we assume that,
when a loop is introduced to the network, it may either start
its own component (with fixed probability p) or join an
existing SCC (with probability 1 — p). Since the probabil-
ity distribution P(s) of SCC size follows a power law
[Fig. 7(c)], we assume that loops preferentially attach to
larger SCCs. Intuitively, this a reasonable assumption if we
consider larger components to in general represent broader
concepts, thereby presenting more possibilities for expan-
sion. Specifically, we claim that the probability 7r; that a
loop attaches to an existing component i of size s; is
7= —p) iiY . Assuming the size of loops to be added

Jo

is constant, this stochastic process can be shown to lead to a
set of SCCs whose size distribution decays as a power law
with

P(s) ~ s_[Hl/(l_”)], (2)

which is consistent with the observed algebraic constant
v = 2.8 for p = 0.4 [31]. In reality, of course, the size of
the loops to be added at each step varies. Numerical
simulations, however, show that small variations in the
loop size do not affect the overall power-law character of
P(s) (data not shown).

VII. CONCLUSIONS

Self-reference in dictionary definitions exists not as a
trivial artifact of a dictionary’s construction but rather as
the mechanism by which concepts are created and stored
in language. In contrast to the expectations for a random
lexical network, meaningful definitional loops appear as
short structures, typically consisting of from two to five
elements. These loops are not strictly isolated but are
often linked to form larger, yet still semantically coher-
ent, strongly connected components. While these com-
ponents have been observed to represent distinct
semantic ideas, by analyzing the interactions among
them, we have been able to reveal a set of conceptual
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relationships upon which the lexicon appears to have
been built.

Our finding that the words within loops tend to be added
to the lexicon simultaneously underscores the unique rela-
tionship that these words share. Although in theory one
need only know the meanings of some subset of the words
in a loop in order to infer the definitions of the remaining
words, at the conceptual level the meanings of these words
remain completely intertwined. This analysis of course
begs the question of how loops could have come to exist
in the first place. In order for a word to be introduced into
language, it must be understood by multiple individuals to
mean the same thing. The necessary synchronization of
word meaning among different individuals is particularly
difficult when the meanings themselves exist as conceptual
loops. A potential solution to this problem is for an indi-
vidual to attempt to sequentially define all the elements of
the loop. While the central concept of the loop cannot be
directly communicated, the juxtaposition of partially de-
fined elements of the loop may allow the receiver to infer
the common link among the words, thereby completing the
definition of all words in the loop. Such a system would be
particularly effective with short loops and is consistent
with our finding that words within a loop tend to enter
the lexicon at the same time.
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