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The neural dynamics generating sensory, motor, and cognitive functions are commonly understood
through field theories for neural population activity. Classic neural field theories are derived from highly
simplified models of individual neurons, while biological neurons are highly complex cells. Integrate-and-
fire models retain a key nonlinear feature of neuronal activity: Action potentials return the membrane
potential to a nearly fixed reset value. This nonlinear reset of the membrane voltage after a spike is absent
from classic neural field theories. Here, we develop a statistical field theory for networks of integrate-and-
fire neurons with stochastic spike emission. This reveals a new mean-field theory for the activity in these
networks, fluctuation corrections to the mean-field dynamics, and a mapping to a self-consistent renewal
process. We use these to study the impact of the spike-driven reset of the membrane voltage on population
activity. The spike reset gives rise to a multiplicative, rate-dependent leak term in the mean-field membrane
voltage dynamics. This leads to bistability between quiescent and active states in the mean-field theory of
homogeneous and excitatory-inhibitory pulse-coupled networks. We uncover two types of fluctuation
correction to the mean-field theory, due to the nonlinear mapping from membrane voltage to spike emission
and the nonlinear reset. These can have competing effects, promoting and suppressing activity, respectively.
We then examine the roles of spike resets and recurrent inhibition in stabilizing network activity. We
calculate the phase diagram for inhibitory stabilization and find that an inhibition-stabilized regime occurs
in wide regions of parameter space, consistent with experimental reports of inhibitory stabilization in
diverse brain regions. Fluctuations narrow the region of inhibitory stabilization, consistent with their role in
suppressing activity through spike resets.
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I. INTRODUCTION

The activity of neuronal populations underlies sensory,
motor, and cognitive functions. Mathematical theories for
predicting the macroscopic activity of neural populations
are a core tool of computational neuroscience, psychology,
and psychiatry [1–4]. These theories typically rely on
neural activity equations, with variants also called rate
equations, neural mass equations, or, if placed on a spatial
domain, neural field equations:

∂tv ¼ −vþ Eþ J � ϕðvÞ; ð1Þ

where bold terms denote a vector or matrix-valued func-
tion, ϕ is a single-unit nonlinearity applied elementwise,
∂t is the derivative with respect to time, and � is a

matrix convolution: J�ϕðvÞ¼Pj

R
dsJijðsÞϕ(vjðt−sÞ).

These and similar equations are commonly understood
as a coarse-grained model for large populations of
neurons [5–9]. Formally, they are a mean-field theory
for populations of neurons that switch between discrete
active and quiescent states [10–13], or for generalized
linear point process models [Eq. (9)].
Biological neurons’ membrane voltages, however, have

complex nonlinear dynamics [14]. Neural field equations
have been supplemented with some biophysical detail
in an ad hoc fashion [3]. A principled mean-field theory
of more biophysical neuron models would expose how
single-neuron biophysics shape macroscopic population
activity [15].
Integrate-and-fire models, which replace the nonlinear

dynamics of spike generation by a simple fire-and-reset rule
for the membrane voltage, are fruitful tools for investigat-
ing how network structure and synaptic and neuronal
biophysics shape macroscopic activity [16,17]. The classic
mean-field theory of integrate-and-fire networks focuses on
the density of membrane voltages across a population [18].
If the net recurrent input to each neuron is a white Gaussian
process, the membrane voltage density obeys a Fokker-
Planck partial differential equation [19]. Numerical or
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special function solutions of that Fokker-Planck equation
expose steady-state and weakly nonequilibrium population
firing rates and pairwise statistics [20–24].
The assumption of white Gaussian input currents is,

however, inconsistent with the resulting temporally colored
spike train statistics [25]. In some cases, the Fokker-Planck
approach for the population voltage density can be
extended to temporally structured fluctuations [26–28].
Alternatively, for generalized integrate-and-fire neurons
with stochastic spike emission, population firing rates
and pairwise statistics can be predicted from the density
of interspike times rather than the density of membrane
voltages [29–34]. Population density approaches expose
approximate low-dimensional dynamics through eigen-
functions of the density evolution operator [35,36].
Here, we study the integrate-and-fire model with

stochastic spike emission. We construct the full joint
probability density functional of a neuronal network’s
spike trains and membrane voltages using the response
variable path integral formalism [37–40]. This formalism
is commonly applied to nonspiking models, where it has
exposed chaotic and metastable regimes [41–44], the
memory capacity of recurrent networks [45,46], and the
dynamical impact of computationally or biologically
constrained connectivity [47–50]. It has also been applied
to spiking models without spike resets or in a phase
formulation [51–58].
The joint density functional exposes a new simple,

deterministic mean-field theory for stochastic integrate-
and-fire networks: activity equations like Eq. (1) with an
additional rate-dependent leak. This novel nonlinearity
qualitatively shapes networks’ macroscopic dynamics.
We study networks in an increasing order of complexity,
progressing from uncoupled neurons to single-population
recurrent networks and then networks with multiple cell
types. Spike resets can stabilize strongly coupled excitatory
networks with unbounded spike intensity functions. We
uncover bistable regimes in homogeneous and excitatory-
inhibitory networks. Examining the impact of fluctuations
on the activity using renewal theory and a self-consistent
Gaussian approximation with colored noise, we find that
due to the nonlinearity of the spike reset, fluctuations
suppress activity.
In the classic neural activity equations, inhibitory

feedback is necessary to stabilize strong recurrent excita-
tion [8,59]. A paradoxical reduction of inhibitory activity
after inhibitory stimulation is a signature of an inhibition-
stabilized regime [60] and is observed in diverse mamma-
lian cortices [61–64]. We find that the phase diagram for
excitatory-inhibitory networks includes wide regions of
paradoxical responses, suggesting a generic mechanism for
their widespread experimental observation. Spiking fluc-
tuations narrow the region of inhibitory stabilization,
consistent with their intrinsically stabilizing effect through
resets of the membrane voltage.

II. STOCHASTIC INTEGRATE-AND-FIRE MODEL

We introduce the stochastic leaky integrate-and-
fire (LIF) model in discrete time first and then take a
continuous-time limit. At each small time step t∈ ½T�, of
width dt, neuron i∈ ½N� generates dnit ∈ f0; 1g spikes. (nit
is the cumulative spike count of neuron i at time t.) Neuron
i receives inputs dn through weighted synaptic filters J.
It also has a resting voltage Ei, which may depend on
external applied currents. We take dnit to be generated as a
Bernoulli random variable with spike probability fðvitÞdt,
for some intensity function 0 ≤ fðvÞ ≤ dt−1. After a spike
is emitted, that neuron’s membrane voltage is reset to
within OðdtÞ of the reset value r. If fðvÞ ¼ θðv − bÞ=dt,
where θðxÞ is the Heaviside step function, the deterministic
LIF neuron with threshold b is recovered [65]. In the
continuous-time limit (Appendix A),

∂tvðtÞ¼
1

τ
½−vðtÞþEðtÞþðJ� ṅÞðtÞ�− ṅðtþÞ½vðtÞ−r�: ð2Þ

Here, ṅiðtþÞ≡ ∂tnðtþÞ, and tþ ¼ tþ ϵ for an infinitesimal
ϵ > 0 so the membrane potential is reset at time t by an
immediately preceding spike. Each ṅiðtÞ is an inhomo-
geneous Poisson process with intensity f(viðtÞ). The
Poisson spike emission arises as the continuous-time limit
of the discrete-time Bernoulli spike train. The last term in
Eq. (2) is the reset of the membrane voltage after a spike.
This nonlinear coupling between the spike train and
membrane voltage is the key feature of this model com-
pared to generalized linear models. (See Appendix B for a
discussion of absolute refractory periods in this model.) We
will nondimensionalize the model, measuring time relative
to τ and shifting v and E by the reset r.
Equation (2) is a set of coupled stochastic differential

equations with multiplicative Poisson noise. The expected
trajectory obeys

∂thvi ¼ −hvi þ Eþ J � hṅi − hṅihvi − ⟪ṅv⟫;

hṅi ¼ hfðvÞi; ð3Þ

where hi denotes a moment and ⟪⟫ denotes a cumulant.
(Here we suppress the explicit time dependencies, as well
as the infinitesimal time shift in the reset term. Moving
forward, we will often continue to suppress those.) To
calculate those cumulants requires the joint density func-
tional of the membrane voltages and spike trains. In the
response variable path integral formalism, it is
(Appendix A)

p½v; ṅ� ¼
Z

Dṽ
Z

Dñ exp ð−S½v; ṅ; ṽ; ñ�Þ;

S½v; ṅ; ṽ; ñ� ¼ ṽTð∂tvþ v − E − J � ṅþ ṅvÞ
þ ñT ṅ − ½expðñÞ − 1�Tf : ð4Þ
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Here, xTy ¼Pi

R
dtxiðtÞyiðtÞ is the functional inner prod-

uct and fiðtÞ ¼ f(viðtÞ). S is the action functional. ñ; ṽ are
purely imaginary auxiliary variables, called the response
variables because joint moments with them measure
responses to fluctuations in the activity.
This density has the N-dimensional deterministic mean-

field theory:

∂tv̄ ¼ −v̄þ Eþ J � f̄ − f̄ v̄ : ð5Þ

Themean-field value of ṅi is f̄i¼fðv̄iÞ. TheN-dimensional
mean-field theory is an approximation of Eq. (3). If we
assume that
(1) the expectation of the spike trains is hṅi ¼ fðhviÞ
(2) the spikes and membrane voltage are independent so

that the joint cumulant ⟪ṅv⟫ ¼ 0,
then Eq. (3) reduces to Eq. (5). Assumption (1) is
correct only if f is linear. Assumption (2) is generally
incorrect, although it may be a good approximation if
hvihṅi ≫ ⟪ṅv⟫.
Formally, we expand the configuration variables v; ṅ

around their mean values. The mean-field theory is then the
result of a saddle point approximation for integrals over the
fluctuations (Appendix E). This corresponds to assuming
fluctuations are negligible so p½ṅ� ¼ δ½ṅ − fðvÞ�, or equiv-
alently, truncating the action at linear order in ñ. This
implies assumptions (1) and (2), so Eq. (3) reduces to
Eq. (5). This approach also exposes fluctuation corrections
to the mean-field theory. We will see in the next section that
the two nonlinearities in Eq. (2) impart different fluctuation
corrections to the mean-field theory. First, we compare
the mean-field theory, Eq. (5), to the classic activity
equations, Eq. (1).
The mean-field dynamics of Eq. (5) differ from Eq. (1)

in two ways. The first is the presence of the reset term
−fðviÞvi. The second is in the interpretation of the non-
linearity f. Here, f determines the instantaneous spike
emission probability as a function of the membrane voltage
and is typically required to be nonsaturating so that the
neuron is guaranteed to spike if vi → ∞. (This is not
mathematically necessary; f could be chosen to saturate at
a finite value. In discrete time, f must be bounded by 1=dt
so the spike probability does not exceed 1.) In the micro-
scopic binary switching model underlying Eq. (1), the
nonlinearity ϕ determines the single-neuron transition rates
from quiescence to activity and is typically chosen as a
sigmoid to prevent unbounded activity. In either case, the
nonlinearity f or ϕ is a property of individual neurons.
Can we map the new mean-field theory, Eq. (5), onto the

classic activity equations, Eq. (1), with an effective non-
linearity ϕ that includes the effect of the rate-dependent
leak? Requiring Jϕ ¼ Jf − vf , with ðvf Þi ¼ vifðviÞ, we
find that if the coupling J has a left inverse,

ϕðvÞ ¼ f − J−1ðvf Þ: ð6Þ

So to map the mean-field theory of Eq. (5) onto the classic
activity equations, the effective nonlinearity ϕ depends
explicitly on the coupling J; it is no longer a single-neuron
nonlinearity. If there are linear self-interactions and inter-
neuronal coupling is weak so that J is diagonally dominant,
the effective nonlinearity will be approximately a single-
neuron property.
The other classic form of rate equation is τ∂tv ¼

−vþ ϕðJ � vþ EÞ. This is also a mean-field theory of
binary switching neurons [11–13]. Here, v is commonly
understood as a mean-field description of the firing rate or
proportion of active neurons in a population, rather than the
membrane potential or synaptic drive [8,9]. The two types
of activity equation differ in their assumptions about the
dominant synaptic or neuronal timescales [13,66].
To map Eq. (5) onto this classic activity equation would

require ϕ(ðJ�vÞiþEi)¼−vifðviÞþ
P

j Jij �fðvjÞþEi. In
general, to map Eq. (5) onto the classic activity equations
may require the nonlinearity to be a function of the coupling
operator, activity variable, and baseline drive separately,
rather than a function of their sum.
Mapping Eq. (5) onto the classic activity equations can

thus introduce nonlinearities tailored to a specific LIF
network, rather than as single-neuron input-rate functions.
This mapping is, however, not necessary. The mean-field
dynamics of Eq. (5) are amenable to direct analysis.

III. IMPACT OF SPIKE RESET AND
FLUCTUATIONSON SINGLE-NEURONACTIVITY

We now examine the steady-state input-rate transfer of a
single neuron or, equivalently, an uncoupled population.
The mean-field firing rate f̄ is given by equilibria of
Eq. (5) with J ¼ 0 and constant E. We consider neurons
with threshold-power law spike probability functions,
fðvÞ ¼ bv − 1caþ, which match the effective nonlinearity
of mechanistic spiking models and biological neurons in
fluctuation-driven regimes [67–71]. (The membrane volt-
age has been nondimensionalized to set the threshold for
spike generation at v ¼ 1.) For simplicity, we take a
threshold-linear neuron with fðvÞ ¼ bv − 1cþ so the equi-
librium solution to the mean-field equation is

f̄ ¼ b
ffiffiffiffi
E

p
− 1cþ: ð7Þ

The mean-field theory for the stochastic LIF neuron
predicts its equilibrium firing rate as a function of its
membrane voltage [Fig. 1(b), black line vs dots]. At higher
rates, Eq. (7) overpredicts the true firing rates. Since the
mean-field theory neglects all fluctuations, fluctuations
suppress activity in the stochastic LIF model.
For comparison, consider a stochastic LIF model with a

linear reset: Each spike causes a decrease in the membrane
voltage of size r [Fig. 1(a), blue line] [72]. The action for
that model is
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S½v; ṅ; ṽ; ñ� ¼ ṽTð∂tvþ v − E − J � ṅþ ṅrÞ
þ ñT ṅ − ½expðñÞ − 1�TfL; ð8Þ

with the N-dimensional mean-field theory:

∂tv̄ ¼ −v̄þ Eþ J � f̄ − f̄r: ð9Þ

This has a similar form to the classic activity equation,
Eq. (1), and can be directly mapped onto it with the
substitution JiiðsÞ → JiiðsÞ − rδðsÞ. For this reason, we
say that Eq. (1) is a mean-field theory for a stochastic LIF
neuron with linear resets, which is an example of a
generalized linear model or zeroth-order spike response
model [73]. The mean-field firing rate of the uncoupled
linear-reset model, with r ¼ vth ¼ 1, is

f̄L ¼
�
E − 1

2

�
þ
: ð10Þ

For a perithreshold stimulus, E¼1þϵ in Eqs. (7) and (10),
f̄ ¼ ϵ=2þOðϵ2Þ ≈ f̄L and the mean-field theories of the
stochastic LIF and linear-reset models match for infinitesi-
mal firing rates. At finite rates, however, the linear-reset
model provides a poor prediction for the stochastic LIF
neuron [Fig. 1(b), blue dots vs black dots].
Instead of matching the intensity functions of the two

models, we could match their mean-field membrane
voltage by giving the linear-reset model the intensity
function fMðvÞ ¼ vfðvÞ. [fðvÞ is the intensity function
of the stochastic LIF neuron.] The mean-field rate of this
matched linear-reset model is

f̄M ¼
ffiffiffiffi
E

p
b
ffiffiffiffi
E

p
− 1cþ: ð11Þ

For the matched linear-reset model, the mean-field firing
rate underpredicts the true activity level [Fig. 1(b), orange
line vs dots], so fluctuations promote activity. Why do
fluctuations suppress activity in the stochastic LIF model
but promote activity in the matched linear-reset model?
In ∂thvi, we need to account for (1) the nonlinearity in

the intensity function and (2) the nonlinear spike reset.
To that end, we expand the membrane voltage and spike
trains around their means to derive an expansion for the
action that self-consistently accounts for the impact of
fluctuations (the loop expansion of the effective action;
see Appendix E). This allows us to derive diagrammatic
corrections to the mean-field theory. Loop diagrams mea-
sure the influence of higher-order activity statistics on
lower-order statistics. There are loop corrections to the
mean-field theory when the model has a nonlinearity.
The stochastic LIF has two nonlinearities: the intensity

function and the nonlinear spike reset. These give rise to
fluctuation corrections in the mean voltage and rate:

ð12Þ

Without the one-loop diagrams, these reduce to the
mean-field theory of Eq. (5) with J ¼ 0. The one-loop
diagrams measure the impact of two-point fluctuations on
the mean through the two nonlinearities of the intensity
function and spike reset.
In field-theoretic terms, these loop diagrams re-

present proper vertex corrections to the effective action
(Appendix E). We can also understand them by comparing
Eq. (3) and Eq. (12). In their first lines, the loop diagram

(a) (b)

(c) (d)

FIG. 1. Impact of fluctuations on firing rates through spike
resets and nonlinear intensity functions. (a) Membrane voltage
traces of the stochastic LIF neuron (top, black) and a neuron with
linear resets (bottom, blue). For comparison, the two neurons are
forced to have the same spike times (in this panel only). (b) Firing
rate vs resting voltage E for three models. Black: the stochastic
LIF neuron with a threshold-linear intensity function,
fðvÞ ¼ bv − 1cþ. Blue: the linear-reset model with a matched
intensity function, fLðvÞ ¼ fðvÞ. Orange: the linear-reset model
with matched mean-field membrane voltages, fMðvÞ ¼ vfðvÞ.
Dots: simulation. Solid curves: mean-field predictions [Eqs. (7),
(10), and (11)]. (c) Impact of fluctuations on the stochastic LIF
neuron’s firing rate. Dotted line: mean-field prediction. Dashed
line: self-consistent one-loop prediction, accounting for Gaussian
fluctuations around the expected voltage and rate [Eq. (12)]. Solid
line: exact renewal theory prediction from Eq. (17). (d) Difference
between the one-loop and mean-field rates for the three models.
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is an approximation of ⟪ṅv⟫. In the second line of

Eq. (12), the loop diagram originates in a Taylor expansion
of fðvÞ around fðhviÞ in Eq. (3); the loop diagram in
the second line approximates ðfð2Þ=2Þ⟪v2⟫. We next
discuss these approximations.
The edges in the Feynman diagrams correspond to

factors of the linear response of the configuration to a
fluctuation Δ̄, also called a propagator. Since the model has
two configuration variables, each with a corresponding
response variable, there are four types of propagator:
(1) the spike response to a spike fluctuation Δ̄n;ñ,
(2) the voltage response to a spike fluctuation Δ̄v;ñ,
(3) the spike response to a voltage fluctuation Δ̄n;ṽ, and
(4) the voltage response to a voltage fluctuation Δ̄v;ṽ.

We represent them with the edges

ð13Þ

Only the first two of these edges appear in the one-loop
equations of motion for the mean voltage and rate. The
vertex • represents the intensity fðv̄Þ. Each diagram also has
a vertex ∘. These vertices have different origins in the two
diagrams, corresponding to either the spike reset or
intensity function. (The two types of ∘ vertex can be
distinguished by their incoming edges.) The definition of
the linear response functions for the stochastic LIF model
are given in Appendix D 1, along with the Feynman rules
for perturbative corrections to the mean-field theory (see
also Appendix E).
In Eq. (3), at a stationary state,

ð14Þ

We have written the cumulant for a single neuron, dropping
the neuron index implicit in Eq. (3), and leveraged the
stationarity assumption so that Δ̄ðt; t0Þ ¼ Δ̄ðt0 − tÞ ¼
F−1½Δ̄ðωÞ�, with the Fourier transform convention
F ½Δ̄ðsÞ� ¼ R dsΔðsÞe−iωs. The limit tþ → t is taken from
the right, tþ > t. fðpÞ is the order-p derivative of the
intensity function f, evaluated at v̄. This diagram, and the
vertex ∘ in it, arise from the spike reset term of Eq. (2).

If the neuron is in an active steady state, v̄ > 1 and
fðv̄Þ; n̄ > 0. If fð1Þ > 0, every term in this approximate
cumulant is positive. It thus decreases ∂tv̄ in Eq. (12).
The equation of motion governing n̄ also has a loop

correction. In the second line of Eq. (3), we expand fðvÞ
around the mean. Truncating at second order, in a
stationary state

ð15Þ

This diagram exists in both the stochastic LIF and linear-
reset models. It arises from the nonlinear intensity function
f and vanishes almost everywhere if f is threshold
linear. The vertex ∘ in it carries the factor of fð2Þ=2.
This contribution impacts the mapping from membrane
potential to firing rate. Similarly to above, the approximate
cumulant ⟪vðtÞvðtÞ⟫ is positive in an active state with
nondecreasing f. So if fð2Þ > 0, fluctuations will promote
activity and vice versa. The curvature also determines the
magnitude of this contribution.
Evaluating the one-loop predictions at an equilibrium

of v̄, the stochastic LIF with a threshold-linear intensity
function has the one-loop equilibrium:

v̄ ¼ 1

10
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 80E
p Þ;

n̄ ¼ bv̄ − 1cþ: ð16Þ

Comparing the one-loop and mean-field predictions,
we see that the negative vertex factor leads to a
suppression of activity [Fig. 1(c), dotted line vs dashed
line; Fig. 1(d), black line]. This occurs because the
nonlinear spike reset negatively couples the mean
membrane voltage to joint fluctuations in the spikes
and membrane voltage.
We can also calculate the rate of the threshold-linear

stochastic LIF neuron exactly. The spike train is a renewal
process because of the nonlinear reset mechanism.
Standard results of renewal theory expose its rate [74].
With a constant drive E, the membrane voltage evolves
after a spike at time t as vðtþ sÞ ¼ E½1 − expð−sÞ�, with
vðtÞ ¼ 0. The time-averaged firing rate is the inverse of
the mean interspike interval: hṅi ¼ 1=hsi. For threshold-
linear f, the mean interspike interval is

hsi ¼ ln

�
E

E − 1

�
þ
�
E − 1

e

�
1−E

γðE − 1; E − 1Þ: ð17Þ
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γðx; yÞ is the lower incomplete γ function. The term
lnðE=E − 1Þ is the time for vðtÞ to reach the threshold
value of 1; the second term is the mean first spike time after
that. The one-loop prediction matches the true f-I curve
better than the mean-field theory [Fig. 1(c)].
In the uncoupled linear-reset model, the one-loop equa-

tions of motion are

ð18Þ

The linear-reset model has the same four types of propa-
gator as the stochastic LIF, although their definitions
differ between the two models due to the different spike
reset mechanisms (Appendix F). The matched linear-reset
model [fMðvÞ ¼ vbv − 1cþ, with r ¼ 1] has the one-loop
equilibrium:

v̄ ¼ 1

8
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64Eþ 17
p Þ;

n̄ ¼
�
v̄þ 1

4

�
bv̄ − 1cþ: ð19Þ

The term 1
4
bv̄ − 1cþ is the result of the loop correction to

the firing rate, leading to an increase in the rate compared to
the mean-field rate. The expected membrane potential still
reaches the threshold value v̄ ¼ 1 at E ¼ 1, and the one-
loop membrane voltage is greater than the mean-field
membrane voltage

ffiffiffiffi
E

p
. Close to threshold (E ¼ 1þ ϵ),

the one-loop voltage is v̄ ¼ 1þ 4ϵ=9þOðϵ2Þ, while for
the mean-field theory, v̄ ¼ 1þ ϵ=2þOðϵ2Þ. Similarly, for
large E the one-loop membrane potential is approximately
1þ ffiffiffiffi

E
p

.

In summary, fluctuations suppress activity in the sto-
chastic LIF neuron because the nonlinear spike reset
negatively couples the mean membrane voltage to joint
spike-voltage fluctuations. In the linear-reset model, the
only nonlinearity arises from the intensity function. To
match the mean-field voltage of the stochastic LIF neuron,
the linear neuron’s intensity function is fMðvÞ ¼ vfðvÞ,
where fðvÞ is the stochastic LIF intensity function. Since
fðvÞ had non-negative curvature, fM has positive curva-
ture. So, fluctuations of the membrane voltage promote
spiking activity in the matched linear-reset model.
A stochastic LIF network with a nonlinear intensity
function may have contributions from both diagrams, so
that the two nonlinearities compete to determine whether
fluctuations suppress or promote activity.

IV. HOMOGENEOUS NETWORKS

Biological neural networks are coupled. We will seek a
low-dimensional description of the population activity that
accounts for synaptic coupling. Here, we study the simplest
case: networks where the connectivity between neurons is
homogeneous, so we take the synaptic weights between
neurons from a distribution with negligible second- and
higher-order cumulants. We assume that the mean synaptic
weight is Oð1=NÞ so the total synaptic weight onto a
neuron is Oð1Þ. An exemplar of this case is a network with
weak (Jij ∼ 1=N) but potentially dense (connection prob-
ability ∼1) connections (Appendix C). To examine the
interaction between synaptic connectivity, subthreshold
dynamics, and stochastic spike emission in shaping net-
work activity, we will average the partition functional for
the activity (equivalently, average the moment generating
functional) over realizations of the synaptic connectivity
(Appendix C). In the limit of large N, the density factorizes
over the neurons, yielding the partition functional:

Z� ¼
Z

Dv
Z

Dṅ
Z

Dṽ
Z

Dñ exp
�
−ṽTð∂tvþ v − E − J � hṅi þ ṅvÞ − ñT ṅþ ½expðñÞ − 1�Tf

�
: ð20Þ

The result is a population of independent stochastic LIF
neurons, each receiving a self-consistent mean-field input
J � hṅi, where hṅi is the population-averaged spike train.
For self-averaging connectivity, the result describes the
typical behavior of an individual network and the pop-
ulation average hṅi matches the ensemble averaged rate.
Since the density factorizes, we drop the neuron index.
Robert and Touboul proved convergence to these mean-
field dynamics [75]. The connectivity has been reduced
to its mean J, which would be equivalent to assuming
a network with all-to-all connectivity. J can be either
positive or negative. If the connectivity had non-negligible
higher cumulants, these would give rise to corresponding

fluctuations in the membrane potential (Appendix C).
This population-averaged mean-field theory is one dimen-
sional not because the neurons are synchronized, but
because they spike independently given a self-consistent
mean-field input.
If the network is in an asynchronous state so hṅi is

constant in time, after a spike at time t the membrane
voltage obeys

vðtþ sÞ ¼ ðEþ JhṅiÞ½1 − expð−sÞ� ð21Þ

and the spike train is a renewal process. [We write J
for the integral of the coupling kernel JðsÞ.] With a
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threshold-linear intensity function, the mean interspike
interval is

hsi ¼ ln

�
C

C − 1

�
þ
�
C − 1

e

�
1−C

γðC − 1; C − 1Þ; ð22Þ

where C ¼ Eþ Jhṅi. In a stationary state, the rate is the
inverse of the mean interspike interval: hṅi ¼ 1=hsi, which
allows us to find self-consistent solutions of Eq. (22)
numerically.
The mean-field (tree-level) equation of motion for the

membrane voltage is

0 ¼ ∂tv̄þ v̄þ v̄fðv̄Þ − E − J � fðv̄Þ; ð23Þ

with fðv̄Þ the mean-field approximation of ṅ. As in the
N-dimensional mean-field theory of Eq. (5), this neglects
all fluctuations, so we expect that it will not be quantita-
tively correct. Since the spike trains are conditionally
Poisson, those fluctuations are driven by the expected
intensity. We thus expect that Eq. (23) should be a good
approximation when the true firing rate is low. As we will
see below, it can provide a good qualitative description of
the population dynamics, including bifurcations from
quiescence. The leading-order description of fluctuations
is given by the one-loop equations of motion:

ð24Þ

The one-loop contributions are given by Eqs. (14) and (15).

V. BISTABLE ACTIVITY IN HOMOGENEOUS
NETWORKS

With a threshold-linear f, fðvÞ ¼ bv − 1cþ, and pulse
coupling, JðsÞ ¼ JδðsÞ, there are three possible steady
states of Eq. (23). The first is v̄ ¼ E, which exists if E < 1.
There are two other possible steady states at v > 1:

v̄� ¼ J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4ðE − JÞ

p
2

;

n̄� ¼ bv̄� − 1cþ; ð25Þ

which both exist if

E < 1 and J > 2þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − E

p
: ð26Þ

Whenever it exists, v̄− (v̄þ) is unstable (stable). If E > 1,
only v̄þ exists. With J > 2 and ½Jð4 − JÞ=4� ≤ E < 1, both
steady states exist and the firing rates are thus bistable, with

v̄− providing a separatrix between the attractors v → E and
v → v̄þ. The mean-field theory has two saddle node
bifurcation curves, where the unstable fixed point v̄− meets
either v̄ ¼ E or v̄þ [Fig. 2(a)].
These bifurcations also appear in the underlying sto-

chastic spiking model. We simulated a network of 100
stochastic LIF neurons [Eq. (2)] with Erdős-Rényi con-
nectivity (p ¼ 0.5) with different values of the baseline
drive E and coupling strength J [marked in Fig. 2(a)].
At times 5 and 15, we applied pulse perturbations to
the baseline drive and observed monostable or bistable
behavior matching the predictions of the phase diagram
[Figs. 2(b)–2(d)].
The mean-field theory neglects all fluctuations in the

spiking activity. Because of the nonlinear spike-voltage
coupling imparted by the reset mechanism, those fluctua-
tions can impact the firing rate. To determine the magnitude
of fluctuation corrections, we computed bifurcation
diagrams of the exact firing rate [Eq. (22); see Figs. 2(e)
and 2(f)]. The mean-field theory systematically overesti-
mates the true firing rates. This implies that fluctuations in
the activity suppress firing.
Similarly to the uncoupled neuron, the impact of

fluctuations can be explicitly described by loop corrections
to the mean-field dynamics [Eq. (24)]. To one loop,
equilibria of v̄ are v̄ ¼ E (if v̄ < 1) and

v̄� ¼ 1

10

�
1þ 4J �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 80Eþ 8Jð2J − 9Þ

p �
;

n̄� ¼ bv̄� − 1cþ; ð27Þ

if v̄ > 1. At one loop, both equilibria of v̄ exist if

E < 1 and J >
9

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1 − EÞ

p
: ð28Þ

In the model with linear resets and a threshold-linear
intensity function, the mean-field theory is linear in both
the subthreshold and suprathreshold regimes and does not
exhibit bistability. The classic activity equations can have
bistable regimes so long as the nonlinearity saturates; see,
e.g., Ref. [8]. Here, bistability is due to the nonlinear
coupling between the spiking and membrane voltage.
The stochastic spiking network may not exhibit true

bistability in the bistable regime of the deterministic mean-
field or one-loop approximations. Rather, the quiescent
state should be truly stable, while the active state is
metastable. Fluctuations in the spiking activity may drive
the network into the quiescent state. In the quiescent state,
there are no fluctuations since all n-point correlation
functions are sourced by the intensity fðvÞ, which we took
to be 0 for v < 1. If the nonlinearity fðvÞ were small but
finite for v < 0, then fluctuations could be maintained in
the quiescent state and both would be metastable. The slope
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of the intensity function at threshold can also play a key
role in metastability of the population activity [75].

VI. MULTIPLE CELL TYPES

Biological neural networks are composed of diverse
types of neurons with cell-type-specific connectivity;
see, e.g., Ref. [76–83]. Motivated by this, we consider a

network with M populations, which impose a block
structure on the connectivity matrix J. The average over
the connectivity proceeds as for the single population, with
an order parameter for each population’s mean activity.
This yields an M-dimensional mean-field theory. In the
large-N limit, the partition functional is

Z� ¼
Z

Dv
Z

Dṅ
Z

Dṽ
Z

Dñ exp
XM
α¼1

	
−ṽTα

�
∂tvα þ vα − Eα −

XM
β¼1

Jαβ � hṅβi þ ṅαvα

�
− ñTα ṅα þ ½expðñαÞ− 1�TfðvαÞ



:

ð29Þ

For self-averaging networks, the density factorizes over the
populations and neurons so the neurons again spike inde-
pendently given a self-consistent mean-field input. The
typical spike train of population α (α∈ ½M�) is an inhomo-
geneous Poisson process. If the population-averaged activ-
ities hṅαi are constant in time, themean first passage times are

hsαi ¼ ln

�
Cα

Cα − 1

�
þ
�
Cα − 1

e

�
1−Cα

γðCα − 1; Cα − 1Þ;

ð30Þ

whereCα ¼ EþPM
β¼1 Jαβhṅβi. In a stationary state, the rate

is hṅαi ¼ 1=hsαi. The mean-field approximation of the
membrane voltages is

∂tvα ¼ −vα − vαfðvαÞ þ Eα þ
X
β

Jαβ � fðvβÞ: ð31Þ

The one-loop equations of motion, similarly, are
given by accounting for the input across populations in
Eq. (24).

FIG. 2. Bistable activity in homogeneous networks. (a) Phase diagram of the mean-field theory, Eq. (23), in the input (E) vs coupling
(J) plane. There are three possible states: low activity (L), high activity (H), and bistability (B). (b)–(d) Raster plots of a homogeneous
network’s activity at the parameter locations marked in (a). At t ¼ 5 and t ¼ 15, perturbations of amplitude 2 and duration 2 are applied
to the drive E (top). (e) Bifurcation curve in J with E ¼ 1=2. (f) Bifurcation plot in E with J ¼ 4. Gray circles: simulation. Black dotted
line: mean field theory of Eq. (23). Black dashed line: one-loop theory of Eq. (24). Black solid line: the exact rate of the disorder-
averaged system, using the numerical self-consistent solution of Eq. (22). The simulated network has Erdő-Rényi connectivity.
Simulated network parameters: N ¼ 100, p ¼ 0.5. All nonzero connections have the same weight, J=ðpNÞ.
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VII. BISTABLE ACTIVITY IN EXCITATORY-
INHIBITORY NETWORKS

Here, we consider the classic excitatory-inhibitory net-
work with pulse coupling and mean connection strengths,

�
JEE JEI
JIE JII

�
¼
�
J −gJ
J −gJ

�
; ð32Þ

as in Refs. [20,21] [Fig. 3(a)]. With input E to both
populations, the mean rates of the excitatory and inhibitory
populations are equal since they receive the same external
and recurrent inputs. The self-consistent fixed points with
positive rates are the same as those in the single-population
network with the replacement J → Jð1 − gÞ [Eq. (25) for
the mean-field theory, Eq. (27) to one loop]. In the mean-
field theory, both fixed points exist if

E < 1 and J > 2

and g ≤ 1 −
2

J

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − E

p �
: ð33Þ

Here we have highlighted the requirement for g as a
function of the other model parameters; J > 2 is a
necessary condition for bistability in the mean-field theory,
but depending on the values of g and E the greatest lower
bound for J may be above 2. With both population voltages
under threshold, there is the stable fixed point v̄ ¼ E, if
E ≤ 1. If E > 1, only v̄þ exists. The Jacobian eigenvalue
Jð1 − gÞ − 2v is positive for v̄− and negative for v̄þ root. So
if these fixed points exist, the one at higher v is stable and
the other a saddle. Similarly, in the one-loop theory both
fixed points exist if

E < 1 and J >
9

4

and g ≤ 1 −
1

J

�
9

4
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1 − EÞ

p �
: ð34Þ

As for the single-population network, the existence
conditions for these fixed points define saddle node
bifurcation curves for the mean-field and one-loop theories
[Figs. 3(b)–3(d)]. If the inhibitory coupling strength is
sufficiently low, we have the same types of bifurcation
curves as in the single-population network [Fig. 3(c)]. If the
inhibitory coupling g is too strong, the only stable equi-
librium is the low-rate state [Figs. 3(b) and 3(d)].
These bifurcations also appear in the stochastic spiking

network with block-Erdős-Rényi connectivity [Figs. 3(e)
and 3(f); network parameters are given in the caption].

VIII. FLUCTUATIONS

The temporal structure of fluctuations can shape sensory
codes [84–86] and determine neural circuit structures

through spike timing-dependent plasticity [87–93]. The
classic Fokker-Planck mean-field theory of integrate-
and-fire networks assumes that the membrane voltages
experience a white Gaussian noise [20–22]. The resulting
predictions for the spike trains’ power spectra are not white,
however, so these predictions are not self-consistent [25].
In the stochastic integrate-and-fire model, the output spike
trains also are not white. In the excitatory-inhibitory net-
work, for example, the population-averaged power spec-
trum exhibits a high-pass shape with a slight resonance
[Fig. 4(a), dots]. This is similar to the shape of the power

FIG. 3. Bistable activity in excitatory-inhibitory networks.
(a) Network diagram. (b) Phase diagram in the input (E) vs
inhibitory strength (g) plane with J ¼ 6. There are three possible
states: low activity (L), high activity (H), and bistability (B).
(c) Phase diagram of the two-dimensional mean-field theory,
Eq. (31), in the input (E) vs coupling strength (J) plane with
g ¼ 0.3. (d) Phase diagram in the coupling vs inhibitory strength
plane with E ¼ 0.5. (e),(f) Example simulations with ðJ; gÞ ¼
ð6; 0.3Þ, with E ¼ −0.5 (e) or E ¼ 0.5 (f). The network has a
block-Erős-Rényi structure. Simulated network parameters: pop-
ulation sizes ðNe;NiÞ ¼ ð200; 50Þ, excitatory output connection
probabilities pee ¼ pie ¼ 0.2, inhibitory output connection prob-
abilities pei ¼ pii ¼ 0.8. Within each block, all nonzero con-
nections have the same weight, e.g., J=ðNepeÞ for nonzero
excitatory projections.
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spectrum of networks of deterministic integrate-and-fire
neurons with white noise inputs [23]. The one-loop
equations of motion account for Gaussian fluctuations,
but do not make any assumptions about their temporal
structure. We will next discuss the temporal structure of
fluctuations in this Gaussian approximation and the full
prediction from renewal theory.

The exact mean-field theory, Eq. (29), is of an inhomo-
geneous Poisson process receiving the self-consistent mean
input

P
β Jαβhṅβi. Substituting this into Eq. (21) yields

the postspike membrane voltage, which defines the inten-
sities f(vαðtÞ). The interspike interval density is
pðsαÞ ¼ f(vαðsÞ) exp½−

R
s
0 dtf(vαðtÞ)�. For a threshold-

linear intensity function, it is

pðsαÞ ¼

8>><
>>:

0; sα ≤ ln Cα
Cα−1h

Cαð1 − e−sαÞ − 1
i
× exp−

	
Cαe−sα þ ðCα − 1Þ

�
sα − 1 − ln Cα

Cα−1

�

; sα > ln Cα

Cα−1
;

ð35Þ

where Cα ¼ EþPβ Jαβhṅβi and γ is again the lower
incomplete γ function. This provides an exact prediction
for the interspike interval density in the limit N → ∞,
accurate for populations of a few hundred neurons
[Fig. 4(b)]. The interspike interval distribution defines
the spike train power spectrum CðωÞ of a renewal
process [94]:

CðωÞ ¼ hṅi 1 − jpðωÞj2
j1 − pðωÞj2 : ð36Þ

Together, Eqs. (35) and (36) provide an exact prediction for
the typical power spectrum in a large homogeneous net-
work. Computing the Fourier transform pðωÞ numerically,
we see that these predictions are quantitatively accurate in
simulations of a few hundred neurons [Fig. 4(a), gray dots
vs solid black curve].
For analytic approximations of the power spectrum, we

turn to the field-theoretic formulation. If the fluctuations
or the nonlinearity is weak, we can expand the density
pertubatively around a solution of the deterministic mean-
field theory (Appendix D). The connected two-point
function of the spike trains can then be calculated dia-
grammatically. With a threshold-linear intensity function,

ð37Þ

The expansion may contain terms with up to infinitely
many loops, inducing dependence on n-point correlation
functions of all orders. With an intensity function nonlinear
at the mean voltage there would be additional diagrams,
containing internal vertices with multiple incoming
edges. The same is true for any cumulant of the activity.
The simplest approximation of the two-point correlation is
the tree-level approximation given by the first diagram of
Eq. (37):

⟪ṅ2α⟫0ðωÞ ¼
v̄2α þ ω2

4v̄2α þ ω2 fðv̄αÞ; ð38Þ

where v̄α is a solution to the mean-field equation for
population α. At ω ¼ 0, this yields ⟪ṅ2α⟫ð0Þ ≈ fðv̄αÞ=4.
For ω → ∞, ⟪ṅ2⟫ðωÞ → fðv̄αÞ, the mean-field approxi-
mation to the intensity. This simple approximation captures
the high-pass nature of the power spectrum but is not
quantitatively accurate [Fig. 4(a), dotted line].
The one-loop predictions for the mean membrane

voltage and rate account for second-order fluctuations to
tree level. For the spike train power spectrum this again
corresponds to Eq. (38), but with v̄ a solution to the one-
loop equations of motion. This provides a more accurate
prediction of the power spectrum [Fig. 4(a), dashed line]
due to the improved estimate of the intensity fðv̄αÞ.
As the coupling or input strength brings the network to a

bifurcation, the spike train variance ⟪ṅ2α⟫0ð0Þ undergoes a
sharp transition from 0 in the quiescent state to positive
values in the active state [Figs. 4(c)–4(f)]. The transition in
the spike train variance follows that in the rate, since all
correlation functions are sourced by the intensity fðv̄Þ.

IX. INHIBITORY STABILIZATION

In recent years, a body of work has emerged suggesting
that mammalian cortices reside in an inhibition-stabilized
regime [8,59,61–64]. There are two requirements for an
excitatory-inhibitory network to be inhibition stabilized:
The network must occupy a stable attractor, but the
excitatory population would be unstable on its own.
These are difficult to directly test experimentally.
Fortunately, inhibition-stabilized fixed points have another
signature: paradoxical responses to inhibitory neuron
stimulation. In an inhibition-stabilized network, stimulation
of the inhibitory neurons leads to a paradoxical reduction
of their firing rates [60]. If there are multiple inhibitory
subtypes, the net inhibitory input to excitatory neurons
decreases upon inhibitory neuron stimulation [95]. The
widespread experimental observation of paradoxical
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responses, and other response patterns consistent with
inhibition-stabilized networks, raises the following ques-
tion: Is inhibitory stabilization a generic property, or does it
require fine-tuned parameters toward which cortical net-
works develop?
The inhibition-stabilized regime, and paradoxical

responses as its signature, are predictions of the classic
activity equations, Eq. (1). Does an inhibition-stabilized
regime exist in the mean-field theory of Eqs. (31) and (32)?

The stability requirements are determined from the
Jacobian matrix:

 
−1 − f̄e þ ðJ − v̄eÞfð1Þe −gJfð1Þi

Jfð1Þe −1 − fi − ðgJ þ v̄iÞfð1Þi

!
;

ð39Þ

where f̄α ¼ fðv̄αÞ and fð1Þα ¼ ðd=dvÞfðvÞjv̄α . For a fixed
point to be inhibition stabilized, the first element of its
Jacobian must be positive (the excitatory-only subnetwork
would be unstable), but the maximum real part of its
eigenvalues negative (the full network is stable). For the
threshold-linear intensity function, fð1Þðv̄αÞ ¼ θðv̄α − 1Þ,
where θðxÞ is the Heaviside step function. This leads to
the requirement that for the excitatory subnetwork to be
linearly unstable with a positive firing rate, 1 < v̄E < J=2.
Do paradoxical responses to inhibitory stimulation

occur in the stochastic LIF network? To investigate this,
we return to the tractable threshold-linear intensity func-
tion. We allow the external input to vary between the two
populations, E ¼ ðE; hEÞ [Fig. 5(a)]. h controls the relative
strength of the input to the inhibitory population. When
both population voltages are above threshold, the mean-
field inhibitory and excitatory nullclines are at

v̄�i ¼
−gJ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2J2 þ 4½Jðv̄e − 1þ gÞ þ hE�

p
2

;

v̄i ¼ ½−ðv̄�eÞ2 þ Jv̄�e − Jð1 − gÞ þ E�=gJ: ð40Þ

v̄�α is the nullcline of population α∈ fe; ig. The supra-
threshold inflection point of the excitatory nullcline is at
v̄e ¼ J=2. An inhibition-stabilized fixed point must thus be
on the increasing branch of the excitatory nullcline. h does
not affect the excitatory nullcline but shifts the inhibitory
nullcline. An increase in h will lead to a paradoxical
reduction in firing rates if it shifts a stable fixed point to
lower v̄i. For example, consider the case when there is a
single fixed point on the increasing side of the excitatory
nullcline, to the left of its peak [Fig. 5(b)]. Increasing h
shifts the inhibitory nullcline up and to the left, moving
that fixed point to a lower ðv̄e; v̄iÞ. Depending on the
magnitude of the shift, it may also take the dynamics
through a bifurcation into a bistable regime. A sufficiently
large increase in h can shift the network into a regime with
no excitatory activity, which can also lead to a net decrease
in inhibitory rates [Figs. 5(b) and 5(c)].
In what regions of parameter space does an inhibition-

stabilized fixed point exist? As discussed above, for the
excitatory subnetwork to be unstable, with nonzero excita-
tory rate, requires that the fixed point be on the middle
branch of the excitatory nullcline: 1 < v̄E < J=2. The
inhibitory nullcline is an increasing function of v̄e. The
excitatory nullcline increases for v̄�e close to 1 and

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Fluctuations in an excitatory-inhibitory network with
symmetric external inputs, Ee ¼ Ei ¼ E. (a) Spike train power
spectrum with ðJ; g; EÞ ¼ ð6; 0.3; 1.2Þ. Dots: simulation of a net-
work with 200 excitatory and 50 inhibitory neurons (population-
averaged power spectrum). Dotted line: the perturbative tree-level
approximation (expanded around the deterministic mean-field
theory). Dashed line: the tree-level approximation around the
one-loop rates. Solid line: the renewal prediction of Eq. (36).
(b) Interspike interval density with ðJ; g; EÞ ¼ ð6; 0.3; 1.2Þ. Dots:
simulation. Solid line: the renewal prediction of Eq. (35). (c),(d)
Bifurcation diagrams for firing rate as a function of g and as a
function of E. (e),(f) Bifurcation diagrams for spike train variance
as a function of g and as a function of E. In (c) and (e),
ðJ; EÞ ¼ ð6; 0.5Þ. In (d) and (f), ðJ; gÞ ¼ ð6; 0.25Þ. Simulated
network parameters: population sizes ðNe;NiÞ ¼ ð200; 50Þ, excita-
tory output connection probabilities pee ¼ pie ¼ 0.5, inhibitory
output connection probabilities pei ¼ pii ¼ 0.8.
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decreases for sufficiently large v̄�e. At threshold (v̄e ¼ 1)
the inhibitory nullcline must be below the excitatory
nullcline:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgJÞ2 þ 4gJ þ 4hE

q
<

2

gJ
ðEþ gJ − 1Þ þ gJ: ð41Þ

If h ¼ 1, this requirement imposes that E > 1; at E ¼ 1 the
two sides are equal, and the difference of the two sides
grows as

ffiffiffiffi
E

p
.

The peak of the excitatory nullcline is at v̄�e ¼ J=2. At
the peak of the excitatory nullcline, v̄i¼½J2=4−Jð1−gÞ þ
E�=gJ. At v̄e ¼ J=2, the inhibitory nullcline should be
above the excitatory nullcline:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgJÞ2 þ 4gJ þ 2JðJ − 2Þ þ 4hE

q
>

2

gJ

�
J2

4
− Jð1 − gÞ þ E

�
þ gJ: ð42Þ

Together, Eqs. (41) and (42) provide sufficient conditions
for a paradoxical response to inhibitory stimulation in
the mean-field theory. At fixed drive E, they predict a
paradoxical response for sufficiently large J or g. For
stronger E, these minimal couplings increase [Figs. 6(a)
and 6(b), dashed line).
To estimate how fluctuations impact inhibitory stabili-

zation, we compute the one-loop nullclines (each with vi as
a function of ve):

v̄�i ¼
1− 4gJþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 80hEþ 8gJð9þ 2gJÞþ 80Jðve− 1Þp
10

;

vi ¼ ½4ðE− Jþ gJÞþ v̄�eð4Jþ 1Þ− 5ðv̄�eÞ2�=4gJ: ð43Þ

The inflection point of the one-loop v̄e nullcline is at
v̄�e ¼ ð1þ 4JÞ=10. At one loop, for the inhibitory nullcline
to be below the excitatory nullcline at threshold requires

10E > 10þ gJ
h
−9− 4gJþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 80Ehþ 8gJð9þ 2gJÞ

p i
;

ð44Þ

for the inhibitory nullcline to be above the excitatory
nullcline at v̄e ¼ ð1þ 4JÞ=10 requires

1þ 80E < 8J
�
9− 2J − g

n
9þ 4gJ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 80Ehþ 8J½−9þ 4J þ gð9þ 2gJÞ�

p o�
:

ð45Þ

For fixed E and J, this one-loop boundary requires a higher
g (stronger inhibition) than the mean-field boundary, better
matching the transition observed in simulations [Fig. 6(a),
dashed line vs solid line]. Similarly, for fixed E and g, the

(a) (b)

FIG. 6. Phase diagrams for paradoxical responses to inhibitory
stimulation. (a) Boundaries of the paradoxical response region
with J ¼ 4. Dashed line: mean-field theory, Eq. (42). Solid line:
one-loop theory, Eq. (45). Color: simulation. Each simulation
lasts for 200 time units; at time 100, the inhibitory drive switches
from hE ¼ E to hE ¼ Eþ 0.1. (b) As in (a), with g ¼ 2.
Simulated block-Erdős-Rényi network parameters as in Fig. 3.

(a) (b)

(c)

FIG. 5. Paradoxical responses to inhibitory stimulation.
(a) Excitatory-inhibitory network with asymmetric drive.
(b) Phase diagram and nullclines of the excitatory (blue line)
and inhibitory (orange lines) firing rates for the excitatory-
inhibitory network with threshold-linear rate functions. (c) Sim-
ulation of a block-Erdős-Rényi network with pee ¼ pie ¼ 0.5,
pei ¼ pii ¼ 0.8. At time 0, ðE; hÞ ¼ ð2; 1Þ. At times 50 and 100,
h increases by 3=4. Orange line: inhibitory population-averaged
spike train, smoothed with a Gaussian kernel of width 2 for
visualization. Parameters for (b) and (c): ðJ; g; EÞ ¼ ð6; 1=2; 2Þ.
Simulated block Erdős-Rényi network parameters as in Fig. 3.
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one-loop boundary is at higher J (stronger coupling) than
the mean-field boundary [Fig. 6(b), dashed line vs solid
line]. Together, this comparison indicates that fluctuations
shift the region of paradoxical responses to more strongly
coupled networks. This comports with the role of fluctua-
tions in suppressing activity.
A paradoxical response could also occur from other

dynamical regimes than the single fixed point on the
decreasing branch of the excitatory nullcline, such as
from a bistable regime. To test whether the underlying
spiking model exhibits paradoxical responses, we simulated
excitatory-inhibitory networks while varying J and g. For
each network, we applied a perturbation of amplitude 0.1 to
the inhibitory population’s input and computed the inhibitory
population’s average firing rate before and after the pertur-
bation. With J fixed and varying g, we observed paradoxical
responses for sufficiently large g [Fig. 6(a), blue]. Similarly,
with g fixed and varying J, we observed paradoxical
responses for sufficiently large J [Fig. 6(b), blue]. The
one-loop predictions better match the region of paradoxical
responses than the mean-field predictions (Fig. 6).

X. DISCUSSION

We constructed a path integral representation for the joint
probability density functional of the membrane voltage and
spike trains of a network of stochastic LIF neurons, Eq. (4).
This exposed a simple deterministic mean-field theory for
spiking networks: activity equations with an additional
rate-dependent leak arising from the spike resetting
[Eq. (5)]. It also exposed fluctuation corrections to the
mean-field theory, arising from the two nonlinearities of the
intensity function and spike reset [Eq. (24)], the latter of
which suppresses activity (Fig. 1). These N-dimensional
systems expose predictions for the activity that depend
on a particular connectivity J. Large-scale electron micros-
copy is now revealing such wiring diagrams see, e.g.,
Refs. [96–108]. Predicting the microscopic dynamics of
even deterministic, threshold-linear neuronal networks is
challenging [109–112]. Statistical approaches focusing on
stochastic models allow the prediction of correlations
between specific neurons’ activity through linear response
or Hawkes theory and its generalizations [55,113–118].
Equation (4) provides a starting point for making such
predictions in a stochastic LIF network.
Here, we instead used the path integral representation to

derive a population-averaged stochastic field theory for
large networks with homogeneous coupling, including
multipopulation systems like excitatory-inhibitory net-
works. That stochastic field theory was of the form of a
renewal process with a self-consistent input [Eqs. (20)
and (29)]. Robert and Touboul studied the homogeneous
stochastic LIF network rigorously [75]. They proved that the
mean-field process, Eq. (20), can have one or several
invariant densities depending on the form of the firing
function. The stochastic field theory admits low-dimensional

mean-field and loop approximations of the voltage and rate as
simple functions of the model’s parameters. Using these
approximations, we demonstrated bistability of the determin-
istic mean-field theory and its extension to the stochastic
system, and studied the contributions of recurrent inhibition
and spike resetting to stabilizing network activity. We also
found that fluctuations suppress activity through the spike
reset also in couplednetworks [Figs. 2(e), 2(f), and 4(c)–4(e)].
Excitatory-inhibitory networks of deterministic integrate-
and-fire neurons can also exhibit bistable equilibrium rates
if the inhibition is not too strong [21,119]. The field-theoretic
description here does not rely on awhite noise approximation
for the membrane voltages, but exposes a systematic method
for calculating their statistics. It requires here, however, a
model with stochastic spike emission.
Deterministic integrate-and-fire networks can also

exhibit spatial, temporal, and spatiotemporal transitions
[21,120,121]. Temporal, spatial, and spatiotemporal bifur-
cations are often understood through the classic activity
equations [3]. The field theory developed here provides a
route to uncovering bifurcations in networks of stochastic
integrate-and-fire neurons with more temporal or spatial
structure in their interactions, as well as investigating the
impact of spiking fluctuations on such transitions.
In the classic activity equations [e.g., Eq. (1)], recurrent

inhibition is necessary to stabilize strongly coupled net-
works [8,59]. An inhibition-stabilized regime can be
exposed by a paradoxical reduction of inhibitory activity
after inhibitory stimulation [60]. We calculated the phase
diagram for paradoxical responses in stochastic LIF net-
works, and found that an inhibition-stabilized regime exists
in wide regions of parameter space (Figs. 5 and 6). This
suggests a generic mechanism underlying the observation of
paradoxical responseswidely inmammalian cortex [61–64].
There are two complementary approaches to our focus on

the density functional of sample paths p½vðtÞ; ṅðtÞ� for the
stochastic LIF model. These complementary approaches
focus on the time-dependent probability density function
of the membrane voltages pðv; tÞ across a population of
neurons [18]. In the N → ∞ limit and with Jij ∼ 1=N, the
population density of membrane voltages in a stochastic
LIF network obeys a Volterra integral equation [29,30].
That integral equation can also be written as a partial
differential equation, which rigorously exposes the stochas-
tic stability of the population densities in a mean-field limit
[122–125]. A finite-size analysis introduces a stochastic term
to the population density equations [34,126]. Alternatively,
moments for finite-size networks can be analyzed through a
replica mean-field approach [127–129]. The path integral
approach also exposes a finite-size mean-field theory
[Eq. (5)]. Fluctuation corrections to that finite-N mean-field
theory can be obtained in the same way as for the large-N,
connectivity-averaged system.
The field-theoretic approach is practical and flexible. It

exposes simple analytic approximations for any cumulant
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of the membrane voltages and/or spike trains via diagram-
matic methods, is amenable to finite-size corrections,
and applies readily to other models such as those with
temporal synaptic interactions, spatially dependent con-
nectivity, conductance-based or strong Oð1= ffiffiffiffi

N
p Þ synap-

ses, and additional nonlinearities in the single-neuron
dynamics.
A previous version of this article, now retracted [130],

contained errors described in the retraction notice [131].
These errors have been corrected in the current article.
Related code can be found at Ref. [132].
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APPENDIX A: JOINT PROBABILITY
DENSITY FUNCTIONAL

We will construct the joint probability density of the
membrane voltages and spike trains using the response
variable path integral formalism [37–40], reviewed in
Refs. [133–135]. We will use boldface lowercase variables
for vectors and boldface capital letters for matrices and
operators. Given the membrane voltages vit, we will require
that the spikes generated in the network are conditionally
independent across neurons i and time points t. Here we take
the model to be already nondimensionalized, so that time is
measured in units of the membrane time constant τ and the
voltage resets to 0 after a spike. The joint probability density
of the membrane voltages v and the spikes dn, conditioned
on the stochastic spike generation, is

pðv; njηÞ ¼
YN
i¼1

YT−1
t¼1

δ

�
dvit
dt

þ vit þ
dni;t−1
dt

vit − Eit −
X
j;s

Jijsdnj;t−s

�
δðdnit − ηitÞ: ðA1Þ

Here, ηit ∼ Bernoulli½fðvitÞdt�. Introducing the Fourier representation of the δ functions and marginalizing over η yields
the joint density:

pðv; nÞ ¼
Z

Dṽ
Z

Dñ exp

	X
i;t

− ṽit

�
dvit
dt

þ vit þ
dni;t−1
dt

vit − Eit −
X
j;s

Jijsdnj;t−s

�

− ñitdnit þ lnf1þ fðvitÞdt½expðñitÞ − 1�g


: ðA2Þ

The measures are Dñ ¼Qi;tðdñit=2πiÞ and Dṽ ¼Q
i;tðdṽit=2πiÞ. The integrals over the response variables,

ñ and ṽ, are along the imaginary axis. The logarithmic term
in the exponent is the cumulant-generating function of the
Bernoulli spikes. Galves and Lőcherbach proved the exist-
ence and uniqueness of stationary densities for the discrete-
time model with strictly positive intensity function [136].
We next take a continuous-time limit, dt → 0; T → ∞,

with their product fixed. This defines the functional
integration measures D. With dt ≪ 1, we expand the
natural logarithm in its Taylor series around 1: lnf1þ

fðvitÞdt½expðñitÞ− 1�g ¼ fðvitÞdt½expðñitÞ−1� þO½ðdtÞ2�.
This yields Eq. (4), with the infinitesimal shift in the reset
term in Eq. (2).

APPENDIX B: ABSOLUTE
REFRACTORY PERIOD

With an absolute refractory period of Tr time steps in
the discrete-time dynamics, during which the membrane
voltage is clamped within OðdtÞ of 0, the joint density of
the spike trains and membrane voltages instead obeys

pðv; nÞ ¼
Z

Dṽ
Z

Dñ exp

	X
i;t

− ṽit

�
dvit
dt

þ vit þ
XTr

s¼1

dni;t−s
dt

vit − Eit −
X
j;s

Jijsdnj;t−s

�

− ñitdnit þ lnf1þ fðvitÞdt½expðñitÞ − 1�g


: ðB1Þ

This presents some complication in the continuous-time limit: the refractory term diverges when written as a convolution.
One alternative would be to incorporate a strong, negative self-coupling in diagonal elements of J. While not strictly an

absolute refractory period, this may mimic its effects. This would affect the definition of the mean-field theory and
propagators, but would not give rise to new types of fluctuation correction (no new vertices; see Appendix D 1).
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Another alternative is to consider an absolute refractory period in which the membrane voltage is not clamped at the reset
voltage. Rather, we can require that
(1) during the absolute refractory period, the spike probability is 0 and
(2) at the end of the absolute refractory period, the membrane voltage is reset to the reset voltage.

This yields the discrete-time density:

pðv;nÞ ¼
Z

Dṽ
Z

Dñ exp

�X
i;t

− ṽit

�
dvit
dt

þ vit þ
dni;t−Tr

dt
vit − Eit −

X
j;s

Jijsdnj;t−s

�

− ñitdnit þ ln

	
1þ fðvitÞdt½expðñitÞ − 1�

�
1 −

XTr

s¼1

dni;t−s

�
�
; ðB2Þ

from which a continuum limit can be taken straightforwardly, yielding a spike reset term ṅiðt − τrÞviðtÞ and spike intensity
fðviÞð1 − ṅi � BÞ, with the rectangular function BðtÞ ¼ θðtÞ − θðt − τrÞ and refractory period τr ¼ Trdt. This introduces a
new state dependence to the intensity, which would give rise to new types of fluctuation correction.

APPENDIX C: CONNECTIVITY-AVERAGED DENSITY

To examine the interaction between synaptic connectivity, subthreshold dynamics, and stochastic spike emission in
shaping network activity, we will average the partition functional for the activity (equivalently, average the moment
generating functional) over the synaptic connectivity. This is a standard exercise in statistical field theory [135], relying on
the assumption that the system is self-averaging with respect to the connectivity: that is, that the average over realizations of
J will give us an accurate description of a single large system. The connectivity-averaged partition functional is

Z ¼
Z

Dv
Z

Dṅ
Z

Dṽ
Z

Dñ
Z

DJp½v; ṅ; ṽ; ñjJ�pðJÞ: ðC1Þ

Since the action S is linear in J, a cumulant-generating function for J appears in Z:

Z ¼
Z

Dv
Z

Dṅ
Z

Dṽ
Z

Dñ exp−
�
ṽTð∂tvþ v − Eþ ṅvÞ þ ñT ṅ − ½expðñÞ − 1�Tf

�Z
DJpðJÞ exp ðṽTJ � ṅÞ

¼
Z

Dv
Z

Dṅ
Z

Dṽ
Z

Dñ exp−
�
ṽTð∂tvþ v − Eþ ṅvÞ −WJðṽT ṅÞ þ ñT ṅ − ½expðñÞ − 1�Tf

�
; ðC2Þ

where

WJðṽT ṅÞ ¼ ln
Z

DJpðJÞ exp
�Z

dt
Z

ds
X
i;j

ṽiðtÞJijðsÞṅjðt − sÞ
�
: ðC3Þ

Because of this, each cumulant of J gives rise to a
corresponding cumulant in the connectivity-averaged par-
tition functional for the activity. We have overloaded
notation here, writing pðJÞ for the distribution of the
synaptic weight matrix while also letting J be a function
of the time lag. This notation assumes that JijðsÞ ¼
JijGijðsÞ for some matrix of unit-norm kernels G, which
we leave implicit. The connectivity gives rise to an effective
noise in the membrane voltage. Each cumulant of the
connectivity gives rise to a cumulant of the same order in
the effective noise.

For example, consider an Erdős-Rényi network with
connection probability p and synaptic weight J for the
nonzero connections, with JðsÞ ¼ JδðsÞ. The distribution
pðJÞ factorizes over the weights; the cumulant-generating
functional for an individual synaptic weight is

WJðxÞ ¼ lnf1þ p½−1þ expðJxÞ�g ðC4Þ

and cumulants of the synaptic weights Jij obey the
recursion relation:

hJiji ¼ Jp; ⟪Jnij⟫ ¼ Jpð1 − pÞ d
dp

⟪Jn−1ij ⟫; n ≥ 2:

ðC5Þ

If the connection probability p and weight J are both of
order 1, the synaptic weights will have non-negligible
cumulants of all orders. If the synaptic weights are of order
1 and the connectivity sparse, p ∼ 1=N, the cumulants
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are ⟪Jnij⟫ ¼ JnpþOð1=N2Þ. If J > 1, higher cumulants of the connectivity will dominate, giving rise to higher-order
cumulants in the effective noise of the membrane voltage. In contrast, if J ∼ 1=N and p ∼ 1, then ⟪Jnij⟫ ∼ N−n, so in a large
network, the first cumulant of the connectivity dominates.
Here, we consider that simple case where J has only a first cumulant. Let hJijðsÞiJ ¼ JðsÞ=N. The average over the

connectivity yields

Z ¼
Z

Dv
Z

Dṅ
Z

Dṽ
Z

Dñ exp
X
i

	
−ṽTi

�
∂tvi þ vi þ ṅivi − Ei −

1

N
J �
X
j

ṅj

�
− ñTi ṅi þ ðeñi − 1ÞTfðviÞ



: ðC6Þ

(Here, � represents scalar temporal convolution.) We would like to examine this partition functional in the limit of a large
network. Let R ¼ ð1=NÞPj J � ṅj; we will enforce this by integrating against δðNR − J �Pj ṅjÞ. With the Fourier
representation of that δ function, we have a generating functional for the auxiliary fields R; R̃:

Z½k; k̃� ¼
Z

DR
Z

DR̃ exp

�
−NR̃TRþ

X
i

lnZi½R; R̃� þ k̃TRþ kTR̃

�
;

Zi½R; R̃� ¼
Z

Dvi

Z
Dṅi

Z
Dṽi

Z
Dñi exp

�
−ṽTi ð∂tvi þ vi − E − Rþ ṅiviÞ þ R̃TðJ � ṅiÞ − ñTi ṅi þ ðeñi − 1ÞTfðviÞ

�
:

ðC7Þ

Note that the generating function for the neural dynamics
factorizes over the neurons; Zi½R; R̃� does not contain any
other indices. So, we will drop the neuron indices and write
N lnZ½R; R̃� instead of

P
i lnZi½R; R̃�. For large N, we

evaluate the integrals over the auxiliary fields R; R̃ by a
saddle point approximation. The saddle point equations are

0 ¼ −NR� þ N
∂ lnZ½R; R̃�

∂R̃

�
R
↔ R� ¼ J � hṅi;

0 ¼ −NR̃� þ N
∂ lnZ½R; R̃�

∂R

�
R
↔ R̃� ¼ hṽi ¼ 0: ðC8Þ

Here, hṅiðtÞ is the population-averaged firing rate. Inserting
these saddle point solutions yields the partition functional,
Eq. (20).

APPENDIX D: PERTURBATIVE EXPANSION

If fluctuations or nonlinearities are weak, a perturbative
expansion around the mean-field theory can provide
accurate estimates of fluctuation effects. For ease of
notation, let x ¼ ðv; ṅÞT and x̃ ¼ ðṽ; ñÞT . We expand x
around a background field,

x ¼ x̄þ δx; x̃ ¼ x̃� þ δx̃; ðD1Þ

and collect terms up to linear order in the fluctuations in the
free action S0, with higher-order terms in the interacting
part of the action SV :

S ¼ S0 þ SV;

S0 ¼ ṽTð∂tv̄þ v̄þ v̄ n̄−E − J � hṅiÞ þ ñT ½n̄ − fðv̄Þ�
þ ṽTð∂t þ 1þ n̄Þδvþ ṽT v̄δnþ ñTδn − ñTfð1Þδv;

SV ¼ ṽTδnδv −
X∞
p¼2

ñp

p!
fðv̄Þ −

X∞
p;q¼1
pþq>2

ñp

p!
fðqÞ

q!
ðδvÞq: ðD2Þ

(We should also expand the response variable x̃ around a
background field; we skip that here since in Appendix E
we will constrain the background fields to be the mean
trajectories, and the mean of response variables is 0.)
A joint moment of v; ṅ is

�Ya
i¼1

ṅðtiÞ
Yb
j¼1

vðtjÞ
�

¼
Z

Dδx
Z

Dx̃
Ya
i¼1

Yb
j¼1

ṅivj expð−S0 − SVÞ: ðD3Þ

Expanding exp ð−SVÞ in a functional Taylor series around a
solution to the mean-field theory yields an expansion of the
moment in terms of Gaussian integrals with respect to
the free density exp ð−S0Þ. Because of Wick’s theorem,
these integrals yield products of the propagators Δ̄. These
expansions can be efficiently organized diagrammatically.

1. Feynman rules

Here we give the Feynman rules for a perturbative
expansion of statistics of the population-averaged system,
Eq. (29), around the mean-field theory. This provides a
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graphical algorithm for computing arbitrary cumulants of
the spike train ṅ or membrane voltage v. Moments can be
composed from the cumulants by the appropriate Bell
polynomials. We give the rules in the temporal frequency
domain, for an expansion around a stationary point. Each
cumulant can be decomposed into a sum of terms, each
represented by a connected diagram. Those diagrams are
composed of the vertices and edges in Tables I and II
(Feynman diagrams generated with Ref. [137]).
The source vertex • emits factors of the response variable

ñ corresponding to spike fluctuations. Each internal vertex,
∘ receives configuration variables δn; δv and emits response
variables ñ; ṽ. In any connected diagram, each pair of
vertices will be linked by at least one pair of configuration
and response variables, e.g., (δv; ñ). Because of Wick’s
theorem, each pair of configuration and response variables
is replaced by the corresponding propagator edge. For
example, the pair δv; ñ gives rise to the propagator Δ̄v;ñ. To
calculate the joint cumulant ⟪ṅavb⟫ðω1;…;ωaþb−1Þ:
(1) Place an external vertex for each of the aþ b factors

of ṅ and v.
(2) Using the internal vertices and edges in Tables I

and II, construct all connected graphs such that each
external vertex has one incoming propagator edge.
Each edge has its own frequency variable ωi.

(3) To evaluate a diagram, multiply the factors of every
edge and vertex together. Additionally, the sum of

external frequencies (those on the external vertices’
incoming edges) is zero: also multiply by
δðPaþb

i¼1 ωiÞ. Finally, integrate over all of the internal
frequencies: for each internal frequency ωi, inte-
grate

R
dωi=2π.

(4) Evaluate each connected diagram constructed in (2),
and add the contributions of the diagrams.

We perform the integrals over internal frequencies
analytically using the residue theorem. For a thorough
introduction see, e.g., Refs. [135,138]. For an introduc-
tion to diagrammatic methods in the Poisson generalized
linear model without resets (no self-coupling), see
Ref. [55]. See Ref. [58] for detailed analytical calcula-
tions of the integrals over internal frequencies in
that model.
Equations (12) and (24) are self-consistent one-loop

equations of motion for the mean voltage and rate. The
approximate joint cumulants appearing in them can also be
calculated using the perturbative Feynman rules above;
each is given by a tree diagram with the same two edges as
in the loop diagram.
The corresponding perturbative corrections to the mean-

field values of the voltage and rate are given by one-loop
tadpole diagrams. For example, the perturbative one-loop
correction to the mean-field voltage corresponding to

Eq. (14) is . The internal vertex ∘ in this

diagram carries a factor of −1. This corresponds to the sign
this diagram appears with in Eqs. (12) and (24), opposite
the sign in front of the second loop diagram. There is also a
perturbative one-loop correction to the mean-field voltage

arising from the intensity vertex, . Both

nonlinearities also give rise to perturbative corrections
to the mean-field rate. This is a difference with the
self-consistent approach of the main text, where only
one one-loop correction arises in each equation of motion
(Appendix E).

APPENDIX E: EFFECTIVE ACTION

Here we briefly derive the effective action. For a more
detailed presentation see, e.g., Ref. [138], Chap. 7, or
Ref. [135], Chaps. 11–14. For ease of notation, let
x ¼ ðv; ṅÞT and x̃ ¼ ðṽ; ñÞT . The cumulant-generating
functional is

expW½j; j̃� ¼
Z

Dx
Z

Dx̃ exp
1

h
ð−S½x; x̃� þ j̃Txþ jT x̃Þ:

ðE1Þ

We have introduced a scale h into the exponent on the right-
hand side. For physical calculations we will set h ¼ 1.
(Here, h has no relation to the h used in Sec. IX.) We

TABLE II. Edges corresponding to the components of the
propagator from S0 in Eq. (D2). Each measures the linear
response of one configuration variable to a perturbation of
another. For example, Δ̄v;ñ measures the linear response of the
voltage to a spike fluctuation.

Edge Propagator Factor

Δ̄n;ñðωÞ ð1þ n̄þ iωÞ=ð1þ n̄þ fð1Þv̄þ iωÞ
Δ̄v;ñðωÞ −v̄=ð1þ n̄þ fð1Þv̄þ iωÞ
Δ̄n;ṽðωÞ fð1Þ=ð1þ n̄þ fð1Þv̄þ iωÞ
Δ̄v;ṽðωÞ 1=ð1þ n̄þ fð1Þv̄þ iωÞ

TABLE I. Vertices corresponding to the interacting action SV in
Eq. (D2). fðqÞ is the qth derivative of the intensity function f,
evaluated at the expansion point v̄. The intensity function vertex
fðqÞ=q! also has the constraint that the sum of its in and out
degrees must be at least three since the linear and bilinear terms in
ðñ; δvÞ went in to the definitions of the background field and the
propagators [Eq. (D2)].

Vertex Factor
In degree
(δv; δn)

Out degree
(ṽ; ñ)

• fðv̄Þ (0, 0) ð0;≥2Þ
∘ fðqÞ

q! δð
PKin

i¼1 ωi −
PKout

j¼1 ωjÞ ð≥1; 0Þ ð0; qÞ; q ≥ 1

∘ −δðPKin
i¼1 ωi −

PKout
j¼1 ωjÞ (1, 1) (1, 0)
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expand x around a background field x̄ [Eq. (D1)] and
similarly for the response variable, x̃ ¼ x̃� þ δx̃. This
yields

exp
1

h
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ

¼
Z

Dδx
Z

Dδx̃ exp
1

h
ð−Sþ j̃Tδxþ jTδx̃Þ: ðE2Þ

We now require that our background field be the mean:
x̄ ¼ hxi so that

0 ¼ hδxii ¼
∂

∂j̃i
exp

1

h
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ; ðE3Þ

and similarly, we require x̃� ¼ hx̃i. These requirements can
be satisfied only at a stationary point of the exponent:

0 ¼ ∂

∂ji
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ;

0 ¼ ∂

∂j̃i
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ; ðE4Þ

which defines a Legendre transform from −hW to the
effective action Γ:

Γ½x̄; x̃�� ¼ sup
j; j̃

j̃T x̄þ jT x̃� − hW½ j; j̃�: ðE5Þ

Substituting the effective action in Eq. (E2) yields

exp
1

h
ð−Γ½x̄; x̃�� þ S½x̄; x̃��Þ

¼
Z

Dδx
Z

Dδx̃ exp
1

h
ð−S½δx; δx̃� þ j̃Tδxþ jTδx̃Þ;

ðE6Þ

where S½x̄; x̃�� contains the terms in the S that depend only
on x̄; x̃� and not δx; δx̃, and S½δx; δx̃� contains the remaining
terms of S. This has the form of a generating functional
for x̄; x̃�. The mean is a stationary point of Γ; it obeys the
equations of motion:

0 ¼ ∂

∂x̄i
Γ;

0 ¼ ∂

∂x̃�i
Γ: ðE7Þ

The loop expansion for the effective action is a diagram-
matic equivalent of the saddle point expansion of the
integrals over δx; δx̃ in Eq. (E6), without requiring that
h be a bona fide small parameter [139,140]. The diagrams

contributing to the equations of motion for x̄; x̃� are
one-line-irreducible vacuum diagrams (those that cannot
be disconnected by cutting one edge; see, e.g., Ref. [135],
Chaps. 11.4, 13.3). Only those diagrams with a vertex
carrying the appropriate factor of x̃�i will contribute to the
equation of motion 0 ¼ ð∂=∂x̃�i ÞΓ (and similarly for ∂=∂x̄i),
which is why the one-loop equations of motion each have
only one loop correction.

APPENDIX F: CONNECTIVITY AVERAGE
FOR THE LINEAR-RESET MODEL

The connectivity-averaged action for the linear-reset
model is

S½v; ṅ; ṽ; ñ� ¼ ṽTð∂tvþ vþ rṅ − E − JhṅiÞ
þ ñT ṅ − ðeñ − 1ÞTfðvÞ; ðF1Þ

and expanding around a solution to the mean-field theory
∂tv̄ ¼ −v̄þ ðJ − rÞhṅi þ E yields the free and interacting
actions:

S0 ¼ ṽTð∂tv̄þ v̄þ rn̄ − E − J � hṅiÞ þ ñT ½n̄ − fðv̄Þ�
þ ṽTð∂t þ 1Þδvþ ṽTrδnþ ñTδn − ñTfð1Þδv;

SV ¼ −
X∞
p¼2

ñp

p!
f̄ −

X∞
p;q¼1
pþq>2

ñp

p!
fðqÞ

q!
ðδvÞq: ðF2Þ

The components of the propagator for this model are
given in Table III. It has the same source and intensity
vertices as the stochastic LIF model (the first two entries in
Table I), but lacks the reset vertex.
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