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An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum

Hall states in simple lattice models without a large external magnetic field. A fundamental question is

whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum

Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which

are a dramatic consequence of the interplay between the lattice translational symmetry and topological

properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled

flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular

lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting

the different layers and effectively change the topology of the space. Consequently, lattice dislocations

become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being

realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically

ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

DOI: 10.1103/PhysRevX.2.031013 Subject Areas: Condensed Matter Physics, Strongly Correlated Materials,

Topological Insulators

I. INTRODUCTION

Among the most important discoveries in condensed
matter physics are the integer quantum Hall and fractional
quantum Hall (FQH) states [1–4], which provided the first
examples of electron fractionalization in more than one
dimension and paved the way for our current understand-
ing of topological order [5–7]. Conventionally realized in
two-dimensional electron gases with a strong perpendicu-
lar magnetic field, these states exhibit a bulk energy gap
and topologically protected chiral edge states. The
topological order of the FQH states is characterized by
ground state degeneracies that depend on spatial topology
[8], and fractionalized quasiparticles [4], while the quan-
tized Hall conductance is determined by a topological
invariant—the Chern number—which for a band insulator
(integer quantum Hall states) can be determined by the
momentum-space flux of the Berry’s phase gauge field. [9].

Since Chern numbers are generic properties of any band
structure, it is natural to expect that quantum Hall states
can also be realized in lattice systems without an applied
magnetic field [10,11], and indeed such ‘‘quantum anoma-
lous Hall’’ (QAH) states may be realizable experimentally
[12,13]. Recently, numerical evidence of fractional QAH
(FQAH) states—equivalent to the 1=3 Laughlin state and
non-Abelian Pfaffian state—has been found in lattice
models with many-body interactions and (quasi-)flat bands
with Chern number C ¼ 1 [14–21]. A flat band with
C ¼ 1 is similar to a Landau level where the kinetic energy

is quenched and interaction effects are maximized.
Recently, a systematic wave function approach was
introduced that demonstrates how to associate each FQH
state in a Landau level to a counterpart in a generic C ¼ 1
band [22].
While known FQH states can be realized on lattices (see

also Refs. [23–26]), a fundamental question is whether new
states can emerge as well. Here we show that the answer is
yes. There are two key reasons why the lattice FQH (i.e.,
FQAH) systems are different: the possibility of a band with
C> 1 and the interplay of topological order with lattice
symmetries [6,27,28]. While each Landau level has C ¼ 1,
a single band in a lattice system can, in principle, carry an
arbitrarily high Chern number. For example, a model with
C ¼ 2 quasiflat bands has been recently proposed [29].
Here we show that there are new topologically ordered
states—topological nematic states—in a partially filled
band with C> 1. These states carry a nontrivial represen-
tation of the translational symmetry and spontaneously
broken lattice rotational symmetry [30]. By using the
Wannier-function representation [22], a band with Chern
number C can be mapped to C layers of Landau levels, but
the C layers are cyclically permuted under certain lattice
translations. This leads to a dramatic interplay of these
states with the lattice translational symmetry: a pair of
lattice dislocations connecting different layers corresponds
to a ‘‘wormhole’’ in the C-layer FQH system. The lattice
dislocations effectively change the topology of the effectiveC
layer system, giving rise to topological degeneracies.
Surprisingly, the topological degeneracy associated with
dislocations is nontrivial even when the state itself, in the
absence of dislocations, is an Abelian topological state
[31–34]. Our result provides a new possibility of realizing
exponentially large topological degeneracies without using a
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‘‘genuine’’ non-Abelian FQH state, and effectively provides
a way to experimentally observe the spatial topology-
dependent ground-state degeneracies of FQH states.

II. WANNIER-FUNCTION DESCRIPTION
OF CHERN INSULATORS

It is well known that the states in a band with a nonzero
Chern number cannot be written as a superposition of
Wannier functions that are localized in both directions in
real space. While the Chern number provides a topological
obstruction to constructing such two-dimensionally local-
ized Wannier functions, there is no obstruction to defining
Wannier functions that are localized in one direction and
extended in the other direction [22,35]. It was shown
recently that these one-dimensional Wannier functions
provide a useful basis for constructing FQHwave functions
on the lattice, analogous to the continuum single-particle
Landau gauge wave functions for Landau levels [22]. We
begin by reviewing this one-dimensional Wannier-state
description of two-dimensional Chern insulators.

For a band insulator with N bands, the Hamiltonian is
given by

H ¼
Z

d2kcykhðkÞck; (1)

with hðkÞ a N � N matrix and the annihilation operator ck
an N-component vector. In this paper we will focus on
the systems with only one band occupied. Denoting the
occupied band by jki, the Berry-phase gauge field is
aiðkÞ � �ihkj@=@kijki, for i ¼ x; y. The one-dimensional
Wannier states are defined by

jWðky; nÞi ¼
Z dkxffiffiffiffiffiffiffi

2�
p e�ikxnei’ðkx;kyÞjki; (2)

where [22,36]

’ðkx; kyÞ ¼
ky
2�

Z 2�

0
ayð0; pyÞdpy �

Z ky

0
ayð0; pyÞdpy

þ kx
2�

Z 2�

0
axðpx; kyÞdpx �

Z kx

0
axðpx; kyÞdpx:

(3)

We choose the phase ’ðkx; kyÞ by the condition that the

states be maximally localized in the x direction [37,38].
The formalism here can be generalized to a torus with finite
Lx; Ly, in which case theWilson line integral is replaced by

a discrete summation [39].
The Wannier states form a complete basis of the occu-

pied subspace, and each Wannier state is localized in the x
direction and extended in the y direction. The choice of
localizing the states in the x direction and keeping them
extended in the y direction was arbitrary; we comment on
other choices and generalizations in Sec. VI. In many
cases, the many-body lattice FQH states constructed using
these Wannier states therefore break rotational symmetry,

which is why we will refer to them as topological nematic
states. They will be realized in a realistic Hamiltonian only
if rotational symmetry is spontaneously broken. In some
cases it is possible that even though the single-particle
basis states break rotational symmetry, the many-body
state preserves it, as in conventional continuum FQH states
constructed using Landau gauge basis functions. The
essential property of each Wannier state is that its center-
of-mass position xnðkyÞ ¼ hWðky; nÞjx̂jWðky; nÞi, which is

also the eigenvalue of the projected position operator x̂, is
determined by the Wilson loop

xnðkyÞ ¼ n� 1

2�

Z 2�

0
axðpx; kyÞdpx: (4)

Consequently, the Chern number [9] of the band, C1 ¼
1
2�

R
dkxdkyð@xay � @yaxÞ, is equal to the winding number

of xnðkyÞ when ky goes from 0 to 2�:

Z 2�

0

@xnðkyÞ
@ky

dky ¼ C1: (5)

In other words, the Wannier states satisfy the twisted-
boundary condition jWðky þ 2�; nÞi ¼ jWðky; nþ C1Þi
and correspondingly xnðkyþ2�Þ¼xnðkyÞþC1. Because

of such a twisted-boundary condition, the Wannier states
for C1 ¼ 1 can be labeled by one parameter, K ¼ ky þ
2�n, and the Wannier-state basis jWKi is in one-to-one
correspondence with the Landau-level wave functions in
the Landau gauge in the ordinary quantum Hall problem
[22]. For C1 ¼ 2, we have jWðkyþ2�;nÞi¼jWðky;nþ2Þi,
from which it follows that the Wannier states on even and
odd sites are two distinct families, as shown in Fig. 1(a).
By adiabatic continuation of the momentum ky one

FIG. 1. (a) Each state shifts over two lattice spacings: hx̂i !
hx̂i þ 2, as ky ! ky þ 2�. Thus, there are two families of states

(red and blue lines). (b) The states can be mapped to two families
of states, each parametrized by a single parameter Ky.

(c) Illustration of the fact that the Chern-number-2 lattice system
is mapped to a bilayer quantum Hall system, with the two layers
corresponding to the two families of Wannier states shown in
panel (b).
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can define

jW1
K¼kyþ2�ni ¼ jWðky; 2n� 1Þi;

jW2
K¼kyþ2�ni ¼ jWðky; 2nÞi; (6)

such that jW1;2
K i are both continuous in the parameter K,

and for the same K they are related by a translation in the
x direction. Compared with the C1 ¼ 1 case, one can see
that each family of states, jW1

Ki or jW2
Ki, is topologically

equivalent to the Wannier states of a C1 ¼ 1 Chern
insulator, which is, in turn, topologically equivalent to a
Landau-level quantum Hall problem. Therefore, the
Wannier-state representation when C1 ¼ 2 defines a map
from the C1 ¼ 2 Chern insulator to a bilayer quantum
Hall problem, with the Wannier states on the even and odd
sites mapped to two layers of Landau levels. In contrast to
a typical bilayer quantum Hall system, the two ‘‘layers’’
are now related by a lattice translation. This is the key
observation that leads to the topological nematic states,
which we will propose below.

Multilayer FQH systems can exhibit a rich variety
of different topological states; recently, a large classifica-
tion of possibilities was developed and applied to
double-layer FQH states [40,41]. The simplest two-
component generalizations of the Laughlin states are the
(mnl) states with the wave function [42]

�ðfzig; fwigÞ ¼
Y
i<j

ðzi � zjÞmðwi � wjÞn
Y
i;j

ðzi � wjÞl

� exp

�
�X

i

ðjzij2 þ jwij2Þ=4l2B
�
; (7)

where lB is the magnetic length, zi ¼ xi þ iyi are the
complex coordinates of the ith particle in one layer, and
similarly wi are the complex coordinates for the other
layer. These states can be written down for the fractional
Chern insulators by simply switching to the occupation-
number basis, �ðfnIi gÞ, where nIi is the occupation number
of the ith orbital associated with the Ith layer. There
are also intrinsically multilayer non-Abelian states
[40,41,43,44].

In the current paper, we will focus on the (mml) states,
where m � l for states with a bulk energy gap. An impor-
tant question is the following: Which states will be ener-
getically favored in any given physically realistic
Hamiltonian? In a bilayer FQH state, the (mml) states
with l < m are commonly observed. This is because the
interlayer repulsion Vinter is smaller than the intralayer
repulsion Vintra. When Vinter � Vintra, a quantum phase
transition to a different many-body state is generally ex-
pected to occur [45–47]. In a flat band with Chern number
C1 ¼ 2, the different layers are separated by a lattice trans-
lation. Therefore, in a model of spinless electrons with
next-nearest-neighbor Hubbard interactions, it is natural
that Vinter is on the same order as, or even larger than, Vintra.
Since the (mml) states are the most stable and simplest

two-component FQH states, we assume that they are
stabilized in the ground state of some physically reason-
able Hamiltonians.

III. INTERPLAY WITH LATTICE
TRANSLATIONAL SYMMETRY

AND DISLOCATIONS

A two-dimensional lattice is invariant under two inde-
pendent translation operations, Tx and Ty. Their action on

the Wannier states defined in Eqs. (2) and (6) is

TxjW1
Ki ¼ jW2

Ki; TxjW2
Ki ¼ jW1

Kþ2�i;
TyjWa

Ki ¼ eiKjWa
Ki for a ¼ 1; 2: (8)

Thus, Tx exchanges the two sets of Wannier states but Ty

does not. Because of the dramatically different behavior of
Tx and Ty, we see that lattice FQH states constructed using

these Wannier states must break the lattice rotation sym-
metry. Consequently, we refer to these lattice FQH states as
topological nematic states. In Sec. VI we will discuss
generalizations which may not necessarily break lattice
rotation symmetry.
Now consider the effect of dislocations [48]; these are

characterized by a Burgers vector b, which is defined as the
shift of the atom position when a reference point is taken
around a dislocation [51]. An x dislocation with b ¼ x̂ is
illustrated in Fig. 2(a). Far away from a dislocation, the
lattice is locally identical to one without a dislocation, so

FIG. 2. (a) Illustration of an x dislocation. (b) Left panel:
Illustration that an x dislocation leads to a branch cut around
which the two effective layers are exchanged. Right panel: A
reflection of the top layer maps the branch cut between a pair of
dislocations into a wormhole connecting the two layers. (c) A
torus with two pairs of x dislocations is equivalent to two tori
connected by two wormholes, which is a genus-3 surface. This
picture illustrates the fact that dislocations carry nontrivial
topological degeneracy.
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the dislocation is, as far as the structure of the lattice is
concerned, a point defect. Now consider a bilayer (mml)
state realized on the lattice with a dislocation. As is shown
in Eq. (8), the two sets of Wannier states are related by
translation in the x direction. Thus, when one goes around
an x dislocation, the two layers consisting of Wannier
states jW1

Ki and jW2
Ki are exchanged. The map defined by

theWannier states, which maps theC1 ¼ 2Chern insulator
to a bilayer FQH system, maps the Chern insulator on a
lattice with a pair of dislocations to a bilayer FQH state
defined on a ‘‘Riemann surface’’ with a pair of branch cuts,
as is illustrated in Fig. 2(b). This is the key observation that
indicates that the x dislocations in this system have non-
trivial topological properties. By comparison, the y dislo-
cations do not exchange the two layers and thus do not
correspond to a topology change in the effective bilayer
description.

IV. TOPOLOGICAL DEGENERACY
OF DISLOCATIONS

Although the (mml) quantum Hall state considered is
Abelian, the x dislocation carries a nontrivial topological
degeneracy [52]. To understand this, let us start from the
simplest case of the (mm0) state, which is a direct product
of two Laughlin states. For such a state, the Chern insulator
on a torus is mapped to two decoupled tori with a Laughlin
1=m state defined on each of them, with total ground-state
degeneracy of m2. When a pair of x dislocations is intro-
duced, the two tori are connected by the branch cut. If we
perform a reflection of the top layer with respect to the
x axis, the branch cut becomes a wormhole between the
two layers, as is illustrated in Fig. 2(b). Thus, the two tori
are connected, resulting in a genus 2 surface. For two pairs
of dislocations, the two layers are connected by two worm-
holes and the whole system is topologically equivalent to a
single Laughlin 1=m state on a genus 3 surface, as is shown
in Fig. 2(c). Thus, the ground-state degeneracy becomes
m3. In general, when there are 2n x dislocations on the
lattice, the space is effectively a genus nþ 1 surface and
the ground-state degeneracy for n > 0 is mnþ1. It follows
that the average degree of freedom carried by each dis-
location—known as the quantum dimension—is d ¼ ffiffiffiffi

m
p

.
Thus, we can see that the x dislocation carries a nontrivial
topological degeneracy in the same way as a non-Abelian
topological quasiparticle.

The discussion above can be generalized: For the (mml)
state, n > 0 pairs of dislocations on a torus lead to the
topological degeneracy of jm2 � l2jjm� ljn�1, as a result

the quantum dimension of each dislocation is d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijm� ljp
(recall m � l for incompressible FQH states).

The topological degeneracy can be computed from the
bulk Chern-Simons (CS) effective theory [31]. In the fol-
lowing, we provide an alternative understanding of the
topological degeneracy using the edge states in order to
ensure that the bulk field theoretic analysis does not hide

any unappreciated subtleties and to provide a deeper under-
standing of this phenomenon.

V. TOPOLOGICAL DEGENERACY
FROM THE EDGE-STATE PICTURE

Here we will study in detail the topological degeneracy
in the topological nematic states with dislocations by using
an edge-state picture. By cutting the FQH state on a
compact manifold along a line, one obtains a FQH state
with open boundaries and gapless counterpropagating chi-
ral edge states on the boundary. The FQH state before the
cut can be obtained by ‘‘gluing’’ the edge states back by
introducing interedge-electron tunneling [Fig. 3(a)]. The
topological degeneracy comes from the fact that there are,
in general, multiple degenerate minima when the electron
tunneling becomes relevant [53]. In other words, the topo-
logically degenerate ground states of the bulk topological
system correspond to degenerate ground states due to
spontaneous symmetry breaking in the edge theory.
The topological degeneracy of the x dislocations is

independent of their location, so, to compute the topologi-
cal degeneracy, we may orient the n pairs of x dislocations
along a single line. Next, we cut the system along this line
to obtain a gapless conformal field theory along the
cut, and then we understand the resulting ground-state
degeneracy by coupling the two sides of the cut in the
appropriate way.

FIG. 3. Topological degeneracy seen from the edge-state per-
spective. (a) The dislocations are oriented along a single line,
and then the system is cut along the line, yielding gapless
counterpropagating edge states along the line. The original
FQH state is obtained from gluing the system back together by
turning on appropriate interedge-tunneling terms. (b) Depiction
of the two branches (red and blue) of counterpropagating edge
excitations. The arrows between the edge states indicate the
kinds of electron-tunneling terms that are added. Away from
the dislocations, in the A regions, the usual electron-tunneling
terms involving tunneling between the same layers, �y

eRI�eLI þ
H:c:, are added. In the regions that include the branch cuts
separating the dislocations, twisted-tunneling terms are added:
�y

eR1�eL2 þ�y
eR2�eL1 þ H:c: �i indicate the midpoints of

the A or B regions.
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Below, we first review the chiral edge theory of Abelian
FQH states and how to understand their torus degeneracy
from the point of view of the edge theory. Next, we show
how this cut-and-glue procedure can be used to compute
the ground-state degeneracy in the presence of dislocations
for general two-component Abelian states.

The edge theory for an Abelian FQH state described by a
generic K matrix is given by the action [53,54],

Sedge ¼ 1

4�

Z
dxdt½KIJ@t�LI@x�LJ � VIJ@x�LI@x�LJ�;

(9)

where �LI denotes left-moving chiral bosons for I ¼
1; . . . ; dimK [55]. Here and below, the repeated indices
I; J are summed. The field �LI is a compact boson field
with radius R ¼ 1:

�LI ��LI þ 2�: (10)

Quantizing the theory in momentum space yields [6]

½@x�LIðxÞ; �LJðyÞ� ¼ �i2�K�1
IJ �ðx� yÞ: (11)

Integrating the above equation gives

½�LIðxÞ; �LJðyÞ� ¼ �i�K�1
IJ sgnðx� yÞ: (12)

The electric charge density associated with�LI is given by

�LI ¼ 1

2�
@x�LI; (13)

and the Ith electron operator is described by the vertex
operator

�eLI ¼ eiKIJ�LJ : (14)

Note that normal ordering will be left implicit ( i.e.,
eiKIJ�LJ � :eiKIJ�LJ :). If we consider the FQH state on a
cylinder, we will have a left-moving chiral theory on one
edge, and a right-moving chiral theory on the other edge.
For the right-moving theory, the edge action is

Sedge ¼ 1

4�

Z
dxdt½�KIJ@t�RI@x�RJ � VIJ@x�RI@x�RJ�;

(15)

the charge is

�RI ¼ 1

2�
@x�RI; (16)

and the electron operator is

�eRI ¼ e�iKIJ�RJ : (17)

Now if we bring the edges close together, the electrons
can tunnel from one edge to the other. The electron-
tunneling operators are:

1

2

X
I

tI½�y
eLI�eRI þ�y

eRI�eLI� ¼
X
I

tI cosðKIJ�JÞ; (18)

where

�J ¼ �LJ þ�RJ (19)

is a nonchiral boson. Note that

½�IðxÞ; �JðyÞ� ¼ 0: (20)

The tunneling terms generate an energy gap in the edge
states and lead to a set of degenerate minima. Assuming
that tI < 0, the minima occur when

KIJ�J ¼ 2�pI; (21)

where pI is an integer. That is, the minima occur when
�I ¼ 2�K�1

IJ pJ. Note that since �I ��I þ 2�, the de-
generate states can be labeled by an integer vector ~p, which
denotes the eigenvalues of ei�I :

h ~pjei�I j ~pi ¼ e2�K
�1
IJ pJ ; (22)

for integers pI. Consider two different vectors, ~p and ~p0.
They are equivalent if taking �I ! �I þ 2�nI, for inte-
gers nI, takes ~p ! ~pþ K ~p ¼ ~p0. Thus, the ground-state
degeneracy on a torus is given by the number of inequiva-
lent integer vectors ~p, which is determined by jDetKj. [56]
Physically, the operator ei�I corresponds to a quasiparticle-
tunneling process, where a quasiparticle from the Ith layer
is annihilated at one edge, tunnels around the torus, and is
created at the other edge. Thus, the different ground states
can be understood as eigenstates of such a quasiparticle-
tunneling process.
In what follows, we specialize to the case where K is a

2� 2 matrix,

K ¼ m l

l m

 !
:

On a torus, there are jDetKj ¼ jðm� lÞðmþ lÞj different
ground states. From the edge theory, these can be

understood as eigenstates of eið�1��2Þ, with eigenvalue

e2�ip�=ðm�lÞ, where p� are integers. Therefore, the eigen-
states can be labeled by ðpþ; p�Þ, where

hðpþ; p�Þjeið�1��2Þjðpþ; p�Þi ¼ e2�ip�=ðm�lÞ: (23)

Now suppose we have n pairs of dislocations, such that
translation by the Burgers vector of the dislocation ex-
changes the two layers. Each pair of dislocations is sepa-
rated by a branch cut. Let us align all the dislocations, and
denote the regions without a branch cut as Ai, and the
regions with a branch cut as Bi [Fig. 3(a)], where now i ¼
1; :::; n. Now imagine cutting the system along this line,
introducing counterpropagating chiral edge states. The
gapped system with the dislocations can be understood
by introducing different electron-tunneling terms in the A
and B regions [Fig. 3(b)]:
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�Ltunn ¼ g

2

8<
:�y

eL1�eR1 þ�y
eL2�eR2 þ H:c if x 2 Ai

�y
eL1�eR2 þ�y

eL2�eR1 þ H:c if x 2 Bi:

(24)

Introducing the variables

~� 1 ¼ �L1 þ�R2; ~�2 ¼ �L2 þ�R1; (25)

we rewrite (24) as

�Ltunn ¼ g

8>>><
>>>:
P
I
cosðKIJ�JÞ if x 2 AiP

I
cosðKIJ

~�JÞ if x 2 Bi:
(26)

Although formally, the tunneling Hamiltonian in A and
B regions are only different by a permutation of the two
layers, there is an important difference between the two
regions. Since only the electron operators are physical
local operators, there is an ambiguity in the value of �LI,
�RI. The following transformation,

�LI ! �LI þ 2�nþ
mþ l

� ð�1ÞI 2�n�
m� l

;

�RI ! �RI � 2�nþ
mþ l

þ ð�1ÞI 2�n�
m� l

; (27)

with nþ, n� 2 Z, preserves all physical operators in each
layer, which are thus considered as gauge symmetries of
the system. All physical operators must be gauge invariant.
In the A regions, the quasiparticle-tunneling operator ei�I ,
I ¼ 1; 2 are gauge-invariant physical operators. In contrast,

in the B regions ei
~�I are unphysical, and only the quasi-

particle pair-tunneling operator eið ~�1þ ~�2Þ is physical. When
the strength of tunneling g is large enough, the edge states
acquire an energy gap and all the physical quasiparticle

tunneling operators (ei�1;2 in A regions and ei
~�1þi ~�2 in B

regions) are pinned to one of their classical values, which
are determined by minimizing the tunneling term in each
region. The ground states can be written approximately as a
tensor product over the degrees of freedom in the different
regions:

jc i ¼ �n
i¼1jaiijbii; (28)

where jaii is a state in the Hilbert space associated with Ai,
and similarly for Bi. Each A region contributes a degener-
acy of jDetKj ¼ jm2 � l2j, while each B region contrib-
utes a degeneracy of jmþ lj coming from the eigenvalue

of ~�1 þ ~�2 ¼ �1 þ�2. For n pairs of dislocations, this
counting gives the ground-state degeneracy:

N0 ¼ jDetKjnjmþ ljn ¼ jm2 � l2jnjmþ ljn: (29)

However, there are also additional global constraints that
must be satisfied. The charge Qj at the jth dislocation is a

local physical observable, which should take a fixed value
in the topologically degenerate ground states, since the

states with different Qj are physically distinguishable

and are thus generically nondegenerate. These constraints
are expressed as

Qj ¼ 1

2�

Z �jþ1

�j

@xð�1 þ�2Þdx ¼ nj
mþ l

;

j ¼ 1; 2; . . . ; 2n:

(30)

�2i�1 and �2i are the midpoints of region Ai and Bi,
respectively, so that the integration region includes the
ith dislocation [Fig. 3(b)]. The charge is quantized in
units of 1

mþl , which is determined by the eigenvalues of

�1 þ�2. nj ¼ 0; 1; 2; . . . ; jmþ lj � 1. The 2n charge

constraints are not completely independent of each other
since the total charge,

P
jQj ¼ 1

mþl

P
jnj, must be an in-

teger to be consistent with the charge quantization of the
whole system. Therefore, for a fixed total charge

P
jQj, the

number of independent constraints (for n > 0) is 2n� 1.
Each constraint reduces the number of states by a factor of
jmþ lj since only the sector of �1 þ�2 is involved.
Therefore, the topological degeneracy in the presence of
n > 0 pairs of dislocations is

N ¼ N0

jmþ lj2n�1
¼ jðm2 � l2Þðm� lÞn�1j: (31)

VI. MORE GENERIC TOPOLOGICAL
NEMATIC STATES AND EFFECTIVE
TOPOLOGICAL FIELD THEORY

As shown above, the topological degeneracy is only
associated with the x dislocations and not to y dislocations.
Such states apparently break rotational symmetry but pre-
serve translational symmetry, which is why we name them
topological nematic states. The reason for the disparity is
that the FQH states are constructed using Wannier states

jW1;2
K i localized in the x direction. If we instead define the

mapping from the lattice system to the bilayer FQH system
using Wannier states localized in the y direction, the re-
sulting state will have topological degeneracy associated
with y dislocations. These two different types of topologi-
cal states can be related by redefining the Brillouin zone.
More generally, we can choose the reciprocal lattice vec-
tors to be e1 ¼ ðp; qÞ and e2 ¼ ðp0; q0Þ with je1 � e2j ¼
pq0 � qp0 ¼ 1, and define one-dimensionalWannier states
by the Fourier transform of Bloch states along the e1
direction, as shown in Fig. 4. The Wannier states obtained
in this way are localized along e1 direction. For a
dislocation with the Burgers vector, b ¼ ðbx; byÞ, around
a dislocation, the translation along the e1 direction is b 	
e1 ¼ bxpþ byq. Therefore, the exchange of two layers

and topological degeneracy only occurs when b 	 e1 ¼
bxpþ byq ¼ 1mod 2. This condition classifies the topo-

logical nematic states into four types defined by
ðp; qÞmod 2 ¼ ð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þ. The topological
degeneracy is associated with x (y) dislocations if and only
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if p (q) is odd. Rigorously speaking, (0,0) cannot be
realized by any state constructed in this way, because
pq0 � qp0 ¼ 1 requires that at least one of p and one of
q be odd. However, one can interpret the type (0,0) as the
ordinary bilayer FQH state, where the two layers are not
exchanged under any translation.

To describe the topological nematic states better, we
have developed an effective field theory that naturally
incorporates the interplay between topological properties
and the lattice dislocations in this system. Note that a
dislocation in a two-dimensional crystal is a defect with
a long range interaction, similar to superfluid vortices.
Thus, the effective field theory is different from the
topological field theory studied in Ref. [31], which de-
scribes the phase with finite-energy twist defects. The
proper effective field theory should satisfy the following
conditions:

(1) The theory describes the dynamics of the crystal,
which is characterized by the displacement field
u ¼ ðux; uyÞ. In a 2d crystal the translational sym-

metry R� R is broken to Z� Z, such that the order
parameter u is periodic ux � ux þ 1, uy � uy þ 1.

Therefore, u 2 Uð1Þ �Uð1Þ.
(2) The theory should reduce to a Uð1Þ �Uð1Þ Chern-

Simons theory in the absence of dislocations.
(3) When dislocations are present, the two Uð1Þ gauge

groups should be exchanged when we take a refer-
ence point around a dislocation point.

A natural effective theory satisfying the conditions
above can be constructed by using a Uð2Þ gauge field a�,

for� ¼ t; x; y, coupled to a Higgs fieldH of the formH ¼
� 	 nei�ðuÞ, where � are the three Pauli matrices, n is a real
unit vector, and

�ðuÞ ¼ u 	 e1 (32)

is a phase factor determined by the displacement field u.
Here e1 is the reciprocal vector defining theWannier states,
as is illustrated in Fig. 4 and earlier in this section. H is a
traceless, unitary 2� 2matrix in the adjoint representation
of Uð2Þ, which transforms under a gauge transformation
H ! g�1Hg, where g a Uð2Þ matrix. n transforms as a
vector under the SUð2Þ subgroup of the Uð2Þ and ei� is
gauge invariant. The effective Lagrangian has the follow-
ing form:

L ¼ 1

2
½�ð@tuÞ2 � 	ijkl@iuj@kul�

þm� l

4�

��� Tr

�
a�@�a� þ 2i

3
a�a�a�

�

þ l

4�

��� Tr½a��@� Tr½a�� þ J Tr½D�H

yD�H�;
(33)

where the covariant derivative isD�H ¼ @�H þ i½a�;H�,
and a� ¼ ab��

b, for b ¼ 0; x; y; z. �0 ¼ 1 is the identity

matrix and �b for b ¼ x; y; z are the Pauli matrices. The
first term is the standard elasticity theory of the crystal. The
Chern-Simons fields describe the topological degrees of
freedom of the electrons, which are coupled with the
crystal through the Higgs field H [57].
We first consider a system without dislocation. For

example, for u ¼ 0 one can choose a constant Higgs field
H ¼ �z, which givesmass to two of the four components of
theUð2Þ gauge field a. The part of a� that remains massless

is a� ¼ a0�
1
2 þ a3�

�z

2 . Denoting auðdÞ� ¼ 1
2 ða0� � a3�Þ, the

CS term for au and ad reduces to

L CS ¼ 1

4�

���ðmau�@�a

u
� þmad�@�a

d
� þ 2lau�@�a

d
�Þ;
(34)

which correctly recovers the Uð1Þ �Uð1Þ CS theory of the
(mml) state [6,58], with u and d labeling the two layers.
Now we consider the effect of dislocations. Around a

dislocation with the Burgers vector b, � changes by
�e1 	 b. Therefore, if e1 	 bmod 2 ¼ 1, ei� has a half-
winding configuration around the dislocation. This is
allowed if, and only if, n also has a half-winding con-
figuration, compensating for the minus sign from the
shift of �. Such a topological defect is similar to the
half vortex in a spinful (pþ ip) superconductor [59] but
different from the pþ ip superconductor for which the
SUð2Þ charge is global and the Uð1Þ charge is coupled to
the electromagnetic gauge field; in the current case the
SUð2Þ charge carried by the vector n is gauged and the
Uð1Þ charge remains global. Mathematically, the space of
the order parameter described by H is S2 �Uð1Þ=Z2; the

Z2 corresponds to identifying ei�n with eið�þ�Þð�nÞ.
S2 �Uð1Þ=Z2 has a nontrivial fundamental group:
�1½S2 �Uð1Þ=Z2� ¼ Z2, allowing topologically nontri-
vial point defects. The invariant subgroup of Uð2Þ pre-
serving the Higgs field is Uð1Þ �Uð1Þ, defined by the

FIG. 4. Illustration of different definitions of Wannier states,
which lead to different types of topological nematic states. e1
and e2 are two reciprocal vectors defining a Brillouin zone. The
Wannier-state basis can be constructed by taking the Fourier
transform of Bloch states along one periodic direction of the
Brillouin zone, which are marked by the red, blue, and purple
lines with arrows. The red, blue, and purple lines correspond to
topological nematic states of the types (1,0), (0,1), and (1,1),
respectively (see text).
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rotations g ¼ eið�þi�n	�Þ=2. When we adiabatically take a
point around a dislocation, the vector nðrÞ is adiabati-
cally rotated to �nðrÞ, such that the two Uð1Þ’s in the
invariant subgroup are exchanged. Thus the effective
theory (33) reproduces the fact that the two Uð1Þ gauge
fields, describing the two layers, in the Uð1Þ �Uð1Þ
Chern-Simons theory are exchanged when a reference
point is taken around a dislocation. By construction,
this theory also describes the fact that dislocations have
a topological degeneracy only when e1 	 b is odd.
Because of the gapless Goldstone modes described by
the displacement field u, the dislocations have logarith-
mic interaction.

VII. EVEN-ODD EFFECTAND
DETECTION IN NUMERICS

Even in the absence of dislocations, the topological
nematic states exhibit unique topological characteristics
that can aid in their detection in numerical simulations.
To see this, below we will focus on the (mml) topological
nematic states of type (1,0), defined on a lattice with
periodic boundary conditions.

Let us first consider the situation shown in Fig. 5(a),
where we suppose that along an entire line parallel to the
x direction, the hoppings have been twisted. We also
suppose that the number of sites in the x direction is
even. Conceptually, we can imagine constructing this by
taking a pair of dislocations, moving one of them around
the x direction of the torus, and reannihilating them. As we
explain below, this change in the geometry effectively
changes the topology, as in the case with dislocations. To
see this, consider the (mm0) states, which can be viewed as
a direct product of two Laughlin 1=m states. For a regular

lattice with periodic boundary conditions, the low-energy
theory can be mapped onto two decoupled tori, each giving
a degeneracy of m, for a total topological ground-state
degeneracy of m2. However, the twisted hopping shown
in Fig. 5(a) has the effect of gluing the two tori together
into a single torus, and so we expect that the ground-state
degeneracy is actually m. We can further see this using the
edge-theory picture as presented earlier. The effect of
introducing the twisted hoppings shown in Fig. 5(a) is to
introduce into the edge theory the tunneling terms

�Ltwisted ¼
X
I

cosðKIJ
~�JÞ; (35)

with

K ¼ m l

l m

 !

and ~�J defined in Eq. (25). Naively, this would give jDetKj
different states labeled by the eigenstates of eið ~�1� ~�2Þ ¼
eip�=ðm�lÞ, similar to the discussion in Sec. V. However, in

Sec. V we discussed that ei
~�I are not physical operators,

and the only physical operator is the pair tunneling

ei
~�1þi ~�2 . Therefore, we conclude that the topological de-

generacy of such a twisted lattice is jmþ lj, corresponding
to the eigenvalues of ~�1 þ ~�2.
Alternatively, consider a regular lattice, but with an odd

number of sites along the x direction, as shown in Fig. 5(b).
In this case, there will be a line at some point in x where
Wannier functions associated with different layers are
adjacent. Cutting the system along this vertical line, we
obtain gapless edge states, and we observe that in gluing
the system back together, we again have twisted hoppings
along the entire vertical line. Following a similar argument
as in the last paragraph, in this case the ground-state
degeneracy is jmþ lj. This leads to a remarkable signature
of the topological nematic states. For a regular lattice,
when the number of sites in the x direction is even, the
topological degeneracy is jm2 � l2j. When it is odd, the
topological degeneracy is jmþ lj. These topological de-
generacies are independent of the length in the y direction.
Such an even-odd effect can easily be used as a numerical
diagnostic to test for such topological nematic states.

VIII. DOMAIN WALLS AND TRANSLATIONAL
SYMMETRY-PROTECTED GAPLESS MODES

If the Hamiltonian of a strongly interacting system that
realizes the topological nematic states has a discrete lattice
rotational symmetry, then the topological nematic states
associated with classes (1,0) or (0,1) (see Sec. VI) sponta-
neously break the discrete rotational symmetry. In such a
situation, a physically realistic system can be expected to
consist of domains involving different orientations. Along
the domain walls, it is possible that translational symmetry
is preserved along the domain wall. As we show below, the

FIG. 5. Illustration of two lattice configurations to detect the
topological nematic states. (a) A torus with a kink along the
dashed line such that all points above the dashed line are
translated by one lattice spacing in the x direction relative to a
regular lattice model, and with an even number of sites in the x
direction. (b) A regular lattice with an odd number of sites in the
x direction. In both cases, a periodic boundary condition is
imposed on both directions. For both configurations, the (mml)
topological nematic state of type (1,0) has a reduced
ground-state degeneracy of jmþ lj instead of the degeneracy
of jm2 � l2j on a torus with an even number of sites in the x
direction.
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translational symmetry along the domain wall can protect a
single bosonic channel from acquiring an energy gap.

For concreteness, consider a domain wall between a
(0,1) and a (1,0) topological nematic state, as shown in
Fig. 6. Each domain on their own has two branches of
chiral gapless edge states: �Li and �Ri, for i ¼ 1; 2, where
as before L and R stand for the left and right movers.
Naively, one expects that these counterpropagating modes
will be gapped out by interedge tunneling. However, they
have different properties under translational symmetry. In
particular, under a translation along the domain wall,

�L1 ! �L1; �L2 ! �L2;

�R1 ! �R2; �R2 ! �R1: (36)

We see that for the translational symmetry along the do-
main wall to be preserved, the only allowed interedge-
tunneling terms must involve the symmetric combination
cosðPIJKIJ�JÞ. Therefore, either translational symmetry
is preserved and the mode associated with the relative
combination ðK1J � K2JÞ�J is gapless, or translational
symmetry is spontaneously broken along the domain
wall. This provides a novel example of gapless edge states
protected by translational symmetry.

IX. DISCUSSION AND CONCLUSIONS

This realization that lattice dislocations carry nontrivial
topological degeneracy potentially opens a number of new
directions. Conceptually, we are now in need of a more
general theory of topological degeneracy of dislocations
and their possible braiding properties in general FQH
states, both in bands with higher Chern numbers and in
non-Abelian FQH states. For example, for a Chern insula-
tor with Chern number C1 ¼ N, the same construction
maps the lattice system to a N-layer FQH state.
Dislocations are ‘‘branch cuts’’ with degree N in such a
system, around which theN layers are cyclically permuted.
It would also be important to verify our predictions through
numerical studies. The even-odd effect discussed in

Sec. VII is expected to generalize to a mod N behavior
in the topological degeneracy for C1 ¼ N.
Note that while the dislocations studied here have non-

Abelian properties, they are spatially confined excitations
of the system because the energy cost of separating dis-
locations grows logarithmically with their distance. In
other words, they are not intrinsic excitations of the elec-
tron system, but rather extrinsic defects imposed by the
lattice. Nevertheless, physical materials can easily have
many lattice dislocations, and if FQH states are realized
in a material with higher-Chern-number bands, we expect
that the lattice dislocations, in the limit of low dislocation
density, can induce an extensive topologically stable en-

tropy for temperatures T * �e�l=
, where � is the energy
gap of the FQH state, 
 / 1=� is the correlation length of
the gapped FQH state, and l is the typical spacing between
dislocations.
A further interesting, exotic possibility is to imagine

deconfinement of lattice dislocations through quantum
melting of the lattice. The resulting states, if realizable,
are ‘‘topological liquid crystals,’’ as the continuous trans-
lation symmetry is restored by quantum melting the lattice,
while rotational symmetry is still broken. These states may
correspond to the non-Abelian orbifold states that were
proposed in [60] and that are described by Uð1Þ �
Uð1Þ 2Z2 CS theory [31]. Since there is a close relation
between the dislocations of the (mml) states and the in-
trinsic excitations of the orbifold states, we expect that the
braiding properties of the dislocations will be closely
related to the braiding of non-Abelian excitations of the
orbifold states. Since the dislocations are extrinsic defects,
we expect that the non-Abelian part of the braiding can be
well defined in general, while the overall Uð1Þ phase will
be ill defined. We leave a detailed study of the braiding for
future work.
In this paper, we have assumed that an (mml) state is

realized in a flat band with Chern number C1 ¼ 2.
Depending on the choice of localized Wannier functions,
we have found that the states may break rotational sym-
metry by being sensitive to either x dislocations or y
dislocations. However, we can also construct states that
are sensitive to dislocations in both directions, or to neither.
The latter two possibilities do not require rotational sym-
metry breaking and need not have any nematic order in
principle, although our current choice of many-body wave
functions do break rotational symmetry. An important
direction for future work is to understand better which
interactions stabilize the topological nematic states con-
sidered in this work.
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