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We propose general topological order parameters for interacting insulators in terms of the Green’s

function at zero frequency. They provide a unified description of various interacting topological insulators

including the quantum anomalous Hall insulators and the time-reversal-invariant insulators in four, three,

and two dimensions. Since only the Green’s function at zero frequency is used, these topological order

parameters can be evaluated efficiently by most numerical and analytical algorithms for strongly

interacting systems.
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I. INTRODUCTION

Topological insulators are new quantum states of matter
whose characteristic property is the existence of both bulk
energy gap and stable surface states [1–4]. The stability of
surface states is protected by the topology of the bulk
electronic structure, which in the noninteracting limit is
described by Bloch band topological invariants, such as
the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) in-
variant [5] and the Z2 invariants [6–9]. More recently, topo-
logical insulator with strong electron-electron interaction is
becoming a central topic in the field [10–20]. For general
interacting systems (‘‘interacting systems/insulators’’ refer
to systems/insulators with many-body interaction instead of
systems/insulators interacting with each other), the topologi-
cal order parameters can be defined as the physical response
function for the quantumHall effect [21] and the topological
magneto-electric effect [9]. For actual evaluations of these
physical response functions, we proposed earlier that the
Green’s function is an useful tool in topological insulators
[22], and there is much recent interest focused in this direc-
tion [23–26]. However, our original formula for the topologi-
cal order parameter [22] is rather complicated;more recently,
a much simpler formula was obtained for the inversion-
symmetric interacting topological insulators [27].

Themain purpose of this paper is to obtain several simple
and yet general topological order parameters for interacting
topological insulators in an unified framework. They are
expressed in terms of the Green’s function at zero frequency
instead of the entire frequency domain. These invariants
strongly resemble the conventional topological invariants
such as the Chern number/TKNN invariant, yet they are
valid for general interacting systems. Current proposals for
the quantum anomalous Hall (QAH) insulators [28–30]

require magnetic order, which is only possible for interacting
systems. Our proposed topological order parameter can
greatly help the search for realistic materials. Among our
central results are Eqs. (6), (13), (16), (18), and (19), all of
which are expressed in terms of the Green’s function at
i! ¼ 0. In most numerical algorithms for strongly interact-
ing systems, it is much easier to obtain the Green’s function
at zero frequency than at all frequencies. Therefore, our new
formulas present a significant improvement over the pre-
vious result [22]. We would also like to point out that the
formulas given in this paper are not directly applicable to
fractional topological insulators with nontrivial ground-
states degeneracy, which will be left to future studies.

II. TOPOLOGICAL ORDER PARAMETER FOR
INTERACTING QAH INSULATORS

The conventional topological invariant for two-
dimensional (2D) noninteracting quantum (anomalous)
Hall states (or the ‘‘Chern insulator’’) is the TKNN invari-
ant [5], which is also called the first Chern number in
mathematical literature. Explicitly, it is an integral over
the momentum space (namely the first Brillouin zone):

c1 ¼ 1

2�

Z
d2kfxy; (1)

where fij¼@iaj�@jai, and ai¼�i
P

�hc �ðkÞj@ki jc �ðkÞi,
where � runs through all the occupied bands. However,
because of its fundamental dependence on the Bloch state
jc �ðkÞi, Eq. (1) applies only to noninteracting systems.
There is an interesting generalization to interacting sys-
tems using the twisted-boundary condition [31], which is
nonetheless difficult to compute and is not easy to general-
ize to Z2 insulators. Another integer topological invariant is
expressed in terms of the Green’s function rather than the
Bloch states [22,32,33]:

N2 ¼ 1

24�2

Z
dk0d

2kTr½����G@�G
�1G@�G

�1G@�G
�1�;
(2)

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 2, 031008 (2012)

2160-3308=12=2(3)=031008(6) 031008-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.2.031008
http://creativecommons.org/licenses/by/3.0/


where �; �; � run through k0; k1; k2, with k0 ¼ i! refer-
ring to the Matsubara frequency (imaginary frequency).
Throughout this paper, the Green’s functions are the
Matsubara Green’s functions, though our final formulas
are also applicable using real frequency. For instance, a

noninteracting system with Hamiltonian Ĥ ¼ P
kc

y
k hðkÞck

has Gði!; kÞ ¼ 1=½i!� hðkÞ�, where hðkÞ is generally a
k-dependent matrix, and ck is a column vector of fermion
operators. The discrete Matsubara frequency becomes con-
tinuous in the zero-temperature limit which we take.

Equation (2) has the severe disadvantage that it involves
a frequency integral. In most numerical algorithms, it is
very difficult to obtain the dynamic Green’s function at all
frequencies as required by Eq. (2). Now we shall show that
it is possible, without any approximations, to evaluate
Eq. (2) with only the Green’s function at zero frequency.
Our new formula is much easier for practical calculations
and is accessible for most numerical algorithms.

Let us start from the formalism presented in our previous
work [27]. We diagonalize the inverse Green’s function as

G�1ði!; kÞj�ði!; kÞi ¼ ��ði!; kÞj�ði!; kÞi: (3)

The eigenvectors of G are the same as those of G�1, with
eigenvalues ��1

� . Therefore, we can also formulate our
approach by diagonalizing G instead of G�1. From the
Lehmann representation, we can show that the Green’s
function satisfies the equation

ðG�1Þyði!; kÞ ¼ G�1ð�i!; kÞ; (4)

from which it follows that

ðG�1Þyð0; kÞ ¼ G�1ð0; kÞ: (5)

Therefore, ��ð0; kÞ are real numbers. The eigenvectors
j�ð0; kÞi can be divided into two types: Those with
��ð0; kÞ> 0 are called ‘‘right-zero (R-zero)’’, while those
with ��ð0; kÞ< 0 are called ‘‘left-zero (L-zero).’’ All the
R-zeros span a subspace at each k, which we call the
‘‘R-space.’’ Similarly, we can define the ‘‘L-space.’’
Because the eigenvectors corresponding to different eigen-
values of a Hermitian matrix are orthogonal, the R-space
has the crucial property that all the vectors within it are
orthogonal to those within the L-space. Therefore, the
Chern number/TKNN number can be defined for the
R-space in the conventionalway.More explicitly,wepresent
one of the central results of this paper, which we shall
call the ‘‘generalized TKNN invariant,’’ or the ‘‘generalized
Chern number,’’

C1 ¼ 1

2�

Z
d2kF xy; (6)

where F ij¼@iAj�@jAi, and Ai ¼ �i��2R�Space�
hk�j@ki jk�i. Here, jk�i is an orthonormal basis of the

R-space. The simplest basis choice is jk�i¼j�ði!¼0;kÞi
(i.e., normalized R-zero). Throughout this paper, the
lowercase expressions c1, c2, ai, fij are reserved for the

noninteracting Chern numbers, Berry connection, and
curvature, respectively, while the uppercase expressions
C1, C2, Ai, F ij refer to the generalized Chern numbers,

generalized Berry connection, and curvature for generally
interacting systems, respectively.
The expression in Eq. (6) reduces to the conventional

TKNN invariant in the noninteracting limit. However, it is
essentially different in that it is defined in terms of the
R-zeros and R-space of the Green’s function of a many-
body system rather than the Bloch states of a noninteracting
Hamiltonian. The definition of R-zero and R-space is valid
in the presence of electron-electron interaction, and thus this
topological order parameter is a highly nontrivial general-
ization of the TKNN invariant to the interacting insulators,
maintaining the elegant form of the Chern number.
Mathematically, Eq. (6) is the first Chern number of an
UðNÞ fiber bundle, whose bundle at each k is exactly the
R-space. Therefore, this quantity is topologically invariant.
One can also define an ‘‘effective Hamiltonian’’

heffðkÞ � �G�1ð0; kÞ, and define R-zeros as eigenvectors
of this ‘‘effective Hamiltonian.’’ This is just another lan-
guage to formulate the same result, which we shall use later
in the derivation of our formula.
The characteristic physical observable of the 2D corre-

lated QAH insulators is the Hall conductance

�xy ¼ C1

e2

h
; (7)

which can be measured in experiments. As we shall show
in the next section, the coefficient C1 here is exactly the
one given by Eq. (6). The simple formula Eq. (6) can be
easily applied to the interacting quantum (anomalous) Hall
systems with integer quantum Hall effect. However, it
should be mentioned [22] that this description cannot be
directly applied to the fractional quantum Hall states,
which have nontrivial ground-state degeneracy. The same
limitation is also true for the frequency-integral formula in
Eq. (2). We will leave the possibility of extending our
approach to cases with ground-state degeneracy for future
studies.

III. DERIVATION OF THE FORMULA

Equation (6) is itself a topological invariant that can be
applied to interacting insulators in 2D that break time-reversal
symmetry. In this section, we would like to show that it is
indeed the quantum Hall conductance, namely, N2¼C1; in
other words, Eq. (6) can be derived from Eq. (2). Let us begin
with the Lehmann representation of the Matsubara Green’s
function (in the zero-temperature limit)

G��ði!; kÞ ¼ X
m

"h0jck�jmihmjcyk�j0i
i!� ðEm � E0Þ

þ hmjck�j0ih0jcyk�jmi
i!þ ðEm � E0Þ

#
; (8)
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where jmi are the exact eigenvectors of K̂ ¼ Ĥ ��N̂ with

eigenvaluesEm (Ĥ is themany-bodyHamiltonian, and� and

N̂ are the chemical potential and fermion number, respec-
tively) and j0i is the ground state. We can make the summa-
tion over jmiwell defined by putting the system on a large but
finite 2D torus so that the eigenvalues are discrete; otherwise,
the summation is replaced by an integral. Note that we have
assumed that there is only a single ground state. For our
purpose, we decompose Gði!; kÞ ¼ G1 þ iG2 with both
the G1 and G2 Hermitian. Explicitly, we have

ðG2Þ�� ¼ �X
m

!

!2 þ ðEm � E0Þ2
½h0jck�jmihmjcyk�j0i

þ hmjck�j0ih0jcyk�jmi�
¼ �X

m

dm½u�m�ðkÞum�ðkÞ þ v�
m�ðkÞvm�ðkÞ�; (9)

where we have defined um�ðkÞ¼hmjcyk�j0i, vm�¼
h0jcyk�jmi, anddmði!Þ ¼ !=½!2 þ ðEm � E0Þ2� to simplify

the expressions. It is easy to see that signðdmÞ ¼ signð!Þ.
Now we can calculate the expectation of G2 with an
arbitrary vector jai as hajG2jai ¼

P
��a

�
�ðG2Þ��a� ¼

�P
mdm½j

P
�a�um�j2 þ jP�a�vm�j2�. From this we

can see

sign ðhajG2ði!; kÞjaiÞ ¼ �signð!Þ: (10)

As a side remark, if jai is an eigenvector of G ¼
G1 þ iG2 with eigenvalue ��1

a , then we have ��1
a ¼

hajai�1hajðG1 þ iG2Þjai. Because G1 and G2 are
Hermitian, we have Imð��1

a Þ ¼ hajai�1hajG2jai; thus, it
follows from Eq. (10) that sign½Imð��1

a ði!ÞÞ�¼�signð!Þ.
It follows finally that

sign ½Imð�aði!; kÞÞ� ¼ signð!Þ: (11)

With these preparations, we are approaching the central
part of our calculation. The key idea is to introduce a
smooth deformation of Gði!; kÞ parametrized by 	 2 ½0; 1�
as follows:

Gði!;k;	Þ¼ ð1�	ÞGði!;kÞþ	½i!þG�1ð0;kÞ��1:

(12)

We now show that this deformation does not contain singu-
larity, or equivalently, we must show that all eigenvalues
of Gði!; k; 	Þ are nonzero. This can be seen as follows.
First, when i! ¼ 0, we have Gð0; k; 	Þ ¼ Gð0; kÞ,
whose eigenvalues are nonzero by our assumption that the
Green’s function Gði!; kÞ is nonsingular. Second, we con-
sider i! � 0. Suppose that

Gði!; k; 	Þj�ði!; k; 	Þi ¼ ��1
� ði!; k; 	Þj�ði!; k; 	Þi;

then we have

��1
� ði!; k; 	Þ ¼ h�j�i�1h�jGði!; k; 	Þj�i:

The imaginary part of this equation can be written down as

Im ½��1
� ði!; k; 	Þ� ¼ h�j�i�1½ð1� 	Þh�jG2ði!; kÞj�i

� 	!
X
s

j�sj2ð!2 þ �2sÞ�1�;

where we have expanded

j�ði!; k; 	Þi ¼ X
s

�sði!; k; 	ÞjsðkÞi;

in which jsðkÞi are orthonormal eigenvectors of�G�1ð0; kÞ
with eigenvalues �sðkÞ. It is easy to see that Im½��1

� ði!;k;	Þ�
is always nonzero, following from Eq. (10). Summarizing
the above calculation, we can see that all eigenvalues of
Gði!; k; 	Þ are nonzero, and therefore the deformation
in Eq. (12) is smooth. Note that, throughout this calculation,
we consider the imaginary-frequency Green’s function; oth-
erwise, the Green’s function cannot be so well behaved. A
geometrical visualization of the deformation in Eq. (12)
can be given as follows. Because of Eq. (11), the ��ði!Þ �
½! 2 ð�1;þ1Þ� curves [27] on the complex plane do not
cross the real axis when i! � 0; therefore, we can smoothly
deform them to straight lines parallel with the imaginary axis,
keeping the R- and L-zero unchanged in the deformation.
This leads exactly to Gði!; k; 	 ¼ 1Þ.
Because N2 is a topological invariant, namely, it is

unchanged under smooth deformations of G, we have
N2ð	 ¼ 0Þ ¼ N2ð	 ¼ 1Þ. Therefore, to calculate N2 ¼
N2ð	 ¼ 0Þ, we just need to calculate N2ð	 ¼ 1Þ, which is
equivalent to the calculation for an effective noninteracting
system with heffðkÞ ¼ �G�1ð0; kÞ. It is a straightforward
calculation to obtain N2ð	 ¼ 1Þ ¼ C1. This completes the
derivation of

N2 ¼ C1; (13)

which is a precise identity between Eqs. (2) and (6).

IV. FOUR-DIMENSIONAL TOPOLOGICAL
INSULATORS

The 2D physics discussed above can be generalized to
4D. In 4D, there is a time-reversal-invariant topological
insulator classified by integer Z. The continuous model for
such topological insulators was first proposed in Ref. [34],
while lattice models can be found in Ref. [9]. For non-
interacting insulators in 4D, the natural topological invari-
ant is the second Chern number in the momentum space,
expressed as [9]

c2 ¼ 1

32�2

Z
d4k�ijkltr½fijfkl� (14)

with

f��ij ¼ @ia
��
j � @ja

��
i þ i½ai; aj���;

a��i ðkÞ ¼ �ihc �ðkÞj @

@ki
jc �ðkÞi;

where i, j, k, l ¼ 1, 2, 3, 4, respectively. The index � in

a��i refers to the occupied bands of the Bloch states
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jc �ðkÞi. The Berry connection a��i is a non-Abelian

gauge-field potential, and f��ij is the associated non-

Abelian field strength. Analogous to the 2D case, for 4D
interacting insulators, there is a topological invariant
analogous to Eq. (2), expressed in terms of the interacting
Green’s function [9,22]:

N4 � 1

480�3

Z
d5kTr½�����
G@�G

�1G@�G
�1G@�

�G�1G@�G
�1G@
G

�1�: (15)

This topological order parameter directly measures the
generalized quantum Hall effect in 4D [9,34], and it is
related to the homotopy group �5ðGLðN;CÞÞ ¼ Z [22] for
sufficiently large N. The difficulty with Eq. (15) is again
the frequency integral over ð�i1;þi1Þ. This problem can
be solved in the same way as we did for its 2D analog. We
are thus led to another central result of this paper, namely
that the topological order parameter for an interacting
Chern insulator in 4D, expressed as

C2 ¼ 1

32�2

Z
d4k�ijkltr½F ijF kl�; (16)

with

F ��
ij ¼ @iA

��
j � @jA

��
i þ i½Ai;Aj���;

A��
i ðkÞ ¼ �ihk�j @

@ki
jk�i;

where jk�i is an orthonormal basis of the R-space spanned
by R-zeros, same as that defined for Eq. (6). The derivation
of N4 ¼ C2 is a straightforward generalization of that
of Eq. (13), which we shall not repeat here.

V. Z2 TOPOLOGICAL INVARIANTS FOR
INTERACTING INSULATORS IN THREE AND

TWO SPATIAL DIMENSIONS

It was proposed in Ref. [22] that a natural topological
invariant for a 3D Z2 insulator is the topological magneto-
electric coefficient [22,27],

2P3 ¼ WðGÞjR�T4

� 1

480�3

Z �

��
d5kTr½�����
G@�G

�1G@�G
�1

�G@�G
�1G@�G

�1G@
G
�1�; (17)

where the integer WðGÞjR�T4 is the ‘‘winding number’’ of
the mapping from frequency-momentum space R� T4 to
GLðN;CÞ, k0 ¼ i! is the imaginary frequency, and k4 is
the dimensional extension parameter similar to the Wess-
Zumino-Witten (WZW) parameter in nonlinear � models.
The reference function Gðk0; k1; k2; k3; �Þ is trivially di-
agonal [22]. Because of the ambiguity of the dimensional
extension, the integer in Eq. (17) reduces to Z2-equivalent
classes [22]. For insulators with inversion symmetry,
Eq. (17) is further simplified to a product of parity of
R-zeros [27]. This major simplification enables practical

numerical calculations using the Green’s function; see,
e.g., [35].
Equation (17), although an elegant Z2 invariant, is

unsatisfactory because of the needs of the dimensional
extension and the frequency integral. Now we shall obtain
Z2 topological invariants without these two disadvantages,
as follows. Let us start from Eq. (17) and dimensionally
extend Gðk0; k1; k2; k3Þ to Gðk0; k1; k2; k3; k4Þ, where k4 2
½��;�� is the WZW-like dimensional extension parame-
ter. Zero-frequency functionGð0; k1; k2; k3; k4Þ is chosen to
be Hermitian; therefore, R-zeros can be extended to the
extended momentum space T4. By a calculation analogous
to the derivation of N4 ¼ C2, Eq. (17) can be simplified
into a topological invariant for 3D interacting insulators as

P3¼C2=2¼ 1

32�2

Z �

0
dk4

Z �

��
d3k�ijkltr½F ijF kl�

¼ 1

8�2

Z
d3k�ijkTr

��
@iAjðkÞþ2

3
iAiðkÞAjðkÞÞ

�
AkðkÞ

�
:

(18)

Here, the Berry connection is defined in terms of the zero-
frequency Green’s function in the same way as Eq. (6) and
(16). Equation (18) generalizes the formula first obtained
by Qi, Hughes, and Zhang for the noninteracting system
[9]. Because the Green’s function instead of the Bloch
states is used, Eq. (18) is defined for interacting topological
insulators in 3D. Equation (18) has great advantage com-
pared to Eq. (17) because neither dimensional extension
nor frequency integral is needed. In the noninteracting
limit, the R-zeros become Bloch states, and Eq. (18) is
thus reduced to the Chern-Simons (CS) invariant defined in
Ref. [9]. As was shown in Ref. [36], the noninteracting CS
invariant [9] is equivalent to the Fu-Kane’s Pfaffian invari-
ant [37]. It is thus natural to obtain a Pfaffian invariant �
for interacting topological insulators, which is expressed in
terms of R-zeros as

ð�1Þ4 ¼ Y
�i¼TRIM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detBð�iÞ

p
PfðBð�iÞÞ : (19)

Here, ‘‘TRIM’’ refers to time-reversal invariant momenta,

the matrix BðkÞ is defined by B�� ¼ h�k�jT̂jk�i, where
T̂ is the time-reversal operation, and jk�i is an orthonor-
mal basis of R-space. [the simplest choice is jk�i ¼
j�ði! ¼ 0; kÞi.] Equations (18) and (19), which are Z2

invariants defined for interacting insulators, are among the
central results of this paper. They have the great advantage
that only the zero-frequency Green’s function is needed.
The ambiguity of the square root in Eq. (19) can be avoided
if one rewrites it as an integral following Ref. [37]. We also
mention that there are other formulas equivalent to Eq. (19),
e.g., the number of zeros of Pfaffian in the half-Brillouin
zone, which parallel the noninteracting formulas, with
Bloch states replaced by vectors in R-space. The derivation
from Eq. (18) to Eq. (19) follows exactly the calculations
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in Ref. [36], again with the Bloch states replaced by vectors
in the R-space. A similar expression as Eq. (19) can also be
defined for 2D interacting topological insulators. For insu-
lators with inversion symmetry, starting from Eq. (18) or
Eq. (19) one can derive the parity formula in Ref. [27],
which was originally derived from Eq. (17) directly. The
parity formula [27] is most convenient for practical calcu-
lation if the insulator has inversion symmetry. However, if
the insulator has no inversion symmetry, we need to use the
more general formulas in Eq. (18) or Eq. (19) proposed in
the present paper.

VI. CONCLUSION

In this work we present a general framework to
describe interacting insulators in terms of the Green’s
function at zero frequency. Our central results include
the topological order parameters for the quantum anoma-
lous Hall insulator, interacting Landau level systems with
integer quantum Hall effect, and time-reversal-invariant
interacting topological insulators in 4D, 3D, and 2D.
These formulas greatly simplify numerical and analytical
calculations.
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