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The logarithmic violations of the area law, i.e., an ‘‘area law’’ with logarithmic correction of the form

S� Ld�1 logL, for entanglement entropy are found in both 1D gapless fermionic systems with Fermi

points and high-dimensional free fermions. This paper shows that both violations are of the same origin,

and that, in the presence of Fermi-liquid interactions, such behavior persists for 2D fermion systems. In

this paper, we first consider the entanglement entropy of a toy model, namely, a set of decoupled 1D

chains of free spinless fermions, to relate both violations in an intuitive way. We then use multidimen-

sional bosonization to rederive the formula by Gioev and Klich [D. Gioev and I. Klich, Entanglement

Entropy of Fermions in Any Dimension and the Widom Conjecture, Phys. Rev. Lett. 96, 100503 (2006).]

for free fermions through a low-energy effective Hamiltonian and explicitly show that, in both cases, the

logarithmic corrections to the area law share the same origin: the discontinuity at the Fermi surface

(points). In the presence of Fermi-liquid (forward-scattering) interactions, the bosonized theory remains

quadratic in terms of the original local degrees of freedom, and, after regularizing the theory with a mass

term, we are able to calculate the entanglement entropy perturbatively up to second order in powers of the

coupling parameter for a special geometry via the replica trick. We show that these interactions do not

change the leading scaling behavior for the entanglement entropy of a Fermi liquid. At higher orders, we

argue that this should remain true through a scaling analysis.
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I. INTRODUCTION

The study of entanglement, which is one of the most
fundamental aspects of quantum mechanics, has and con-
tinues to lead to much important progress and applications
in several fields of modern physics such as quantum infor-
mation [1], condensed matter physics [2–4], and so on. It
has led to a better understanding of the density-matrix-
renormalization-group (DMRG) technique [5–7], and it
has also been proposed as a tool for the characterization
of certain topological phases [8–10].

Among various ways of quantifying entanglement, in
condensed matter or many-body physics, efforts have
mainly focused on the bipartite block-entanglement entropy
(von Neumann entropy) and its generalizations (Rényi or
Tsallis entropy). Entanglement has become increasingly
useful in characterizing phases [11] and phase transitions
[12,13]. The area law [14], one of the most important results
of entanglement entropy, states that the entanglement en-
tropy is proportional to the area of the surface that separates
two subsystems. Thus far, however, two important classes of
systems violate the area law. (1) In gapless one-dimensional
(1D) systems, a logarithmic divergence [13,15] is found
where, according to the area law, the entanglement entropy
should saturate as the size of the subsystem grows. (2) In

higher dimensions, for free fermions, the area law is cor-
rected by a logarithmic factor similar to the 1D case, logL
[16–23], where L is the linear dimension of the subsystem.
In this work, we first show that the scaling behavior of

the entanglement entropy for systems with a Fermi surface
is the same as that of 1D systems with Fermi points
[24–27]. We then seek for a generalization of the behavior
in 1D systems with Fermi points to that of interacting
fermions in the Fermi-liquid phase. We first develop an
intuitive understanding via a toy model, showing that, in
this model, the entanglement entropy has the same form as
that given by Gioev and Klich (GK) in Ref. [16]. Next, we
develop a more general and formal treatment using high-
dimensional bosonization [28–32]. This approach not only
leads to a reproduction of the result for free fermions
obtained by GK based on Widom’s conjecture [33,34],
but also lends itself to the inclusion and subsequent treat-
ment of Fermi-liquid type (forward-scattering) interactions.
This paper is organized as follows. In Sec. II, we de-

scribe the toy model for which the entanglement entropy
can be written in the same form as the GK result. In
Sec. III, we briefly introduce the tool box of multidimen-
sional bosonization, and apply it to free fermions to repro-
duce the GK formula. The main results of this work are
presented in Sec. IV, in which we calculate the entangle-
ment entropy of a Fermi liquid for a special geometry using
a combination of multidimensional bosonization and the
replica trick (explained below). We summarize and discuss
our results in Sec. V. Some technical details are discussed
in the two appendixes.
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II. THE INTUITIVE PICTURE—ATOY MODEL

Consider a set of decoupled, parallel 1D chains of non-
interacting spinless fermions with spacing a, as shown in
Fig. 1(a). Here we consider only d ¼ 2 for simplicity, but
this toy model is viable in general d dimensions. The
asymptotic behavior of entanglement entropy in the large
L limit of a convex subsystem A of this model can be
obtained by simply counting the number of chains that
intersect A, and each segment contributes 1

3 logL, where

L is the linear dimension of the subsystem [14,35,36].
Because of the logarithm, different shapes lead only to
differences at the area-law level. Since each segment
must have two intersections, we can count the intersections
instead of segments, and thus automatically take care of
nonconvex geometries. Although there is an additional
correction for multiple intervals on a single chain
[37–39], as long as only the logL behavior is concerned,
that contribution is negligible. For L large enough, we can
write the number of these intersections as an integral over
the surface of A, projected onto the direction perpendicular
to the chains, times one-half of the chain density, 1=a. To
compare with the GK result, we note that this model also
has Fermi surfaces, as shown in Fig. 1(b), with a total
‘‘area’’ of 4�=a. This enables us to replace the density of
chains by an integral over the Fermi surfaces of the system,

1

a
¼ 1

4�

I
@�

dSk;

where � indicates the occupied area in momentum space,
so its boundary @� is the Fermi surface(s). Therefore, we
can write the entanglement entropy as

Sð�AÞ ¼ 1

2
� 1

3
logL� 1

a

I
@A

jn̂ � dSxj

¼ 1

12ð2�Þ2�1
logL�

I
@A

I
@�

jdSx � dSkj; (1)

where dSk denotes the surface element in momentum
space, n̂ is the direction along the chains that is also normal
to the Fermi surface, and an overall factor of 12 accounts for

the double-counting of chain segments. In Eq. (1), we
recover the GK formula in this special case but written in
a slightly different way. In Ref. [16], the entanglement
entropy is given as

S ¼ 1

12

Ld�1 logL

ð2�Þd�1

I
@A

I
@�

jn̂x � n̂kjdSxdSk; (2)

where the real-space surface integral is carried out over the
subsystem whose volume is normalized to 1. The surface
area is factored out as Ld�1. However, in our formula, the
surface area proportional to Ld�1 is implicitly included in
the integral over the surface of the subsystem.
We note that the model discussed in Ref. [26] is equiva-

lent with our toy model but motivated from a different
perspective. In Ref. [26], models are constructed from the
momentum space, either with Fermi surfaces (as in our toy
model) or with a square Fermi surface, and a boxlike and a
spherical geometry are discussed. In contrast, our toy
model is constructed from a real-space perspective, and
general, single, connected geometries are discussed.
Motivated by the toy model, in this work we extend this

intuitive understanding of GK’s result to generic free Fermi
systems and generalize it to include Fermi-liquid interac-
tions in two dimensions (2D) via high-dimensional boson-
ization. When we use the method of multidimensional
bosonization, the Fermi-liquid theory can be written as a
tensor product of low-energy effective theories of quasi-1D
systems similar to this toy model, along all directions. This
method provides us with a tool to treat the entanglement
entropy of fermions in high dimensions, even in the pres-
ence of interactions, as we will explain below.
At this point, we could also include forward scattering

for each chain. From 1D bosonization, we know that, for
spinless fermions, forward scattering only leads to renor-
malization of the Fermi velocity, and thus does not change
the logarithmic scaling of the entanglement entropy for our
toy model. This fact hints that the same conclusion might
hold for Fermi liquids, as we can include Fermi-liquid
interactions in a similar way via high-dimensional boson-
ization. Although, as we show later, this is indeed true at
the leading order, the situation is more delicate than it
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FIG. 1. The toy model both in real space and in momentum
space. (a) A set of parallel decoupled 1d chains of spinless free
fermions (dashed lines); the subsystem division is represented by
the solid lines, both convex and concave geometries. (b) Fermi
surfaces of the toy model.
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seems. The Fermi-liquid interactions couple a family
of toy models aligned along different directions in the
language of high-dimensional bosonization, and lead to a
correction to the entanglement entropy of approximately
Oð1Þ � logL.

III. MULTI-DIMENSIONAL BOSONIZATION

The scheme of multi-dimensional bosonization was first
introduced by Haldane [28], followed by others [29–32].
The basic idea is to start with a low-energy effective
Hamiltonian (obtained through a renormalization group
approach) restricted to within a thin shell of thickness �
around the Fermi surface, kF � �=2< k< kF þ �=2.
Then one divides this thin shell into N patches with di-
mensionality��d�1 � � as shown in Fig. 2, in such a way
that � � � � kF and �2=kF � �, where d ¼ 2, 3 is the
space dimension, and � is the linear dimension of the
tangential extent of each patch. The condition � � �
minimizes interpatch scattering; � � kF and �2=kF � �
together make the curvature of the Fermi surface negli-
gible. In the end, we shall take the limit �=kF ! 0, so that
the sum over all patches can be converted to an integral
over the Fermi surface. In this work, we treat the free
theory in general d dimensions, but we shall restrict our-
selves to d ¼ 2 when interactions are included. For an
arbitrary patch S, labeled by the Fermi momentum kS at
the center of the patch, we introduce the patch fermion-
field operator

c ðS; xÞ ¼ eikS�x
X
p

�ðS;pÞeiðp�kSÞ�xc p; (3)

where c p is the usual fermion field in momentum space,

�ðS;pÞ ¼
�
1 if p lies in patch S;

0 if p lies outside patch S:

The effective Fermi-liquid Hamiltonian can be written as

H½c y;c �¼
Z
ddx

X
S

c yðS;xÞ
�
kS
m� �r

�
c ðS;xÞ

þ
Z
ddxddy

X
S;T

VðS;T;x�yÞc yðS;xÞ

�c ðS;xÞc yðT;yÞc ðT;yÞ; (4)

where m� is the effective mass, and VðS;T; x� yÞ is
the effective interaction between patch S and T in the
forward-scattering channels. Even though this model is
restricted to special interactions of this form, forward
scattering is known to be the only marginal interaction in
renormalization-group analysis [40]. As the leading-order
contribution of the entanglement entropy is dominated by
the low-energy modes around the Fermi surface, it is

sufficient to consider this model. Similar to the 1D case,
the bosonic degrees of freedom are the density modes of
the system. In this case, they are defined within each patch
of the Fermi surface:

JðS; qÞ ¼ X
k

�ðS; k� qÞ�ðS; kÞ
�
c y

k�qc k � �d
q;0hc y

kc ki
�
:

(5)

Although q is not explicitly bounded in the above
definition of the patch-density operator, its transverse

components qS? ¼ ðqð1ÞS?; . . . ; q
ð�Þ
S?; . . . ; q

ðd�1Þ
S? Þ (those

components parallel to the Fermi surface) are limited

1

2

3

4

5

6 7

8

9

SkS

N

nS

kS

FIG. 2. Patching of the Fermi surface. The low-energy theory
is restricted to within a thin shell about the Fermi surface with a
thickness � � kF, in the sense of renormalization. The thin shell
is further divided into N different patches; each has a transverse
dimension �d�1 where d ¼ 2, 3 is the space dimensions. The
dimensions of the patch satisfy three conditions: (1) � � �
minimizes interpatch scattering; (2) � � kF and �2=kF � �
together makes the curvature of the Fermi surface negligible. (a):
Division of a 2D Fermi surface into N patches. Patch S is
characterized by the Fermi momentum kS. (b): A patch for
d ¼ 3. The patch has a thickness � along the normal direction
and a width � along the transverse direction(s).
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qð�ÞS? 2 ð��;�Þ due to the patch confinement. Their com-

mutation relation is

½JðS;qÞ;JðT;pÞ�
’�S;T�

d
qþp;0

X
k

�ðS;kÞ½�ðS;k�qÞ��ðS;kþqÞ�nk (6)

¼ �S;T�
d
qþp;0�ðn̂S � qÞ�2ðqS?Þ þOð�=�Þ; (7)

where

�2ðqS?Þ ¼
Y
�

ð1� qð�ÞS?=�Þ; (8)

� ¼ �d�1½L0=ð2�Þ�d, nk ¼ hc y
k c ki is the occupation

number of state with momentum k, n̂S is the outward
normal direction of patch S, qS? represents all other com-
ponents of q that are perpendicular to n̂S, and L0 is the
linear dimension of the entire system. The appearance of
�qþp;0 is a result of momentum conservation. The calcu-

lation of the commutator is reduced to computing the
difference of occupied states, i.e., the area difference
below the Fermi surface, between the two � functions
(�ðS; k� qÞ � �ðS; k� pÞ), as indicated by Eq. (6). This
is similar to 1D bosonization. If we consider both k and q
to be 1D momenta, Eq. (6) would give us the 1D boson-
ization commutator. The 2D result Eq. (7) is similar,
because the Fermi surface confined within the patch is
essentially flat, and thus the dispersion is 1D. That leads
to the n̂S � q dependence of the commutator as that of
the 1D case, even for qS? � 0. The difference is that, as
illustrated in Fig. 3, due to the patch confinement on the

transverse direction(s), when qS? increases, k� q would
increasingly find itself outside the patch, and thus not
contributing to the commutator. According to Fig. 3, one
can see that this gives rise to the factor �2ðqS?Þ, which
diminishes the commutator at large qS?. It is usually
neglected in the literature because the long-wavelength
limit is taken [29–32]. However, as it is important in the
present context to correctly count the number of total
degrees of freedom, this �2ðqS?Þ factor cannot be ne-
glected because it comes from counting the transverse
degrees of freedom. To simplify things, we replace
�2ðqS?Þ by

�2ðqS?Þ ¼ 1 for ��=2< qð�ÞS? <�=2; (9)

and we also limit qS? to this range. This approximation
makes it easier to do a Fourier transform while keeping the
total degrees of freedom intact. To see that, it is sufficient
to consider one direction, comparing the area enclosed by
the two different functions: �2ðq?Þ ¼ 1� q?=� over the
range (��, �) and �2ðq?Þ¼1 over the range (��=2,
�=2). Both functions enclose the same area and thus the
same number of states. This approximation can also be
interpreted as relaxation of the hard-wall cutoff in Eq. (5)
and softening of the step function �ðS; kÞ. In Eq. (5), q is
not bounded while k is bounded by �ðS;kÞ. If we relax the
restriction on k in the transverse direction, allowing k with

jkð�ÞS?j>�=2 in the summation, but require q�S? to be

bounded within the patch, we would obtain the alternative
�2ðq?Þ.
Using the above approximation from now on, we con-

struct the local bosonic degrees of freedom �ðS; xÞ ¼
�ðS; xS; xS?Þ as

JðS; xÞ ¼
ffiffiffiffiffi
�

p
@xS�ðS; xS; xS?Þ; (10)

where JðS; xÞ ¼ P
qe

iq�xJðS; qÞ, xS ¼ x � n̂S, and xS? ¼
x� ðx � n̂SÞn̂S. The commutation relations for the �s are
then

½@xS�ðS;xÞ;�ðT;yÞ�

¼ i2���S;T�ðxS�ySÞ
Yd�1

�¼1

�
sin½�ðxð�ÞS?�yð�ÞS?Þ�
2�ðxð�ÞS?�yð�ÞS?Þ

�
(11)

which is the bosonic-commutation relation we are looking
for. The factor

Y
�

�
sin½�ðxð�ÞS? � yð�ÞS?Þ�
2�ðxð�ÞS? � yð�ÞS?Þ

�

arising from transverse directions must be treated with care
in different circumstances. In most of the literature, the
focus is on the physics at large-length scale l 	 1=�;
therefore, this factor is usually approximated by
�d�1ðxS? � yS?Þ, which is good in that limit without
further discussion. This is also what we shall do for most
of the discussion unless noted otherwise:

Fermi surface

q

q
qS

qnS

FIG. 3. Origin of the bosonic commutator of patch density
operators illustrated for d ¼ 2. As shown in Eq. (7), the com-
mutator is reduced to computing the difference of occupied
states, i.e., the area difference below the Fermi surface, between
the two � functions (�ðS; k� qÞ � �ðS; kþ pÞ). The solid box
indicates the original patch, or �ðS; kÞ. The red line shows the
Fermi surface. Both �ðS;k� qÞ and �ðS; kþ pÞ are denoted
by dashed boxes. The occupied part in �ðS;kþ qÞ is denoted by
blue, that of �ðS; k� qÞ is denoted by red, and the overlapping
region is denoted by yellow. Subtracting the remaining blue area
from the red, we obtain that �ðS; k� qÞ occupies ð�� qS?Þqn̂S

more states, which gives us the commutator.

WENXIN DING et al. PHYS. REV. X 2, 011012 (2012)

011012-4



½@xS�ðS; xÞ; �ðT; yÞ����!jxð�Þ
S?�yð�Þ

S?j	1=�

’ i2���d�1
S;T �ðxS � ySÞ�d�1ðxS? � yS?Þ: (12)

However, the more accurate expression of Eq. (11) is
useful to help us understand how to count the transverse
degrees of freedom correctly. It tells us that the transverse
degrees are not independent of the short-length scale
l < 1=�. More important, later on, we will need to con-
sider the limit �d�1ðxS? � yS?ÞjyS?!xS? ; without Eq. (11),

this limit would be ill defined.
With the above equations, the Hamiltonian H½c y; c � is

found to be quadratic in terms of these JðS; qÞs:

H½c y; c � ¼ 1
2

X
S;T;q

v�
F�S;T

�
JðS;�qÞJðT; qÞ

þ VðS;T;qÞJðS;�qÞJðT; qÞ; (13)

where VðS;T; qÞ is the Fourier transform of VðS;T; x� yÞ,
so it is also quadratic in the bosonic fields associated with
the JðS; qÞs.

A. Entanglement entropy of free fermions

The kinetic energy part of Eq. (4) or its bosonized
version Eq. (13) can be written in terms of the boson fields
constructed above as

H0 ¼ 1

2

X
S;q

v�
F

�
JðS;�qÞJðS; qÞ

¼ 2�v�
F

�V

X
S

Z
d2x½@xS�ðS; xÞ�2: (14)

We see that there is no coupling between different patches.
The theory is thus formally a tensor product of many
independent theories, one for each patch. We can therefore
calculate the entanglement entropy patch by patch and sum
up contributions from each patch in the end. Within a
single patch, there is no dynamics in the perpendicular
direction as dictated by the Hamiltonian, and the problem
is reduced to a one-dimensional problem. Note that trans-
verse degrees of freedom are not completely independent.
According to Eq. (11), the commutator is nonvanishing for
xS? � yS? up to a length scale of 2�=�, as a consequence
of restricting qS? to within the range [��=2, �=2].
Physically, one can view this as discretization along the
transverse direction due to a restricted momentum range,
similar to the relation between a lattice and its Brillouin
zone. In this view, the single-patch problem is reduced
to a 1D problem with a chain density of ð�=ð2�ÞÞd�1.
Therefore, the Hamiltonian (14) becomes

H0 ¼ 2�v�
F

�V

X
S;xS?

Z
dxS½@xS�ðS; xÞ�2: (15)

Note that the bosonized theory of a single patch is chiral.
To directly make use of our toy model, we need to consider

two patches having opposite n̂S simultaneously. This
is because, for a 1D-fermion model at nonzero filling,
there are two Fermi points. Both need to be considered to
construct well-defined local degrees of freedom. Once we
consider two such patches together, it is more convenient to
combine the two chiral theories into a nonchiral theory. We
will do this for the rest of this work. Next, we introduce the
nonchiral fields

’ðS; xÞ ¼ 1ffiffi
2

p ð�ðS; xÞ ��ð�S; xÞÞ;
�ðS; xÞ ¼ 1ffiffi

2
p ð�ðS; xÞ þ�ð�S; xÞÞ; (16)

where �S indicates the patch with normal direction oppo-
site to that of patch S: n̂�S ¼ �n̂S. One finds that � and ’
are mutually dual fields with S restricted to one hemi-
sphere, but @xS’ and ’ now commute while � and ’

have a nontrivial commutator:

½’ðS;xÞ;@yS’ðS;yÞ�¼½�ðS;xÞ;@yS�ðS;yÞ�¼0;

½@xS’ðS;xÞ;�ðT;yÞ�¼½@xS�ðS;xÞ;’ðT;yÞ�
¼2i���S;T�ðxS�ySÞ�d�1ðxS?�yS?Þ:

(17)

Therefore, two patches with opposite n̂S are equivalent to a
set of ordinary 1D boson fields. Throughout the rest of this
work, we shall assume that this chiral-to-nonchiral trans-
formation is done, and, when we refer to patches, we
always refer to the two companion patches that together
form a nonchiral patch. For the nonchiral boson theory, it is
known that the entanglement entropy of a single interval
(with two end points) is 1

3 logL.

Before we proceed further, we note that the relationship
between boson fields and the original fermion fields is not
completely local. However, the underlying physical quan-
tity that matters is not the fermion fields, but the fermion
density, or in other words, the fermion-number basis that
one chooses in order to expand the Hilbert space of the
problem. This physical basis is also what one uses to
perform the partial trace. The fermion-density operator
obeys a locally one-to-one corresponding relation to the
boson fields. Thus, we argue that, in 1D, the nonlocal
relation between the fermion and boson fields does not
affect the partial trace operation, and also does not affect
the calculation of entanglement entropy.
By referring to our result for the toy model, we readily

obtain the contribution from a single patch,

SðSÞ ¼ 1

12
logL

I
@A

jn̂S � d ~Sxj �
�
�

2�

�
d�1

; (18)

where an additional factor of 12 has been introduced in order

to count only once each pair of patches that forms a non-
chiral theory. Identifying n̂S�

d�1 as the surface element at

the Fermi surface d ~Sk and taking theN ! 1 limit, the total
entanglement entropy is
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S ¼ 1

12ð2�Þd�1
logL

I
@A

I
@�

jd ~Sk � d ~Sxj: (19)

So we recover the GK result for generic free fermions.

B. Solution for the Fermi-liquid case and nonlocality
of the Bogoliubov fields

When Fermi-liquid interactions (forward scattering) are
included, the full Hamiltonian will no longer be diagonal in
the patch index S. But it is still quadratic in terms of the
patch-density operators, i.e., the bosonic degrees of free-
dom, and can be diagonalized by a Bogoliubov transfor-
mation. According to Eq. (7) and ignoring terms of
Oð�=�Þ, one can define a set of boson creation/annihila-
tion operators âyðqÞ=âðqÞ as follows:

�ðS; xÞ ¼ i
X

q;n̂S�q>0

ayðS; qÞe�iq�x � aðS; qÞeiq�xffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂S � q

p : (20)

It can be shown that the full Hamiltonian is diagonal in
q, and it can be diagonalized by a Bogoliubov transforma-
tion [32] independently for each q sector. In Ref. [32], only
a Hubbard-U-like interaction is considered for practical
reasons. However, in principle, such a Bogoliubov trans-
formation also applies to general interactions:

âiðqÞ ¼
X
j

uij�jðqÞ þ vij	
y
j ðqÞ;

b̂iðqÞ ¼
X
j

uij	jðqÞ þ vij�
y
j ðqÞ;

(21)

where both i and j refer to the patch index, and �j and 	j

are the Bogoliubov bosonic-annihilation operators that
diagonalize the Hamiltonian. With the proper choice of
u’s and v’s, the Hamiltonian can be readily diagonalized.
Reference [32] solves the Hubbard-U-like interaction and
provides a successful description of Fermi liquids, even in
the strong-U limit.

However, even for this simple case in which U has no
dependence on q, the Bogoliubov transformation still de-
pends on q. To be more precise, uij and vij will depend

only on the angle between the normal direction n̂S of the
patch and q, leading to discontinuities in the derivatives at
q ¼ 0. Consequently, the real-space fields constructed
from the Bogoliubov operators �j and 	j are no longer

local with respect to the original boson fields. The real-
space Bogoliubov fields are constructed in a manner simi-
lar to Eq. (20):

~�ðS; xÞ ¼ i
X

q;n̂S�q>0

�yðS; qÞe�iq�x � �ðS; qÞeiq�xffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂S � q

p : (22)

Then one can show that the original local degrees of free-
dom �ðS; xÞ can be expressed in terms of the above
Bogoliubov fields as

�ðS; xÞ ¼ ~�ðS; xÞ þ
Z

dy
X
l

fðS; l; x� yÞ ~�ðl; yÞ; (23)

where fðS; l; x� yÞ is typically long-range, even for the
short-range Hubbard-U interaction. For more general
cases, with further q dependence in the interaction, the
nonlocality would only be enhanced. The loss of locality
prevents us from calculating the entanglement entropy
directly using those eigen modes, since it is difficult to
implement the partial trace using those nonlocal degrees of
freedom. Therefore, although the Bogoliubov fields have a
local core, as we would expect for Fermi liquids from
adiabaticity, they do acquire a nonlocal dressing due to
interaction. Although, in principle, the partial trace can be
performed with those Bogoliubov fields, such nonlocality
makes it difficult, and we have not been able to do it, which
further renders calculating the entanglement entropy im-
possible. This situation is very different from the 1D
theory, where for local interactions the eigen fields remain
local, since there are only two Fermi points. There, the
transformation can never involve such angular q depen-
dence due to limited dimensionality. Despite these techni-
cal difficulties, the nonlocality may suggest possible
corrections to the entanglement entropy. This is indeed
the case, as revealed by our calculation for Fermi-liquid
interactions (shown later), although, with the Fermi-liquid
interaction calculations, such extra contributions are only
ofOð1Þ � logL, which is ofOð1=LÞ when compared to the
leading term. This shows that the mode-counting argument
in Ref. [26], although correctly suggesting the logL viola-
tion of the area law for Fermi liquids, does not always fully
account for all sources of entanglement entropy.

IV. ENTANGLEMENT ENTROPY FROM THE
GREEN’S FUNCTION

In order to preserve locality, we need to work with the
original local degrees of freedom. To do that, we adopt the
approach used by Calabrese and Cardy [41] (CC) on
calculating the entanglement entropy of a free-massive-
1D-bosonic field theory. The calculation is done in terms of
the Green’s function by applying the replica trick. In our
case, we find that the CC approach can be generalized in a
special geometry for solving the interacting theory which
is quadratic after bosonization. In this way, we avoid
diagonalizing the Hamiltonian and thus also avoid the
nonlocality issue. However, we do have to regularize the
theory by adding a mass term by hand. In the end, we shall
take the small mass limit and replace the divergent corre-
lation length 
� 1=m by the subsystem size L. The regu-
larization procedure facilitates the calculation, but it also
strictly restricts us to computing the entanglement entropy
only at the logL level.
In this section, by using the replica trick, we convey

the calculation of entanglement entropy into computing
the Green’s function on an n-sheeted replica manifold.
We first demonstrate the method by applying it to free-
fermion theory in d-dimensional space; then, based on
that demonstration, we compute the entanglement entropy
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perturbatively for a simple Fermi-liquid theory in powers
of the interaction strength up to the second order.

A. The replica trick and its application
to 1D free-bosonic theory

In this section, we briefly describe the replica trick in
(1þ1) space-time dimensions [ð1þ1Þd] so that, later on,
we can straightforwardly generalize it to (2þ 1) space-
time dimensions [ð2þ 1Þd] accordingly for our problem.

The replica trick makes use of the following identity:

SA ¼ �trð�A ln�AÞ ¼ �lim
n!1

@

@n
tr�n

A: (24)

To compute tr�n
A, CC use a path integral to express the

density matrix � in terms of the boson fields

�ðf�ðxÞgjf�ðx0Þ0gÞ ¼ Z�1hf�ðxÞgje�Hjf�ðx0Þ0gi; (25)

where Z ¼ tr e�	H is the partition function, 	 is the in-
verse temperature, and f�ðxÞg are the corresponding eigen-
states of �̂ðxÞ: �̂ðxÞjf�ðx0Þgi ¼ �ðx0Þjf�ðx0Þgi. � can be
expressed as a (Euclidean) path integral:

� ¼ Z�1
Z
½d�ðx; �Þ�Y

x

�½�ðx; 0Þ ��ðxÞ0�

�Y
x

�½�ðx; 	Þ ��ðxÞ00�e�SE ; (26)

where SE ¼ R	
0 LEd�, with LE being the Euclidean

Lagrangian. The normalization factor Z, i.e., the partition
function, is found by setting f�ðxÞ00g ¼ f�ðxÞ0g and inte-
grating over these variables. This procedure has the effect of
sewing together the edges along � ¼ 0 and � ¼ 	 to form a
cylinder of circumference 	, as illustrated in Fig. (4(a)).

The reduced density matrix of an interval A ¼ ðxi; xfÞ
can be obtained by sewing together only those points that
are not in the interval A, which has the effect of leaving an
open cut along the line � ¼ 0 as shown in Fig. 4(b). To
compute �n

A, we make n copies (replicas) of the above
setup, labeled by an integer k with 1 
 k 
 n, and sew
them together cyclically along the open cut so that�ðxÞ0k ¼
�ðxÞ00kþ1 [and �ðxÞ0n ¼ �ðxÞ001 ] for all x 2 A. In Fig. 5(a),

we show the case for n ¼ 2. Let us denote the path integral
on this n-sheeted structure (known as an n-sheeted
Riemann surface) by ZnðAÞ. Then

tr�n
A ¼ ZnðAÞ

Zn ; (27)

so that

SA ¼ �lim
n!1

@

@n

ZnðAÞ
Zn : (28)

If we consider the theory as that of a single field living
on this complex n-sheeted Riemann surface instead of a
theory of n copies, it is possible to remove the replica index
n from the fields, and instead consider a problem defined
on such an n-sheeted Riemann surface that can be realized
by imposing proper boundary conditions.
In Ref. [41], CC consider the entanglement entropy

between the two semi-infinite 1D systems (i.e., cutting an
infinite chain into two halves at x ¼ 0) for massive-free-
boson fields. For such geometry, as illustrated in Fig. 5, the
n-sheeted-Riemann-surface constraint is realized by im-
posing a 2n� periodicity on the angular variable of the
polar coordinates of the ð1þ 1Þd plane instead of the usual

FIG. 4. Path integral representation of the reduced density
matrix. (a) When we sew �ðxÞ0 ¼ �ðxÞ00 together for all x’s,
we get the partition function Z. (b) When we sew only x =2 A
together, we get �A.

A
n

x

FIG. 5. Formation of the n-sheeted Riemann surface in the
replica trick. By sewing n copies of the reduced density matrices
together, one obtains the replica partition function Zn. In the zero
temperature limit, 	 ! 1, each cylinder representing one copy
of �A becomes an infinite plane. Those n-planes sewed together
form a n-sheeted Riemann surface in Fig. 5 which can be simply
realized by enforcing a 2n� periodicity on the angular variable
of the polar coordinates of the ð1þ 1Þd plane instead of the usual
2� one. (a): n copies of the reduced density matrices. For clarity
only n ¼ 2 is shown. (b): Visualization of a n-sheeted Riemann
surface.
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2� periodicity. In this way, the ð1þ 1Þd variable x ¼ ðx; �Þ
acquires n branches xn, and each branch corresponds to
one copy of �. Notationwise, we obtain

�ðx; �Þk ) �ðxkÞ ) �ðxÞ; (29)

and the sewing conditions �ðxÞ0k ¼ �ðxÞ00kþ1 simply be-

come the continuity condition for �ðxÞ across its consecu-
tive branches. Here, we use a generalized polar coordinate:
x ¼ ðr; �Þ with 0< r <1, and 0 
 � < 2n�.

The massivefree-boson theory considered by CC is de-
fined by the following action:

S ¼
Z

1
2½ð@��Þ2 �m2�2�d2r:

The ð1þ 1Þd bosonic Green’s function GðnÞ
0;bðr; r0Þ ¼

h�ðrÞ�ðr0Þi on the n-sheeted Riemann surface satisfies
the differential equation

ð�r2
r þm2ÞGðnÞ

0;b ¼ �ðr� r0Þ:
To compute the partition function, one can make use of the
identity

@

@m2
logZn ¼ � 1

2

Z
ddþ1xGðnÞðx; xÞ: (30)

Note that here the integration is over the entire n-sheeted
space. Equation (30) is applicable to general quadratic
theories of bosons, and we will apply it in Sec. IVD to
bosonized theories of interacting fermions. In Eq. (30) we

use GðnÞðx; x0Þ, a general two-point correlation function on
the n-sheeted Riemann surface in d-dimensional space for

later use, instead of the specificGðnÞ
0;b defined in the equation

just above Eq. (30). Accordingly, SA is then given as

SA ¼ �lim
n!1

@

@n
e�ð1=2Þ

R
dm2

R
dDþ1x½GðnÞðx;xÞ�nGð1Þðx;xÞ�: (31)

Here and in the following, we will leave it understood that
the first term in the integrand is integrated over the
n-sheeted geometry, whereas the second is integrated
over a one-sheeted geometry. There should be no confu-
sion, as the superscript of G generally indicates the
geometry.

The benefit of the above approach is that the two-point
correlation function, or Green’s function, defined in terms
of certain differential equations obtained from the
equation of motion, can be solved for on the n-sheeted
Riemann surface, thus enabling us to compute the entan-
glement entropy. Although CC’s work considers only
massive-ð1þ 1Þd boson fields, it is also applicable to our
case. The price one has to pay is to introduce amass term for
regularization. At the end of the calculation, the inverse
mass, which is the correlation length of the system, shall be
considered to be on the same scale as L: 1=m� L, where L
is the characteristic length scale of the subsystem. The
validity of such consideration is well-established in other

cases [35,42], where the correlation length is set by either
finite temperature ormass. The onlymodification necessary
to apply the above approach to a bosonized Fermi surface in
higher dimensions is to introduce a sum over the patch
index.

B. Geometry and replica boundary conditions

Throughout the remainder of this work, instead of the
general geometry considered earlier, we work with a spe-
cial half-cylinder geometry, as shown in Fig. 6(a): The
system is infinite in the x̂ direction while obeying the
periodic boundary condition along the ŷ direction with
length L. The system is cut along the ŷ axis so that we
are computing the entanglement entropy between the two
half planes. We require L to be large so that it can be
considered approximately 1 unless otherwise noted.
We choose such a simple geometry for the following

reasons. Cutting the system straight along the ŷ direction,
yielding a two-half-plane geometry, is a straightforward

FIG. 6. The half-cylinder geometry and equivalence of bound-
ary conditions in x̂-�̂ and n̂S-�̂ planes. The system is infinite in
the x̂ direction while obeys periodic boundary condition along
the ŷ direction with length L. The system is cut along the ŷ axis
so that we are computing the entanglement entropy between the
two half planes. (a): The half-cylinder geometry. (b): The pro-
jection of rS onto the x̂-�̂ plane. Consider polar coordinates of an
arbitrary n̂S-�̂ plane (the blue plane). Since the polar coordinates
in the x̂-�̂ plane satisfy the 2n� periodic boundary condition,
consider the one-to-one projection of the vector rS onto the x̂-�̂
plane. Consider, if we move the vector in the x̂-�̂ plane around
the origin n times (the red circle). Because of the one-to one
mapping, rS should also move around the origin n times (the
blue ‘‘circle’’; it is actually an eclipse), thus obeys the 2n�
periodicity as well.
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ð2þ 1Þd generalization of the semi-infinite chain geome-
try considered by CC. It makes any straight line intersect
the boundary only once, dividing the line into two semi-
infinite segments, for all patch directions, as in the 1D case,
except for lines parallel to the n̂S ¼ ŷ patch direction. The
degrees of freedom associated with this special patch do
not contribute to the entanglement entropy, since they are
not coupled (have no dynamics) along x̂, and are of mea-
sure zero in the large-patch-number limit anyway.

For this simple geometry, the ð2þ 1Þd n-sheeted ge-
ometry is constructed from n identical copies,

Sn ¼ fðx; y; �Þ 2 R� R� Rg; (32)

sliced along ‘‘branch cuts,’’

Cn ¼ fðx; y; �Þ 2 R� � R� f0gg; (33)

and then appropriately glued together along these cuts.
This happens exactly as in 1D, and the y coordinate is so
far a mere spectator. This geometry defines an n-sheeted,
or, in this case, more appropriately, the n-layered, replica
manifold which is a simple enough generalization of the
ð1þ 1Þd case. The n-sheeted Riemann surface, as dis-
cussed in Sec. IVA and shown in Fig. 5(b), now acquires
an extra direction ŷ perpendicular to the x̂-�̂ plane. It can
still be implemented by imposing the same 2n� periodicity
boundary conditions on �, the angular variable of the polar
coordinates ðx; �Þ ¼ ðr cos�; r sin�Þ in the x̂-�̂ plane.
Therefore, we can safely make use of the CC result, i.e.,
the solution to the Green’s function on an n-sheeted
Riemann surface, in the free-fermion theory, and can fur-
ther use it as a starting point for treating the interacting
theory. This is obviously true for the patch with n̂S ¼ x̂,
but it also holds for general n̂S, as we shall validate next.

For a general patch direction n̂S, the noninteracting
Green’s function associated with this patch embodies cor-
relations in the affine n̂S-�̂ ‘‘planes.’’ The geometry of each
such plane is that of the n-sheeted Riemann surface of the
ð1þ 1Þd problem, as we will now argue. With each patch
direction, we thus associate a different foliation of the
n-sheeted ð2þ 1Þd geometry into ð1þ 1Þd counterparts.

To be more precise, for given patch S, instead of the
Cartesian coordinates (x, y, �), we consider a parallel and
perpendicular decomposition (xS, xS?, �) for each sheet
via

ðx; yÞ ¼ xSn̂S þ xS?n̂S?; (34)

where n̂S? are the perpendicular unit vectors aligned with
patch S. The natural choice of coordinates for a given patch
is to choose polar coordinates within the n̂S-�̂ plane:

r S ¼
�
xS þ xS?

n̂xS?
n̂xS

; �

�
¼ ðrS cos�S; rS sin�SÞ; (35)

because these are the coordinates in which the n̂S-�̂ planes
restricted to each sheet are naturally glued together by
extending the range of �S to 2�n, as we will now show.

The shift xS?n̂xS?=n̂
x
S of xS is necessary to ensure that

x ¼ 0, the location of the onset of the branch cut, corre-
sponds to rS¼0, which is what makes these coordinates so
convenient. The n̂S-�̂ planes are now defined by fixed xS?.
If we can establish that the 2�n periodicity of � is

equivalent to a 2�n periodicity of �S, then CC’s solution
would be justified in the above setup so that the noninter-
acting Green’s function G0ðS;S; ; rS; �S; r0S; �0SÞ can be

expressed through CC’s result. This equivalence can be
achieved by establishing a one-to-one correspondence
(mapping) between � and �S. The mapping is intuitively
constructed, as shown in Fig. 6(b), as the vertical projec-
tion from the n̂S-�̂ plane [the blue plane in Fig. 6(b)] onto
the x̂-�̂ plane along the ŷ direction. Consider moving the
projection of rS in the x̂-�̂ plane around the origin n times
(the red circle). It is clear that rS (on the blue ellipse)
follows its projection while also moving around the origin
n times, always being on the same sheet. In particular, the
branch cut is always traversed simultaneously for � ¼
�S ¼ � mod 2�. The n̂S-�̂ planes, the leaves of our
foliation, thus have the familiar 1þ 1d n-sheeted geome-
try, and �S obeys the same 2n� periodicity as �.
Finally, the periodicity condition of the ŷ direction is

necessary for the total entanglement entropy to be finite; it
also provides the only length scale for the subsystem,
which is needed for extracting the scaling behavior of
entanglement entropy. However, if we are concerned only
with the integral form of the entanglement entropy as in
Eq. (19), not requiring it to be finite as a whole, but rather
requiring only the entanglement entropy per unit length to
be finite, we may take the y direction to be infinite. This
point of view will be taken here and in the following
analysis in order to simplify our calculation.

C. Entanglement entropy of free fermions revisited

In order to treat the interacting theory, in this section, we
rederive the free fermion result for the half-cylinder ge-
ometry via the replica trick. Later in the paper, we shall
generalize the method to include interactions. Rewriting
the Hamiltonian Eq. (14) in terms of the nonchiral fields,
and adding the mass term by hand, we have

H½�ðS; xÞ� ¼ X
S

Z
d2x

2�v�
F

�V

�
½@xS’ðS; xÞ�2

þ ½@xS�ðS; xÞ�2
�
þm2

2
’ðS; xÞ2: (36)

For convenience, we use the Lagrangian formalism and
work with the ’ðS; xÞ representation throughout the rest of
this work.
Switching to imaginary time t ! i�, and rescaling the

coordinates in the following manner,

� !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V

16�3v�
F�

s
�

m
; x !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V

4�2v�
F

s
x

m
; (37)
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we obtain the following Lagrangian density in the ’ rep-
resentation :

L¼�m2

2

�
½@�’ðS;xÞ�2þ½@S’ðS;xÞ�2þ½’ðS;xÞ�2

�
: (38)

Then we can work out the Euler-Lagrangian (E-L) equa-
tion of motion. Making use of the E-L equation of motion,

we find the Green’s function GðnÞ
0 ðS;T; x; x0Þ ¼

hT’ðS; xÞ’ðT; yÞi0 satisfies the following differential
equation:

� ð@2� þ @2xS � 1ÞGðnÞ
0 ðS;T; x; yÞ

¼ C�S;T�ð�� �yÞ�ðxS � ySÞ�d�1ðxS? � yS?Þ; (39)

where C ¼ 2��md�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V=ð4�2v�

F

q
ÞÞd�2. The rescaling

makes the Green’s function dimensionless, and thus easier

to handle when it comes to computing
R
ddþ1xGðnÞðx; xÞ.

The extra factor C generated on the right-hand side will be
canceled by the Jacobian of the integral over the Green’s
function, leaving only a factor of 1=m2. All that then needs
to be computed is an integral over the dimensionless G.
Therefore, it is legitimate to ignore this factor from now on.
The � functions originate from the commutator Eq. (11)
and are coarse grained. After we include the patch index,
perform the integral over m2, and take the n derivative,
Eq. (31) becomes

SA ¼ 1

2
logðm2a20Þlim

n!1

@

@n

X
S

½CGðS; nÞ � nCGðS; 1Þ�; (40)

where a0 is an ultraviolet cutoff, and

CGðS; nÞ ¼
Z

ddþ1xGðnÞ
0 ðS;S; x; xÞ: (41)

The exponential factor in Eq. (31) becomes 1 after the
n ! 1 limit is applied. Note that 1

2 logðm2a20Þ � � logL.

Our major task is now to compute CGðS;nÞ.
Observing that there is no xS? dependence on the left-

hand side of Eq. (39), we can write

GðnÞ
0 ðS;T; x; yÞ ¼ �S;T�

d�1ðxS? � yS?ÞGðnÞ
0;bðS; rx; ryÞ;

and we obtain a ð1þ 1Þd equation

�ð@2�þ@2xS þ1ÞGðnÞ
0;bðS;rS;x;rS;yÞ¼�ð���yÞ�ðxS�ySÞ;

(42)

in which rS;xðyÞ is as defined in Eq. (35). The same equation

appears in CC. We shall also suppress the subscript S
unless necessary, as it is normally already specified in the
notation for G0;b.

The transverse part of the integral in CGðS; nÞ can be
factored out asZ

dd�1xS?�d�1ðxS? � yS?Þjy!x:

Recalling our discussion about Eq. (11), this is a coarse-
grained � function. At short distances, instead of a diver-
gence, we should use

�d�1ðxS? � yS?Þjy!x ¼ ½�=ð2�Þ�d�1: (43)

Therefore, the transverse direction integral becomes

½�=ð2�Þ�d�1
Z

dd�1xS? ¼ ½�=ð2�Þ�d�1
I
@A

dSx � n̂S:

Identifying�d�1n̂S as the surface element dSk, for a given
patch the integration can be rewritten as ð2�Þ�dþ1 �H

@A
jdSx � dSkj. This leaves us with only an integral over

GðnÞ
0;bðS; rx; rxÞ � nGð1Þ

0;bðS; rx; rxÞ.
The solution for the ð1þ 1Þd Green’s function on the

n-sheeted-replica manifold is given in CC:

GðnÞ
0;bðS; rx; ryÞ ¼

1

2�n

X1
k¼0

dkCk=nð�x � �yÞgk=nðrx; ryÞ;

(44)

where d0 ¼ 1, dk ¼ 2 for k > 0, Cð�Þ ¼ cosð�Þ,
gðr; r0Þ ¼ �ðr � r0ÞIðr0ÞKðrÞ þ �ðr0 � rÞIðrÞKðr0Þ,
and IðrÞ and KðrÞ are the modified Bessel functions of
the first and second kind, respectively. r and � are again the
polar coordinates of the n̂S-�̂ plane, and we have sup-
pressed the index S of r, as only one patch direction is
involved.

The integral over GðnÞ
0;b is

Z
d2rxG

ðnÞ
0;bðS; rx; rxÞ ¼

Z
drxrx

X
k

dkgk=nðrx; rxÞ: (45)

The integral is divergent since the integrand
rxgk=nðrx; rxÞjrx!1 ¼ 1=4, a consequence of the fact that

we are calculating the partition function of an infinite
system. But this divergence should be canceled in
CGðS;nÞ � nCGðS; 1Þ. To regularize the divergence, we
use the Euler-MacLaurin (E-M) summation formula fol-
lowing CC, and sum over k first:

1

2

X1
k¼0

dkfðkÞ¼
Z 1

0
fðkÞdk� 1

12
f0ð0Þ�X1

j¼2

B2j

ð2jÞ!f
ð2j�1Þð0Þ;

(46)

where B2n are the Bernoulli numbers, and fð2j�1Þð0Þ ¼
@2j�1
k fðkÞjk¼0. Note that the first term, the integral over

k, is always canceled by rescaling k=n ! k in gk=n. For the
remaining terms, which contain derivatives with respect
to k, we may add a constant, in this case, �1

4, under

the derivative, which allows us to pull the derivative out-
side the integral. The integrand is now well-behaved at
infinity. To be more precise, according to Eq. (46), we need
to compute
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Z
drxrx@

j
kgk=nðrx; rxÞjk!0

¼ @jk

Z
drxðrxgk=nðrx; rxÞ � 1

4
Þjk!0 ¼ @jk

�
� k

2n

�
: (47)

So we have

CGðS;nÞ � nCGðS; 1Þ ¼ 1� n2

24n
: (48)

Combining the above results into Eq. (40) and converting
the sum over S into an integral around the Fermi surface,
we obtain Eq. (19) for this geometry.

D. Differential equations of the Green’s functions
and an iterative solution

In this section, we derive the differential equations of the
Green’s functions for the quadratic boson theory with
interpatch coupling and provide an iterative solution.

Including the Fermi-liquid interaction VðS;T; x� yÞ ¼
US;T, the Hamiltonian becomes

H½�ðS; xÞ� ¼ 2�v�
F

�V

Z
d2x

�X
S

½@S�ðS; xÞ�2

þX
S;T

gS;T@S�ðS; xÞ@T�ðT; xÞ
�
; (49)

where gS;T ¼ US;T�
2�v�

F
is order 1=N. This Hamiltonian can be

written in terms of the nonchiral fields as

H ¼ 2�v�
F

�V

Z
d2x

�X
S

f½@xS’ðS; xÞ�2 þ ½@xS�ðS; xÞ�2g

þX
S;T

½gS;T@xS�ðS; xÞ@xT�ðT; xÞ

þ @xS’ðS; xÞ@xT’ðT; xÞ�
�
; (50)

where we have made use of the fact that gS;T ¼ g�S;�T,

which is required by time-reversal symmetry. Here, the
summation over S is restricted to a semicircle. This
Hamiltonian contains generalized kinetic terms (interpatch
coupling due to interaction) that are not diagonal. To obtain
the corresponding Lagrangian, we need to invoke the
general Legendre transformation [43], and we obtain the
following Lagrangian densities, respectively, in terms of ’
or �:

L’ ¼ 1
2

�X
S

f½@t’ðS; xÞ�2 � ½@S’ðS; xÞ2g

þX
S;T

fh2ðS;TÞ@t’ðS; xÞ@t’ðT; xÞ

� f1ðS;TÞ@S’ðS; xÞ@T’ðT; xÞg
�
;

L� ¼ 1
2

�X
S

f½@t�ðS; xÞ�2 � ½@S�ðS; xÞ�2g

þX
S;T

½h1ðS;TÞ@t�ðS; xÞ@t�ðT; xÞ

� f2ðS;TÞ@S�ðS; xÞ@T�ðT; xÞ�
�
;

(51)

where

f1ðS;TÞ ¼ gS;T þ g�S;�T � gS;�T � g�S;T;

f2ðS;TÞ ¼ gS;T þ g�S;�T þ g�S;T þ gS;�T;

and h1ð2ÞðS;TÞ is defined through

fI þ ½f1ð2ÞðS;TÞ�g�1 ¼ Iþ ½h1ð2ÞðS;TÞ�: (52)

Here, I is the identity matrix, and ½fðhÞiðS;TÞ� is the matrix
formed by fðhÞiðS;TÞ, i ¼ 1, 2. Applying this result and
making use of equations of motion obtained from the
Hamiltonian, we obtain the Lagrangians L’ or L�. Here,

we arbitrarily choose to work with L’. Then, by making
use of the E-L equation of motion, applying the same
rescaling Eq. (37), and letting t ¼ i�, we obtain the differ-
ential equations that are satisfied by the interacting Green’s

function GðnÞ ¼ h’ðS; xÞ’ðT; x0Þi:

� ð@2� þ @2S � 1ÞGðnÞðS;T; x; x0Þ þX
l

ðh2ðl;TÞ@2�

þ f1ðl;TÞ@l@TÞGðnÞðl;T; x; x0Þ
¼ C�S;T�ð�� �0Þ�ðxS � x0SÞÞ�ðxS? � x0S?Þ: (53)

Here, the Jacobian due to the change of variables is the
same as in the free-fermion case. The entanglement en-

tropy is still given by Eq. (40), but we replace GðnÞ
0 with

GðnÞ in CGðS;nÞ. In the following, we omit the replica
index n in the Green’s function unless different values of
n are involved in a single equation.
As is well known, differential equations such as Eq. (53)

can be converted to an integral form [44] that relates the
full Green’s function to the noninteracting one. This leads
to an iterative (perturbative) definition of the former in
terms of the latter. In the present case, this integral equation
reads
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GðS;T;x;yÞ¼G0ðS;T;x;yÞ
þ
Z
d3zG0ðS;S;x;zÞ

�X
l

½h2ðl;TÞ@2�

þf1ðl;TÞ@l@T�Gðl;T;z;yÞ
�

¼G0ðS;T;x;yÞþ�GðS;T;x;yÞ: (54)

Given this equation, we can now compute the Green’s
function and thus the entanglement entropy perturbatively
in powers of U.

E. Entanglement entropy from the iterative solution

In Eq. (54), the G0 term is the same as that of the free
fermions, and thus yields the same contribution to entan-
glement entropy. To study how the correction term
�GðS;T; x; yÞ affects the entanglement entropy, we need
to study

Z
d3x�GðS;S;x;xÞ¼ X1

M¼1

Z
d3x�ðMÞGðS;S;x;xÞ; (55)

where �ðMÞG denotes the Mth-order correction. There are
two distinctive types of terms in the perturbative expansion
of �G, as we explain next. In general, at order M, we have
in total 3ðMþ 1Þ integrals. Let us examine one of the many
terms contributing to the Mth-order correction, to be
summed over patch indices:Z

d3x�ðMÞGðS;S; x; xÞ

�
Z

d3x
YM�1

i¼0

ðd3ziÞG0ðS;S; x; z0Þ@2�0G0ðl0; l0; z0;z1Þ . . .

� @2�iG0ðli; li; zi; ziþ1Þ . . .� @2�M�1
G0ðS;S; zM�1; xÞ:

(56)

Here, we include only the � derivatives. In general, we
would also have spatial (n̂li) derivative terms, as well as

terms with mixed derivatives. But the �̂ and n̂S directions
are equivalent. Using rotational symmetry and the fact that
the two different derivatives in each term are with respect
to independent variables that are integrated out, one can
see that all terms are identical except for S-dependent
prefactors. The two categories of terms are defined by
the set flig: (1) li ¼ S 8 i, i.e., with intrapatch coupling
only; and (2) 9li � S, containing interpatch coupling. We
shall label the two categories as

�ðMÞGðS;S; x; xÞ ¼ �ðMÞ
intraGðS;S; x; xÞ þ �ðMÞ

interGðS;S; x; xÞ:
(57)

1. Intrapatch coupling and comparison with 1D

Setting li ¼ S for all i’s in Eq. (56), first we consider the
transverse direction

G0ðS;S; zi; ziþ1Þ � �ðzðSÞ?;i � zðSÞ?;iþ1Þ:
We can immediately integrate out the transverse compo-
nent of all zi’s and obtainZ

d3x�ðMÞ
intraGðS;S; x; xÞ

�
Z

dxS?�ðxS? � zS?;0Þ�ðzS?;M�1 � yS?Þjy!x

�
Z Y

i

dzS?;i

Y
i

�ðzS?;i � zS?;iþ1Þ

¼
Z

dxS?�ð0Þ ¼ Ld�1½�=ð2�Þ�d�1: (58)

In the last line we use again the fact that the transverse �
function is a coarse-grained one [Eq. (43)].

The rest of �ðMÞ
intraG is obtained by substituting

G0ðS;S; zi; ziþ1Þ with the ð1þ 1Þd Green’s function
G0;bðS; zS;i; zS;iþ1Þ. Although a direct computation is pos-

sible, we first give a general argument that, for any M, the
contribution to entanglement entropy from �M

intraG van-

ishes. We confirm this argument by making a comparison
with the 1D case, for which a rigorous solution is available.
For the 1D Luttinger liquid with only forward scattering,

the entanglement entropy can be calculated directly via
bosonization, and the result remains at 1

3 logL in the pres-

ence of interactions. The calculation is possible because, in
our language, there are only two patches, so the trans-
formation which diagonalizes the Hamiltonian is not
plagued by the nonlocality issue we encounter in the 2D
theory. However, we can also treat the 1D case with our
perturbative approach. The resulting series of integrals
turns out to be identical to the one obtained from the
intrapatch contributions in the higher-dimensional case
except for the transverse � function. Therefore, we argue
that, at all orders, the intrapatch coupling terms have a
vanishing contribution to the entanglement entropy. Later,
we shall demonstrate such behavior explicitly up to second
order in U.

2. Scaling analysis of interpatch coupling

For terms with interpatch coupling, we find that they
are of order Oð1=LÞ when we compare them to the
leading term according a scaling argument. The crucial
observation here is that, as long as 9li � S, we do not
encounter the factor �D�1ð0Þ ¼ LD�1ð�ÞD�1, Eq. (43),
because, for l � S,

�ðzðSÞ1? � zðSÞ? Þ�ðzðlÞ? � zðlÞ1?Þ ¼
�2ðz1 � zÞ

j sinð�l � �SÞj ; (59)

where �S (�l) is the angle between n̂S (n̂l) and the x̂ axis in
the x̂-ŷ plane. Therefore, when we integrate out the
(Mþ 1) transverse � functions, the factor �D�1ð0Þ ¼
LD�1ð�ÞD�1 would be suppressed by even a single li � S.
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To examine the remaining integral, we can ignore the
angular part as it cannot affect the scaling behavior. The
asymptotic expansion of KðrÞ and IðrÞ for real r at large
value is [45]

KðrÞ ’
ffiffiffiffiffi
�

2r

r
e�r

�
1þ X1

n¼1

ð; nÞ
ð2rÞn

�
;

IðrÞ ’ erffiffiffiffiffiffiffiffiffi
2�r

p
�
1þ X1

n¼1

ð�1Þnð; nÞ
ð2rÞn

�
;

where ð; nÞ ¼ �ð1=2þþnÞ
n!�ð1=2þ�nÞ . By using the above asymp-

totic expansion of Bessel functions, the leading term for

@2�0G0ðli; l;zi; ziþ1Þ behaves as ��ðzi � ziþ1Þe�ðzi�ziþ1Þ=
ðzi � ziþ1Þ þ �ðziþ1 � ziÞe�ðziþ1�ziÞ=ðziþ1 � ziÞ. All of
these terms peak around ziþ1 ¼ zi and are otherwise ex-
ponentially suppressed. We may therefore again estimate
this integral by letting x ¼ z0 ¼ z1 ¼ . . . ¼ zM�1 and
removing (Mþ 1) of the integrals. The remaining integrals
yield, at the leading order,

R
dMþ1zð1=zMÞ � R

dzzMz�M.
However, at the leading order, there is no  dependence.
According to the formalism in Sec. IVC, such terms have
no contribution to the entanglement entropy. Therefore, the
term that contributes to the entanglement entropy is the
next order, which behaves as

R
dz 1

z and is of order

OðlogLÞ, leading only to a correction of approximately
OðlogLÞ � logL to the entanglement entropy.

Next, we shall demonstrate in detail our above analysis
for both interpatch and intrapatch coupling terms by ex-
plicit calculation up to the second order.

3. First-order correction

The first-order term correction to
R
dxGðS;S; x; xÞ is

�ð1ÞCGðS;nÞ ¼
Z

d3xd3zG0ðS;S; x; zÞ½h2ðS;SÞ@2�z
þ f1ðS;SÞ@2zS�G0ðS;S; z; xÞ: (60)

As we have pointed out, it is sufficient to calculate either
piece of the two terms due to the equivalence of the
imaginary time direction and the real space direction.
The other piece should be just the same except for the
coefficient. Here, we choose to compute the first term.

The transverse degrees of freedom provide an overall
factor, counting the total degrees of freedom as discussed
in the general case. We can also integrate out the angular
degrees of freedom in the x̂S-�̂ plane, both �x and �z as
defined in Eq. (44), after which one obtains

�ð1ÞCGðS;nÞ �
X
k

dk
2
�ð1ÞGk=n

I
@A

jdSx � dSkj; (61)

where

�ð1ÞGk=n¼
Z
drxdrzrxrzgk=nðrx;rzÞ

�
@2rz �

k2

r2zn
2

�
gk=nðrx;rzÞ:

(62)

The two-k summations are reduced to one due to the
orthogonality of the angular function Ck=nð�Þ. By employ-

ing the E-M formula and properties of the Bessel functions,
we show in Appendix A that the sum over k values in
Eq. (61) can be converted into an integral, which cancels in
Eq. (40) for the same scaling reasons discussed above
following Eq. (46). Therefore, we find that the contribution
of Eq. (60) to the entanglement entropy vanishes.

4. Second-order correction

The second-order correction is

�ð2ÞCGðS;nÞ ¼
Z

d3xd3zd3z1G0ðS;S; x;zÞ
X
l

ðh2ðl;SÞ@2�z
þ f1ðl;SÞ@zl@zSÞG0ðl; l; z;z1Þðh2ðS;SÞ@2�z1
þ f1ðS;SÞ@2z1SÞG0ðS;S; z1; xÞ: (63)

(i) For l ¼ S:

Z
d3xd3zd3z1G0ðS;S; x; zÞ½h2ðS;SÞ@2�z
þ f1ðS;SÞ@2zS�G0ðS;S; z; z1Þ½h2ðS;SÞ@2�z1
þ f1ðS;SÞ@2z1S�G0ðS;S; z1; xÞ: (64)

According to our general discussion, we need to
consider only the following piece:

Z
d3xd3zd3z1G0ðS;S; x; zÞ@2�zG0ðS;S; z; z1Þ
� @2�z1

G0ðS;S; z1; xÞ

¼ ð2�Þ�1
I
@A

jdSx � dSkj
X
k

dk
4
�ð2ÞGk=n; (65)

where

�ð2ÞGk=n ¼
Z

drxdrzdr1rxrzr1gk=nðrx; rzÞ
� ½@2rz � k2=ðrznÞ2�gk=nðrz; r1Þ
� ½@2r1 � k2=ðr1nÞ2�gk=nðr1; rxÞ: (66)

In the above calculation, we have proceeded as in the
first-order calculation, integrating out the angular

part first to obtain the expression for �ð2ÞGk=n.

After a lengthy but similar calculation as for the first
order (see Appendix B), we find, using the E-M
formula:
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1

2

X
dk�

ð2ÞGk=n ¼
Z

drxdrzdr1rxrzr1

�
Z 1

0
dkpk=nðrx; rz; r1Þ

þ
�
1

12
@k þ

X1
j¼2

B2j

ð2jÞ!@
ð2j�1Þ
k

�
n

16k
;

(67)

where pk=nðrx; rz; r1Þ is the product of gk=ndependent
terms in Eq. (66). The usual scaling argument for the
integral shows that the entire expression is propor-
tional to n, and thus cancels the second (n ¼ 1) term
in Eq. (40):

SðSÞ � � @

@n

Z
d2xðGn � nG1ÞÞjn¼1:

Therefore, at the second-order level for the l ¼ S
piece, we still have no correction to the scaling law
of entanglement entropy.

(ii) For l � S:
The integrand we need to consider is

G0ðS;S; x; zÞ½h2ðl;SÞ@2�z þ f1ðl;SÞ@zl@zS�
�G0ðl; l; z;z1Þ½h2ðS;SÞ@2�z1 þ f1ðS;SÞ@2z1S�
�G0ðS;S; z1; xÞ: (68)

First, we notice in Eq. (68) that we have derivatives
along directions different from the normal direction
n̂S of the patch acting on the noninteracting Green’s
function. We expand this term as

@zl@zSG0ðl; l; z; z1Þ
¼ �ðzðlÞ? � zðlÞ1?Þ@zl@zSG0;bðl; z; z1Þ

þ @zS�ðzðlÞ? � zðlÞ1?Þ@zlG0;bðl; z; z1Þ: (69)

For the first term, we can decompose the derivative
@zS into terms that act along n̂l and along its trans-

verse direction, respectively. The noninteracting

Green’s function depends only on the transverse

coordinates via G0ðl; l; x; yÞ � �ðxðlÞ? � yðlÞ? Þ, which
indicates that those derivative terms vanish. Thus, it

is proportional to �ðzðlÞ? � zðlÞ1?Þ@2zlG0;bðl; z; z1Þ. For
the second term, we integrate by parts with respect
to zS, which leads to (now including the first G0

factor, which depends on z)

��ðxðSÞ? �zðSÞ1?Þ�ðzðlÞ? �zðlÞ1?Þ@zSG0;bðS;x;zÞ@zl
�G0;bðl;z;z1Þ:

Therefore, the overall integrand is proportional to

�ðxðSÞ? � zðSÞ? Þ�ðzðSÞ1? � xðSÞ? Þ�ðzðlÞ? � zðlÞ1?Þ. Note that

the xðSÞ? dependence appears only in these � func-

tions. We can integrate it out, leaving only �ðzðSÞ? �
zðSÞ1?Þ�ðzðlÞ? � zðlÞ1?Þ � �ðz1 � zÞ.

Second, it is sufficient to focus on the following terms in
the integrand,

½G0;bðS; x; zÞ@2�zG0;bðl; z; z1Þ
þ @zSG0;bðS; x; zÞ@zlG0;bðl; z; z1Þ�@2�z1G0;bðS; z1; xÞ;

to ease the presentation. For other combinations, the rest of
this section is equally applicable, with minor modifications
that lead only to different coefficients and do not affect the
scaling analysis. We first perform the intrapatch integration

Z
d3xG0;bðS; x; zÞG0;bðS; z1; xÞ ¼ HðS; z; z1Þ; (70)

where

HðS;z;z1Þ¼
X
k

dk
2�n

Ck=nð�z;�z1Þ½�ðrz�r1Þ

�ðrzKzþI1�r1I1�KzÞþ�ðr1�rzÞ
�ðr1K1þIz�rzIz�K1Þ�:

So, for a given S, the contribution to entanglement
entropy due to coupling with patch l can be written as

								 1

sinð�l � �SÞ
								
Z

d3zd3z1�
2ðz1 � zÞ½@2�z1HðS; z; z1Þ@2�G0;bðl; z1; zÞ þ @zS@

2
�z1
HðS; z; z1Þ@zlG0;bðl; z1; zÞ�

¼
								 1

sinð�l � �SÞ
								
Z

d3zd�1½@2�z1HðS; z; z1Þ@2�G0;bðl; z1; zÞ þ @zS@
2
�z1
HðS; z; z1Þ@zlG0;bðl; z1;zÞ�

								z1;x¼z;x;z1;y¼z;y

; (71)

where z;x, z;y indicate the two spatial components of z.
As we argued in Sec. IVE 3, to extract the

order of magnitude of the result, it is sufficient to set
�1 ¼ � in the final line of Eq. (71) and remove the integral
over �1. We also note that the derivatives do not alter
the leading power of r, owing to the presence of the

exponential function. Therefore, it is sufficient to
examine Z

d3z½HðS; z; z1ÞG0;bðl; z1;zÞ�jz1¼z: (72)

At the lowest order in 1=r, we have
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G0;bðS; r; rÞ � IðrÞKðrÞ � 1=r; (73)

HðS; r; rÞ � rIðrÞKþðrÞ � rKðrÞI�ðrÞ

¼
�
1þ ðþ 1; 1Þ

2r
þ . . .

��
1� ð; 1Þ

2r
þ . . .

�

�
�
1� ð� 1; 1Þ

2r
þ . . .

��
1þ ð; 1Þ

2r
þ . . .

�

¼ 1

r
þO

�
1

r2

�
: (74)

Since the � derivative does not alter the leading powers, we
extract the leading term to be

½HðS; z; z1Þ@2�G0;bðS; z1; zÞ�jz1¼z � 1

z2
: (75)

For a triple integral over 1=z2, one would get a linear
divergence, i.e., the result would be �L. This is indeed
the case as we have already seen in previous calculation.
However, at the lowest order, everything is independent on
 ¼ k=n. Actually what finally appears in the entangle-
ment entropy are the k-derivatives of these terms appearing
in the E-L summation formula. This means the leading
term has vanishing contribution to the entanglement en-
tropy. The first term contributing to entanglement entropy
is then �R

d3z 1
z3
, the upper limit of which is order

OðlogLÞ and only leads to a correction of up to
�OðlogLÞ � logL to the free fermion entanglement
entropy.

V. SUMMARYAND CONCLUDING REMARKS

In this paper, we developed an intuitive understanding of
the logarithmic correction to the area law for the entangle-
ment entropy of free fermions in one and higher dimen-
sions on equal footing—the criticality associated with the
Fermi surface (or points). Then we used the tool of high-
dimensional bosonization to compute the entanglement
entropy, and generalized this procedure to include Fermi-
liquid interactions. In the presence of such interactions we
calculated the entanglement entropy for a special geometry
perturbatively in powers of the interaction strength up to
the second order, and found no correction to the leading
scaling behavior. We also point out that the situation is the
same at higher orders. Our results thus strongly suggest
that the leading scaling behavior of the block entanglement
entropy of a Fermi liquid is the same as that of a free Fermi
gas with the same Fermi surface, not only for the special
block geometry studied in this paper, but for arbitrary
geometries. Explicit demonstration of the latter is an ob-
vious direction for future work.

In the special geometry in which we performed explicit
calculations using the replica trick, a masslike term is
introduced to regularize the theory at long distance, as is
done in closely related contexts [35,42]. For a Fermi liquid
(which is quantum-critical) the corresponding length scale


� vF=m must be identified with the block size L, and is
thus not an independent length scale. On the other hand,
such a masslike term can also describe a superconducting
gap due to pairing. In particular, for a weak-coupling
superconductor, 
, the superconducting coherence length,
is much longer than all microscopic length scales, but finite
nevertheless. In this case it is independent of L, and the
interplay between the two is interesting. For L< 
, the
Fermi-liquid result (1) still holds. But for L > 
, the loga-
rithmic factor in the entanglement entropy saturates at
log
, and we expect

Sð�AÞ ¼ 1

12ð2�Þ2�1
log
�

I
@A

I
@�

dSx � dSk; (76)

which agrees with the conjecture made in Ref. [26].
More generally, Fermi liquids are (perhaps the best

understood) examples of quantum-critical phases (or
points) in high dimensions. Unlike in 1D where conformal
symmetry powerfully constrains the behavior of entangle-
ment entropy, our understanding of entanglement proper-
ties of such high-dimensional quantum-critical phases or
points (many of them have Fermi surfaces but are not
Fermi liquids) is very limited. Our work can be viewed
as a step in that general direction. Furthermore, the formal-
ism developed in this work has potential applicability to
systems with composite or emergent fermions with Fermi
surfaces as well, or more generally, non-Fermi-liquid
phases with Fermi surfaces. The system studied in
Ref. [22], where there is an emergent spinon Fermi surface,
is a potential example.

ACKNOWLEDGMENTS

This work is supported by the National Science
Foundation under Grant No. DMR-0704133 and DMR-
1004545 (W.X.D. and K.Y.). A. S. is supported by the
National Science Foundation under Grant No. DMR-
0907793.

APPENDIX A: CALCULATION OF �ð1ÞGk=n

Throughout this Appendix, we shall denote the modified
Bessel functions KðriÞ, IðriÞ as Ki, Ii for simplicity with
 ¼ k=n. We also have KðIÞ�1ðriÞ which shall be short-
ened as KðIÞi;�.

�ð1ÞGk=n¼
Z
drxdrzrxrzgk=nðrx;rzÞ

�
@2rz �

k2

r2zn
2

�
gk=nðrz;rxÞ:

(A1)

Expanding ð@2rz � k2

r2zn
2Þgk=nðrz; rxÞ, and noting the identities

I0K � K0I ¼ 1=x, X00 � ð2=x2ÞX ¼ X � ð1=xÞX0 where
X ¼ K, I, we get
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�
@2rz �

k2

r2zn
2

�
gk=nðrz; rxÞ

¼ ��ðrx � rzÞ
rx

þ �ðrx � rzÞ
�
1� 1

rz
@rz

�
IzKx

þ �ðrz � rxÞ
�
1� 1

rz
@rz

�
IxKz: (A2)

Then integrating over rx first, and making use of the
following formulaZ

dxxX2
ðxÞ ¼ 1

2
x2½X2

ðxÞ � X�1ðxÞXþ1ðxÞ�; (A3)

where XðxÞ can be the first or second kind of modified
Bessel function, I or K, and the identities I�K þ IK� ¼
IþK þ IKþ ¼ 1=x in addition to those given above,

�ð1ÞGk=n is reduced to

�ð1ÞGk=n ¼
Z

drr½�IK þ r2ðI2 � IþI�ÞK2�: (A4)

We apply the same strategy as in Sec. IVC, making use of
the E-M formula to do the sum over the k-index in Eq. (61).
This converts the sum into a divergent integral over k
which cancels in Eq. (40) as before, and a sum over terms

of the form @jk�
ð1ÞGk=njk!0 that turn out to vanish, as we

will now show. Again, we can include proper constants
under the derivative into the integrand. These derivatives
then act on well-defined integrals. The first term has been
discussed in Sec. IVC:Z

dr@jkð�rIk=nKk=nÞ ¼ @jk

Z
dr

�
�rIK þ 1

4

�
¼ @jk

�
k

2n

�
:

(A5)

The second term can be shown to beZ
dr@jk½r3ðI2 � IþI�ÞK2�

¼ @jk

Z
dr

�
r3ðI2 � IþI�ÞK2 � 1

4

�

¼ @jk

�
� 1

16
� k

2n

�
: (A6)

Summing the two terms together, we find

ð@jk�ð1ÞGk=nÞjk!0 ¼ @jk

�
� 1

16

�
¼ 0; (A7)

for all j > 0.

APPENDIX B: CALCULATION OF �ð2ÞGk=n

Let us first compute the integral:Z
dr2r2gðr; r2Þ

�
@2r2gðr2; r1Þ �

�


r2

�
2
gk=nðr2; r1Þ

�
¼ �ðr� r1Þhðr; r1Þ þ �ðr1 � rÞhðr1; rÞ (B1)

with

hðr; r1Þ ¼ �I1K þ 1

2

�
f1ðr; r1Þ þ KI1 ln

r

r1

�
;

f1ðr; r1Þ ¼ KK1½r21ðI21 � I1;þI1;�Þ � I21�
� II1½r2ðK2 � KþK�Þ � K2�
þ KI1ðFðrÞ � Fðr1Þ � IK þ I1K1Þ;

FðrÞ ¼ 2
Z

drrIK ¼ r2IK þ r2IþK�:

The IK1 term in hðr; r1Þ results from �-functions (deriva-
tives of �-functions) coming from the derivative applied on
the step function (�ðrÞ). The remaining part comes from
terms involving a product of two �-functions. Here one
needs to distinguish between r > r1 and r < r1, which
gives rise to the terms in �ðr� r1Þ and �ðr1 � rÞ, respec-
tively. The remaining integralZ

drdr1rr1½�ðr�r1Þhðr;r1Þþ�ðr1�rÞhðr1;rÞ�

�
�
��ðr1�rÞ

r
þ�ðr1�rÞ

�
1� 1

r1
@r1

�
K1Iþ�ðr�r1Þ

�
�
1� 1

r1
@r1

�
KI1

�
(B2)

can be carried out by applying the identities of Bessel
functions I and K used in Appendix A. In applying the
E-M formula to the sum over k in (65), we again arrive at a
divergent k-integral that can be rescaled and subsequently
canceled (see (67) and below), and a sum over derivative
terms that are well-behaved. In the latter terms, we always
add proper constants under the derivatives to regularize the
integrand at infinity, as before. We divide (B2) into two
terms. The first is the one containing the �-function. After
integrating out r1, this term becomes

@jk

�
�

Z
drrhðr; rÞ

�
¼ @jk

�
�

Z
dr

�
rhðr; rÞ þ 1

4

��

¼ @jk

�
�

Z
dr

�
r

�
�IK þ r2

2

�ð�K2IþI� þ I2KþK�Þ
�
þ 1

4

��
¼ @jkð0Þ:

(B3)

The second term is expanded toZ
drdr1rr1½�ðr� r1Þhðr; r1ÞKðI1 � I01=r1Þ
þ �ðr1 � rÞhðr1; rÞIðK1 � K0

1=r1Þ�: (B4)

Because of the complexity of hðr; r1Þ, we examine each of
the three terms of hðr; r1Þ separately. The first term is
simple. Applying those identities of K’s and I’s and in-
cluding the proper constant, we get
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@jk

�Z
drdr1

�
rr1

�
�ðr�r1Þð�I1KÞKðI1�I01=r1Þ

þ�ðr1�rÞð�IK1ÞIðK1�K0
1=r1ÞÞ�

1

4

��
¼@jk

�
k

2n

�
:

(B5)

The second term of hðr; r1Þ contributes

@jk

�
1

2

Z
drdr1rr1�ðr�r1Þf1ðr;r1ÞK

�
I1� 1

r1
I01
�

þ1

2

Z
drdr1rr1�ðr1�rÞf1ðr1;rÞ

�
K1� 1

r1
K0

1

�
I

�
: (B6)

By interchanging the dummy variables r and r1, employing
the properties of the modified Bessel functions with care,
and including the regularization constant, we arrive at

@jk

�
1

2

Z
drdr1ðrr1�ðr�r1Þf1ðr;r1Þ

�
2KI1�KI01=r1

�K0I1=rÞ�1

8

��
¼@jk

�
� k

2n

�
: (B7)

The last part of hðr; r1Þ contributes asZ
drdr1

rr1
2

�ðr� r1ÞKI1 ln rr1 ðK
0I1=r� KI01=r1Þ

¼ � 1

16
: (B8)

Summing all the above terms together we get

@jkð�ð2ÞGk=nÞ ¼ @jk

�
� n

16k

�
: (B9)
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