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We propose and demonstrate an architecture for fluxonium-fluxonium two-qubit gates mediated by
transmon couplers (FTF, for fluxonium-transmon-fluxonium). Relative to architectures that exclusively
rely on a direct coupling between fluxonium qubits, FTF enables stronger couplings for gates using
noncomputational states while simultaneously suppressing the static controlled-phase entangling rate
(ZZ) down to kilohertz levels, all without requiring strict parameter matching. Here, we implement FTF
with a flux-tunable transmon coupler and demonstrate a microwave-activated controlled-Z (CZ) gate
whose operation frequency can be tuned over a 2-GHz range, adding frequency allocation freedom
for FTFs in larger systems. Across this range, state-of-the-art CZ gate fidelities are observed over many
bias points and reproduced across the two devices characterized in this work. After optimizing
both the operation frequency and the gate duration, we achieve peak CZ fidelities in the 99.85%–99.9%
range. Finally, we implement model-free reinforcement learning of the pulse parameters to boost
the mean gate fidelity up to 99.922%� 0.009%, averaged over roughly an hour between scheduled
training runs. Beyond the microwave-activated CZ gate we present here, FTF can be applied to a variety
of other fluxonium gate schemes to improve gate fidelities and passively reduce unwanted ZZ
interactions.
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Quantum Physics, Quantum Information

I. INTRODUCTION

Over the past two decades, superconducting qubits
have emerged as a leading platform for extensible quan-
tum computation. The engineering flexibility of super-
conducting circuits has spawned a variety of different
qubits [1–7], with an abundance of different two-qubit
gate schemes [8–16]. More recently, tunable coupling

elements have aided efforts to scale to larger multiqubit
systems [17], including a demonstration of quantum
advantage with 53 qubits [18] and quantum error correc-
tion improving with code distance in the surface code
[19]. While there exists a large selection of superconduct-
ing qubits, almost all advancements toward processors
at scale have been carried forward with the transmon
qubit [4], a simple circuit consisting of a Josephson
junction in parallel with a shunt capacitance. However,
that simplicity comes at a cost. A relatively large transition
frequency (approximately 5 GHz) makes the transmon
more sensitive to dielectric loss [20], and a weak anhar-
monicity (approximately −200 MHz) presents a challenge
for both performing fast gates and designing multiqubit
processors.
The fluxonium qubit [5,21,22] is a promising alternative

to the transmon for gate-based quantum information
processing [23], which alleviates both of these drawbacks.
The fluxonium circuit consists of a capacitor (typically
smaller than that of a transmon), a Josephson junction, and
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an inductor, all in parallel. The transition frequency
between the ground and first excited states of the fluxonium
is usually between 100 MHz and 1 GHz at an external flux
bias of 0.5Φ0. At these low operating frequencies, energy
relaxation times T1 exceeding 1 ms [24,25] have been
observed, alongside anharmonicities of several gigahertz.
With these advantages, fluxonium qubits have already
achieved single-qubit gate fidelities above 99.99% [25].
Two-qubit gates relying on capacitive coupling [26–30],
however, are more challenging, because the same small
transition matrix elements which improve T1 concomitantly
reduce the interaction strength between qubits. Moreover,
direct capacitive coupling results in an undesired, always-on
entangling rate (ZZ). In previous works, always-on ac-Stark
shift drives were employed to mitigate the ZZ rate between
fluxonium qubits [27,30]. This strategy has the undesirable
requirement of a separately calibrated always-onmicrowave
drive for each pair of qubits. Finally, two-qubit gates must
also reliably contend with frequency collisions with specta-
tor qubits if they are to be scaled to larger arrays of qubits
without sacrificing fidelity.
In this work, we introduce the fluxonium-transmon-

fluxonium circuit (FTF) as a novel architecture for coupling
fluxonium qubits via a transmon coupler [Fig. 1(a)]. FTF
suppresses the static ZZ down to kilohertz levels in a
manner nearly insensitive to design parameter variations
while simultaneously providing strong couplings for
two-qubit gates via noncomputational states. Using FTF,
we propose and demonstrate a microwave-activated
controlled-Z (CZ) gate between two fluxonium qubits in

a 2D-planar geometry. This gate takes advantage of strong
capacitive couplings which create a manifold of highly
hybridized states that mix the first higher transition
(j1i ↔ j2i) of both fluxonium qubits with the transmon’s
lowest transition (j0i ↔ j1i). Despite these strong cou-
plings, the computational states remain relatively unhybri-
dized due to the large qubit-coupler detuning, allowing for
high-quality single-qubit gates in addition to the two-qubit
gate. We apply microwave pulses to drive a full oscillation
to and from this manifold contingent on both fluxonium
qubits starting in their excited states and benchmark an
average CZ gate fidelity of up to 99.922% �0.009% in
50 ns via Clifford-interleaved randomized benchmarking.
The flux tunability of the transmon coupler also allows

for the operation of the CZ gate at a wide range of
microwave drive frequencies, providing a convenient
way to avoid frequency collisions in situ in larger-scale
devices. Such in situ tunability is critical for microwave-
activated gates, as dependence on a particular frequency
layout places an exponentially difficult demand on fab-
rication precision [31,32] as the number of qubits increases.
Our devices also exhibit up to millisecond T1 in a multi-
qubit planar geometry, placing them among the highest
coherence superconducting qubits to date and priming them
for use in larger systems.

II. FTF ARCHITECTURE

Our device configuration consists of two differential
fluxonium qubits capacitively coupled to a grounded trans-
mon coupler, with a muchweaker direct capacitive coupling
between the two fluxonium qubits [Fig. 1(b)]. The two
lowest-lying states of each fluxonium form the computa-
tional basis fj00i; j01i; j10i; j11ig, and the first excited state
of the coupler, in addition to the second excited states of the
fluxonium qubits, serve as useful noncomputational states.
Modeling only the qubits and their pairwise capacitive
couplings, our system Hamiltonian is

Ĥ=h ¼
X
i¼1;2

4EC;in̂2i þ
1

2
EL;iϕ̂

2
i − EJ;i cosðϕ̂i − ϕext;iÞ

þ 4EC;cn̂2c − EJ1;c cosðϕ̂cÞ − EJ2;c cosðϕ̂c − ϕext;cÞ
þ J1cn̂1n̂c þ J2cn̂2n̂c þ J12n̂1n̂2; ð1Þ

where EC, EJ, and EL represent the charging, Josephson,
and inductive energies, respectively. Subscripts i ¼ 1, 2
index the two fluxonium nodes, and subscript c labels the
coupler node. Here, we also introduce the external phase
ϕext, which is related to the external flux Φext through the
expression Φext=Φ0 ¼ ϕext=2π for each qubit. For both our
main device (device A) and a secondary device (device B),
the experimentally obtained Hamiltonian parameters are
listed in Table I, along with the measured coherence times.

(a)

(b)

(c)

FIG. 1. Device overview and gate principle. (a) Simplified
circuit schematic of two fluxonium qubits (red) capacitively
coupled to a tunable-transmon coupler (blue). (b) False-colored
optical micrograph of the two fluxonium qubits and the transmon
along with their readout resonators, charge lines, and local flux
lines. Arrays of 102 Josephson junctions in series form the
fluxonium inductances. (c) Energy-level diagram illustrating the
principle of the CZ gate. In practice, levels j201i, j102i, and
j111i are highly hybridized, and selectively driving any of these
transitions results in a CZ gate.
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A. Gate principles

The operating principles of FTF are fundamentally
different than those of all-transmon circuits [17].
Because of its relatively high frequency, the coupler
interacts negligibly with the computational states of the
qubits. Instead, the coupler predominantly interacts with
the higher levels of the qubits, acting as a resource for two-
qubit gates without adversely affecting single-qubit gates.
We describe the quantum state of the system using the

notation jjkli, where j, k, and l denote the energy eigenstates
in the uncoupled basis of fluxonium 1, the coupler, and
fluxonium 2, respectively. While coupler-based gates are
often activated by baseband flux pulses, here, we generate
the required entangling interaction via a microwave pulse
from j101i to a noncomputational state of the joint system.
As illustrated in Fig. 1(c), a single-period Rabi oscillation
from j101i to either j201i, j111i, or j102i gives the 180°
conditional phase shift necessary for a CZ gate, provided no
other transitions are being driven. We note that, throughout
this work, we label the eigenstates according to their
maximum overlap with the uncoupled qubit or coupler
states at Φext;c ¼ 0 (equivalently, Φext;c ¼ 1Φ0). We per-
form this labeling at Φext;c ¼ 0, because tuning the coupler
flux results in avoided crossings among the higher levels of
the system.
In general, stronger coupling strengths result in larger

detunings from parasitic transitions in two-qubit gate
schemes, yet doing so often results in unintended conse-
quences. Two common drawbacks of larger coupling
strengths are remedied using the FTF architecture: (i) cross-
talk due to non-nearest-neighbor couplings and (ii) unwanted
static ZZ interactions. In all transmon-based architectures,
the same level repulsion that enables the two-qubit gate also
creates level repulsions within the computational subspace.
This is because all transition frequencies and charge matrix
elements of adjacent levels in a transmon have similar values.
As this hybridization among the computational states
increases, charge drives will produce nonlocal microwave

crosstalk to unwanted qubit transitions. In FTF, the large ratio
of transition matrix elements jh2jn̂j1ij=jh1jn̂j0ij for fluxo-
nium qubits, the large fluxonium anharmonicity, and the
large detunings between the transmon and each fluxoniumall
serve to mitigate these negative side effects.

B. ZZ reduction

Formally, the ZZ interaction rate is defined as
ζ ¼ ðE11 − E10 − E01 þ E00Þ=h (for two qubits) or ζ ¼
ðE101 − E100 − E001 þ E000Þ=h (for two qubits and a
coupler). It describes an unwanted, constant, controlled-
phase-type entangling rate caused by the collective level
repulsions from the many noncomputational states of
superconducting qubits acting on the computational states.
A key feature of the FTF architecture is its ability to

suppress ζ, despite the strong coupling strengths that would
typically amplify it. This low ζ can be understood by
considering the couplings Jij perturbatively up to fourth
order. At each order m, the perturbative correction can be
considered an mth-order virtual transition between the
states of the uncoupled qubits; the strength of a particular
transition is proportional to the product of the correspond-
ing couplings Jij. In Fig. 2(a), we illustrate the dominant
virtual transitions up to fourth order: The first-order
correction is zero; at second order, only direct transitions
between the two fluxonium qubits contribute to ζ; at third
order, the only allowed transitions form three-cycles
between the three qubits; and, at fourth order, we find
that transmon-mediated transitions between the two fluxo-
nium qubits dominantly contribute to ζ. As such, we can
write ζ to fourth order as

ζ ≈ J212ζ
ð2Þ þ J12J2cζð3Þ þ J4cζð4Þ; ð2Þ

where ζðiÞ depend only on the uncoupled states and
we assume J1c ¼ J2c ¼ Jc. Specifically, we find our
device to be well described by ζð2Þ¼−2.1×10−3GHz−1,

TABLE I. Characterization of FTF devices. Hamiltonian parameters for both device A and device B are obtained by fitting two-tone
spectroscopy data and the static ZZ rate versus coupler flux. Coherence times are measured by biasing each fluxonium at Φext ¼ 0.5Φ0

using only the global flux bias. Unless otherwise stated, all data in this manuscript correspond to device A.

EC (GHz) EL (GHz) EJ (GHz) NJJ ω01=2π (GHz) ωr=2π (GHz) T1 ðμsÞ TR
2 ðμsÞ TE

2 ðμsÞ
A Fluxonium 1 1.41 0.80 6.27 102 0.333 7.19 560 160 200
A Fluxonium 2 1.30 0.59 5.71 102 0.242 7.08 1090 70 190
A Transmon c 0.32 3.4, 13 � � � � � � 7.30 � � � � � � � � �
B Fluxonium 1 1.41 0.88 5.7 102 0.426 7.20 450 230 240
B Fluxonium 2 1.33 0.60 5.4 102 0.281 7.09 1200 135 310
B Transmon c 0.30 3.0, 13 � � � � � � 7.31 � � � � � � � � �

J1c (MHz) J2c (MHz) J12 (MHz)

A Coupling strengths 570 560 125
B Coupling strengths 550 550 120
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ζð3Þ ¼ 1.4 × 10−3 GHz−2, and ζð4Þ ¼ −2.6 × 10−4 GHz−3

at Φext;c ¼ 0.5Φ0. Critically, both the second- and fourth-
order terms are negative, while the third-order term is
positive. This is a direct consequence of the perturbation
theory: For virtual transitions to excited states above the
computational subspace, even-order terms describe level
repulsions, while odd-order terms describe level attractions.
The relatively low ZZ in the FTF system stems from this
cancellation between even and odd terms (see Appendix C
for further details on the ZZ cancellation).
To understand this quantitatively, we numerically cal-

culate ζ by diagonalizing Eq. (1) as a function of Jc and J12
[Fig. 2(b)]. We find that ζ can be almost perfectly canceled
by appropriate choices of the couplings, as traced by
the darker dashed line. Within perturbation theory, this
curve of minimum ζ is a parabola: dζ=dJ12 ¼ 0 → J12 ¼
−J2cζð3Þ=2ζð2Þ. By inserting this expression into Eq. (2),
we obtain the dependence of ζ along the parabola
ζmin ¼ J4cð−ζð3Þζð3Þ=4ζð2Þ þ ζð4ÞÞ. For our device parame-
ters, the two terms in parentheses almost cancel, summing
to −2 × 10−6 GHz−3.
Importantly, jζj remains below 10 kHz for Jc values of

up to 1 GHz while maintaining the optimal coupling ratio.
To take full advantage of this phenomenon, we design the
coupling strengths to be as large as reasonable for our
geometry. Furthermore, by choosing the transmon to have a
grounded geometry, a near-optimal ratio of J2c=J12 is
maintained while freely varying the fluxonium-transmon

capacitance (see Appendix B for full details). In addition to
this insensitivity to the underlying coupling capacitance, ζ
is only weakly dependent on Jc and J12: Independent errors
in Jc and J12 by up to 20% would increase ζ in our device
by a maximum of 11 kHz (modeling the worst-case
scenario in which J12 increases and Jc decreases). Such
robustness is critical in larger-scale devices, as capacitive
coupling strengths cannot be changed after device fabri-
cation and are subject to fabrication variations.
The value of ζ is also insensitive to the coupler

frequency, allowing us to safely bias the system at any
Φext;c. This is unsurprising, as the coupler energy levels are
far from any resonances with the computational states. In
other words, any change in the coupler frequency must
compete with the large detuning between the coupler and
fluxonium j0i ↔ j1i transitions. To validate our models,
we experimentally determine ζ by measuring the frequency
of fluxonium 1 using a Ramsey experiment while preparing
fluxonium 2 in the ground or excited state. Taking the
difference in fitted frequencies associated with the two
initial state preparations yields the experimental value
of ζ, which we find to closely follow our numerical
simulations as a function of the coupler flux [see Fig. 2(c)].
An alternative approach to ZZ reduction with fluxonium
qubits is to apply always-on ac-Stark drives [27,30]. While
this is an effective means to reduce ZZ in few-qubit
devices, the requirement of an additional calibrated drive
per qubit becomes increasingly prohibitive as system
sizes grow.

III. GATE CALIBRATION

Before discussing our single- and two-qubit gates, we first
describe the qubit readout and flux biasing. In thermal
equilibrium, our fluxonium qubits have nearly equal pop-
ulations in the ground and excited states ðkBT > ℏω01Þ. To
address this, we initialize each qubit in either the ground or
excited state at the beginning of each experiment via
projective readout and herald the desired initial state [33]
(see Appendix D for further details). To realize independent
qubit initialization in our system, each qubit is capacitively
coupled to a separate readout resonator, allowing us to
perform high-fidelity, single-shot readout within the full
computational basis. All three resonators are further coupled
to a common Purcell filter [34]; however, the transmon
resonator is not used in practice.
We use a global biasing coil to tune the flux across the

entire device and use additional local flux lines biased
through coaxial cables for independent control of each
qubit. This allows us to freely change the coupler flux
while holding each fluxonium at Φext ¼ 0.5Φ0. Although
only dc flux is required in our experiment, our device is
fully compatible with fast-flux pulses. As such, FTF
presents an opportunity to investigate iSWAP, Landau-
Zener, or other flux-modulated gates in a system with
low static ZZ rates [14,15,26,35–37].

(a)

(b) (c)

FIG. 2. ZZ reduction in the FTF architecture. (a) A perturbative
treatment of the couplings Jij shows energy shifts in FTF to be
dominated by virtual transitions (dashed arrows) of second (dark
purple), third (light purple), and fourth (pink) order between the
fluxonium qubits (maroon circles) and the coupler (blue circle).
(b) Numerical simulation of ζ as a function of Jc ¼ J1c ¼ J2c and
J12 with the experimentally extracted qubit parameters. With the
coupler, a ratio of coupling strengths always exists that minimizes
ζ (dark gray). (c) Measured and simulated ζ as a function of the
coupler flux for the experimental device parameters. The ZZ rate
remains nearly constant between −1.5 and −2.7 kHz.
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In our devices, each fluxonium qubit has a mutual
inductance of approximately 0.16 pH to its respective flux
line, connected with 10 dB attenuation at the still. In
contrast, the transmon has a mutual inductance of approx-
imately 0.8 pH with 3 dB attenuation at the still (see
Appendix A for further details). As a result, the fluxonium
flux lines have insufficient tuning range to bias the qubits
and serve only to compensate for the coupler flux crosstalk
and other fine adjustments. A global coil is instead used to
simultaneously bias the two fluxonium qubits as close as
possible to their operation points Φext;1 ¼ Φext;2 ¼ 0.5Φ0,
with local flux lines used for fine-tuning. Although this is
the intended design for the current experiment, optimiza-
tion of the mutual inductance and the attenuation configu-
ration will be a subject of future research so that larger
devices do not need to rely on a global biasing coil.

A. Single-qubit gates

Because of the narrow biasing windows of the fluxonium
flux lines, we utilize only the global coil when character-
izing individual qubit coherences (see Table I). Notably,
fluxonium 2 in our device achieves a lifetime of over a
millisecond, with similar performance reproduced in device
B (see Appendix L). In accordance with the higher qubit
frequency, fluxonium 1 has a shorter lifetime, and the TE

2 of
all characterized qubits peaks between 200 and 300 μs,
likely limited by photon-shot noise from occupation of the
resonator.
We realize single-qubit gates by calibrating Rabi oscil-

lations generated by a resonant charge drive using a cosine
pulse envelope. To quantify the fidelities of these gates, we
perform individual as well as simultaneous Clifford ran-
domized benchmarking (RB) using a microwave-only gate
set, fI;�X;�Y;�Xπ=2;�Yπ=2g, to generate the Clifford
group, resulting in an average of 1.875 gates per Clifford
[12,38]. In our decomposition, all gates have an equal time
duration and are derived from a single calibrated Xπ pulse
by halving the amplitude and/or shifting its phase (see
Appendix E for the full calibration sequence). Here, both
qubits are biased at Φext ¼ 0.5Φ0, with minimal current
through the coupler flux line. In Fig. 3(a), we vary the pulse
width from 10 to 42 ns and find average single-qubit
gate fidelities consistently near or above 99.99%, and we
show the explicit randomized benchmarking traces in
Figs. 3(b) and 3(c) for a gate duration of 18 ns. In this
range, the incoherent error begins to trade off with the
coherent error (from violating the rotating wave approxi-
mation), with qubit 1 able to tolerate faster gates than qubit
2 due to its higher frequency. We note that gates are
additionally calibrated at 6 ns with significantly lower
fidelities on both qubits due to large coherent errors.
Overall, our fidelities from simultaneously applied gates
are < 5 × 10−5 lower than the individually applied ones, a
testament to the low ZZ rate measured in our system. We

suspect that the small difference in fidelity is caused by
microwave crosstalk between charge lines and qubits.

B. Two-qubit CZ gate

We begin our investigation of the two-qubit CZ gate by
performing spectroscopy of the relevant noncomputational
state transitions. With the system initialized in j101i, we
sweep the coupler flux Φext;c to map out the transition
frequencies to the three dressed states j201i, j111i, and
j102i [see Fig. 4(a)]. In our measurements of the non-
computational states, we measure a normalized population
of remaining in the initial state using a readout technique
described in Appendix D. Importantly, we find that j111i
crosses both j201i and j102i (at Φext;c ≈ 0.65Φ0), with an
avoided crossing strength of nearly 1 GHz. With such
strong hybridization, a high-performance gate could be
realized by driving any of the three energy levels over a
wide coupler flux range. Nevertheless, the transitions yield
varying performance depending on their coherence times
and the proximity of undesired transitions, whose frequen-
cies we extract in the same measurement by heralding
different initial states (see Appendix F).
We activate the gate interaction associated with each

transition by simultaneously applying a charge drive to

(a)

(b) (c)

FIG. 3. Single-qubit benchmarking on our multiqubit device.
(a) Average single-qubit gate fidelities obtained by individual and
simultaneous Clifford randomized benchmarking as a function of
the pulse width. Error bars for the majority of data points are
within the size of the marker and correspond to standard errors
about the mean. (b),(c) Individual (I) and simultaneous (S) RB
traces of an 18-ns gate [purple box in (a)] for qubit 1 and qubit 2,
respectively. Individual and simultaneous average gate fidelities
have a standard error of about 3 × 10−6 for qubit 1 and 4 × 10−6

for qubit 2. The larger uncertainties in the qubit 2 data arise from
coherent errors, which begin to dominate for gates shorter than
18 ns [red points in (a)].
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each fluxonium [Fig. 4(b), inset]. These drives are chosen
to have equal amplitude, with a relative phase between
them to maximize constructive interference at the intended
transition. We find that using two constructive drives is a
convenient method for reducing the total applied power for
a given Rabi rate, resulting in a reduced ac-Stark shift from
off-resonant transitions. In severe cases, a large ac-Stark
shift could prevent the realization of a 180° conditional
phase and increase leakage into noncomputational states.
An alternative approach exists to tune the relative phase
and amplitude of the two drives to result in complete
destructive interference of the nearest leakage transition
(see Appendix G). While theoretically we expect the
relative phase and amplitude to be important for reducing
leakage, we find that, as long as a 180° conditional phase is
attainable, the CZ gate fidelity is relatively insensitive to
these two parameters. Figure 4(b) shows the familiar Rabi
chevrons when the transition is driven as a function of
frequency; in experimental practice, our two-qubit gate is
quite similar to driving single-qubit Rabi oscillations.
For a given transition and pulse duration, there are four

critical parameters associated with the CZ gate to calibrate:
(i) the overall drive amplitude of the two phase-locked
drives to ensure a single-period oscillation, (ii) the drive
frequency to ensure a 180° conditional phase accumulation,
and (iii),(iv) the single-qubit phases accumulated on each
fluxonium during the gate. These single-qubit phase

corrections can be conveniently implemented through
virtual-Z gates by adjusting the phases of subsequent
single-qubit gates [39]. After calibration, we extract the
gate fidelity by performing Clifford interleaved randomized
benchmarking, averaging over 20 different randomizations
[12,40,41]. Similar to our single-qubit Clifford decompo-
sition, we generate the two-qubit Clifford group with the
gate set fI;�X;�Y;�Xπ=2;�Yπ=2;CZg, yielding an aver-
age of 8.25 single-qubit gates and 1.5 CZ gates per Clifford.
A more detailed gate calibration and characterization
description can be found in Appendix H.
The FTF approach offers a potential solution to fre-

quency crowding by allowing for an adjustable gate
operation frequency. To demonstrate this frequency flex-
ibility in our device, we linearly sample the coupler flux
Φext;c at 21 values between 0.5Φ0 and 1Φ0 and calibrate a
CZ gate across all three transitions in Fig. 4(a) while
maintaining a constant 100-ns pulse length [Fig. 4(c)].
Each data point in Fig. 4(c) represents a fully automated
recalibration of all single- and two-qubit gate parameters
without manual fine-tuning. Missing points indicate either
failed calibrations or fidelities lower than 98.9%, which
may be caused by two-level system defects or nearly
resonant unwanted transitions (see Appendix J for further
details). While these fidelities remain unoptimized over the
pulse width, they indicate the ease and robustness of the
tuneup, as well as the accessibility of state-of-the-art gate

FIG. 4. CZ gate as a function of flux. (a) Spectroscopy of relevant noncomputational states. The qubits are initialized in the j101i state
via single-shot readout. (b) Time-domain Rabi oscillations of the j101i ↔ j102i transition as a function of the drive frequency. The faint
chevron pattern at 4.52 GHz arises from the j001i ↔ j002i transition and is visible due to imperfect state initialization. In all plots,
populations are normalized to between 0 and 1. The inset shows that gates are driven with simultaneous phase-locked pulses applied to
each fluxonium charge line. (c) CZ gate fidelities using a fixed 100-ns cosine pulse envelope, driving each transition in (a) across the
entire 0.5–1Φ0 range, linearly sampled over 21 points. A secondary device (device B) with slightly different Hamiltonian parameters
supports the reliability of our architecture. Points with fidelity below 98.9% correspond to failures in the automated calibration and are,
therefore, excluded from the plot. All gate fidelities are obtained from interleaved randomized benchmarking averaged over different 20
randomizations, with error bars corresponding to the standard error.
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fidelities at a variety of drive frequencies. This feature is
further supported by the relative insensitivity of the gate
fidelity to 1=f flux noise due to the alleviation of long-time
correlated errors with short gates [16,42,43], which is
directly observed in Appendix J. One potential strategy
to take advantage of this flexibility in a lattice of fluxonium
qubits is to alternate the coupler flux bias between Φext ≈
0.5Φ0 andΦext ≈ 1.0Φ0 and use the lowest viable transition
near 0.5Φ0 (j101i ↔ j102i) and the highest viable tran-
sition near 1.0Φ0 (j101i ↔ j111i). In this scheme, a CZ
drive applied to one pair of qubits is at least approximately
500 MHz detuned from driving a CZ gate on any adjacent
qubit pair.We further emphasize the reliability of our gate by
including fidelities from device B, a second fully charac-
terized device with similar performance. While designed to
be nominally identical, the noncomputational states in
device B differ by up to 300 MHz from device A, with
no significant detriment to the gate fidelities (see
Appendix L for additional characterization of device B).
To investigate the trade-off between coherent and inco-

herent error, we characterize the gate fidelity as a function
of the pulse width. In general, all fidelities in Fig. 4(c) may
be improved by optimizing over this pulse width, with our
highest-fidelity gates using the j101i ↔ j102i transition
at Φext;c ¼ 0.575Φ0 [Fig. 5(a)]. At the observed optimal
gate time of 85 ns for this transition, we benchmark a CZ
fidelity of 99.89%� 0.02%. For longer gate durations, the
gate error is dominated by the lifetime of the driven
noncomputational state, measured to be around 10 μs at
this transition. Assuming that the entirety of the gate error
is caused by the noncomputational state T1 at our longest
gate time of 200 ns, the associated fidelity of 99.72%
corresponds to a T1 of approximately 9 μs, consistent with
measured values (see Appendix J for T1 values across all
transitions and Appendix K for an analytic error analysis
for the CZ gate). At shorter gate lengths, coherent leakage
into noncomputational levels dominates the error, but,
due to the extreme degree of hybridization of the non-
computational states and their subpar readout, we are not
able to experimentally measure the location of the leaked
population.
To further improve the gate fidelity, we deploy a model-

free reinforcement learning agent [44–49], closely follow-
ing the protocol described by Sivak et al. [50]. While
reinforcement learning cannot mitigate the incoherent
errors dominating the gate at longer pulse widths, at shorter
gate times (< 70 ns) we find that it does offer an improve-
ment via fine adjustments of the pulse parameters. To train
the agent, we first seed it with a 50-ns pulse, derived from a
60-ns physics-calibrated gate by scaling the pulse ampli-
tude by 60=50; our physics-based calibration fails at gate
times less than 60 ns. We also note that the fidelity of this
50-ns seed is bounded above by the measured 60-ns
fidelity, given the degradation in gate fidelity observed
at short times in Fig. 5(a). Then, with the CZ pulse width

fixed at 50 ns, the agent is trained to maximize the sequence
fidelity of interleaved randomized benchmarking at 28
Cliffords with a fixed random seed by optimizing the pulse

(a)

(c)

(d) (e)

(b))

FIG. 5. Optimizing the CZ gate fidelity via reinforcement
learning. (a) Physics-calibrated gate fidelities as a function of
the width of the cosine pulse envelope, averaged over 20
randomizations. The j101i ↔ j102i transition at Φext;c ≈
0.575Φ0 is used for these gates. (b) Fidelity of an interleaved
randomized benchmarking sequence with 28 Cliffords using trial
CZ gates sampled from the policy of a model-free reinforcement
learning agent. After each epoch, the measurement results are
used to update the agent’s policy according to the PPO algorithm.
(c) In a full training run, the agent is first seeded with a 50-ns
cosine pulse, with an amplitude determined by a physics-
calibrated 60-ns gate (black diamond) but scaled by 60=50.
Then, the agent is trained to optimize the sequence fidelity of the
50-ns pulse (b). The learned gate is then repeatedly evaluated
using interleaved randomized benchmarking averaged over ten
randomizations. The next round of training is seeded with the
optimized pulse from the previous round. Horizontal bars indicate
the averaged fidelity after each round of training. (d) Optimized
pulse shape as learned by the agent. The agent is given control
over six evenly spaced IðtÞ and QðtÞ voltage points (colored
circles), with the pulse in between points determined by a cubic
interpolation. The inset shows the Fourier transform of
IðtÞ þ iQðtÞ. (e) Reference and interleaved randomized bench-
marking curves averaged over all 70 randomizations after the
second round of training [orange points in (c)]. All uncertainties
in this figure correspond to the standard error of the mean.
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shape and virtual-Z gates [Fig. 5(b)]. After each round of
training, the optimized pulse is repeatedly evaluated by
performing interleaved randomized benchmarking over 70
total Clifford sequences [Fig. 5(c)]. Training is then
repeated using the optimized pulse shape from the previous
training round as the seed for the next. For the training run
shown in Fig. 5(c), the fidelity peaks after the second round
of training (orange points), with a time-averaged value of
99.922%� 0.009%. A Wilcoxon signed-rank test gives
97% confidence that this mean is above 99.90%. As the run
progresses, the average fidelity is observed to degrade. We
hypothesize that this is due to system drifts beyond what
the agent is able to mitigate, such as small flux drifts or
coherence changes.
In the data shown in Figs. 5(b)–5(e), the agent is given

full control of the I andQ quadratures of the pulse envelope
as well as the single-qubit virtual-Z rotation angles. IðtÞ
and QðtÞ are discretized into six points equally spaced in
time [Fig. 5(d)] with a cubic interpolation determining the
remaining points. Perhaps the most distinctive feature of
the learned pulse is the shape of QðtÞ: While the agent is
seeded with QðtÞ ¼ 0, the learned pulse shape displays a
distinct oscillation in QðtÞ. Although we do not fully
understand the origin of this oscillation, some intuition
may be gained by examining the Fourier transform of
the pulse shape [Fig. 5(d), inset]. In the frequency domain,
the oscillation inQðtÞ results in a distinct asymmetry of the
pulse shape: At positive detunings from the carrier fre-
quency, the spectral weight is suppressed, and vice versa for
negative detunings. We hypothesize that this learned pulse
asymmetry mitigates the effects of the nearest undesired
transition, which is detuned by approximatelyþ65 MHz at
this bias point. However, we also note that attempts to
mitigate the effects of this undesired transition using more
established pulse shaping techniques do not improve the
gate fidelity [51].

IV. OUTLOOK

Our work demonstrates an architecture in which high-
fidelity, robustness against parameter variations, and
extensibility are simultaneously realized. We observe
millisecond fluxonium lifetimes despite couplings to neigh-
boring qubits, resonators, flux lines, and charge lines, all
within a 2D-planar architecture. Both the single- and two-
qubit gates performed here are also simple—operating on
the basis of a Rabi oscillation. The relative simplicity of this
two-qubit gate is afforded by the FTF Hamiltonian and
yields a high-fidelity operation across a large frequency-
tunable range, reproduced across multiple devices.
One of the most notable features of the FTF scheme is

the capacity for large coupling strengths while simulta-
neously reducing the ZZ interaction strength to kilohertz
levels. This is all done without strict parameter matching or
additional drives. Many existing microwave noncomputa-
tional state gate schemes for fluxonium would also benefit

from the frequency tunability afforded by the FTF coupler
[29,30]. In fact, even fluxonium computational state gates
such as iSWAP or cross-resonance can benefit from includ-
ing a transmon coupler, as in FTF, to take advantage of the
ZZ reduction without worrying about additional compli-
cations for single- and two-qubit gates. A fixed-frequency
transmon (or simply a resonator) would suffice for this use
case (see Appendix C).
Despite already high gate fidelities, many avenues exist

for improvement. First and foremost, the device heating
when dc biasing qubits to their simultaneous sweet spot and
tuning the coupler flux reduces the coherence times of our
qubits. By optimizing the mutual inductance between the
flux lines and the qubits and improving the thermalization
and filtering of the flux lines, we anticipate improvements
in future experiments. Even in the absence of local heating,
we estimate a photon-shot-noise limit of T2 ∼ 400 μs,
assuming an effective resonator temperature of Teff ¼
55 mK [52]. Simply decreasing χ and κ should increase
this T2 limit at the expense of readout speed, which could
be a worthwhile exchange in the high-T1, low-T2 limit.
As is typical of fluxonium gates involving the non-

computational states, the largest contribution to gate
infidelity is the coherence of the j201i, j111i, j102i
manifold. Yet, the lifetimes of these states are much lower
than expected, given coherence times measured on trans-
mons with similar frequencies. By optimizing regions of
high electric field density that exist in our current design
(notably, the small fluxonium-transmon capacitor gap), we
expect to improve these coherence times as well.
While fluxonium has long exhibited impressive individ-

ual qubit performance, our work demonstrates a viable path
forward for fluxonium-based large-scale processors. The
exact design and implementation of such an array of
fluxonium qubits will be the subject of future work and
holds the promise to push the boundaries of noisy inter-
mediate-scale quantum computing.
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APPENDIX A: WIRING

This experiment is conducted in a Bluefors XLD600
dilution refrigerator operated at around 20 mK, with the full
wiring setup shown in Fig. 6. At the mixing chamber
(MXC), the device is magnetically shielded with a super-
conducting can, surrounded by a Cryoperm-10 can. To
reduce thermal noise from higher-temperature stages, we
typically use in total 23 dB attenuation for the coupler flux
lines, 30 dB attenuation for the fluxonium flux lines, 50 dB
total attenuation on charge lines, and 70 dB total attenu-
ation on the readout input—the exact value of the attenu-
ation at the still varies between 3 and 10 dB across the flux
lines of both devices, though this difference is not critical
for any experiment. We note that, due to the fluxonium
qubits having a small mutual inductance to their flux lines
and the resultant heat load on the still attenuators, signifi-
cantly changing their flux bias in this way could cause an
increase in the temperatures measured at the still and the
mixing chamber. These situations are avoided as much as
possible as to mitigate the effects of photon shot noise and
stimulated emission of the qubit [4,17,25,53].
The readout output is first amplified by a Josephson

traveling-wave parametric amplified (JTWPA), pumped by
a Holzworth rf synthesizer, then amplified further with a
high-electron-mobility transistor (HEMT) amplifier at the
4-K stage, another HEMT at room temperature, and a final
Stanford Research SR445A amplifier, before being digi-
tized by a Keysight M3102A digitizer.
All ac signals—readout and single- and two-qubit gate

pulses—are generated by single sideband mixing of
Keysight M3202A 1 GSa=s arbitrary waveform generators
with Rohde and Schwarz SGS100A SGMA rf sources. For
each qubit, the single- and two-qubit gate pulses are
combined at room temperature via a diplexer from Marki

Microwave (DPXN-2 for qubit 1 and DPXN-0R5 for qubit
2). For these diplexers, the single-qubit gate frequencies
occur at low enough frequencies to fall in the pass band of
the dc port. All control electronics are synchronized through
a common SRS 10-MHz rubidium clock.
The dc voltage bias for each qubit flux line as well as the

global bobbin is supplied by a QDevil high-precision
voltage generator (QDAC). The flux lines by design
support rf flux, but in this experiment are filtered by 80-
and 1.9-MHz low-pass filters at the MXC. The current for
the global coil is carried through a twisted pair, with a

FIG. 6. A detailed wiring schematic of the experimental setup.
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homemade 16-kHz cutoff RC filter at the 4-K stage. A
summary of the control electronics used can be found in
Table 2.

APPENDIX B: GROUNDED OR
DIFFERENTIAL QUBITS?

In our circuit design, we make a conscious decision on
whether each qubit (or coupler) should be made a grounded
qubit or a differential qubit. By using a differential
fluxonium, we reduce the amount of capacitance that
coupling appendages contribute to the total effective qubit
capacitance. A differential qubit also allows for a larger
total area of capacitor pads for the same qubit charging
energy EC. This is important to allow for enough physical
room to couple other circuit elements such as resonators,
charge lines, flux lines, and other qubits to each fluxonium.

1. Grounded transmon

The choice to use a grounded transmon, on the other
hand, stems from the relationship between Jc ¼ J1c ¼ J2c
and J12. As mentioned in the main text, to minimize the ZZ
interaction ζ, we need J2c=J12 ¼ −2ζð2Þ=ζð3Þ ≈ 2.97 GHz
for our device parameters. We claim that, by using a
grounded transmon, we can target this value of Jc=J12
with first-order insensitivity to the coupling capacitance
(between the transmon and the adjacent fluxonium pad) Cc.
Consequently, Cc becomes a free parameter in the device
design, and uncertainty in its value will, to first order, have
no effect on ζ. To understand this theoretically, we assume
the simplified circuit schematic represented in Fig. 7(a). All
capacitances not explicitly labeled are small and qualita-
tively unimportant in this analysis.
We canwrite down the capacitancematrix of this circuit as

C ¼

0
BBBBBB@

CF −Cf2 0 0 0

−Cf2 CF þ Cc −Cc 0 0

0 −Cc Ct þ 2Cc 0 −Cc

0 0 0 CF −Cf2

0 0 −Cc −Cf2 CF þ Cc

1
CCCCCCA
;

ðB1Þ

where we define CF ¼ Cf1 þ Cf2 for convenience. In order
to isolate the relevant mode of each differential qubit, we
perform a standard variable transformation into sum and
difference coordinates which modifies the capacitance
matrix as C̃ ¼ ðMTÞ−1CM−1 with

M ¼

0
BBBBBB@

1 1 0 0 0

1 −1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 1 −1

1
CCCCCCA
: ðB2Þ

The qubit modes for each differential qubit are then solely
determined by the difference coordinates, with the resultant
three qubit nodes on indices 1, 2, and 4 (counting from 0).
We can straightforwardly discard the modes corresponding
to summed coordinates in the Hamiltonian and compute
coupling strengths between nodes as Jij ¼ 4e2C̃−1½i; j�.
Thus,

J2c=J12 ¼ 4e2
C̃−1½1; 2�2
C̃−1½1; 4� ðB3Þ

≈ 4e2
1

Ct
þOðC−2

t Þ; ðB4Þ

wherewe perform a Taylor expansion assumingCc,Cf1, and
Cf2 are small compared toCt in the final step.We see that, to
leading order, the value of J2c=J12 is solely determined by
C−1
t , with any dependence on Cc scaling with OðC−2

t Þ. By
inserting the designed values of Ct ¼ 45 fF, Cf1 ¼ 11 fF,

(a)

(b)

FIG. 7. Simplified circuit model of FTF circuits. (a) FTF
circuit with a grounded transmon. The capacitance network is
simplified for the purpose of a theoretical analysis, with no direct
fluxonium-fluxonium capacitance. (b) The same circuit except
with a differential transmon coupler.

TABLE II. Summary of control equipment. The manufacturers
and model numbers of the control equipment used for this
experiment.

Component Manufacturer Model

Dilution fridge Bluefors XLD600
rf source Rohde and Schwarz SGS100A
dc source QDevil QDAC I
Control chassis Keysight M9019A
AWG Keysight M3202A
ADC Keysight M3102A
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and Cf2 ¼ 2.8 fF, Eq. (B3) gives 2.8 GHz and Eq. (B4)
gives 3.4 GHz. We emphasize that Eq. (B4) illustrates
a concept in our architecture and that exact design simu-
lations of our coupling strengths are performed using
full 5 × 5 capacitance matrices with no mathematical
approximations.

2. Differential transmon

To investigate how these relationships would compare
when substituting for a differential transmon, we model the
hypothetical circuit with the capacitance network in
Fig. 7(b). The capacitance matrix, in this case, is

C ¼

0
BBBBBBBBB@

CF −Cf2 0 0 0 0

−Cf2 CF þ Cc −Cc 0 0 0

0 −Cc CT þ Cc −Ct2 0 0

0 0 −Ct2 CT þ Cc 0 −Cc

0 0 0 0 CF −Cf2

0 0 0 −Cc −Cf2 CF þ Cc

1
CCCCCCCCCA
; ðB5Þ

where we likewise define CT ¼ Ct1 þ Ct2. The transfor-
mation matrix in this case is

M ¼

0
BBBBBBBBB@

1 1 0 0 0 0

1 −1 0 0 0 0

0 0 1 1 0 0

0 0 1 −1 0 0

0 0 0 0 1 1

0 0 0 0 1 −1

1
CCCCCCCCCA
; ðB6Þ

and our coupling ratio is

J2c=J12 ¼ 4e2
C̃−1½1; 3�2
C̃−1½1; 5� ðB7Þ

≈ 4e2
1

Ct2
þOðC−1

t1 Þ: ðB8Þ

While still independent of Cc to leading order, the value of
4e2=Ct2 is far too large compared to optimal values.
Furthermore, FTF benefits from as high of coupling
strengths as possible, and a differential transmon reduces
the values of Jc and J12 for a fixed value of Cc.

APPENDIX C: ZZ CANCELLATION IN FTF

In this section, we elaborate on the theory which gives
rise to the reduced ZZ rate in the FTF architecture. We
specifically consider the level repulsion on the j101i state,
as we find it most impacted by the coupling between qubits
and, as a result, indicative of how level repulsions affect the
ZZ rate as a whole. We consider the energy shift of the
j101i to up to fourth order in perturbation theory, where n
represents the j101i state, ki represent any intermediate
state that is not n, Vjk represents the Hamiltonian matrix

element hjjHjki between the two bare states jji and jki, and
EðmÞ
n represents the contribution to the energy of the state

jni at perturbative order m. Energy detunings between two

states jji and jki are similarly denoted EðmÞ
jk ¼ EðmÞ

j − EðmÞ
k .

In this notation, the second-order correction to the energy
of jni is

Eð2Þ
n ¼

X
k1

jVnk1 j2
Eð0Þ
nk1

: ðC1Þ

Because of the relatively high energy of the fluxonium j2i
states and the transmon j1i state, all intermediate states in
this summation have higher energy than j101i. The only
exception is the j000i state; however, any energy shift
involving only states in the computational basis does not
contribute to the total ZZ rate, because the equal and
opposite level repulsions cancel out when computing ζ. As

a result, Eð2Þ
n is negative and independent of the coupler

element, provided the computational states are formed by
capacitively coupled fluxonium qubits.
To fourth order in perturbation theory, the energy shift is

Eð4Þ
n ¼

X
k1k2k3

Vnk1Vk1k2Vk2k3Vk3n

Eð0Þ
nk1

Eð0Þ
nk2

Eð0Þ
nk3

− Eð2Þ
n

X
k1

����Vnk1

Eð0Þ
nk1

����
2

: ðC2Þ

While the expression here is more complicated, the
qualitative result is the same. Since each energy detuning
in the denominators is negative when all intermediate states

have higher energy than jni, the resultant quantity Eð4Þ
n is

also negative.
Unlike the second- and fourth-order terms, third-order

contributions can exist only when both fluxonium qubits
are coupled to a third qubit:
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Eð3Þ
n ¼

X
k1k2

Vnk1Vk1k2Vk2n

Eð0Þ
nk1

Eð0Þ
nk2

: ðC3Þ

Contrary to the even-order terms, all third-order contribu-
tions are positive, providing the critical mechanism to
reduce the ZZ rate. While this analysis is done just for the
energy of the j101i state, numerical computations of
Eqs. (C1)–(C3) confirm that second- and fourth-order
terms contribute negatively to the overall ZZ, and the
third-order terms contribute positively to the overall ZZ. In
Fig. 8(a), we compute ζ as a function of J12 (assuming the
optimal corresponding value of Jc) with an exact numerical
diagonalization (black line) and the aforementioned per-
turbation theory (red line), illustrating that perturbation
theory up to fourth order is a sufficient description of the
total ZZ rate in the FTF system.
As discussed in the main text, this ZZ cancellation is

exceptionally insensitive to parameter variations of the
device. This is in large part due to the large frequencies
Enki appearing in the denominators of Eqs. (C1)–(C3).More
explicitly, all relevant energy terms involve a sum or
difference between energies from a computational state
and a noncomputational state, which is around 5GHz owing
to the low frequency of the computational states. This is in
contrast with similar analyses for transmon systems, in
which energy differences between computational states and
noncomputational states can approach 0, depending on the
system specifics. As a result, parameter fluctuations cause
frequency shifts in FTF systems that must compete with the
already large energy denominators in the perturbation
expansions, translating into a smaller overall effect.
Another interesting feature of FTF unexplored in the

main text is that, if the transmon frequency is tuned toward
infinity, ζ does not return to its value with only the two
fluxonium qubits and can, in fact, decrease even further. In

Fig. 8(b), we numerically simulate ζ as a function of the
coupler frequency using the device A parameters and find
that ζ asymptotes to less than 10 Hz as the transmon
frequency increases.When the transmon frequency is tuned,
not only do the energy level detunings increase, but the
charge matrix element also increases through the effective
EJ. This increase in the charge matrix elements prevents the
level repulsions involving the coupler from vanishing even
when the coupler frequency becomes infinitely large. This
feature makes FTF useful even in fluxonium gate schemes
that do not involve the noncomputational states. By coupling
a fixed frequency transmon (or resonator) with a high
frequency (arising from a high EJ) to each fluxonium with
the appropriate coupling strengths, ζ can be reduced to near
0 in a robust manner without needing any measurement or
calibration of the extra transmon element.

APPENDIX D: READOUT

In our standard readout pulse sequence [Fig. 9(a)],
the qubit and readout pulses are periodically played

(a) (b)

FIG. 8. Numerical simulations of ζ in the FTF system. (a) Plot
of ζ along the “minimum ZZ” parabola in Fig. 2(a), as a function
of J12. The black curve shows a numerical diagonalization of the
Hamiltonian, which is accurately described by fourth-order
perturbation theory (red line). Without the coupler (gray line),
jζj is roughly an order of magnitude larger for this range of
coupling strengths. (b) Numerical simulation of ζ as a function of
the coupler frequency. The device A parameters from Table I are
used, except the effective transmon EJ is changed to vary the
transmon frequency. As this frequency increases, jζj decreases
asymptotically to below 10 Hz for this set of device parameters.

(a)

(b)

(c)

FIG. 9. Pulse diagram for different readout configurations.
(a) Standard measurement and readout sequence. Pulses are
played on a repeated trigger so that the time between the trigger
start and the readout start is kept constant. (b) Single-readout
postselection sequence, also known as heralding. Each readout
pulse simultaneously sets the initial state for the subsequent qubit
pulses and records the measurement outcome of the previous
qubit pulses. To herald the fluxonium ground (excited) state j0i
(j1i), we accept only measurement results for which the previous
readout result is j0i (j1i). (c) Two-pulse postselection (heralding)
technique. The first readout is used to initialize the qubit state,
and the second is used to measure the result of the qubit pulses.
This extra readout pulse allows for an additional buffer time τ3
without impacting the fidelity of the state preparation.
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corresponding to a software trigger, with a fixed wait time
τ1 between the start of the trigger and the start of the
readout pulses. The trigger period and τ1 are chosen such
that the qubit sufficiently decays to its thermal equilibrium
state between measurements.
To initialize the fluxonium qubits in either j0i or j1i,

we relied on a mostly quantum nondemolition (QND)
single-shot readout. Then, we postselect the data for any
choice of initial state: fj0i; j1ig ⊗ j0i ⊗ fj0i; j1ig in order
to herald that state [33]. In our simplest form of post-
selection [Fig. 9(b)], the qubit and readout pulses are
played back to back with only a short buffer time τ2 to
allow for photons to depopulate the readout resonator
prior to the qubit pulses. In our experiment, τ2 ¼ 2 μs is
much less than the T1 of any qubit, so the qubits do not
return to their thermal equilibrium state by the start of the
next pulse sequence. Despite losing a fraction of our data
due to this postselection process, we gain an enormous
overhead by not having to wait for the qubits to decay
between measurements.
Using these techniques, we measure typical single-shot

readout fidelities between 95% and 99% across both
fluxonium qubits of both devices using a readout pulse
length of 2 μs. This is calculated as the probability of
measuring j0i (j1i) if the previous measurement result is
also j0i (j1i). Because of previously documented meas-
urement-induced readout transitions that transfer popula-
tion from j0i to j1i [29], the initialization fidelity of j0i is
often 1%–2% worse than j1i in the data presented. We
interpret this difference in readout fidelity to be a measure
of the non-QND infidelity, specifically afflicting the ground
state. Across all devices presented, fluxonium resonators
have a linewidth of κ ¼ ∼1.5 MHz with a dispersive shift
of χ ¼ ∼0.3 MHz at Φext ¼ 0.5Φ0.
Ideally, the above method of postselection works with

the higher-excited states of the fluxonium, but we find in
practice that we cannot distinguish the j1i and j2i states
of the fluxonium in a single shot. To work around this
issue, we use a separate two-pulse postselection technique
[Fig. 9(c)]. The first readout initializes the qubit in
either j0i or j1i, and the second readout records the
measurement result. We use the same buffer time τ2 to
avoid measurement-induced dephasing of our qubit and
introduce an additional wait time τ3 ∼ 50 μs to let any
population in the noncomputational states of the fluxo-
nium to decay to the computational states. Many of our
measurements specifically involve driving from j1i to j2i
on a particular fluxonium (we include transitions such as
j101i ↔ j111i, j101i ↔ j102i, and j101i ↔ j201i in this
discussion). In these cases, we could greatly enhance the
readout contrast by performing a π pulse on each fluxo-
nium prior to readout. After this π pulse, any population
measured in j0i is assumed to be originally j1i, and
any population measured in j1i is assumed to be originally
j2i. Furthermore, higher-level transitions are typically

sufficiently hybridized that their signal is visible on all
readout resonators.

APPENDIX E: SINGLE-QUBIT GATE
CALIBRATION

Our single-qubit gates are performed using standard
Rabi oscillations using a cosine envelope without a flat top.
For the measurements in Fig. 3, we include a 4-ns zero
padding between adjacent pulses. We individually calibrate
the Xπ pulse and derive all other pulses from it. Y pulses are
created by adjusting the phase of the X pulses, pulses
differing from π rotation are derived by linearly scaling the
pulse amplitude, and Z gates are all implemented as virtual-
Z gates. While the set of single-qubit gates could be more
carefully calibrated by individually calibrating all other
gates, we find that our single-qubit gates derived from this
process are more than sufficient for accurately calibrating
our CZ gate.
We detail the entire calibration sequence used for the Xπ

gate in Fig. 10, with a flowchart provided in Fig. 10(m).
Following an initial rough calibration of the qubit readout,
bias voltage, frequency, and π-pulse amplitude, the follow-
ing procedure is used to precisely calibrate the qubit.
(1) Precise sweet-spot calibration [Figs. 10(a) and

10(d)].—With fixed drive frequency (slightly neg-
atively detuned from the qubit frequency) and
fixed drive amplitude, Ramsey oscillations are ob-
tained as a function of flux around the sweet spot.
The oscillation frequencies are fit to a parabola, and
the center of the parabola fit is used as the bias
voltage corresponding to Φext ¼ 0.5Φ0, termed the
“sweet spot.”

(2) Single-shot readout calibration [Figs. 10(b) and
10(e)].—Although optimizing the readout does
not impact the gate fidelity, we remeasure the
locations of the single-shot blobs corresponding to
j0i and j1i here to correct for flux-related changes in
the readout signal.

(3) Precise qubit frequency calibration [Figs. 10(c) and
10(f)].—To accurately obtain the qubit frequency,
we perform qubit spectroscopy with a low enough
power such that little power broadening is observed.
This typically gives kilohertz-level precision, a
sufficient starting point for derivative removal by
adiabatic gate (DRAG).

(4) DRAG calibration [Figs. 10(g), 10(h), 10(j), and
10(k)].—While scanning the DRAG parameter, we
perform a train of π pulses with alternating positive
and negative amplitudes. The DRAG parameter
which minimizes the observed oscillation between
the j0i and j1i state is chosen. Thismeasurement may
be repeated with a larger number of pulses to increase
the resolution of the DRAG parameter. Contrary to
other fluxonium experiments [25,26], we findDRAG
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calibration necessary to avoid coherent additional
errors. We measure the optimal DRAG parameter to
vary depending on the room temperature filtering
scheme and not with the anharmonicity of the qubit,
which leads us to suspect the calibration is correcting
for small distortions in the drive line [54].

(5) Precise drive amplitude calibration [Figs. 10(i) and
10(l)].—To improve the precision of a single Rabi
oscillation, we utilize a pulse train with an odd

number of pulses while varying the pulse amplitude.
This serves to multiply the oscillation frequency by
the number of pulses used, allowing for increased
precision on the calibrated π-pulse amplitude.

After calibration, we benchmark our single-qubit gates
using standard single-qubit randomized benchmarking
[12,38]. In our randomized benchmarking, we apply a
sequence of random Clifford gates (decomposed into
microwave gates fI;�X;�Y;�Xπ=2;�Yπ=2g) followed

FIG. 10. Single-qubit Xπ calibration procedure. (a)–(c),(g)–(i) Measurement pulse sequences for (d)–(f),(j)–(l), respectively.
(d) Ramsey versus bias voltage measurement in order to precisely determine the voltage corresponding to Φext ¼ 0.5Φ0 (termed
the “sweet spot”). (e) Calibrating the readout I and Q coordinates for the fluxonium j0i and j1i states. Thermal population of the qubit
results in a mixed state prior to readout. The ground state is initialized with 95.4% fidelity, and the excited state is initialized with 96.3%
fidelity in this case. (f) Low-power spectroscopy of the qubit to precisely determine the qubit frequency. (j) DRAG calibration of the
qubit. We play a varying even number of Xπ pulses with alternating amplitude while also varying the DRAG parameter. When correctly
calibrated, each Xπ pulse cancels out with the subsequent X−π pulse. (k) A separate DRAG calibration but using a larger number of
pulses to calibrate the DRAG parameter more accurately. (l) A pulse train consisting of an odd number of Xπ pulses is used to precisely
calibrate the amplitude of the pulse. (m) Calibration flowchart for single-qubit gates. Panels are shown for all calibrations starting from
the “precise sweet spot” calibration.
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by a recovery gate which inverts the previous sequence and
then measure the probability the qubit remains in its initial
state (we arbitrarily choose j0i). As a function of Clifford
sequence length, this probability is fit to the exponential
decay:p0ðmÞ ¼ Apm þ B. In thismodel,A andB absorb the
effects of state preparation andmeasurement errors, andp is
the depolarizing parameter. The average fidelity of each
Clifford operation is given byFClifford¼1−ð1−1=dÞð1−pÞ,
where d ¼ 2number of qubits is the size of the Hilbert space.
Our specific decomposition of Clifford gates into micro-
wave single-qubit gates uses, on average, 1.875 gates per
Clifford. From this, we compute the average single-qubit
gate fidelity as

Fsingle-qubit ¼ 1 − ð1 − 1=dÞð1 − pÞ=1.875: ðE1Þ

The uncertainty on the fidelity is expressed as a standard
error of the mean, which is obtained by setting absolute_
sigma to be True in scipy.optimize.curve_fit and using
standard error propagation techniques. Error bars on indi-
vidual RB points are likewise standard errors, obtained by
dividing the standard deviation by the square root of the
number of randomizations.

APPENDIX F: LEAKAGE TRANSITIONS

Driving a single transition in a system of uncoupled
qubits is generally equivalent to a single-qubit rotation
of some kind. For our CZ gate, such a transition is
only entangling, provided no other transitions from other
initial states are also being driven. This is possible only
when coupling terms adjust the energy levels involved in
these transitions. To map out the landscape of the relevant
higher-level transitions, we perform two-tone spectroscopy
as a function of the coupler flux, heralding different
initial states: j000i, j100i, j001i, and j101i (Fig. 11). As
demonstrated in the main text, any transition in Fig. 11(d)
could be used to perform the CZ gate, provided it is
sufficiently detuned from any transitions involving the
other initial states. Equivalently, though not explored in
this work, a CZ gate could be performed by driving
selective transitions from a different initial state and then
performing appropriate Z rotations to transfer the 180°
conditional phase shift onto the j11i state.
While including a coupler increases the number of

parasitic transitions that must be avoided, the larger level
repulsions made possible by the coupler increase many
relevant detunings. In our devices, many operational points
exist where the nearest unwanted transition is more than
100 MHz detuned.

FIG. 11. Two-tone spectroscopy of the higher energy levels of the FTF system. (a)–(d) consist of the same spectroscopy run
postselecting for j000i, j100i, j001i, or j101i, respectively.
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APPENDIX G: RELATIVE DRIVE AMPLITUDE
AND PHASE CALIBRATION

In this section, we describe a leakage cancellation
protocol utilizing destructive interference of the two drives;
however, we note that a difference in gate fidelity could not
be observed using this method. As a result, for the data in
Fig. 4(c), a simpler procedure is implemented to save
calibration time: The relative drive phase is tuned to
constructively interfere at the desired transition, and the
relative amplitudes are kept equal. Despite this fact, we
include the information here for transparency on what is
attempted to improve gate fidelities.
In driving our desired transition, off-resonant parasitic

transitions always contribute to leakage. With two separate
charge drive lines in our device, we can tune each drive
line’s relative phase and amplitudes for complete destruc-
tive interference on a parasitic transition of our choosing
while retaining a nonzero drive on our gate transition.
Without loss of generality, we take j101i ↔ j111i to be our
CZ gate transition and j100i ↔ j200i to be the closest
parasitic transition that we would like to eliminate. We
model the pulse seen by the qubits i∈ f1; 2g as

pulseiðtÞ ¼ Ai cosðωtþ kxi þ ϕiÞ; ðG1Þ

where Ai > 0 is the pulse amplitude, ω is the angular
frequency, k is the wave number of the pulse, xi is the
effective distance from each pulse’s origin to its destination,
and ϕi is an additional constant phase offset of each pulse,
specified in software.
The Rabi frequency of the undesired transition can then

be written as

h200jĤj100i ∝
X
i

Ai cosðωtþ kxi þ ϕiÞh200jn̂ij100i:

ðG2Þ

For this matrix element to be zero for all times, we require
the two pulses to be 180° out of phase with each other with
equal effective amplitudes. Mathematically, these two
conditions are satisfied by specifying the relative phase
and amplitude of the two drives:

ϕ2 − ϕ1 ¼ π − kðx2 − x1Þ; ðG3Þ

A2

A1

¼ h200jn̂1j100i
h200jn̂2j100i

: ðG4Þ

We note that, since h200jn̂1j100i=h200jn̂2j100i is generally
not equal to h111jn̂1j101i=h111jn̂2j101i, these conditions
are not expected to provide complete destructive interfer-
ence on our main transition of interest.
Experimentally, our procedures for calibrating A2=A1

and ϕ2 − ϕ1 are illustrated in Fig. 12. In all measurements
for this calibration, we π-pulse both fluxonium qubits

before readout as discussed in Appendix D to increase
signal contrast. We initially start with two arbitrarily
amplitudes A1 and A2 and then scan the phase difference
ϕ2 − ϕ1 (varying ϕ2 with ϕ1 fixed) while measuring the
j100i ↔ j200i Rabi oscillation (on resonance) [Figs. 12(a)
and 12(c)]. With the value of ϕ2 − ϕ1 set to minimize the
oscillation rate (dashed line), A2=A1 is scanned (varying A2

with A1 fixed) while measuring the same Rabi oscillation
[Figs. 12(b) and 12(d)]. The slowest Rabi oscillation
(dashed line) is then used to choose the optimal value of
A2=A1. Furthermore, as motivated by Eq. (G4), this ratio is
independent of frequency and thus does not require further
calibration. On the other hand, we are interested in the
phase which causes destructive interference when driving at
our two-qubit gate frequency, not at the j100i↔ j200i
resonance. This requires calibrating for the phase
dispersion caused by cable length differences. By repeating
the relative phase calibration in a frequency bandwidth in

(a)

(c)

(e) (f)

(d)

(b)

FIG. 12. Relative drive amplitude and phase calibration. (a),(b)
Pulse sequences for (d)–(f), respectively. π pulses before meas-
urement are purely for increasing signal contrast. (c) Rabi
oscillation of the unwanted transition with a phase-locked drive
on each charge line. The phase difference is scanned to show
destructive (white dashed line) and constructive interference.
(d) With ϕ2 − ϕ1 specified to give destructive interference, the
relative amplitudes of the two drives are scanned for complete
destructive interference (white dashed line). (e) The value of ϕ2 −
ϕ1 that gives destructive interference is extracted as a function of
the drive frequency. The linear fit is motivated by a cable length
difference. (f) Calibration flowchart for the illustrated procedure.
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which the j100i ↔ j200i Rabi oscillation is still visible, we
uncover an expected linear dispersion [Fig. 12(e)], which
we extrapolate as a function of the drive frequency.

APPENDIX H: TWO-QUBIT GATE
CALIBRATION

Prior to a fine calibration of our CZ gate, we first
calibrate single-qubit gates (Appendix E) and the relative
drive parameters (Appendix G). Specifically, when cali-
brating the CZ gate, we increase the pulse width of the
single-qubit gates to 50 ns, trading off single-qubit gate
fidelities so that coherent errors do not skew our tomog-
raphy pulses. We also increase the padding between pulses
to 10 ns, because computational state lifetimes have only a
secondary effect on our CZ gate fidelities.
For a given pulse width and gate transition, the remain-

ing four parameters to be calibrated are the drive frequency,
overall drive amplitude, and the single-qubit phase accu-
mulations during our gate interaction. After performing
spectroscopy of the transition in interest, we iteratively
fine-tune the drive amplitude and frequency. The drive
amplitude is calibrated by performing a simple Rabi

oscillation and minimizing the leakage [Figs. 13(a)
and 13(d)]. According to our error budget outlined in
Appendix K, a single CZ pulse yields a sufficiently precise
calibration. The drive frequency is calibrated by performing
a Ramsey-like measurement on qubit 1 to measure its
phase accrual after a pulse train of CZ gates, depending
on whether or not qubit 2 starts in j0i or j1i [Figs. 13(b)
and 13(e)]. The difference in this phase accrual is tuned to
be 180°, though we note that controlled-phase gates of
variable angles could also be achieved. Since adjusting the
drive frequency slightly changes the amplitude correspond-
ing to a single period and vice versa, we alternately perform
these two calibrations three times in total. In practice, we
find this is sufficiently accurate and much faster than
performing a two-dimensional calibration for both param-
eters simultaneously. Finally, once the CZ interaction is
properly tuned, we measure the single-qubit phase accu-
mulation during the CZ interaction using the same Ramsey-
like measurement [Figs. 13(c) and 13(f)]. These Z rotations
are corrected for in software through virtual-Z gates. We
illustrate the complete flowchart of this calibration in
Fig. 13(g).

FIG. 13. CZ gate calibration procedure. (a)–(c) Pulse sequences for (d)–(f), respectively. The double arrow in (c) indicates that the
same pulse sequence is performed twice, with qubits 1 and 2 exchanged. (d) Calibrating the global amplitude of the CZ drive by
minimizing the leakage. (e) Calibrating the frequency of the CZ drive by measuring a conditional phase accumulation via Ramsey-like
measurements. Each gate should contribute a 180° conditional phase shift. (f) Measuring the single-qubit phase accumulations per CZ
gate using the same Ramsey-like measurements. (g) Graphical illustration of the full two-qubit calibration routine. When recalibrating
the system for small flux drifts or periodic check-ins, we find it unnecessary to recalibrate the relative drive amplitude or phase.
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To benchmark our CZ gate, we perform two-qubit
interleaved randomized benchmarking, in which Clifford
gates are sampled from the two-qubit Clifford group,
generated by fI;�X;�Y;�Xπ=2;�Yπ=2;CZg. Our specific
decomposition results in 8.25 single-qubit gates and 1.5 CZ
gates per Clifford.
Interleaved randomized benchmarking consists of two

steps: (i) performing standard randomized benchmarking,
in which we extract the depolarizing parameter by meas-
uring sequence fidelity with initial state j00i and fitting to
the decay p00 ¼ Apm þ B, and (ii) performing the same
standard randomization benchmarking sequence, except an
additional CZ gate is inserted between each pair of
Cliffords, and the final recovery gate is modified accord-
ingly. Fitting this decay gives pint, the interleaved depola-
rizing parameter. By comparing the relative decays between
the two steps, the average CZ gate fidelity is extracted as

FCZ ¼ 1 − ðd − 1Þð1 − pint=pÞ=d; ðH1Þ
and its uncertainty is once again represented as a standard
error, following the procedure in Appendix E.

APPENDIX I: REINFORCEMENT LEARNING

As described in the main text, we use a model-free
reinforcement learning agent to boost the gate fidelity
beyond the physics-based calibration described in the
previous section. Specifically, we use an algorithm known
as proximal policy optimization (PPO), with algorithm
parameters listed in Table 3.
Application of reinforcement learning to quantum con-

trol is discussed in detail in the literature. Here, we closely
follow the procedure discussed in Ref. [50] and imple-
mented in Ref. [55], with code adapted from Ref. [56] and
built on TF-Agents. As seen in Figs. 5(b) and 5(c), each
round of training uses 300 epochs and lasts roughly 75 min.
We find the approximately 15-s training time per epoch to
be almost completely dominated by AWG waveform
upload time, which takes over 12 s for the data shown
in Fig. 5. As updating the agent’s policy according to PPO
takes comparably less time (less than 1 s), we elect to
simply run PPO on the measurement computer instead of,
for example, a separate computer equipped with a GPU.

Since averaging is also relatively inexpensive compared to
pulse upload time, we also elect to average the measure-
ment results for each trial pulse 1000 times.

APPENDIX J: CZ GATE VERSUS FLUX

Figure 14 shows an alternate plotting of the data in
Fig. 4(c), illustrating more explicitly what frequencies
each calibrated gate corresponds to. As mentioned in the
main text, each plot is created from a fully automated
measurement across 21 linearly spaced values of the coupler
flux. While many calibrated points have low fidelity,
the most important aspect of this architecture is that

(a)

(b)

FIG. 14. Alternate plotting of the data in Fig. 4(c). Gate
fidelities with a fixed 100-ns pulse width as a function of the
coupler flux for device A (a) and device B (b). The drive
frequency is plotted in gray, represented on the right axis. All
points missing from the full set of 21 correspond to more severe
calibration failures.

TABLE III. Reinforcement learning parameters. Hyperpara-
meters of the PPO algorithm used to optimize the CZ gate.

Learning rate 0.01

Number of policy updates 20
Importance ratio clipping 0.1
Batch size 30
Number of averages 1000
Value prediction loss coefficient 0.005
Gradient clipping 1.0
Log probability clipping 0.0
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there exist multiple transitions for which high fidelity is
achievable, allowing flexibility in the operation frequency.
Nevertheless, we discuss the most common failure mech-
anisms and reasons for low fidelity to shed additional
insights on the limits of our automated calibration versus
the inherent limit of the transition being driven.
The most common reason for low-performance opera-

tion points is nearby unwanted transitions, leading to a high
amount of leakage. This is most evident in device A, in
which the j101i ↔ j111i transition at Φext;c ¼ 1.0Φ0 and
the j101i ↔ j102i transition at Φext;c ¼ 0.5Φ0 are furthest
detuned from their nearest unwanted transition, resulting in
higher fidelities in these regions. Where these unwanted
transitions have a much smaller detuning, we expect to
obtain higher fidelities by increasing the drive pulse beyond
100 ns. In other regions, we expect higher fidelities by
decreasing the gate time.
A second commonmechanism for failed calibration is the

inability to find a drive frequency corresponding to a 180°
conditional phase shift. Because of the large hybridization,
we occasionally measured ac-Stark shifts large enough to
counterbalance the natural change in the conditional-phase
angle as a function of drive detuning. The calibration could
be recovered by either using a slower gate or by adjusting the
relative drive amplitudes to tweak the total ac-Stark shift.
Other less common mechanisms for a failed calibration

include two-level system defects or accidental reso-
nances with undesired transitions, including higher-photon
transitions.

Figure 15 (Fig. 16) shows the individual qubit coherence
times as a function of the local coupler flux in device A (B).
Each coherence time is simultaneously measured on each
qubit, with both qubits precisely retuned to Φext ¼ 0.5Φ0

for each value of the coupler flux. Notably, these coherence
times are slightly shorter than those listed in Table I, due to
bias-induced heating of the local flux lines. However, these
coherence times are a more accurate representation of the
quality of the qubits when performing two-qubit gates and
simultaneous single-qubit gates. When performing simul-
taneous single-qubit gates on device A, we bias the coupler
at roughly Φext;c ¼ 0.77Φ0, corresponding to no current
being sent through the coupler flux line. We suspect the low
Ramsey time of qubit 2 to be caused by Aharonov-Casher
dephasing from coherent quantum phase slips [57,58],
based on its Hamiltonian parameters.
The voltage (in units of V) biased across each coaxial

line as a function of the coupler flux is given by the
equations

V1;A ¼ 0.57 − 0.77Φext;c; ðJ1Þ

Vc;A ¼ −0.84þ 1.1Φext;c; ðJ2Þ

V2;A ¼ 0.16 − 0.17Φext;c ðJ3Þ

for device A and

(c)

(a)

(b)

FIG. 15. Qubit coherences in device A with both qubits biased
at 0.5Φ0. (a)–(c) show the T1, Ramsey, and echo decay times,
respectively, as a function of the coupler flux. All decays are fit to
an exponential.

(a)

(b)

(c)

FIG. 16. Qubit coherences in device B with both qubits biased
at 0.5Φ0. (a)–(c) show the T1, Ramsey, and echo decay times,
respectively, as a function of the coupler flux. All decays are fit to
an exponential.
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V1;B ¼ −0.15 − 0.74Φext;c; ðJ4Þ

Vc;B ¼ −0.62þ 1.7Φext;c; ðJ5Þ

V2;B ¼ 0.25 − 0.36Φext;c ðJ6Þ

for device B.
In Fig. 17(a), we include the T1 associated with each data

point in Fig. 4(c). Plotting the gate fidelities against these
T1 values [see Fig. 17(b)] shows a weak correlation, if any,
indicating that even with a 100-ns gate duration gate
fidelities are significantly impacted by coherent errors.
We note that there are a few instances where the gate
fidelity is high, despite a T1 of 2 μs or less being
measured. We hypothesize that this could be due to either
a temporally changing coherence time or that the T1 is less
detrimental to gate fidelities than previously thought due
to off-resonant driving of the transition. Unfortunately,
quantitative explorations of the coherent error are
precluded in this experiment due to the inability to
precisely readout the higher-energy states, and, thus, a
more in-depth study on the nature of the FTF gate errors
will be the subject of future experiments when the readout
is improved.

APPENDIX K: ERROR MODELING

In this section, we build up an analytic error budget to
estimate the impact of various types of coherent and

incoherent errors on gate fidelities. We model our gates
as a completely positive trace-preserving (in some sub-
space) map G acting on an input state ρ. The Kraus
representation theorem then allows us to express all such
processes as GðρÞ ¼ P

k GkρG
†
k for some set of Kraus

operators Gk obeying the normalization conditionP
k G

†
kGk ¼ I. The average state fidelity of such a process

G is then given by

F ¼ 1

nðnþ 1Þ
�
Tr

�X
k

M†
kMk

�
þ
X
k

jTrðMkÞj2
�
; ðK1Þ

where Mk ¼ PU†
0GkP and n is the dimension of the

computational subspace [59]. Also, P is the projection
operator onto the computational subspace, and U0 is the
ideal unitary operation of the process. We reproduce here
the error corresponding to relaxation (T1) and pure
(Markovian) dephasing (Tϕ) corresponding to a gate of
length tg:

F1 qubit ¼ 1 −
tg
3

�
1

T1

þ 1

Tϕ

�
; ðK2Þ

F2 qubits ¼ 1 −
4tg
5

�
1

T1

þ 1

Tϕ

�
: ðK3Þ

One critical assumption in these well-known formulas
is that the gate operation stays within the computational
subspace, an invalid assumption for our two-qubit gate.

1. Relaxation of higher energy levels

In our two-qubit gate, there are five relevant states: the
computational states fj00i; j01i; j10i; j11ig and the non-
computational state we drive to jαi. For mathematical
simplicity, we imagine modeling an identity gate composed
of two CZ gates. The error per unit time does not change,
and this allows us to use U0 ¼ I as well as simplifies the
phases in our Kraus operators. We model the incoherent
decay under driven evolution as if j11i and jαi decay into
each other at equivalent rates (a valid assumption when the
gate time tg is small compared to the relaxation rate T1;α).
Assuming no other decay channels, the full set of Kraus
operators for this process is

G0 ¼
1ffiffiffi
2

p

0
BBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 e−t=2T1

1
CCCCCCCA
; ðK4Þ

(a)

(b)

FIG. 17. Lifetimes of driven noncomputational states. (a) Life-
time of each transition across all operational points used in
Fig. 4(c). (b) Scatter plot of the 100-ns CZ gate fidelity as a
function of the T1 of the state.
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G1 ¼
1ffiffiffi
2

p

0
BBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−t=T1

p

0 0 0 0 0

1
CCCCCCCA
; ðK5Þ

G2 ¼
1ffiffiffi
2

p

0
BBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 e−t=2T1 0

0 0 0 0 1

1
CCCCCCCA
; ðK6Þ

G3 ¼
1ffiffiffi
2

p

0
BBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−t=T1

p
0

1
CCCCCCCA
: ðK7Þ

One can verify the behavior of these operators by comput-
ing that h11jGðρÞj11i¼ ðρ11þρα=2Þþðρ11−ρα=2Þe−t=T1;α .
Finally, we take the projection operator to be P ¼
j00ih00j þ j01ih01j þ j10ih10j þ j11ih11j. Inserting these
operators into Eq. (K1) and Taylor expanding in
tg=T1;α < 1, we obtain

F ≈ 1 −
1

8

tg
T1;α

: ðK8Þ

For the final gates calibrated in Fig. 5(c), a 5-μs T1;α

fluctuation centered at 10 μs causes a change in fidelity by
approximately 0.03% for a 50-ns gate, suggesting that
coherence fluctuations by themselves are not enough to
account for the fidelity variations in Fig. 5(c).

2. CZ phase error

We consider an error in phase calibration, in which we
successfully return all population back to the computational
subspace, but with a j11i state phase of π þ dϕ. In the
unitary special case of Eq. (K1) [GðρÞ ¼ UρU†], we need
only compute

M ¼ U†
0U ðK9Þ

¼

2
66664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

3
77775

2
66664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iπ−idϕ

3
77775 ðK10Þ

¼

2
66664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−idϕ

3
77775: ðK11Þ

Inserting this into Eq. (K1), we obtain

F ¼ 7þ 3 cosðdϕÞ
10

≈ 1 −
3

20
dϕ2: ðK12Þ

Values of note are that, for a fidelity of 99.9%, we can
tolerate a phase error of 4.7° and, for a fidelity of 99.99%,
we can tolerate a phase error of 1.5°. We can similarly
convert this into an error on drive frequency, assuming the
drive frequency is the sole degree of freedom in tuning the
aforementioned phase. The geometric phase accumulation
associated with some frequency change δ of a full-period-
driven oscillation is δtg=2. The angle errors above then
translate into 0.5-MHz error for 99.9% fidelity and 160 kHz
for 99.99% fidelity.

3. Amplitude error

In calibrating the Rabi oscillation driving our CZ gate,
we choose a fixed gate time and calibrate the amplitude of
the pulse to obtain a single-period oscillation. The unitary
corresponding to this Rabi rotation in our five-state Hilbert
space fj00i; j01i; j10i; j11ijαig is

U ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cosðΩt=2Þ −i sinðΩt=2Þ
0 0 0 −i sinðΩt=2Þ cosðΩt=2Þ

1
CCCCCCA
;

ðK13Þ

where Ω is the Rabi oscillation of the CZ pulse. Projecting
onto the computational subspace (P) and assuming an ideal
CZ unitary

U0 ¼ j00ih001j þ j01ih01j þ j10ih10j − j11ih11j; ðK14Þ

we insert M ¼ PU†
0UP into Eq. (K1) to obtain

F ¼ 1

10
½6 − 3 cosðΩt=2Þ þ cos2ðΩt=2Þ�

≈ 1 −
1

16
dθ2: ðK15Þ

Converting this amplitude error into a phase error
dθ ¼ Ωt − 2π, 99.9% fidelity corresponds to a 7.25° error
and 99.99% fidelity corresponds to a 2.29° error. To relate
this more directly to our experimental apparatus, assuming
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that the pulse is calibrated to a roughly 1-Vamplitude, these
phases correspond to voltage errors of 20 and 6.4 mV,
respectively.
We conclude this section by emphasizing that, at the

error levels discussed, calibration precision is quite lenient
and that errors are dominated by decoherence and other
unmodeled behavior such as leakage through neighboring
transitions. Furthermore, all calculations performed are
meant to model the fidelity of a single gate, which may
not necessarily be equal to the fidelity extracted from
interleaved randomized benchmarking due to the nature of
coherent errors.

APPENDIX L: DEVICE B

In this section, we show data corresponding to device B,
a secondary device. Device B is an identically designed
device, with extracted Hamiltonian parameters varying by
up to 10% as compared to device A, typical of fabrication
variations and differences in device aging. The coherence
times and single-qubit gate fidelities remain consistently
high across both devices, and, in particular, fluxonium 2 on
device B exhibits a median T1 of 1.26 ms averaged over 9 h
[see Fig. 18(a)]. This, along with the measured lifetimes of
fluxonium 2 on device A, points to a reliable process and

design for achieving high lifetime qubits in a planar
geometry. Curiously, the single-qubit gate fidelities in
Fig. 18(b) are found to be optimized near a pulse width
of 50 ns, a significant difference between the optimal pulse
width of 18 ns for device A. We currently do not have an
explanation for this discrepancy.
We measure a nearly identical value (within 1 kHz) of

the ZZ interaction rate in this device [Fig. 18(c)], support-
ing our claim that the ZZ reduction does not rely on any
precise parameter matching and is a reliable method to
achieve (absolute) values below 10 kHz. Most importantly,
despite changes of up to 300 MHz in the j1i ↔ j2i
transition frequencies of the fluxonium qubits, we could
still demonstrate high-fidelity CZ gates across a large
frequency range [see Fig. 4(c) in the main text], with peak
fidelities above 99.8% [see Figs. 18(d)–18(f)].
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