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Complex systems are characterized by multiple spatial and temporal scales. A natural framework to
capture their multiscale nature is that of multilayer networks, where different layers represent distinct
physical processes that often regulate each other indirectly. We model these regulatory mechanisms through
triadic higher-order interactions between nodes and edges. In this work, we focus on how the different
timescales associated with each layer impact their reciprocal effective couplings. First, we rigorously derive
a decomposition of the joint probability distribution of any dynamical process acting on such multilayer
networks. By inspecting this probabilistic structure, we unravel the general principles governing how
information propagates across timescales, elucidating the interplay between mutual information and
causality in multiscale systems. In particular, we show that feedback interactions, i.e., those representing
regulatory mechanisms from slow to fast variables, generate mutual information between layers. On the
contrary, direct interactions, i.e., from fast to slow layers, can propagate this information only under certain
conditions that depend solely on the structure of the underlying higher-order couplings. We introduce the
mutual information matrix for multiscale observables to capture these emergent functional couplings. We
apply our results to study archetypal examples of biological signaling networks and effective environmental
dependencies in stochastic processes. Our framework generalizes to any dynamics on multilayer networks,
paving the way for a deeper understanding of how the multiscale nature of real-world systems shapes their
information content and complexity.
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I. INTRODUCTION

Real-world systems are often characterized by intercon-
nected dynamical processes occurring at multiple scales,
both spatial and temporal ones. This multiscale structure
is a fundamental ingredient in shaping the properties of
complex systems [1]. Further, such intrinsic temporal
separation and the interplay between slow and fast proc-
esses have been known to be a crucial feature of biological,
chemical, and ecological systems [2–10].

A natural framework to describe these interconnected
multiscale systems is that of multilayer networks [11–15].
Nodes in a layer may represent either physical or biological
units, habitats on complex landscapes, or states in a
chemical system, with each layer embedding different
processes—from random walk, agent-based, and master
equation dynamics to spreading and stochastic processes
[16–21]. Here, we consider the different layers as physi-
cally separated processes that take place at distinct time-
scales and regulate each other indirectly. In this scenario,
as we will detail later on, interactions across timescales
are not pairwise, but rather higher order in nature. Higher-
order interactions [22,23] and their effects on a variety of
phenomena have been extensively studied in recent years,
from synchronization to epidemic spreading and the
stability of ecological systems [24–31]. In particular, the
higher-order interactions considered herein represent
how a node evolving with a given timescale regulates
the pairwise link between two nodes evolving with another
timescale. These kinds of interactions are known as triadic
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interactions [32]. This setting is especially relevant in
neuroscience, ecology, and climate science [24–26,33–35],
but it has also been used to characterize the control of
stochastic reaction networks [36,37], a general framework
with applications in signaling and regulatory biochemical
processes [38,39]. Furthermore, the presence of multiple
timescales associated with distinct dynamical processes has
been shown to be paramount in various contexts. Their
interplay may fundamentally alter, for example, the onset of
large-scale propagation of epidemics in temporal networks
[40,41], the selection of chemical states in reaction-diffusion
systems [42,43], and the quantification of dissipative proper-
ties at the nanoscale [44,45]. Moreover, recent studies
investigated the interplay between timescales and network
structure in general diffusive processes [46,47].
Here, we unravel the intimate relationship between these

multiscale structures and the ability to propagate informa-
tion in a wide class of complex systems. In Sec. II,
we present such a link in a simple network as a proof of
concept, while a general framework is introduced in
Sec. III. By inspecting the dynamical properties of multi-
layer networks with triadic interactions between layers
defined by their timescales, we first derive a general
decomposition for the joint probability distribution of
any process taking place in these systems. To this aim,
we generalize the timescale separation approach to deal
with multiple interconnected timescales and higher-order
interactions of any functional form. Such a decomposition
allows us to compute the mutual information between
layers exactly, hence providing the setting to unravel the
interplay between the causal higher-order structure and the
emergence of functional couplings between timescales.
In Sec. IV, we uncover the principles governing how
this information propagates across timescales. Section V
presents an intriguing consequence of these principles,
showing that disconnected components become effectively
coupled due to shared slow modulations, an archetypal
model for the interplay between environmental and internal
dependencies in complex systems. To prove the versatility
of our framework, we employ it to study biological
signaling networks in Sec. VI. Section VII summarizes
the main messages of our work, also offering hints on
potential applications and useful implications.

II. INFORMATION ACROSS TIMESCALES

As a proof of concept, we first consider the simple case
of a two-layer system. Each layer has two nodes, Aμ and Bμ,
with μ ¼ 1, 2, and two directed links connecting them with
weights wA→B

μ =τμ and wB→A
μ =τμ [see Fig. 1(a)]. Here, τμ is

the characteristic timescale of the layer dynamics. We name
xμ the state of the layer μ, which can thus take two possible
values, Aμ or Bμ. We can think of xμ as describing a random
walk in each layer, or equivalently a molecule switching
between two possible configurations, a two-state chemical
network, or any other master equation dynamics [48,49].

The two layers represent two stochastic systems physi-
cally separated from each other. In other words, a random
walker moving in the first layer cannot jump on the second
one, or a molecule cannot switch between states belonging
to different layers. Since interactions across layers do not
act through direct edges between nodes, the weighted
adjacency matrix of the network Ŵ is a block diagonal
matrix. Rather, we causally connect layers via higher-order
triadic interactions, so that a node in the first layer
influences an edge in the second one [dashed line in
Fig. 1(a)] [32]. To fix the ideas, let us consider that the
node B1 in the first layer interacts with the A2 → B2 edge in
the second layer. We write the modified edge weight as

ðwH
2 ÞA→B

τ2
¼ wA→B

2 þ cδðx1; B1Þ
τ2

; ð1Þ

where δð·Þ is the Kronecker delta, and c represents the
regulatory interaction that stimulates the transitions to B2

when the first random walker is in the state B1.
To describe these kinds of systems, we introduce the

joint probability of the two layers p12, which quantifies
the probability of finding the two random walkers in their
respective node, i.e., of finding the system in one of
the 22 possible configurations fðA1; A2Þ; ðB1; A2Þ; ðA1; B2Þ;
ðB1; B2Þg. In components, the master equation for p12 reads

∂tðp12Þn ¼
X22
m¼1

�ðΩ̂1Þnm
τ1

þ ðΩ̂2Þnm
τ2

�
ðp12Þm; ð2Þ

where Ω̂1 and Ω̂2 are the transition matrices containing all
the transitions involving the first and the second layer,

FIG. 1. Information between two layers with states x1 and x2 is
influenced by the their timescale ratio τ1=τ2. (a) Sketch of the
system with the nodeB1 influencing the link A2 → B2. (b) Mutual
information I12 between x1 and x2 as a function of τ1=τ2 and the
triadic interaction strength c. (c) At fixed c ¼ 10, I12 vanishes
when x1 is faster than x2. When τ1=τ2 → ∞, the regulating layer
is slower, and I12 converges to a nonzero value. The master
equation of the system can be solved exactly (solid black line),
simulated via a Gillespie algorithm [50] (blue dots), and solved in
a timescale separation regime (dashed blue line).
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respectively. A detailed description of this system is given in
Appendix A.
We can solve the master equation for the joint probability

of the two layers exactly, and study the mutual information
I12 between them (see Appendix B). In Figs. 1(b) and 1(c),
we show the behavior of I12 as a function of the triadic
interaction strength c and the relative timescale separation
between the two layers, τ1=τ2. As expected, I12 increases
with c, since the two layers are decoupled when c ¼ 0.
Additionally, we find that no information is shared between
the two layers when τ1 ≪ τ2, i.e., when the regulating
layer—the first one—evolves faster than the regulated
layer—the second one. However, information is maximal
and saturates when x1 undergoes a much slower dynamics
than x2, i.e., when τ1 ≫ τ2, with a steep transition between
these two regimes.
This simple example suggests that the relative character-

istic timescales among physically separated systems shape
the information content shared by different layers. Our goal
is to unveil this connection on more general grounds and,
therefore, the main principles governing information propa-
gation in multilayer systems.

III. GENERAL MULTILAYER DYNAMICS

Consider a system ofN layers. The μth layer is a network
with Mμ nodes, defined by a Mμ ×Mμ adjacency matrix
Ŵμ that encodes the pairwise relations between nodes, e.g.,
transition rates or interactions. For easiness of notation and
interpretation, here we focus on the case in which each
layer supports a distinct random walk or master equation
dynamics, so that we can identify the state of a layer xμ with
the occupied node, as in the previous example. However,
our framework is valid for any stochastic dynamics on
networks, from Ornstein-Uhlenbeck processes to models of
neural dynamics, where the state of a layer is a vector of
node states (see Appendix B) [51,52].
Causal interactions across layers are triadic, going from

nodes of one layer to edges of another. As outlined above,
this setting naturally stems from the requirement that layers
represent physically separated systems. Such higher-order
interactions are defined by a tensor Ck;i→j

μν , which denotes
how the node k in layer μ influences the i → j edge in
layer ν. For the sake of brevity, we denote with Ĉμν the tensor
that contains the set of all possible triadic interactions from μ
to ν. We also introduce the modified adjacency matrix ŴH

μ of
a layer, which contains both the intralayer pairwise edges, as
well as the contribution of higher-order interactions coming
from the nodes of other layers. To fix the ideas, when triadic
interactions are additive with respect to pairwise couplings,
we write its elements as

ŴH
μ ðfxg⇝μÞi→j ¼ ðŴμÞi→j þ

X
ν≠μ

XMν

k¼1

Ck;i→j
νμ ϕk

μðxνÞ: ð3Þ

In Eq. (3), ϕk
μðxνÞ is a generic nonlinear function of the

state of a layer, and fxg⇝μ is a shorthand notation to denote
the state of all layers connected to μ by higher-order
interactions, i.e., all ν for which Ĉνμ is nonzero. Let us
stress that the additive structure in Eq. (3) is only exemplary
and, in particular, allows for the presence of a baseline
transition matrix Ŵμ even in the absence of higher-order
couplings. However, our results are independent of the
specific form of ŴH

μ , where triadic interactions may enter
in any functional shape.
We now order the layers by their timescales—that is, we

take τ1 < τ2 < � � � < τN , so that the first layer is the fastest
and the last the slowest. We name triadic interactions going
from a fast to a slow layer as “direct” interactions. Vice
versa, when a slow node influences a fast link, we call the
corresponding interaction a “feedback” one. Hence, the
tensor containing all causal interactions Ĉμν can be written
as the sum of two contributions,

Ĉμν ¼ D̂μν|{z}
μ<ν

þ F̂μν|{z}
μ>ν

; ð4Þ

where D̂μν is a lower-triangular tensor in the indices μ

and ν and contains direct interactions, whereas F̂μν is upper
triangular and describes feedback interactions. Intuitively,
these two kinds of interactions capture different physical
mechanisms: direct couplings act as controls modulated by
underlying fast processes, while feedback interactions
might encapsulate regulatory schemes. As we will see,
they play a very different role in determining how

FIG. 2. Sketch of a multilayer system with intralayer pairwise
interactions and triadic higher-order interactions across layers.
We name interlayer interactions going from a faster layer to a
slower one as “direct” interactions, as they follow the ordering
induced by the timescales. On the contrary, we refer to those that
go toward faster layers as “feedback” interactions, as they provide
a slow modulation to fast processes.
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information is created and propagated across layers. This
general model is depicted in Fig. 2.
We denote the joint probability distribution of all layers

at time t with p1;…;NðtÞ. This is a probability distribution
over all the S ¼ Q

N
ν¼1 Mν possible states of the distinct

randomwalks (see Appendix B). The corresponding master
equation reads

∂tp1;…;NðtÞ ¼
XN
μ¼1

Ω̂μðfxg⇝μÞ
τμ

p1;…;NðtÞ; ð5Þ

where Ω̂μ is the S × S transition matrix containing all the
transitions involving the μth layer. Clearly, Ω̂μ can be fully
specified in terms of ŴH

μ , and vice versa. Inspired by the
results of the previous section, we are particularly inter-
ested in the timescale separation regime τμþ1=τμ → 0 [53].
The presence of direct and feedback interactions at once
allows us to explore both the extreme behaviors—
maximum and zero information—highlighted in the pre-
vious section. In this regime, we can solve Eq. (5)
analytically (see Appendix C) and show that p1;…;N takes
the following factorized form:

p1;…;NðtÞ ¼ peff
N ðtÞ

YN−1

ν¼1

pst;eff
νjρðνÞ: ð6Þ

This result extends and generalizes the standard timescale
separation approach to deal with systems with multiple
interconnected timescales and higher-order interactions.
Here, in the conditional probabilities in Eq. (6), we

denote by ρðμÞ the set of all layers interacting with μ
via either a single feedback link or a minimal propagation
path (mPP). Any propagation path (PP) to μ is a direc-
tional path coming from layers slower than μ and
containing at least one direct link. An mPP from ν to
μ is then a PP on the induced subgraph obtained
by removing all layers slower than μ except ν (see
Appendix C). Finally, pst;eff

μjρðμÞ is the stationary probability

of the effective operator,

Ω̂eff
μjρðμÞ ¼

X
x1

� � �
X
xμ−1

Ω̂μðfxg⇝μÞ
Yμ−1
ν¼1

pst;eff
νjρðνÞ; ð7Þ

that averages the effect of all the layers faster than μ and
explicitly depends on those slower than μ belonging to
ρðμÞ. Clearly, pst;eff ¼ pst if there is no direct link toward
the layer μ. Hence, the timescale separation defines a
hierarchy of effective operators and their stationary
probabilities, starting from the fastest layer. In terms of
these operators, the multilayer joint probability can be
written exactly as a product of suitable conditional
probabilities, and the effective operator of the slowest
layer determines its time evolution. From the stationary
joint probability pst

1;…;N, we are able to compute all
marginal probabilities and thus the mutual information
between the layers:

Iμν ¼
X
xμ;xν

pμν log2
pμν

pμpν
; ð8Þ

FIG. 3. Accuracy of the timescale separation solution and mutual information in a five-layer system with triadic interactions.
(a) Scheme of the interactions, defined in Eq. (3). For simplicity, we set feedback interactions as Fk;i→j

μν ¼ Feq
μνδjk þ Fcr

μνð1 − δjkÞ, and
similarly for direct interactions Dk;i→j

μν , with Feq
μν ¼ 10, Deq

μν ¼ 0.1 ¼ Fcr
μν, and Dcr

μν ¼ 5 (see Appendix D). (b) Simulated trajectories in
each layer with τμþ1=τμ ¼ 0.1, so that each layer is an order of magnitude faster than the previous one, using a Gillespie algorithm.
(c) Comparison of the joint probability estimated from simulated trajectories at different separations between the timescales of each
layer. Gray bars represent the analytical solution in Eq. (6), which is well approximated already for τμþ1=τμ ¼ 0.1. (d) MIMMO
associated with this system when τμþ1=τμ → 0. (e) Mutual information between each pair of layers is shaped by the pathways among
them defined by direct and feedback interactions.
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defining a symmetric matrix that we name mutual informa-
tion matrix for multiscale observables (MIMMO).
Despite its intricate structure, the proposed framework

provides us with an instructive and intuitive way to study
information-theoretic properties of multilayer systems
operating at different timescales. To show this beyond
the general theory, we study the example of the five-layer
system in Fig. 3(a). Each layer has two nodesN ¼ fA;Bg.
Triadic interactions between layers are additive, as in
Eq. (3), with ϕk

μðxνÞ ¼ δðxν; kÞ for all layers μ, with k∈N .
In this way, they are switched on and off depending on
the state of the regulating layer (see Appendix D for
details about the choice of triadic interactions). Figure 3(b)
shows the typical trajectories obtained through an
exact Gillespie algorithm implemented by simulating
the dynamics of the full transition matrix

P
μ Ω̂μ=τμ [50].

From Eq. (6), the joint probability distribution reads:
p1;2;3;4;5ðtÞ ¼ pst

1j2;3p
st;eff
2 pst;eff

3j4 pst;eff
4j5 peff

5 ðtÞ. We can com-
pare this analytical solution with simulations at different
values of τμþ1=τμ. As we see in Fig. 3(c), the timescale
separation assumption provides an excellent approximation
for the system even when the timescales differ by just one
order of magnitude, i.e., τμþ1=τμ ¼ 0.1. Finally, we show
the upper triangular section of the mutual information
matrix in Fig. 3(d). We remark that, even for τμþ1=τμ ¼ 0.1,

the MIMMO obtained directly from trajectories is quali-
tatively identical to the analytical one. Importantly, the
MIMMO helps to quantify the dependence between the
layers induced by the interlayer interactions. We can assign
an undirected link between any two layers μ and ν with a
weight equal to Iμν, resulting in a fully connected network
that represents how much information each pair of layers
share [Fig. 3(e)].
Already at the level of this paradigmatic example, it is

evident that direct and feedback interactions both play a
role in determining how information spreads among layers
due to their causal relationships, i.e., how much layers are
coupled to one another. To unravel the differences between
these two classes of interactions, we now exploit the
conditional structure of the complete solution.

IV. INFORMATION PROPAGATION AND
EMERGENT DIRECTIONALITY

Let us start again from basic examples and consider the
scheme in Fig. 4(a). This represents a three-layer system in
which the structure of each layer is the same as in Fig. 3(a),
for simplicity. Without loss of generality, triadic inter-
actions have been set following Appendix D. The joint
probability distribution is pst

1;2;3 ¼ pst
1j3p

st
2p

st;eff
3 , and thus

the only nonzero element of the MIMMO is I13

FIG. 4. The principles of information propagation in multilayer networks. (a) A three-layer system with a higher-order feedback
interaction from layer 3 to 1 and a direct link from 2 to 3. Each layer has two nodes, as in the previous examples. (b) The slow layer acts
as an information source for the fast one so that I13 ≠ 0 in the MIMMO, while the direct link does not generate information.
(c) A stronger feedback interaction f increases the mutual information between the two layers. (d) The same system as in panel (a), with
the direct link from 1 to 2. (e) All the elements of the MIMMO are nonzero, since it exists a minimal propagation path 3 → 1 → 2. The
direct link propagates the information created in 1. (f) All the entries of the MIMMO depend on f, and they vanish as f goes to zero, i.e.,
no information is created. (g) A four-layer system with feedback interactions from 4 to 2 and 2 to 1, and a direct link from 1 to 3. While
for f ≠ 0 all the entries of the MIMMO are nonzero, when f ¼ 0, the information created in 1 by 2 cannot be propagated to 3, since the
dynamics of x3 is faster than x2. As a consequence, only I12 ≠ 0.
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[see Figs. 4(b) and 4(c)]. This information is due to the
explicit dependence on x3 in pst

1j3 induced and modulated by
the feedback interaction of strength f. This asymmetric effect
provides us with an emergent directionality of information
propagation, ascribing to the feedback link the role of
generating information from slow to fast layers. Instead,
the isolated direct link does not contribute to the information
content.
We now slightly modify the system, considering the one

in Fig. 4(d). Again, the feedback interaction generates
information from x3 and x1. At variance with the previous
case, the direct link can now propagate the information
generated in the first layer on x2, leading to mutual
information among all layers [see Figs. 4(e) and 4(f)].
This effect manifests into the joint probability distribution
pst
1;2;3 ¼ pst

1j3p
st;eff
2j3 pst

3 . The dependence on x3 appears in all

layers, as expected, but pst
1j3 and pst;eff

2j3 are conditionally

independent. Indeed, the mutual information among them
is not directly created by a feedback, but it stems solely
from the third layer and is then propagated; i.e., the layers
belong to an mPP.
Finally, we move to the four-layer system in Fig. 4(g).

When f ≠ 0, its joint probability distribution is
pst
1;2;3;4 ¼ pst

1j2p
st
2j4p

st;eff
3j4 pst

4 . Here, information is generated

from x2 into x1 and from x4 into x2, and this is reflected in
the explicit dependencies in the joint probability distribu-
tion. Again, the fact that 2 and 3 are conditionally
independent signals that information is propagated only
through direct links. The same happens between x1 and x3.
Nevertheless, when f ¼ 0, the only nonzero element of the
MIMMO is I12. Indeed, although x2 creates information in
x1, it cannot propagate to x3, since its dynamics is slower
than the regulating layer.
Hence, the topological structure of higher-order inter-

actions fully determines the propagation of information.
It is clear that our results depend only on the general
structure of the probability in Eq. (6), not on the dynamics
of the layer nor the form of the higher-order interactions.
As a consequence, the main result of the proposed
framework resides in the identification of three basic
physical principles of information propagation across
timescales: (i) feedback interactions generate information
from slow to fast layers; (ii) direct interactions alone do
not generate information; (iii) information generated
through feedback by a slow layer may be propagated
through direct interactions to any faster layer. The first
two principles highlight the different roles of feedback
and direct interactions in affecting the information content
of the system. The third one leads to a natural definition of
directionality in the information propagation, despite the
symmetry of the MIMMO. At the same time, it constrains
the accessibility of any control mechanism in stochastic
networks in terms of timescales, unveiling that they create

mutual information only when acting as regulatory proc-
esses, i.e., to faster layers.

V. EFFECTIVE INFORMATION BETWEEN
DISCONNECTED LAYERS

We now employ the principles outlined in the previous
sections to study what happens when information is
generated from a slow layer into either disconnected layers
or a single layer with disjoint network components. This
scenario is particularly relevant when interpreting this
scheme as a model for two distinct degrees of freedom,
evolving with two timescales τ1 and τ2, under the influence
of a shared environment that exhibits an independent
dynamics on a different timescale, τE. Without loss of
generality, we resort to the archetypal system in Fig. 5(a).
Each disjoint component has two nodes and a random walk
dynamics evolving on a timescale τ1 ¼ τ2 ¼ τ. Triadic
interactions stem from another layer with two nodes, Eoff
and Eon, and a random walk dynamics with timescale τE. In
particular, c enhances both the transitions A1 → B1 and
A2 → B2 (see Appendix G). Processes with this kind of
structure have been extensively studied in different con-
texts, from neuroscience to ecology and chemical reaction
networks [42,52,54–59].
In the limit τE ≪ τ, the shared triadic interaction

becomes a direct link and, as such, does not generate
mutual information in the system. Conversely, when

FIG. 5. Shared higher-order interactions generate information
among random walks in disjoint network components. (a) An
archetypal system where one layer has two disjoint components
ðA1; B2Þ and ðA2; B2Þ, with two random walks evolving with
timescales τ1 ¼ τ2 ¼ τ. The links of both these components are
influenced by another layer E through a triadic interaction c that
models an environmental-like dynamics with timescale τE
influencing two separate degrees of freedom x1 and x2. (b) In
the limit τE ≫ τ, the shared environment induces a nonzero
mutual information between the two disjoint random walks I12.
The black curve shows I12 in the limit c → ∞, while blue dots
show the corresponding Gillespie simulation. The two random
walks are conditionally independent in this limit, so their mutual
information can be decomposed exactly (gray dashed line) and
converges to the Shannon entropy of the environment E (blue
dashed line).
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τE ≪ τ, there is a feedback link from E to the two disjoint
components at once, so that I1E and I2E are both positive.
As a nontrivial consequence, this feedback interaction
induces a nonzero mutual information between the two
disjoint components, x1 and x2, as well [see Fig. 5(b)].
This phenomenon of dependencies induced by a
switching environment was first highlighted in Ref. [56],
but our framework allows us to immediately pinpoint it.
Indeed, in the limit of a slow environment, p1;2ðtÞ ¼P

E p
st
1jEp

st
2jEpEðtÞ. Thus, the two random walks are condi-

tionally independent and their effective coupling stems
solely from the shared environmental dynamics. In par-
ticular, I12 converges, in this limit, to the Shannon entropy
of E, i.e., the maximal information content in the environ-
ment, and we can find an exact decomposition as in
Fig. 5(b). Let us stress that, even if the two disjoint
components evolved on two different timescales τ1 and τ2,
both faster than τE, they would share mutual information as
a consequence of the principle (i) highlighted in Sec. IV.
This observation emphasizes that, when faster but discon-
nected layers are modulated by a shared (slow) degree of
freedom, their relative timescales are formally irrelevant to
quantifying their information content. However, the crucial
distinction arises in the presence of interactions between
layer 1 and 2, where the ratio between their timescales
determines whether their interaction is of direct or feedback
type, and thus shapes the features of their joint probability
distribution. In this scenario, when τ1 ¼ τ2 ¼ τ, insightful

decompositions of the mutual information emerge, as in
Refs. [56,57].

VI. MULTISCALE SIGNALING NETWORKS

As a biophysically relevant application, we focus on
biochemical signaling networks, that have been extensively
studied in different biological and living systems [60–63]
and constitute an example of controlled stochastic reaction
networks [36,37]. The formalism of the previous sections
can be immediately translated to study these cases. Each
layer now is associated with a biochemical species evolving
on its intrinsic timescale. Nodes in a layer represent the
number of molecules of the corresponding species; i.e.,
the state is given by xμ ¼ 1;…;Mμ for layer μ. Thus, the
number of nodes Mμ quantifies the maximum number of
molecules of the μth species. The random walk in
each layer now describes a birth-and-death process with
reactions:

xμ⟶
ðMμ−xμÞbHμ ðfxg⇝μÞ=τμ

xμ þ 1;

xμ⟶
xμdHμ ðfxg⇝μÞ=τμ

xμ − 1;
ð9Þ

where bHμ and dHμ are, respectively, the birth and death rates
of species μ modified by higher-order interactions, and so
they may depend on the state of other layers. We model
inhibitory (excitatory) triadic interactions as increasing

FIG. 6. Information in birth-and-death processes modeling multiscale signaling networks. (a),(b) Two biochemical architectures
known to implement biological adaptation and habituation, encompassing a receptor R, a storage S, and a readout population U.
Inhibitory links, which increase the death rate of a population, are indicated with a bar at the end. (c),(d) Both architectures display
similar dynamical behavior in the presence of a repeated input to the receptor, with the readout average hUi decreasing and hSi
increasing at each signal (gray shaded area). (e) The two architectures display important differences at the information level across
layers. In the first, the receptor and the storage share no mutual information, and the regulation of S acts independently of the signal.
(f) In the second, the storage is also informationally coupled to the receptor; hence the regulatory mechanism is tangled with the external
signal and all entries of the MIMMO are nonzero. In this figure, we set the maximum population of all species, i.e., the nodes of each
layer, to MR ¼ 15, MS ¼ 10, and MU ¼ 20.
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the baseline death (birth) rate. The details and the full time-
dependent solution of these systems are given in
Appendix E. Note that, in principle, we may have layers
with an infinite number of nodes, if there is no upper bound
to the number of molecules of a species. The probabilistic
structure and, in turn, the information propagation rules are
determined solely by higher-order couplings across time-
scales, as shown in previous sections.
In Figs. 6(a) and 6(b), we show two representative three-

layer signaling architectures that are well known to provide
minimal models for biological adaptation, habituation, and
adaptive responses [38,64]. A receptor R receives a time-
varying input hðtÞ (here a periodically switching signal)
and stimulates in turn a fast response described by a readout
population U. Such response is regulated by a slow storage
population S, inhibiting either U [Fig. 6(a)] or R [Fig. 6(b)]
and acting as an effective memory [65–67]. The specific
forms of bHμ and dHμ for these two architectures are in
Appendix F. The maximum numbers of molecules for each
species, i.e., the nodes of each layer, are MU, MR, and MS.
From the time-dependent solution of the master equation

of this system, we find that, as expected, both architectures
display qualitatively similar dynamical behaviors, with the
only difference being whether the receptor population
decreases its activity [Fig. 6(d)] or not [Fig. 6(c)]. In
particular, the average system response hUi decreases in
time upon repeated stimulation, as the storage increases
[Figs. 6(c) and 6(d)].
However, the information propagation framework allows

us to discriminate between the two architectures through
their different physical mechanisms that underlie adaptive
and habituated behaviors. In the first case [Fig. 6(e)],
there is no mutual information between receptor and
storage; IRS ¼ 0 since information is generated solely in
the readout U. Thus, the regulatory mechanism imple-
mented by S is independent of the receptor activity at the
information level. On the contrary, in the second architec-
ture [Fig. 6(f)], all the entries in the MIMMO are nonzero,
since all layers are sequentially connected via feedback
interactions. The information generated in R by the storage
is then propagated to the readout U. Thus, the regulatory
function of S is dependent on the receptor activity at the
information level, a completely different biochemical
mechanism with respect to the previous case.

VII. DISCUSSIONS

In this work, we characterized how information prop-
agates and couples the layers of multilayer networks. We
introduced a general framework that extends the timescale
separation approach to multiscale systems and higher-order
interactions. In particular, the addition of multiple cou-
plings from slow to fast timescales induces nontrivial
properties in the joint probability distribution. By employ-
ing this framework, we find that the probabilistic structure
of any multilayer network depends solely on the topology

of higher-order couplings between layers, being indepen-
dent of their specific functional form. Ultimately, we
identify three physical principles governing the propaga-
tion of information across timescales. They ascribe the
functional role of creating information to feedback inter-
actions representing regulatory and controlling mecha-
nisms, while elucidating that direct interactions (from
fast to slow processes) may propagate such information
across layers. Importantly, triadic and higher-order inter-
actions play a prime role in several biological and non-
biological systems. A pivotal example is that of complex
chemical networks under stochastic control [36,37] or
exhibiting catalytic reaction schemes [68]. Their structure
is formally identical to the one implemented to describe
signaling networks in Sec. VI. This similarity allows for a
direct evaluation of the MIMMO in these contexts and a
clear identification of the role of the intrinsic reaction
timescales to drive pattern-formation mechanisms [69] and
selection phenomena [42,70].
Although we represented each layer as a physically

separated process acting on different timescales and affect-
ing each other through triadic higher-order interactions, our
results can be applied to many other dynamical processes as
well. For example, a relevant application would be that of
multivariate (discrete or continuous) dynamical processes
on multilayer networks with pairwise edges only, where
once more nodes in a layer evolve with the same timescale.
In fact, multiple subparts of a large number of biological
and artificial systems are characterized by different time-
scales and thus can be seen as layers of a multilayer
network [11–13,15]. By clustering the degrees of freedom
on a given layer together, one could define the joint
probability distribution and the mutual information
between layers as in Appendix B. The factorization of
the joint probability in Eq. (6) would still hold, as long as
pairwise interactions between layers act on one of the
layers’ timescales.
Because of such generality, our work provides a quanti-

tative framework with applications in a large number of
fields. Examples can be found in epidemic spreading, by
elucidating the functional interplay between the timescales
of the disease and the evolution of the topology supporting
its spreading [40,41]; in ecological population dynamics,
by revealing how the timescales of environmental changes
affect species strategies and survival [21,25,54]; in brain
activity, where intrinsic neuronal timescales are known to
be one of the prime mediators of behavior, processing, and
cognition [71–75]. Moreover, experimental developments
have enabled substantial progress in understanding com-
plex systems operating at different timescales through the
simultaneous recording of their internal variables. In
principle, the MIMMO can be estimated directly from
recorded time series, and it may provide a valuable tool to
shed light on the information structure of the system and
how regulatory mechanisms are implemented [36–39].
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As a caveat, the precision of this procedure depends on the
accuracy of temporal data and relies on the possibility of
correctly identifying the timescales associated with the
degrees of freedom at play.
Ultimately, our framework suggests an additional out-

look. Ranking the degrees of freedom of a system by the
similarity of their timescales allows for the construction of a
coarse-grained multilayer model [76]. With this perspec-
tive, our framework might unveil the intrinsic information
structure of the underlying dynamics and highlight how
information is shared among coarse-grained degrees of
freedom. The resulting metric will capture how dynamical
processes propagate information across timescales and
provide fundamental insights into the physics of regulatory
and controlling mechanisms, both internal and environ-
mentally driven.
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APPENDIX A: DETAILED DESCRIPTION
OF THE SYSTEM IN SEC. II

In this appendix, we present a detailed solution for the
system presented in Sec. II. We consider a simple two-layer
network, where each layer has two nodes fAμ; Bμg with
μ ¼ 1, 2. The adjacency matrix Ŵ of the network is a
block-diagonal matrix, so that the first and the second layer
are not connected by any edge:

Ŵ ¼

0
BBBB@

0 wA→B
1 0 0

wB→A
1 0 0 0

0 0 0 wA→B
2

0 0 wB→A
2 0

1
CCCCA:

When we take into account triadic interactions, as in
Eq. (1), the adjacency matrix becomes

ŴH ¼

0
BBBB@

0 wA→B
1 0 0

wB→A
1 0 0 0

0 0 0 wA→B
2 þ cδðx1; B1Þ

0 0 wB→A
2 0

1
CCCCA;

where x1 ∈ fA1; B1g is the state of the first layer, i.e., the
node occupied by the first random walker.

The dynamics of the two random walks is associated
with a transition matrix Ω̂1=τ1 þ Ω̂2=τ2, where

Ω̂1 ¼

0
BBBB@

−wA→B
1 wB→A

1 0 0

wA→B
1 −wB→A

1 0 0

0 0 −wA→B
1 wB→A

1

0 0 wA→B
1 −wB→A

1

1
CCCCA ðA1Þ

contains the transitions taking place in the first layer, and

Ω̂2¼

0
BBBB@
−wA→B

2 0 wB→A
2 0

0 −wA→B
2 −c 0 wB→A

2

wA→B
2 0 −wB→A

2 0

0 wA→B
2 þc 0 −wB→A

2

1
CCCCA ðA2Þ

the transitions in the second layer. Note that the joint
states of the system are assumed to be ordered as
fðA1; A2Þ; ðB1; A2Þ; ðA1; B2Þ; ðB1; B2Þg, and the two tran-
sition matrices can be fully specified from the diagonal
blocks of ŴH. Since both Eqs. (A1) and (A2) contain the
exit rates along the diagonals, the master equation reads as
in Eq. (2) in the main text.

APPENDIX B: JOINT PROBABILITIES AND
MUTUAL INFORMATION BETWEEN LAYERS

In the case studied in the main text, where each layer
represents a distinct random walk, the joint probability
distribution p1;…;N between N layers is a probability
distribution on the tensor product of the state spaces of
the layers, i.e., on the space of the joint state of all random
walkers. As such, it can be in general represented by a
M1 × � � � ×MN tensor, where Mμ is the number of nodes
in the μth layer. From p1;…;N , we can obtain the joint
probabilities between any two layers μ and ν, which we
denote by pμν, and the marginal probability of every single
layer pμ. While the former is aMμ ×Mν matrix, the latter is
a Mμ-dimensional vector. To fix the ideas, in the example
system presented in Appendix A, we have that the marginal
distribution p1 ¼ (p1ðx1 ¼ A1Þ; p1ðx1 ¼ B1Þ) is defined as

p1 ¼

0
BB@

P
x0
2
∈ fA2;B2g

p12ðx1 ¼ A1; x2 ¼ x02Þ
P

x0
2
∈ fA2;B2g

p12ðx1 ¼ B1; x2 ¼ x02Þ

1
CCA;

and similarly for p2.
With these definitions in mind, the mutual information

between any two layers is defined as

Iμν ¼
X

xμ ∈N μ

X
xν ∈N ν

pμνðxμ; xνÞ log2
pμνðxμ; xνÞ

pμðxμÞpνðxνÞ
; ðB1Þ
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where we explicitly denoted the dependence of the prob-
abilities on the state for clarity. In general, Iμν will depend
on time, but we focus on its stationary limit.
Note that Eq. (B1) can be readily applied to any

stochastic process on networks. For instance, in the case
of a multivariate continuous stochastic process, we need to
replace sums with integrals and the layer state with a state

vector x⃗μ ¼ ðxð1Þμ ;…; x
ðMμÞ
μ Þ. Importantly, in this case, the

joint probability distribution pμν is defined on an
ðMμ þMνÞ-dimensional space, since each node now rep-
resents a degree of freedom with a continuous state—e.g.,
in a multivariate Ornstein-Uhlenbeck process on a given
multilayer network. In this case,

Iμν ¼
Z

dx⃗μdx⃗νpμνðx⃗μ; x⃗νÞ log2
pμνðx⃗μ; x⃗νÞ

pμðx⃗μÞpνðx⃗νÞ
; ðB2Þ

where the probabilities are now probability density func-
tions. The corresponding extension to the case in which
each node can assume a finite number of states, such as the
case of spreading or epidemic processes, is also immediate.

APPENDIX C: EXACT SOLUTION FOR THE
MULTILAYER PROBABILITY AND MINIMAL

PROPAGATION PATHS

We start from Eq. (5) and seek a solution of the form

p1;…;N ¼ pð1;0Þ
1;…;N þ

XN−2

μ¼2

�Yμ−1
ν¼1

ϵν

�
pðμ;0Þ
1;…;N

þ
YN
μ¼1

ϵμp
ðN;1Þ
1;…;N þOðϵ2Þ; ðC1Þ

where ϵμ ¼ τμ=τN , and Oðϵ2Þ denotes second-order con-

tributions for any μ ¼ 1;…; N. In Eq. (C1), pðμ;0Þ
1;…;N denotes

the zeroth-order contribution in ϵμ, and p
ðN;1Þ
1;…;N is instead the

first-order contribution in the slowest timescale, ϵN ¼ 1.
This expansion can be readily obtained by subsequent
expansions in ϵ1;…; ϵN of the joint probability. In the limit

ϵμ → 0, the solution at the leading order pð1;0Þ
1;…;N obeys

∂tp
ð1;0Þ
1;…;NðtÞ ¼

�
Ω̂N þ

XN−1

μ¼1

Ω̂μ

ϵμ

�
pð1;0Þ
1;…;N þ Ω̂1p

ð2;0Þ
1;…;N; ðC2Þ

where we rescaled the time by the slowest timescale.
Note that the solution does not depend on how interlayer
interactions enter in ŴH

μ and thus in Ω̂μ, so our results
generalize immediately to the case of pairwise interactions
across layers.
For what follows, it is useful to introduce the notion

of minimal propagation paths (mPPs) for a multilayer

network. Consider the directed graph G with N nodes
associated with a multilayer network, where each node
represents a layer, and edges are given by interactions
between layers. We define a propagation path (PP) on G as a
path from μ to νwith μ > ν and such that it contains at least
one direct interaction, i.e., one edge α → β with α < β. In
Figs. 4(a) and 4(d), both 2 → 3 → 1 and 3 → 1 → 2 are
PPs, repsectively.
We then define the graph GðνÞðν�Þ as the induced sub-

graph obtained by removing all nodes α > ν—i.e., all
layers slower than ν—except ν�. A propagation path from μ
to ν is a minimal propagation path if it is a PP both in G and
in the induced subgraph GðνÞðμÞ. In Figs. 4(a) and 4(d),
2 → 3 → 1 is not an mPP, but 3 → 1 → 2 is.
With these ideas in mind, we solve Eq. (C2) order by

order, with each order corresponding to a given layer. The
first order is immediately solved by

0 ¼ Ω̂1ðfxg⇝1Þpst
1jρð1Þ; ðC3Þ

where ρð1Þ is the set of all slower layers that connect to
the first through a feedback link, fxg⇝1 is the set of layers

directly connected to the first, and we have that pð1;0Þ
1;…;N ¼

pst
1jρð1Þp

ð1;0Þ
2;…;N . Note that for the first layer, by definition,

fxg⇝1 ¼ ρð1Þ.
The second order, after a summation over x1, reads

0 ¼
�X

x1

Ω̂2ðfxg⇝2Þpst
1jρð1Þ

�
pst;eff
2jρð2Þ; ðC4Þ

where the operator in the bracket is the effective operator
Ω̂eff

2jρð2Þ. Its stationary probability p
st;eff
2jρð2Þ inherits the depend-

ence on slow layers through both the set f⇝ x2g and the
dependencies of faster layers—in this case, ρð1Þ appearing
in pst

1jρð1Þ. Therefore, the conditional dependencies con-

tained in ρð2Þ now include all slower layers that are
connected to 2 through higher-order interactions, as well
as all slower layers directly connected to 1 if there is a direct
interaction from 1 to 2. Otherwise, in the absence of such
directed connection, fxg⇝2 does not include x1, and thus
the effective operator coincides with Ω̂2.
By recursively solving each order and marginalizing

over the slower layers, we obtain Eq. (6) and the effective
operators in Eq. (7). In particular, the set

ρðμÞ ¼ fν > μ∶ ∃mPP ν → μ or Ĉνμ ≠ 0g ðC5Þ

is the set of all layers connected to μwhether via an mPP or
a single feedback link, and it determines the conditional
structure of each term of the joint probability p1;…;NðtÞ. Let
us stress that, by construction, the only time dependence
arises at order Oð1Þ, and thus it is ascribed to the effective
operator of the slowest layer Ω̂eff

N . Note that, although ρðNÞ
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is an empty set by definition, such an effective operator
depends on all the previous layers by which it is influenced
through the marginalization in Eq. (7).

APPENDIX D: BINARY TRIADIC
INTERACTIONS

In Figs. 3 and 4 we considered, without loss of general-
ity, systems where each layer is a simple two-node network.
Denoting such nodes withN μ ¼ fAμ; Bμg for all layers, we
take triadic interactions to be

ŴH
μ ¼ ðŴμÞi→j þ

X
ν≠μ

X
k∈N ν

Ck;i→j
νμ δðxν; kÞ; ðD1Þ

so that the transition rates of a layer—i.e., its adjacency
matrix—change in a binary fashion depending on the
state of another layer, and acting additively with respect
to pairwise interactions. For simplicity, we set Ck;i→j

μν ¼
Ceq
μνδjk þ Ccr

μνð1 − δjkÞ, where Ceq
μν represents the triadic

interactions of nodes influencing transitions to the same
nodes—e.g., Aμ favoring the transition to Aν in another
layer—and Ccr

μν interactions with the opposite effect—e.g.,
Aμ favoring the transition to Bν. We stress that this specific
choice does not affect the structure of information, which is
fully determined by the conditional structure of Eq. (6) and
thus is independent of the details of the dynamics.

APPENDIX E: MULTILAYER SOLUTION FOR
BIRTH-AND-DEATH PROCESSES

A birth-and-death process of a species X may be
interpreted as a random walk on a network, with each
node representing a given number of particles x. In
particular, the case of a finite reservoir with a maximum
number of particles MX, birth rate b, and death rate d is
represented by a network with a fixed number ofMX nodes
and adjacency matrix with elements:

Wx→j ¼

8><
>:

ðMX − xÞb if j ¼ xþ 1

xd if j ¼ x − 1

0 otherwise;

ðE1Þ

so that each node is associated with the corresponding
number of particles x ¼ 1;…;MX. In this representation,
the node x is connected only to the neighbors x� 1, with
the weight of the edge x → xþ 1 being ðMX − xÞb, and the
weight of x → x − 1 being xd. This formally corresponds
to the microscopic reactions,

X⟶
d

∅X; ∅X ⟶
b

X;

where ∅X represents the finite reservoir.
Then, the formalism presented in the main text can be

straightforwardly applied by assuming that a given layer μ

is a network characterized by a Mμ ×Mμ adjacency matrix
Ŵμ as in Eq. (E1). In this way, it represents a birth-and-
death process for a given species μ with birth rate bμ, death
rate dμ, and a maximum number of particles Mμ. In
particular, a physically and biologically meaningful imple-
mentation of triadic interactions in this scenario is to
modify bμ and dμ of a given layer so that they depend
on the concentration of the number of particles in another
layer. That is,

bHμ ¼ bμ þ
X
ν≠μ

Cex
νμ

xν
Mν

; dHμ ¼ dμ þ
X
ν≠μ

Cin
νμ

xν
Mν

; ðE2Þ

where Cex
μν and Cin

μν are the strength of triadic interactions.
Note that, in general, higher-order birth and death rates
can be time dependent through the states of the layers.
From these rates, it is possible to define a matrix ŴH that
takes the same form as in Eq. (E1), i.e., ðŴH

μ Þi→j ¼
δi;xμ ½ðMμ − xμÞbHμ δj;xμþ1 þ xμdHμ δj;xμ−1�. Thus, in this case,
triadic interactions affect all edges of another layer at once,
solely distinguishing between birth and death transition
rates. In particular, we consider inhibitory interactions Cin

νμ

those that increase the death rate, and excitatory inter-
actions Cin

νμ those that increase the birth rate. Since the
resulting interactions are linear, the effective operators in
Eq. (7) depend only on the average of the probability
distributions pst;eff

μjρðμÞ.
Although the solution to a standard birth-and-death

process with a finite reservoir and linear rates can be found
analytically and is a binomial distribution (or a Poisson
distribution if there is no maximum number of particles, so
that we formally have an infinite number of nodes) [49],
the effective operators in Eq. (7) may not admit a general
closed-form solution. Thus, we introduce an efficient
numerical scheme to obtain the solution to the master
equation at all times. We write the solution in the
recursive form,

p1;…;NðtþΔtÞ

¼
YN−1

ν¼1

pstð⇝μÞ
μjρðμÞ

X
x̃N

PNðxN;tþΔt; x̃N;tÞpð⇝NÞ
N ðx̃N;tÞ; ðE3Þ

where Δt is the time step and PNðxN; tþ Δt; x̃N; tÞ is the
propagator associated to the effective operator Ω̂eff

N , which
we can write as

PNðxN; tþ Δt; x̃N; tÞ ¼ pstð⇝NÞ
N þ

XN
i¼2

ω⃗iaðiÞeλiΔt; ðE4Þ

where pstð⇝NÞ
N is the stationary probability of the N layer,

and ω⃗i and λi are, respectively, the eigenvectors and
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eigenvalues of Ω̂eff
N , ordered in such a way that λ0 ¼ 0. This

recursive form is by definition exact when Δt ≪ 1, and it is
particularly useful when the input to the system hðtÞ varies
with time, since all effective operators would depend
explicitly on time as well.

APPENDIX F: SIGNALING ARCHITECTURES

The architecture depicted in Fig. 6(a) corresponds to the
following birth and death rates. The receptor receives a
time-varying input hðtÞ, so that

bHRðtÞ ¼ bR þ hðtÞ; dHR ¼ dR; ðF1Þ

with bR and dR the baseline birth and death rates. We
typically set bR ¼ 0, so the receptor is entirely input driven
and time dependent. The readout population is stimulated
by the receptor and inhibited by the storage, so that

bHUðtÞ ¼ bU þ Cex
RU

rðtÞ
NR

; dHUðtÞ ¼ dU þ Cin
SU

sðtÞ
NS

; ðF2Þ

with rðtÞ and sðtÞ the number of receptor and storage
particles at time t, i.e., the node in the corresponding layer.
Finally, the storage follows

bHS ðtÞ ¼ bS þ Cex
US

uðtÞ
NU

; dHS ¼ dS; ðF3Þ

so that, at a given time, it is excited by the number of
readout units uðtÞ.
The architecture in Fig. 6(b) is instead specified by

bHRðtÞ ¼ bR þ hðtÞ; dHRðtÞ ¼ dR þ Cin
RS

sðtÞ
NS

ðF4Þ

for the receptor, which is inhibited by the storage pop-
ulation. The readout layer is simply given by

bHUðtÞ ¼ bU þ Cex
RU

rðtÞ
NR

; dHU ¼ dU; ðF5Þ

and, finally,

bHS ðtÞ ¼ bS þ Cex
RS

rðtÞ
NR

; dHS ¼ dS; ðF6Þ

so that the storage is excited directly by the receptor.

APPENDIX G: PROCESSES ON DISJOINTED
COMPONENTS

We consider a two-layer network, where one layer
has two disjointed components with independent states
x1 and x2, each with two nodes ðA;BÞ. The other
layer, with state E and nodes ðEoff ; EonÞ, influences
both components at the same time. The rates are

ωA→B
1 ¼ ωA→B

2 ¼ ½wB þ cδðE;EonÞ�=τ, ωB→A
1 ¼ ωB→A

2 ¼
wA, ωon→off

E ¼ w0=τE, ωoff→on
E ¼ we=τE. For Fig. 5, we

set wB ¼ 0, wA ¼ 1, w0 ¼ 5, w0 ¼ 1. In the numerical
simulation, to recover the c → ∞ limit obtained analyti-
cally, we set c ¼ 103.
When τE ≫ τ, the interlayer interaction is of the feed-

back type, so that p1;2;EðtÞ ¼ pst
1jEp

st
2jEpEðtÞ. In this case,

we can write the sum of the mutual information:

I12 þ I12;E ¼
X
1;2;E

p1;2;E

�
log2

p1;2

p1p2

þ log2
p1jEp2jEpE

p1;2pE

�

¼ I1;E þ I2;E; ðG1Þ

which shows that in this limit the mutual information I1;2
induced by the shared influence of E is equal to the sum of
the information generated by E in 1 and 2 minus the
information with E that both components have. Note that
this result, as well as the factorization of the probability,
does not change if we introduce two different timescales
for the two independent processes, τ1 and τ2, as long as
τE ≫ τ1; τ2. In this case, rather than having a single layer
with timescale τ and two disjointed components, we would
have two disconnected layers.
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