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The electron spin is a natural two-level system that allows a qubit to be encoded. When localized in a
gate-defined quantum dot, the electron spin provides a promising platform for a future functional quantum
computer. The essential ingredient of any quantum computer is entanglement—for the case of electron-
spin qubits considered here—commonly achieved via the exchange interaction. Nevertheless, there is an
immense challenge as to how to scale the system up to include many qubits. In this paper, we propose a

novel architecture of a large-scale quantum computer based on a realization of long-distance quantum
gates between electron spins localized in quantum dots. The crucial ingredients of such a long-distance
coupling are floating metallic gates that mediate electrostatic coupling over large distances. We show, both
analytically and numerically, that distant electron spins in an array of quantum dots can be coupled
selectively, with coupling strengths that are larger than the electron-spin decay and with switching times

on the order of nanoseconds.
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I. INTRODUCTION

Spins of electrons confined to quantum dots provide one
of the most promising platforms for the implementation of
a quantum computer in solid-state systems. The last decade
has seen steady and remarkable experimental progress in
the quantum control and manipulation of single spins in
such nanostructures on very fast time scales down [1] to
200 ps and with coherence times of 270 us [2].

A large-scale quantum computer must be capable of
reaching a system size of thousands of qubits, in particular,
to accommodate the overhead for quantum error correction
[3]. This requirement poses serious architectural chal-
lenges for the exchange-based quantum-dot scheme [4],
since—with present-day technology—there is hardly
enough space in which to place the large amount of me-
tallic gates and wires needed to define and address the spin
qubits. A promising strategy to meet this challenge is to
implement long-range interactions between the qubits.
These interactions allow the quantum dots to be moved
apart and create space for the wirings. Based on such a
design, we propose a quantum-computer architecture that
consists of a two-dimensional lattice of spin qubits, with
nearest-neighbor (and beyond) qubit-qubit interaction.
Such an architecture provides a platform for implementing
the surface code—the most powerful fault-tolerant
quantum-error-correction scheme known, with an excep-
tionally large error threshold of 1.1% [5,6].
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To achieve such long-range interactions, we propose a
mechanism for entangling spin qubits in quantum dots
(QDs) based on floating gates and spin-orbit interaction.
The actual system we analyze is composed of two double
QDs which are not tunnel coupled. The number of elec-
trons in each double QD can be controlled efficiently by
tuning the potential on nearby gates. Moreover, the elec-
trons can be moved from the left to the right dot within
each double QD by applying strong bias voltage. Thus, full
control over the double QD is possible by only electrical
means. The double QDs are separated by a large distance
compared to their own size so that they can interact only
capacitively. An electromagnetic cavity [7,8] can be used
to create a long-range qubit-qubit coupling [9,10]. In this
paper, we consider the classical limit of this coupling, i.e.,
a metallic floating gate [11-14] suspended over the two
double QDs, or a shared two-dimensional electron-gas
(2DEG) lead between the qubits. The strength of the
coupling mediated by this gate depends on its geometry,
as well as on the position and orientation of the double QDs
underneath the gate. Finally, we show that spin qubits
based on spins—% [4] and on singlet-triplet states [15] can
be coupled, and thus hybrid systems can be formed that
combine the advantages of both spin-qubit types.

II. ELECTROSTATICS OF THE FLOATING GATE

The Coulomb interaction and spin-orbit interaction (SOI)
enable coupling between spin qubits of different QD sys-
tems in the complete absence of tunneling [16-19].
However, the Coulomb interaction is screened at large
distances by electrons of the 2DEG and of the metal gates.
Thus, the long-distance coupling between two spin qubits is
not feasible via direct Coulomb interaction. However, by
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exploiting long-range electrostatic forces, it has been dem-
onstrated experimentally [11,12] that QDs can be coupled
and controlled capacitively via floating metallic gates over
long distances. The optimal geometric design of such float-
ing gates should be such that the induced charge stays as
close as possible to the nearest QDs and does not spread out
uniformly over the entire gate surface. In other words, the
dominant contributions to the total gate capacitance should
come from the gate regions that are near the QDs. To
achieve a strong qubit-qubit coupling, there is one more
requirement: The electric field induced on one QD needs to
be sensitive to the changes of the charge distribution of the
other QD. Thus, the charge gradient, (3¢;,q/0r)|,—o, needs
to be large, where r is the position vector of the point charge
with respect to the center of the respective QD. To fulfill
these requirements, we assume that the floating gates
consist of two metallic discs of radius R joined by a thin
wire of length L.

Let us now investigate the optimal design by modeling
the electrostatics of the floating gates. The electron charge
in the QD induces an image charge of opposite sign on the
nearby disc (ellipsoid). See Fig. 1. Because the gate voltage
is floating with respect to the ground, the excess charge is
predominantly distributed on the distant metallic ellipsoid,
thus producing an electric field that acts on the second QD.
To carry out the quantitative analysis of the electrostatic
coupling, we make use of the expression for an induced
charge on the grounded ellipsoidal conductor in the field of
a point charge [20]. Electrostatic considerations imply that
the coupling (gradient) is enhanced by implementing a flat-
disc design of the gate. Thus, in what follows, we set the
disc height to zero. To reach this regime in practice, one
only has to ensure that the disc height be much smaller than
its radius. The expression for the induced charge (in the
units of the electron charge) is then given by [20]

FIG. 1. Model system consisting of two identical double QDs
(paired small orange discs) in the x-y plane and the floating gate
between them. The gate consists of two metallic discs of radius R
connected by a thin wire of length L. Each double QD can
accommodate one or two electrons (red spheres), defining the
corresponding qubit. Absence of tunneling between the separate
double QD is assumed; the purely electrostatic interaction
between the electrons in the double QDs leads to an effective
qubit-qubit coupling. For the spin-% qubit, the coupling depends
sensitively on the orientation of the magnetic field B. Here, a is
the in-plane distance between a QD and the corresponding disc’s
center, while d is the vertical distance between the QD and
the gate.

2
Gina(r) = p arcsin(R/¢&,), )

where R is the radius of the disc. The ellipsoidal coordinate
&, is given by

28 =R*+ d® + |ag +r|?

+ \/(R2 + d* + |lag + r|*)?* — 4R%|ay, + 1%, (2)

where q is the distance between the QD and the ellipsoid
centers. (See Fig. 1.) We emphasize that the induced charge
depends only on the coordinate &, of the external charge,
as is readily seen from Eq. (1). This is one of the crucial
points for the experimental realization of the qubit-qubit
coupling. Thus, positioning the QD below the gate as in
previous setups [11] is not useful for the qubit-qubit cou-
pling proposed here, since (d¢,a/0r);,—o = 0. This fact
can be exploited, however, to turn on and off the effective
coupling between the qubits. Alternatively, one can use a
switch that interrupts the charge-displacement current
through the floating gate and thus disables the buildup of
charge gradients at the far disc.

Figure 2 depicts both the induced charged g;,4, as well as
the charge variation (d¢g;,q/dx);,—¢ as a function of the
horizontal distance a, between the center of the QD and
the center of the gate. We see that, for very small vertical
distances, d < R, the variation of the induced charge
peaks at ap = R, reaching values as high as unity for d =
0.1R, and falls quickly for a, larger or smaller than R. As
mentioned above, this characteristic could be used as an
efficient switching mechanism. However, as d increases to
higher values, comparable to the disc radius R, the charge
variation (9¢i,q/0x)|,—o flattens out over a wide range of
in-plane distances a,. This means that, for larger depths,
d = A, of the quantum dot, the switching mechanism turns
out to be rather inefficient, even though the magnitude of
the coupling is only weakly reduced ((9¢;,q/0x)j,—o = 0.3
for ag = R and d = 0.5R). Nevertheless, the gates confin-
ing the QDs, as well as the 2DEG itself, could lead to
screening of the interaction between the QD and the float-
ing gate, allowing for an improved switching even in this
case (d = A).

Finally, by utilizing the expression for the electrostatic
potential of a charged thin disc [20], we arrive at the
expression for the electrostatic coupling,

may, ezqind(rl)chnd(r2)

V(rl’rZ): R B

3)
where « is the dielectric constant, «a, = ﬁ is the
charge-distribution factor of the gate, and C4 and C,, are
the capacitances of the discs and wire, respectively. (See
Appendix A.) We mention that Eq. (3) is derived in the
limit when the floating gate is immersed in the dielectric. It
provides a lower bound for V(r;, r,) in the realistic case
when the floating gate sits on top of the dielectric.
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FIG. 2. The dependence (a) of the induced charge, gjnq,
and (b) of the derivative of the induced charge, at r =0,
(9¢ina/ 9x),—0, ON ag , which is the in-plane distance from the
center of the cylindrical gate to the center of the QD. We plot
these two quantities for several vertical distances d between the
QD and the gate: d/R = 0.1, 0.5, 1, corresponding to the solid,
dashed, and dotted lines, respectively.

III. QUBIT-QUBIT COUPLING

Next, we consider the coupling between qubits. These
can be for either single or double QDs. The two-qubit
system with the floating gate is well described by the
Hamiltonian

H=V+ ) Hi o 4)
i=1,2

where V describes the electrostatic coupling between the
distant charges in the qubits and is given by Eq. (3), and

H éubit stands for either the single-QD or double-QD (DQD)
Hamiltonian [17,21]:

HQD = H() + HZ + Hso, (5)

Hpop = J(S, - $,) + H) + Hj,. 6)

Here, Hy = p?/2m* + m*(wix? + w?y?)/2 is the energy
of an electron in dot i described by a harmonic confinement
potential, with m” being the effective mass and iw, , being
the corresponding single-particle-level spacings. For a
single QD [Eq. (5)], H; = gugB - o/2 stands for the
Zeeman coupling, with o being the Pauli matrix for the
spin—%. Both the Rashba and the Dresselhaus spin-orbit
interactions are given by

Hso = a(p,o, = pyo,) + B(=p.o, + pyo,), (D)

where a(f) is the Rashba (Dresselhaus) spin-orbit inter-
action strength. The double QD is described by an effective
Heisenberg model [21], Eq. (6), with S; (i = 1, 2) being the
spin in the double QD. In what follows, we assume the
floating gate to be aligned along the x axis; see Fig. 1.

A. Singly occupied double QDs

We start by considering two single-QD qubits. Let us
first give a physical description of the qubit-qubit coupling.
The purely electrostatic coupling between the QDs in-
volves only the charge degrees of freedom of the electrons.
Within each QD, the spin degree of freedom is then
coupled to the charge degree of freedom via spin-orbit
interaction. Hence, we expect the effective spin-spin cou-
pling to be second order in the SOI and first order in the
electrostatic interaction. In fact, one has also to assume
Zeeman splitting to be present on at least one QD in order
to remove the Van Vleck cancellation [22,23]. Such a
cancellation occurs due to linearity in the momentum
of the SOI—for the SOI cubic in the momentum (as for
the self-assembled QDs, for example), one obtains a spin-
spin coupling even in the absence of magnetic fields [24].

Proceeding to a quantitative description, we assume the
spin-orbit strength to be small compared to the QD con-
finement energies hiw, ,. Following Refs. [17,23], we apply
a unitary Schrieffer-Wolff (SW) transformation to remove
the first-order SOI terms. The resulting Hamiltonian has
decoupled spin and orbital degrees of freedom (to second
order in SOI), with the effective qubit-qubit coupling
(described in Appendix A), with

Hg.s = Jp(o - y)(o; - y), (8)

)
m'wy ,E7

J = —)
2 2(0? - ER)P

9)

where y = (B cos2y, —a — Bsin2v, 0), and v is the angle
between the crystallographic coordinate axis along the
[100] direction and the x axis of the coordinate system
shown in Fig. 1. Here, we assume for simplicity that the
magnetic field is perpendicular to the 2DEG substrate, with
E; = gupB being the corresponding Zeeman energy. (We
also assume the same perpendicular field for both dots.)
However, neither the orientation nor the possible differ-
ence in the Zeeman splittings in the two dots affects the
functionality of our scheme. (See Appendix A for the most
general coupling case.) We note that the spin-spin interac-
tion in Eq. (8) is of Ising type, which, together with single-
qubit gates, forms a set of universal gates, as discussed in
Sec. V.

All information about the floating-gate coupling is em-
bodied in the quantity
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~

where ac = e*/(kRhw,) and ¥ = x/A, with A being the
QD size [25]. Remarkably, the coupling has only a weak
dependence on the wire length L—through the capacitance
ratio «,,.

Next, we give estimates for the qubit-qubit coupling for
GaAs and InAs QDs. Taking the spin-orbit strength for
GaAs semiconductors A/Ago = 107! (Agg = A/(m*a) =
2 pm), and assuming that Ez =~ E; = E; =~ 0.5hw,
(with B =2T and hw,=~1 meV), we obtain Hgg =
aqac(aqmd/ai)lzr:o X 1077 eV. The electrostatic cou-
pling strongly depends (as d 2 does) on the vertical distance
between the gate and the QDs. Typically, d = A, and one
obtains, using Eq. (1), maximal coupling Hg.g =
10711210719 ¢V (for R = 1.6A, L = 10 wm, and R,, =
30 nm, leading to a, = 0.02; ay = 1.94). Although it is
experimentally challenging to decrease d to a value of about
10 nm, the gain would be a significantly stronger coupling
of 107°-1078 eV (for R=0.174 and qa, = 0.2X).
Moreover, if a semiconductor with larger spin-orbit cou-
pling is used—such as InAs (A/Agg = 1)—the coupling is
increased by 2 orders of magnitude compared to that of
GaAs, reaching the peV regime. Quite remarkably, these
values almost reach within the exchange-strengths range,
Joxe ~ 10-100 peV (10-100 ps), that occurs in typical
GaAs double quantum dots [1,4]. Actually, for realistic
devices as presented in the Sec. VI, the coupling is almost
2 orders of magnitude larger than the estimates presented
here, and thus operation times are well below the decoher-
ence times for QD. This discrepancy is not very surprising,
and it is mainly due to our conservative treatment of the
dielectric and the sensitivity of the electric-field gradient to
the geometry of the surrounding gates.

B. Hybrid spin qubits

A number of different spin-based qubits in quantum dots
have been investigated over the years [26], each with its
own advantages and challenges. The most prominent ones
are spin—% and singlet-triplet spin qubits. Here, we show
that these qubits can be crosscoupled to each other, thus
forming hybrid spin qubits which open up the possibility to
take advantage of the best of both worlds.

We model the hybrid system by a single- and a double-
QD qubit, described by Egs. (5) and (6), respectively. The
single QD and the floating gate act as an electric field,
leading to the change in the splitting between the logical
states of the double-QD spin qubit, J — J + %87 [21],
with x, = X.A being the x coordinate of the electron in the
single QD and

oJ = — =" €. 11
sinh(2]) lw? (h

g

Here, wp, is the confinement energy in the DQD, and [ is
the distance between the double-QD minima measured in
units of a QD size A. The previous formula is valid for the
regime € = wp.

In order to decouple spin and orbital degrees of freedom,
we again employ a Schrieffer-Wolff transformation and
obtain the hybrid coupling in the lowest order in SOI
(see Appendix B):

3ugdJ(y X B) - o
Mo —-E)A ¢

thbrid = ( 1 2)

Here, 7, is a Pauli matrix acting in the pseudospin space
spanned by the logical states of the singlet-triplet qubit. It
should be noted that the sign of this coupling can be
manipulated by changing the sign of the detuning voltage
€. As an estimate, we can write

H _(@.2\* Ez ap
hybrid = — 5 €
Wy wp Aso

Assuming the parameters given in the previous section for
the GaAs QDs, we obtain the estimate Hyypg =
10719-107% eV. By reducing the distance d or using
InAs QDs, we can gain 1 order of magnitude more in the
coupling.

C. Doubly occupied double QDs

To complete our discussion about the qubit-qubit cou-
plings, we now consider two double QDs coupled via the
floating gate. As already noted, owing to the different
charge distributions of the logical states in the double
QD, the SOI term is not needed for the qubit-qubit cou-
pling [18]. Certainly, the SOI exists in double QDs, but its
effect on the singlet-triplet (ST) splitting can be neglected
[27]. Here, only a rough estimate of the coupling is pro-
vided, while the detailed analysis can be found in Ref. [18].

We assume both double QDs to be strongly detuned, so
the singlet logic state is almost entirely localized on the
lower potential well of the double QD. The electrostatic-
energy difference between the singlet-singlet and triplet-
triplet system configurations gives the rough estimate
of the qubit-qubit coupling, Hg.s=~V(R,R)—V(R+],
R + ). Taking the distance between the double-QD minima
[ = R and the same GaAs parameters as before, we finally
obtain the estimate Hg-q =~ 107°—-107° eV. As can be seen
from Fig. 2, reducing d to 10 nm increases the coupling by
a factor of 5.

IV. SCALABLE ARCHITECTURE

One central issue in quantum computing is scalability,
meaning that the basic operations such as initialization,
readout, and single-qubit and two-qubit gates should not
depend on the total number of qubits. In particular, scal-
ability enables the implementation of fault-tolerant
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quantum-error-correction [3], such as surface codes where
error thresholds are as large as 1.1% [5,6].

For such implementations, the architecture of the qubit
system becomes of central importance [28]. Making use of
the electrostatic long-distance gates presented above, we
now discuss two illustrative examples for such scalable
architectures.

A. Design with floating metal gates

In the first design we propose here, the metallic gates
above the 2DEG are utilized for qubit-qubit coupling,
while the switching of the coupling is achieved by moving
the QDs (see Fig. 3). Only the coupling between adjacent
QDs is possible in this design. Without this constraint, the
induced charge due to nearby QDs would be spread over
the whole system, resulting in an insufficient qubit-qubit
coupling.

The actual virtue of the setup is its experimental feasi-
bility, as suggested by recent experiments [11,12].
However, as explained in Sec. II, a minor but crucial
difference here is that the qubit-qubit coupling depends
not on the charge itself but rather on its gradient, in contrast
to earlier designs [11,12]. This dependence requires the
dots to be positioned off the disc-center.

In order to complete our quantum-computer design, we
have to equip our system with a fast switch. The discussion
in Sec. Il becomes relevant therefore, because the coupling
can be turned off (on) by moving a QD away (toward) the
corresponding floating gate. (See Fig. 2.) The spatial
change of the quantum dot induces an electric response

FIG. 3. Quantum-computer architecture using metallic floating
gates on top of a 2DEG. The electrostatic long-range coupling is
confined to adjacent qubits. Turning on (off) the qubit-qubit
interaction is achieved by moving a qubit close to (away from)
the corresponding metal disc. This architecture allows for par-
allel switching.

in the metallic floating gate on a time scale roughly given
by the mean free time of the elastic scattering (at low
temperatures). This is the time it takes to reach the new
electronic-equilibrium configuration that minimizes the
electrostatic energy. Since, for a typical metal, this re-
sponse time is on the order of tens of femtoseconds, it
poses no limitations, being much faster than the effective
switching times obtained in the previous sections.

B. All-in-2DEG design

We now consider a setup in which all elements of the
qubit network, including the floating connector gates, are
implemented in the 2DEG itself. This arrangement allows
us to extend the above design in an essential way, namely,
to implement a switching mechanism inside the connectors
themselves which is potentially fast and efficient (with a
large on/off ratio). Two attractive features come with such
a design: First, the qubit-qubit coupling is now controlled
by the connector switch only, while the quantum dots with

FIG. 4. All-in-2DEG design: The qubits and the floating con-
nector gates are all implemented within the same 2DEG. The
spin qubits (green arrows) are confined to double quantum dots
(small yellow double circles) and are each at a fixed position
with maximum coupling strength to the floating gate (large disc).
(See Fig. 2.) The network consists of quantum channels (the
colored lines) that enable the electrostatic coupling between
discs (large circles) so that two individual qubits at or beyond
nearest-neighbor sites can be selectively coupled to each other.
In the figure, three pairs of particular discs are shown, connected
by quantum channels (solid lines), while the remaining discs
(beige) are disconnected from the network (interrupted beige
lines). The large discs can be considered as large quantum dots
that contain many electrons. The quantum wires can be effi-
ciently disconnected (as in the interrupted lines) by depleting the
single channel with a metallic top gate (not shown). This
architecture allows for parallel switching.
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the spin qubits can be left fixed, thereby reducing the
source of gate errors. Second, this design allows for cou-
pling beyond nearest-neighbor qubits, which is beneficial
for the error threshold in fault-tolerant quantum error
correction schemes [28].

The proposed network is shown in Fig. 4, where the
floating gates are formed within the 2DEG in the form of
discs connected by quantum wires. The discs themselves
can be considered as large quantum dots that contain many
electrons (approximately 50—100) so that (quantum) fluc-
tuations are negligibly small. Parts of the network are then
connected or disconnected by locally depleting these wires
with the help of a standard quantum point contact [1]. This
suppresses the displacement of charges very quickly and
efficiently. The electrostatics of such semiconductor gates
is essentially the same as the previously discussed metallic
gate. Indeed, the number of electrons in the 2DEG-defined
network can be fixed, thus the gate behaves as floating.
Again, the minimal switching time is limited roughly by
the mean free time of the elastic scattering (at low tem-
peratures), which for a typical GaAs 2DEG is on the order
of tens of picoseconds.

The single-spin control required for completing the
universal set of gates in our proposal can be implemented
in both setups through ESR [29], or purely electrically via
electric-dipole-induced spin resonance [30-32], which is
more convenient for our electrostatic scheme. The time
scales achieved are on the order of 50 ns, much shorter than
the spin-relaxation and decoherence times [30-32].

C. Design based on 1D-nanowire quantum dots

The efficiency of the floating-gate architecture is strongly
dependent on the strength of the SOI experienced by the
electrons in the QDs, which has to be large enough to
overcome the spin-decoherence rates. InAs nanowires are
such strong SOI materials, with strengths larger by an order
of magnitude than in GaAs 2DEG [33]. Moreover, the
electron spins in QDs created in these nanowires show
long coherence times [32] and can be controlled (electri-
cally) on times scales comparable to those found for the
electron-spin manipulation in GaAs gate-defined QDs [32].

In Fig. 5, we show a sketch of an architecture based on
nanowires that contain single or double QDs. Typical
examples for such wires are InAs [32,33] and Ge/Si
[13,34] nanowires, carbon nanotubes [12,35-37], etc. The
default position of a QD is chosen so that the coupling to
any of the surrounding gates is minimal. Neighboring QDs
in the same nanowire are coupled by a vertical metal gate,
while QDs in adjacent nanowires are coupled by a hori-
zontal metal gate. The electron in a given QD can be
selectively coupled to only two of the surrounding gates
by moving it (via the gates that confine the electrons) in
regions where the electric-field gradient for the induced
charge is maximum on these two “active” gates, while
negligible for the other two ““passive” gates. The other QD
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FIG. 5. Architecture based on nanowire QDs coupled by me-
tallic gates. The spin qubits are confined to QDs (black dots) on
nanowires. The nanowires form a parallel array (vertical black
lines). The coupling between neighboring spin qubits is enabled
by floating metal gates (white circles) positioned either parallel
to the wires (and thus coupling QDs created in the same wire), or
perpendicular to the wires (and thus coupling QDs created in
adjacent nanowires). By using external gates (not shown) to
move the dots along the nanowires (shaded green colors on the
wires), it is then possible to selectively couple one particular QD
to only two surrounding gates (green and yellow ““active” gates).
The other QD partner also couples to one of these active gates
(green), resulting in a selective coupling of the desired nearest-
neighbor pair.

partner in the coupling is moved toward one of the active
gates, resulting in a qubit-qubit coupling. Note that there
are three active gates in total, but only one of them is
shared by both QDs. This configuration allows selective
coupling of any nearest-neighbor pair in the network.

The spin-coupling mechanism as well as the 2D geome-
try are similar to the previous 2DEG-GaAs-QD designs,
showing the great flexibility of the floating-gate architec-
ture. As before, the spin qubits can be manipulated purely
electrically, via the same gates that confine the QDs [32].
We mention also that the (dog-bone-like) gate geometry
shown in Fig. 5 is not optimized to achieve the best switch-
ing ratio; more asymmetric gate geometries may possibly
lead to better results.

D. Spin-qubit decoherence and relaxation

Decoherence and relaxation are two of the main ob-
stacles to overcome in building a quantum computer. The
main source of qubit decay in typical GaAs quantum dots
comes from nuclear spins and phonons (via spin-orbit
interaction), and it has been studied in great detail both
theoretically and experimentally. (See, e.g., Ref. [38].) The
longest relaxation and decoherence times measured are
about 7, ~ 1s [39] and T, ~ 270 us [2], respectively.
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Exactly the same qubit-decay mechanisms as described
also apply here except for one new source that comes
from the Nyquist noise of the floating metallic gates.
However, this problem has been studied in great detail in
Ref. [40], and no major impact on the decoherence time
has been found. Even if Nyquist noise were a problem, it
could be further reduced by using superconducting gates in
lieu of normal metal ones.

V. IMPLEMENTATION OF TWO-QUBIT GATES

Since the Hamiltonian of Eq. (8) can entangle, it can be
used to implement two-qubit gates. Here, we consider the
controlled-NOT (CNOT) gate, widely used in schemes for
quantum computation [5,6]. The Hamiltonian for two
single-QD qubits interacting via the floating gate is the
sum of Hg.g and the Zeeman terms. The strength of the
latter in comparison to the former allows us to approximate
the Hamiltonian by H'=Jplyl*(cloi+olol)/2+
E_(ol 4 0?)/2, for which the qubit-qubit interaction and
Zeeman terms commute. The CNOT gate, C, may then be
realized with the following sequences,

[ ’ (ol + o2 _iy
C = 0.; 0.)2(5_[161(0'1+0'1)E:te iH't

X gleiloitodEd =it o1 41 (13)

—iH! gl
C= ﬁa’% a2 H oo 125l g2 o= il't/2

X a')zce_iH”/za’ia’%e"‘Hl’/z}[l, (14)

where t = 7/(4J,]y,|?) and HH denotes the single-qubit
Hadamard rotation. These sequences require two and four
applications of the floating gate, respectively. More details
on their construction can be found in Appendix C. The time
t is the bottleneck process in the sequence, and so the time
needed to implement the gates is on the order of this value.
For a realistic value of J,,|y|> = 10 weV, this gives a time
of around a nanosecond.

Since H’ is only an approximation of the total
Hamiltonian, these sequences yield approximate CNOTs.
Their success can be characterized by the fidelity which
depends only on the relative strengths of the parameters.
For a realistic device, we can expect the Zeeman terms to
be an order of magnitude stronger than the qubit-qubit
coupling. The above sequences then yield fidelities of
99.33% and 99.91%, respectively. For 2 orders of magni-
tude between the Zeeman terms and qubit-qubit coupling,
the approximation improves, giving fidelities of 99.993%
and 99.998%, respectively. These are all well above the
fidelity of 99.17% that corresponds to the threshold for
noisy CNOTs in the surface code [6]. Hence, despite the
difference in error models, we can be confident that the
gates of our scheme are equally useful for quantum
computation.

VI. NUMERIC MODELING
OF REALISTIC DEVICES

In the previous sections, we neglected a number of
practical concerns related to the construction of working
devices, most notably, the existence of the metallic gates
used to define the quantum dots themselves and the pres-
ence of undepleted 2DEG outside of the quantum dots. The
gates and 2DEB have finite capacitances to the coupler,
shunting away some of the charge that would otherwise
contribute to the interqubit interaction. To confirm that
substantial couplings can still be attained at large distances
with these limitations, we have performed numeric simu-
lations of devices with realistic geometries similar to ST

(a) 2

(b) 90
80+

70%
60
50}
40}

Coupling, peV

30+

201 Dots only Metallic coupler
(no leads) Etched coupler
10 Dots w/
leads
0

0 2 4 6 8 10
Interqubit separation (WLm, edge to edge)

FIG. 6. Numeric simulation confirms the efficacy of the design
for ST qubits; addition of a metallic coupler (crosses) increases
coupling more than threefold for closely spaced dots, and greatly
extends the range of the coupling. (a) The simulated device with
a separation of 1 um and an etched coupler. 2DEG underneath
the shaded region is treated as depleted, while red circles show
the locations of the individual quantum dots within the simula-
tion. (b) Coupling strength as a function of separation for the ST
qubits in free space (smooth red curve, second from lower left),
qubits including leads and 2DEG but without a coupler (red
curve with + signs in lower left corner), including a metallic
coupler (curve with black crosses), and additionally etching a
trench around the coupler to deplete the 2DEG underneath
(curve with blue squares). Inset: Electrostatic potential (color
scale) at the sample surface shows the impact of the coupler on a
device with a 1-um separation.
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spin qubits that are currently in use. A typical simulated
geometry is included in Fig. 6. The gate and heterostructure
design is identical to a functional device currently being
characterized [41], and the boundaries of the 2DEG and
placement of the electrons within the dot are estimates
guided by experimentally measured parameters. Each
quantum dot is modeled as a fixed-charge metallic disc
50 nm in diameter within the 2DEG. While unsophisti-
cated, the simulation suffices to estimate the practicality of
this scheme.

We define the coupling between two ST qubits as the
change in detuning in one ST qubit induced by the transfer
of a full electron from one dot to the other dot in a second
ST qubit. For our reference ST-qubit design with the two
qubits physically adjacent to each other and no coupler
(680 nm center to center), we calculate a coupling of

@ !

M

[ S P

(b) 10
8 L p
Lead coupler (on)
ERi
£
g —
—
! :
2 ]
2| 0 ]
:\_mMetallic coupler (modified) |
Lead coupler (off) —
0 M i i X
1 2 3 4 5
Interqubit separation (Lm, edge to edge)
FIG. 7. Simulations of single-spin qubits show appreciable

coupling strengths, even over distances of several microns.
While the metallic coupler design of Fig. 6 modified to place
the quantum dots at the edges of the couplers is effective [black
crosses in (b)], an all-in-2DEG design where one of the leads of
the qubit acts as a coupler [red region in (a)] provides dramati-
cally enhanced coupling [solid red lines in (b)]. The coupler is
deactivated by a metallic top gate [black hatched region in (a)],
modeled by removing the hatched section of the coupler. The
deactivation reduces interqubit coupling by over an order of
magnitude [dashed red curve in (b)].

20 peV. As the qubits are separated, the coupling vanishes
rapidly as the 2DEG between the qubits screens the electric
field; the coupling is reduced by an order of magnitude if
the dots are separated by an additional 250 nm. This rapid
falloff makes problematic the gate density needed for
large-scale integration of these qubits.

The addition of a floating metallic coupler of the type
described here increases the coupling at zero separation to
70 peV and allows the qubits to be separated by more than
6 um before the coupling drops to the level seen for two
directly adjacent qubits. We can further improve upon this
coupling by etching the device in the vicinity of the cou-
pler, which reduces the shunt capacitance of the coupler to
the grounded 2DEG between the devices.

For the case of single spins, this metallic coupler is
modified to place the quantum dots at the edges of the
coupler rather than under the discs. We define the coupling
in this case as the electric field in V/m induced on one
qubit in response to 1 nm of motion of the electron on the
other qubit. We continue to find substantial couplings even
at large separations (Fig. 7). However, in this case we find
we can further improve couplings by moving to the all-in-
2DEG design, where one of the leads of the quantum dot is
used as the coupler [Fig. 7(a)]. Using the lead in this
fashion should be harmless; no current is driven into the
lead during qubit manipulations. The lead [colored region
in Fig. 7(a)] is modeled as a metallic strip at the level of the
2DEG. Because of the close proximity of the lead to
the qubit as well as the sharp electric-field gradients near
the point of the lead, we find strongly enhanced coupling
for this lead coupler over the floating metallic coupler for
single-spin qubits. By depleting part of the lead coupler
using a metallic top gate [yellow region in Fig. 7(b)], it is
possible to selectively turn this coupling on and off. The
reduction in coupling in the off state is more than an order
of magnitude, and that can be further improved by increas-
ing the size of the depleted region.

VII. CONCLUSIONS

We have proposed and analyzed an experimentally fea-
sible setup for implementing quantum gates in an array of
spin qubits localized in gate-defined quantum dots based
on the interplay of the Coulomb repulsion between the
electrons, SOI, and externally applied magnetic fields. As
opposed to current schemes based on direct exchange [4],
our scheme does not require electron tunneling between
the quantum dots and thus is within experimental reach
based only on current spin-qubit technology.

We have shown, both analytically and numerically, that
by use of either metallic floating gates in the shape of a dog
bone, or the 2DEG itself acting as a metallic gate, long-
range spin-spin coupling is achieved, with coupling
strengths exceeding the spin-decay rates. Moreover, the
coupling can be selectively switched on and off between
any pairs of qubits by only local qubit manipulation,
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allowing entangling quantum gates such as the CNOT to be
performed accurately and efficiently. The two-dimensional
architecture based on this design provides a platform for
implementing the powerful surface code.

The electrostatic scheme proposed here is also a step
forward toward an efficient implementation of gates be-
tween hybrid qubits, such as the ST qubit, hole-spin qubits,
or even superconducting qubits. This work opens up new
avenues for a future working hybrid quantum computer,
based on not one but several types of qubits.
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APPENDIX A: SPIN-SPIN COUPLING—SINGLY
OCCUPIED DOUBLE QUANTUM DOTS

In this section, we derive explicitly the effective
spin-spin coupling. The spin-orbit interaction (SOI)
Hamiltonian Hgp is assumed to be small compared to
both the orbital Hamiltonian H, + V and the Zeeman
coupling H,, so that we can treat it using perturbation
theory. The method of choice for perturbation theory is
based on the SW transformation, following Refs. [17,23].
This method is quite suitable for deriving effective
Hamiltonians, which is our goal. We first perform a unitary
transformation on the full Hamiltonian,H — eSHe 5 =
Hgw, with S an antiunitary operator, so that we obtain

HSW:Hd+HSO+[S)Hd+HSO]+%[S?[S’Hd+HSO]]+“"
(AD)

where Hy = Hy + V + H;. We look for the transforma-
tion S so that this diagonalizes the full Hamiltonian H in
the basis of Hy. In leading order in Hgg, we choose S so
that [S, Hy + V + H;] = —(1 — P)Hgq, with the projec-
tor operator P satisfying PA = ¥ p _p A,,|lm)Xn|, V A.
In other words, it projects onto the diagonal part of the
Hamiltonian, Hy. Keeping the lowest-order terms in o and
[ in the SW transformation, we are left with the effective-
interaction Hamiltonian Hgyw that contains the desired
spin-spin coupling in the basis of Hy:

Hgw = Hq — 3P[S, Hso], (A2)

where S = (1 — P)L;'Hgo, with L being the Liouvillian
superoperator (L4A = [Hy, A], V A).

Next, we find the explicit expression for the spin-spin
coupling due to the second-order term in SOI in Eq. (A2),
ie., U=1[S, Hsol. We make use of the explicit time-
dependent (integral) representation of the Liouvillian
L' = —i f3 dte Lt ™" and arrive at

U= [T e o0, B0l a3)
0
where Hy(t) = e'la'H, = e¢fls'H, e~ s’ and n — 0" en-
sures the convergence of the time integration. Heisenberg
operators, o;(t) and p,(z), are needed in order to calculate
U. The former is easy to obtain: o,(f) = 3,(f)o;, with
ii(t) given by

A E, it E, it
) — 2 Zi + ) ) - 27
(Ez)mn(t) 5l’i‘l’lll COS 2h 2(ll)nl(ll)nS1n 4h

. Ezt
- l; —, A4

8nmk( l)k Sin " ( )
withl; = B;/B. The calculation of p,(¢) consists of solving
the system of ordinary differential equations (ODEs):

00 = w0~ V0.0, (A3)
a :
9y = ptom. (A6
dt

In order to solve this system, we expand the electrostatic
potential, given in Eq. (3), around the minima to second
order in r;(z). The system of ODEs now reads

2 t R t
d_2<pl<>>=_9<pl<>)’ )
di=\ p,(1) pa(1)

w2 0 N
~ 0 w? o
Q= S (A8)
ot w: 0
12 0 wg

In this approximation, only terms O(r?) are retained—This
is a valid choice for low-lying levels. We ignore the renor-
malization of the frequencies (w, and w,) because it gives
higher-order (in the Coulomb energy) contribution to the
effective spin-spin coupling. The coupling between the

QDs (fllz) is given by

A 9qina 9¢ind
Q) = ma,a ( - - w;w; (A9)
12 a7 IF; Jir=0 arj [r=0 o

2R"§(2) - Rzai
wé (2 —ad — R? — d°)’
where a, = C4/(Cy4 + Cy), ac = ¢*/(kRhw,), and F; =

r;/A;. (A; is the QD size along the ith direction). a; are the
vectors that define the position of the QDs with respect to

(0Gina/ 01 ))=0 = (A10)
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Floating gate

QD

QD

FIG. 8. The misalignment angle a of the two QDs (yellow
discs), defined with respect to the metallic floating gate (orange).

the nearby disc center (see Fig. 8). Note that the expres-
sions for the disc (C4) and wire (C,,) capacitances, respec-
tively, are given by

C, = 2R/, (A1)

C = L
YT 2In(L/Ry)’

where R is the radius of the disk, R,, is the radius of the
wire, and L is the length of the wire.

In order to obtain the solution of Eq. (AS8), we note

2
xy»

(Q1z)§x]) of the QDs causes the motion in the x and y
direction to be decoupled. Having in mind that
(Q12)§x,xy/w)2c,y ~1073-10"%, we conclude that such an
ellipticity is unavoidable in realistic experimental devices.

(A12)

that even a slight ellipticity (|o? — w3| > max[(Q,)

Thus, we put off-diagonal elements of the le matrix to
zero and obtain these solutions:

pi,(1) = = pl cos(w', 1) + picos(w’ 1)
F m'riw’, sin(w t) — mrie’ sin(w' 1),
(A13)
where the notationr,, = (r; = r,)/2, p;. = (p1 = p»)/2

and w. = (\/wi = (Qp)2, \/wf + (fllz)%y) has been in-
troduced. In Eq. (A13), the superscript of a vector denotes
the corresponding component of the vector.

Next, the obtained solutions are inserted into Eq. (A3).
Finally, after performing the integration over time, one
obtains the effective spin-spin coupling for arbitrary ori-
entation of the magnetic field,

Z m*a)%le%l (ll X (ll X 71)) : 0-1(0-2 : 71)

Hqy = +1e2,
- i=x,y 4(60/% - E%l)(w)% - E%Z)

(A14)

where v, = (Bcos2y, —a — Bcos2y,0), v, =

(a — Bsin2y, —Bcos2vy, 0), and I; = B;/B. For simplic-
ity of notation, 7y, is referred to as ¥ in the main text.

A few remarks should be made about the result embodied
in Eq. (A14). First, from Eq. (A10) we see that ﬂlz * a; ®
a,. Accordingly, the two terms in the sum of Eq. (A14) are
proportional to cosa; cosa, and sina; sina,; these angles
«; are shown in Fig. 8. When only the Rashba SOl is present
in the material, the coefficients in front of the two terms are
equal, and the coupling is proportional to a; - a,. This

result gives yet another efficient switching mechanism:
when the QDs are rotated in such a way that the two vectors
are orthogonal (a; - a, = 0) [42].

APPENDIX B: SPIN-SPIN COUPLING—THE
HYBRID SYSTEM

We start from the Hamiltonian of the system and then
apply the SW transformation to remove the first-order SOI
term (present only in the single QD). The electrostatic
potential V is again expanded around the minimum,

V(r,ry,r)=Vr,r) +Vr,r)

~m" Z (wix? + Swiy?)
i=e, 1,2

+ m*w? Hx, (X + x3), (B1)
where r,, ry, and r, are the coordinates with respect to the
local minima for the electron in the single QD, and for the
two electrons in the DQD, respectively. The terms under
the sum only renormalize the frequencies. We do not take
them into account; they give only higher-order (in the
Coulomb energy) contributions to the final results. The
last term acts as an electric field on the DQD. As has
been shown in Ref. [21], this term leads to a change in
the exchange splitting between the singlet and triplet states
in the DQD,

H=H,+ H; + Hyo, + 6J%,8, - S, (B2)
where 8.7 is given by
- 3 2
8] = D12 (B3)

— = €
sinh(2%) lw}

wp is the confinement energy in the DQD, and [ is the
distance between the DQD minima measured in units of a
QD size. We assume that the detuning € is applied to the
DQD in order to get the coupling linear in electrostatic
coupling.

The SW transformation is given by S = (Ly + L, +
Ly) 'Hgp. Similarly to the previous section, in order to
find the inverse Liouvillian, we have to solve the system of
ODEs:

d ~
—pe,x(t) = _m*w,%xe(t) - m*']sl : SZ’

o7 (B4)
9 o () = —m* @y, () (B5)
dr’ yrers

4y t) = po(t)/m* (B6)
dt e pe .

The solution is easily obtained:
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/\Sl . Sz) Sin(wxl‘),

(B7)

. J
pe(t) = picos(w, 1) —m <xewx+ :
m w

pe(t) = pycos(wyt) — m'y,w, sin(w,1). (B8)

After integration over time, the § transformation is

obtained:

—iS = z m*re,i(MZgZ(B . yiz)(B : g) - 4(1)1271‘ . 0')
8(w; — E3)

i=x,y
ug(B X o) yp,;
Hwf ~ E7)
L W(By)(B-0) —4wly. o
8w2(w? — E2)A

5.751 * S2.
(B9)

The coupling is contained in the S, H, + 8J%,S; - S, term:

3 ugdl(y, B) o
Hw? — E2)A

(S1 - 85). (B10)

Hhybrid =
By rewriting the last equation in the pseudospin space, we
have obtained the generalization for Eq. (12) for arbitrary
magnetic-field orientation.

APPENDIX C: IMPLEMENTATION
OF TWO-QUBIT GATES

Two qubits interacting via the floating gate evolve ac-
cording to the Hamiltonian H = Hg.g + Ez (0! + 02), the
sum of the qubit-qubit coupling and the Zeeman term. In
general, these contributions do not commute, making it
difficult to use the evolution to implement standard entan-
gling gates. However, when the field is perpendicular to the
2DEG substrate, Hg-g takes the form of Eq. (8), which can
be decomposed into two terms as follows:

Hs.s = Jo(I'y — iTyol) (007 — 0)03)/2
+ Il Foros + oy03)/2. (Cl)
Here, 1_‘1 = (('}’x))zr - ('}/x)g) and FZ = (Yx)x(yx)y- The first
of these two terms anticommutes with the Zeeman term,
whereas the second commutes. That being so, when E; >

Jio|v<|*, Hg_g can be approximated by the second term
alone:

Joly.l?
Hg.s =~ H{_ = %(0’;0‘% + oyo3), (C2)
H~H = H,+ E)(o! + 02))2. (C3)

With this approximation, the coupling and Zeeman terms
in H' now commute.

We consider the implementation of the gate /o0, =
exp(—iola?m/4), which is locally equivalent to a CNOT.

The Hamiltonian H' already contains a olo? term, so
implementation of the /o, o, gate requires only that the
effects of the other terms be removed by appropriate local
rotations. Two possible sequences that can be used to
achieve this are

il 2 —ig! Al 2 iyl
m: €l(03+03)Ezt€ lHta_)lCel((rZwL(rZ)Ezte 1Ht0.)16 and

(C4

—iH! —iH! 4! —iH/
m: 0',%6 ’H’/zaiafe ’H’/zafe ’H’/zalvﬁe sz/2,
(C5)

where t = 7/(4J,,]y1?). The first sequence requires two
applications of the qubit-qubit coupling, whereas the sec-
ond requires four. The main difference is that the former
removes the effects of the field through the application of
corresponding z rotations after each application of H’,
whereas the latter uses x rotations to negate the sign of
the field terms and additional applications of H’ to cancel
them out. The former is therefore simpler to implement,
although the latter method will also cancel terms not taken
into account in the approximation.

Once the /o0, has been implemented using either of
the above sequences, the CNOT gate, C, may be applied
using the appropriate local rotations,

C = Joor2 A Joro .

Here, JH denotes the single-qubit Hadamard rotation.

Since H' is an approximation of H, the above sequences
will yield approximate CNOTs, C’, when used with the full
Hamiltonian. The success of the sequences therefore de-
pends on the fidelity of the gates, F(C’). Ideally this would
be defined using a minimization over all possible states of
two qubits. However, to characterize the fidelity of an
imperfect CNOT, it is sufficient to consider the following
four logical states of two qubits: |+, 0), | + 1), |—, 0), and
| —, 1). These are product states which, when acted upon by
a perfect CNOT, become the four maximally entangled
Bell states |[®*), |[¥"), |®d~), and |V ), respectively. As
such, the fidelity of an imperfect CNOT may be defined as
follows:

(Co)

F(C) = min
ie{+,—-}je{01

}|<i,j|CTC'|i, NP (C7)
The choice of basis used here ensures that F(C’) gives a
good characterization of the properties of C’ in comparison
to a perfect CNOT, especially for the required task of
generating entanglement.

In a realistic parameter regime, we can expect that (y,),
and (y,), will be of the same order, and the qubit-qubit
coupling will be a few orders of magnitude less than the
Zeeman terms. To get a rough idea of what fidelities can be
achieved in such cases using the schemes proposed, we
average over 10* samples for which (7x)y is randomly
assigned values between (y,),/2 and 3(y,),/2 according
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to the uniform distribution, and J,(y,),/E; = 0.1. This
yields values of 99.33% and 99.91% for the sequences of
Egs. (C4) and (C5), respectively. For J,,(v,),/Ez = 0.01,
these improve, becoming 99.993% and 99.998%,
respectively.

To compare these values to the thresholds found in
schemes for quantum computation, we must first note
that imperfect CNOTs in these cases are usually modeled
by the perfect implementation of the gate followed by
depolarizing noise at a certain probability. It is known
that such noisy CNOTSs can be used for quantum compu-
tation in the surface code if the depolarizing probability is
less than 1.1% [6]. This corresponds to a fidelity, according
to the definition above, of 99.17%. The fidelities that may
be achieved in the schemes proposed here are well above
this value, and, hence, although they do not correspond to
the same noise model, we can expect these gates to be
equally suitable for fault-tolerant quantum computation.
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