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Biological constraints often impose restrictions on plasticity rules such as locality and reward-based
rather than supervised learning. Two learning rules that comply with these restrictions are weight (WP) and
node (NP) perturbation. NP is often used in learning studies, in particular, as a benchmark; it is considered
to be superior to WP and more likely neurobiologically realized, as the number of weights and, therefore,
their perturbation dimension typically massively exceed the number of nodes. Here, we show that this
conclusion no longer holds when we take two properties into account that are relevant for biological and
artificial neural network learning: First, tasks extend in time and/or are trained in batches. This increases the
perturbation dimension of NP but not WP. Second, tasks are (comparably) low dimensional, with many
weight configurations providing solutions. We analytically delineate regimes where these properties let WP
perform as well as or better than NP. Furthermore, we find that the changes in weight space directions that
are irrelevant for the task differ qualitatively between WP and NP and that only in WP gathering batches of
subtasks in a trial decreases the number of trials required. This may allow one to experimentally distinguish
which of the two rules underlies a learning process. Our insights suggest new learning rules which combine
for specific task types the advantages of WP and NP. If the inputs are similarly correlated, temporally
correlated perturbations improve NP. Using numerical simulations, we generalize the results to networks
with various architectures solving biologically relevant and standard network learning tasks. Our findings,
together with WP’s practicability, suggest WP as a useful benchmark and plausible model for learning in
the brain.
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I. INTRODUCTION

Different, usually combined, strategies underlie the
learning of tasks in humans and other animals [1,2].
Supervised learning allows large, rapid improvements. It
is based on observing in which way an action is erroneous
and on the ability of the nervous system to use this
information for the improvement of neuronal dynamics
in a directed manner. This may be implemented by trans-
lating an error vector into a vector of suitable synaptic
weight updates [3]. Fast learning could be achieved by
directly adapting the dynamics [4]. Reward-based learning
(reinforcement learning), in contrast, uses only a scalar
feedback signal. It is, thus, also applicable if errors are
known with little specificity, for example, because there is

sparse, delayed feedback about the cumulative effect of
actions, which might tell only whether an action is
erroneous but not how the generating neural activity can
be improved.
A variety of models for reward-based learning have been

developed in the context of theoretical neuroscience and
machine learning [5,6]. Two conceptually straightforward
implementations of such learning in neural networks
are weight perturbation (WP) [7,8] and node perturbation
(NP) [9,10]. Their underlying idea is to add perturbations to
the weights or to the summed weighted inputs and to
correlate them to the change of task performance. If the
reward increases due to an attempted perturbation, the
weights or the node dynamics are changed in its direction.
If the reward decreases, the changes are chosen oppositely.
NP andWP are used to model reward-based learning in bio-
logical neural networks, due to four properties [4,7,9–14]:
(i) They are (with minor modifications) biologically plau-
sible. (ii) They are applicable to a broad variety of networks
and tasks. (iii) They are accessible to analytical exploration.
(iv) They are optimal in the sense that the average of the
generated weight change taken over all noise realizations is
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along the reward gradient. The schemes’ names were
originally coined for approaches that directly estimate
the individual components of the gradient using single
perturbations to each weight or node [15].
WP explores with its random perturbations a space with

dimensionality equal to the number of weights. For trials
without temporal extent, NP needs only to explore a space
with dimensionality equal to the number of nodes. The
chain rule, amounting to a simple multiplication with the
unweighted input strength, then allows one to translate a
desirable change in the summed weighted inputs into a
change in a particular weight strength. NP, thus, uses
additional information on the structure of the network
(namely, the linearity of input summation) to reduce the
required exploration.
In linear approximation, the optimal direction of weight

changes aligns with the direction of the gradient of the
reward. WP and NP seemingly attempt to find this direction
by trying out random perturbations. Since the dimension of
the space of possible perturbation directions is large, the
probability of finding the gradient is small and a lot of
exploration is necessary. This impedes WP and NP. The
number of weights and, thus, the dimensionality of the
perturbation space searched by WP are much larger than
the number of nodes. NP is, thus, considered more suitable
for reward-based neural network learning [3,9,10,16] and
its implementation in biological neural networks [17]. This
is supported by quantitative analysis: Ref. [9] considers M
linear perceptrons with N random inputs, using a student-
teacher task. They find that for WP the optimal conver-
gence rate of the student to the teacher weight matrix is by a
factorNM worse than for exact gradient descent (GD). This
is consistent with the argument that WP needs to search the
NM-dimensional weight space to find the gradient, which
is directly computed by GD. Accordingly, NP is worse than
gradient descent by the dimensionality M of the node
perturbation space.
The prerequisites of the arguments sketched above, how-

ever, do not hold in many biological situations. First, tasks in
biology often extend in time and have a reward feedback that
is temporally distant from the action [1,5,10,14,18]. Second,
the effective dimension of neural trajectories and of learning
tasks is often comparably low [19–21]. Our article analyti-
cally and numerically explores the perturbation-based learn-
ing of tasks with these features.
The article is structured as follows. First, we introduce the

employed WP and NP learning models. We then derive
analytic expressions for the evolution of expected error
(negative reward) in linear networks solving temporally
extended, low-dimensional reward-based learning tasks.
This allows us to identify conditions for which WP outper-
formsNPaswell as the underlying reasons. Furthermore,we
delineate distinguishing qualitative characteristics of the
weight and error dynamics. Finally, we numerically show
that WP is comparably good or outperforms NP in different

biologically relevant and standard network learning
applications.

II. RESULTS

A. Learning models and task principles

Our study models the learning of tasks that are tempo-
rally extended. Time is split into discrete steps, indexed by
t ¼ 1;…; T, where T is the duration of a trial. During this
period, a neural network receives external input and
generates output. At the end of a trial, it receives a scalar
error feedback E about its performance [8,10,14,17,22]. To
quantitatively introduce the learning rules, we consider a
neuron i, which may be part of a larger network. It
generates in the tth time bin an output firing rate zit, in
response to the firing rates rjt of its N presynaptic neurons:

zit ¼ g

�XN
j¼1

wijrjt

�
: ð1Þ

Here, wij is the weight of the synapse (or the total weight of
the synapses) from neuron j to neuron i. The generally
nonlinear activation function g implements the relation
between the total input current and the output firing rate of
the neuron [5,23]. We note that the individual synaptic
input currents wijrjt in the model sum up linearly. This is a
standard assumption, and it is a requirement for the NP
scheme [9,10,15,24]. In the presence of nonlinear dendritic
compartments [25–27], each of these could be an inde-
pendently perturbed node.
We model WP learning by adding in the beginning

of a trial a temporally static weight change ξWP
ij to each

of the weights wij [8,22]. The output of the neuron then
reads

zpert;WP
it ¼ g

�XN
j¼1

ðwij þ ξWP
ij Þrpert;WP

jt

�
; ð2Þ

where rpert;WP
jt are the input rates, which may have a

perturbation due to upstream perturbed weights. ξWP
ij are

independent and identically distributed (iid) zero-mean
Gaussian white noise perturbations with standard deviation
σWP, hξWP

ij ξWP
kl i ¼ δikδjlσ

2
WP, where the angular brackets

denote the average over perturbation realizations and δ is
the Kronecker delta. The perturbations ξWP

ij change the
output, which, in turn, influences the reward received at the
end of the trial [Fig. 1(a), left-hand side]. We usually
assume that the difference in reward between the perturbed
and an unperturbed trial with ξWP

ij ¼ 0 for all i, j is used to
estimate the gradient: When the reward increases, for
small perturbations this means that the tried perturbation
has a positive component along the reward gradient.
Consequently, the update is chosen in the direction of that
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perturbation. When the reward decreases, the update is
chosen in the opposite direction. We use the update rule

ΔwWP
ij ¼ −

η

σ2WP
ðEpert − EÞξWP

ij ; ð3Þ

where η is the learning rate, Epert is the error of the
perturbed trial, and E is the error of the unperturbed trial.
For the delayed non-match-to-sample (DNMS) task, the
error of the unperturbed trial is replaced by an average over

the previous errors for biological plausibility. The propor-
tionality of update size and obtained reward implies that,
when averaging over the distribution of the perturbations,
the weight change

hΔwWP
ij i ≈ −η

∂E
∂wij

ð4Þ

is parallel to the reward gradient [Eq. (A2)]. Since
hξWP

ij i ¼ 0, this holds for any baseline in Eq. (3). The
employed choice of baseline E guarantees that for small
perturbations the weight change has a positive component
in the direction of the reward gradient and, thus, always
reduces the error for sufficiently small learning rate η [8]. In
fact, it minimizes the update noise, i.e., the fluctuations of
updates around the gradient [Eq. (A5)].
WP treats the system as a black box, mapping parameters

w onto a scalar error function E. In other words, it uses the
information that the weights are fixed parameters during a
trial but does not take advantage of specifics of the network
structure. This is in contrast to NP, which takes into account
some minimal structural knowledge, namely, the linear
summation of input currents, but not the constancy of the
weights.
Instead of perturbing the weights directly, NP adds noise

to the sum of the inputs:

zpert;NPit ¼ g

�XN
j¼1

wijr
pert;NP
jt þ ξNPit

�
ð5Þ

[9,10] [see Fig. 1(a), right-hand side]. ξNPit are iid zero-mean
Gaussian white noise perturbations with standard deviation
σNP, hξNPit ξNPmsi ¼ δimδtsσ

2
NP. We note that for temporally

extended tasks, in contrast to WP, the noise must be time
dependent to explore the space of time-dependent sums of
inputs [10]. For temporally constant noise, only the
temporal mean of the total input would be varied and,
thus, improved.
The NP update rule can be defined as

ΔwNP
ij ¼ −

η

σ2NP
ðEpert − EÞ

XT
t¼1

ξNPit rjt ð6Þ

[10], with the eligibility trace
P

T
t¼1 ξ

NP
it rjt. As for WP, this

yields an average weight update parallel to the reward
gradient, which again holds for any baseline of the weight
update. The choice of baseline E again minimizes the
update noise [Eq. (A6)].
The NP update rule effectively incorporates an error

backpropagation step, which reduces to a simple mul-
tiplication with rjt due to the linearity of the spatial
synaptic input summation. This allows one to perturb only
summed inputs instead of individual weights and may be

(a)

(b) (c)

FIG. 1. Learning of temporally extended tasks in linear net-
works. (a) Schematic setup of WP and NP. The M outputs zi are
weighted sums of the N inputs rj. Left: WP perturbs the weights
at the beginning of a trial; the resulting perturbations of the
weighted sums of the inputs and, thus, the outputs reflect the
dimensionality and smoothness of the inputs (blue). Right: NP
perturbs the weighted sums of the inputs with dynamical noise
(orange). (b) WP (blue) works just as well as or better than NP
(orange) when learning a single temporally extended input-output
mapping. The error decay time decreases for WP and NP likewise
with decreasing effective input dimension Neff (light versus dark
curves). In contrast, the residual error decreases only for WP.
(c) Increased trial duration T does not change the progress of WP
learning (blue curves lie on top of each other). In contrast,
increasing T hinders NP learning by increasing the residual error
(compare the increasingly lighter orange curves for larger T). If T
decreases Neff (gray curves), convergence is faster and to a lower
residual error in both WP (because of the decrease in Neff ) and
NP (because of the decrease inNeff and T). (b) shows error curves
from simulations (ten runs, shaded) together with analytical
curves for the decay of the expected error (solid), for fixed
T; N ¼ 100, M ¼ 10, and Neff ∈ f100; 50g; σeff ¼ 0.04. Theo-
retical curves and simulations agree well. For WP and Neff ¼ 50,
the decay rate [− lnðaÞ] and the residual error (dashed line) are
highlighted. (c) shows error curves from simulations and theory
similar to (b) for fixed N ¼ 100 and T ∈ f200; 150; 100; 50g.
Neff is set to 100 but cannot be greater than T, such that T ¼ 50
forces Neff ¼ 50.
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expected to increase the performance of NP compared to
WP [3,10,14,17].

B. Theoretical analysis

We analytically compare WP and NP for temporally
extended tasks by training a set of M linear perceptrons
with N inputs. The task is to learn the mapping of a single
fixed input sequence of duration T to a target output
sequence in a reward-based manner. The task choice is
motivated first by biological motor tasks that require such a
mapping, like the learning of their single song in certain
songbirds (see Sec. III). Second, it yields novel insights, as
it is the opposite extreme case to having no time dimension
and different, random inputs in each trial; this case is
treated analytically by Ref. [9] (see the introduction). Third,
our findings yield an understanding of the learning per-
formance for more general temporally extended tasks and
networks studied later in this article. The analysis shows
how learning depends on task dimensions and the structure
of the input. Furthermore, it reveals specific disadvantages
of WP and NP. Importantly, our theoretical considerations
cover very general sequences. In particular, they hold for
sequences with and without correlations between sub-
sequent inputs. Furthermore, the sequences can be arbi-
trarily reordered, also differently in each trial. They may,
therefore, also be interpreted as sets or batches of inputs. In
Sec. II F, we consider temporally correlated sequences, for
which such an interpretation is not useful anymore. In
Secs. II G and II I, we relax the assumption of exactly
repeated input sets.
The perceptrons generate as outputs the product of their

M × N weight matrix w with the inputs

zit ¼
XN
j¼1

wijrjt; ð7Þ

where i ¼ 1;…;M [Eq. (1) and Fig. 1(a)]. For now, we
assume that the target output can be produced with target
weights w�, that is, z�it ¼

P
N
j¼1 w

�
ijrjt. This condition is

alleviated in Sec. II E. The learning goal is to reduce the
quadratic deviation of each output from its target, which can
be expressed through theweight mismatchW ¼ w − w� and
the input correlation matrix Sjk ¼ ð1=TÞPT

t¼1 rjtrkt [5]:

E ¼ 1

2T

XM
i¼1

XT
t¼1

ðzit − z�itÞ2 ¼
1

2
tr½WSWT �: ð8Þ

We note that with this quadratic error function the average
weight update [cf. Eq. (4)] follows the gradient exactly, for
both WP and NP [Eqs. (A16) and (A17)].
We assume that the inputs are composed of Neff

orthogonal latent inputs; all other input components are
zero (this is relaxed in Sec. II I). Since there are at most T
linearly independent vectors of length T, the effective input

dimension Neff is bounded by Neff ≤ T. T > 1 thus renders
our learning problem nontrivial, by allowing for inputs that
are higher dimensional when considering the input-output
relation of a single sequence. In biological systems, inputs
are low dimensional; Neff is often of the order of 10
(Sec. III), in particular, Neff ≪ N. As long as inputs are
summed linearly, for clarity we then hypothetically “rotate”
the inputs such that only the first Neff inputs are nonzero
and equal to the latent ones [Fig. 2(a)]. This allows us to
speak about relevant and irrelevant inputs instead of
relevant (nonzero) and irrelevant (zero) input space direc-
tions. It does not affect the WP or NP learning process,
because all perturbations are isotropic and the error
function is rotationally invariant [Supplemental Material,
Eq. (S1) [28] ]. In other words, all results, in particular, the
dynamics of the error decay, hold identically for the
original networks with nonrotated inputs where all actual
inputs may be nonzero. For simplicity in our mathematical
analysis, we assume that all latent inputs have the same
strength α2, i.e., ð1=TÞPT

t¼1 r
2
it ¼ α2 for the nonzero inputs

i ¼ 1;…; Neff . A partial treatment of networks with inho-
mogeneous latent input strength is given in Supplemental
Material Sec. IV [28].

C. Error dynamics

To elucidate the learning process and its dependence on
the network and task parameters, we analytically derive the
evolution of the expected error. This requires the compu-
tation of the error signal Epert − E and weight update after a
given perturbation to determine the new error. Subsequent
averaging over all perturbations yields the expected error at
trial n, hEðnÞi, as a function of hEðn − 1Þi, specifically, a
linear recurrence relation

hEðnÞi ¼ ahEðn − 1Þi þ b ð9Þ

(see Appendix B for the detailed derivation). The speed of
learning is determined by the convergence factor a,
while the per-update error increase b limits the final
performance. Learning stops at a finite error when an
equilibrium between gradient-related improvement and
reward noise-induced deterioration is reached. The recur-
rence relation is solved by

hEðnÞi ¼ ½hEð0Þi − Ef�an þ Ef: ð10Þ

For a < 1, the average error hEðnÞi converges exponen-
tially at a rate − lnðaÞ toward a finite final (residual) error of
Ef ¼ b=ð1 − aÞ, as shown in Fig. 1(b). Usually, in our
settings a is sufficiently close to 1 to well approximate the
convergence rate by − lnðaÞ ≈ 1 − a.
To understand how learning depends on the task param-

eters, we first consider the speed of learning. The deter-
mining convergence factor
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a ¼ 1 − 2ηα2 þ η2α4ðMNeff þ 2Þ ð11Þ

[Eq. (B39)] is affected by two opposing effects: On
average, updates follow the gradient, thus reducing the
error. This is reflected by a reduction of a by
−2ηα2ðþη2α4Þ, responsible for convergence. However,
updates fluctuate, adding a diffusive part to the weight
evolution which slows convergence down. Although these
fluctuations, having zero mean, do not influence the
expected error to linear order, they do so quadratically.
Thus, their contribution to a, η2α4ðMNeff þ 1Þ, is quadratic
in the learning rate η. It is approximately proportional to
MNeff , the number of relevant weights that read out from
nonzero inputs: Fluctuations in each of these weights yield
the same contribution—the exception being the twice as
strong fluctuations along the single gradient-parallel direc-
tion, which together with the quadratic effect of the mean
update cause the þ2 in Eq. (11).
The fluctuations originate from a credit assignment

problem: Only the perturbation parallel to the error gradient
can be credited for causing the linear part of the error signal
Epert − E. WP has no way of directly solving the credit
assignment problem of identifying this direction. Thus, the
perturbations of all MN weights are equally amplified in
the constructions of their updates [Eq. (3)] such that all
weights fluctuate. This entails fluctuations in the MNeff
relevant weights, which influence output and error. NP can
at least partially solve the credit assignment problem by
using eligibility traces, which are zero for weights that read

out from zero inputs. By projecting each of its (M)
T-dimensional output perturbations onto the effectively
Neff -dimensional inputs, NP restricts its updates to the
MNeff -dimensional subspace of relevant weights. The
convergence speed, thus, becomes independent of T as
for WP. Interestingly, WP and NP therefore converge at the
same speed despite their different numbers of fluctuating
weights. The reason is that the fluctuations of the relevant
weights are the same for both algorithms.
The balance between the improvement resulting from

following the gradient (∼η) and the deterioration due
to the fluctuations of relevant weights (∼η2) in Eq. (11)
is controlled by the learning rate: Small learning rates
imply averaging out fluctuations over many updates and,
therefore, dominance of gradient following, leading to
convergence. For the remainder of the analysis of this
setting, both algorithms are compared at their optimal
learning rate η�, which is defined to yield fastest con-
vergence, in other words, to minimize a. This definition is
chosen because it is conceptually straightforward, and
Eq. (11) directly leads to the simple expressions

η� ¼ 1

ðMNeff þ 2Þα2 ; a� ¼ 1 −
1

MNeff þ 2
: ð12Þ

Here, the factor 1=α2 in η� cancels the scaling of the
gradient with the input strength and equals the optimal
learning rate for GD [Eq. (B5)]. In order to allow
for averaging out the update fluctuations, WP and NP
learning additionally have to slow down by a factor of

(a) (b)(i)

(b)(ii)

(b)(iii)

FIG. 2. Hypothetical rotation of inputs and weight diffusion. (a) Because the inputs (left, black) are summed linearly, they can be
“rotated” so that for our tasks the first Neff inputs are nonzero and agree with the latent inputs (middle, black). The remaining inputs are
then zero (middle, red), and their weights are irrelevant for the output (right, red). (b)(i) In WP with finite perturbation size σWP, the
irrelevant weights diffuse without bounds (red), while the relevant weights converge and fluctuate (black) around the teacher weights.
Displayed are the mean (solid) and standard deviation (shaded area) of the weight ensembles. (b)(ii) Weight decay or (b)(iii) input noise
confines the diffusion. In (a), Neff ¼ 2, the latent inputs are a sine and a cosine. Parameters in (b)(i) and (b)(ii): M ¼ 10, N; T ¼ 100,
Neff ¼ 50, σeff ¼ 0.04, teacher weights wrel;i ¼ 0.1, and weight decay γWD ¼ 0.999; results are averaged over ten runs. (b)(iii) The same
parameters, except η ¼ 0.2η� and added iid white input noise with strength σ2noise ¼ 0.5 (SNR ¼ 2).

WEIGHT VERSUS NODE PERTURBATION LEARNING IN … PHYS. REV. X 13, 021006 (2023)

021006-5



approximatelyMNeff. Learning diverges for η → 2η� where
a → 1. Equation (12) shows that WP’s convergence rate is
worse than GD’s by a factor generally smaller than the
number of weights. Further, NP’s convergence rate is worse
by a factor generally larger than the number of nodes. Thus,
the number of weights or nodes is insufficient to predict the
performance of WP or NP, respectively.
The per-update error increase and the final error, b and

Ef, result from finite perturbation sizes. Finite perturbation
sizes lead, due to the curved, quadratic error function, to an
estimate that is at least slightly incompatible with the linear
approximation assumed by the update rules [cf. Eq. (4)].
This is particularly apparent when the output error and,
thus, the gradient are (practically) zero: Any finite weight
or node perturbation then leads to an increase of the error
and, thus, to an opposing weight update instead of no
weight modification. This prevents the weights from reach-
ing optimal values and results in a finite final error Ef. The
described difference between perturbation-based error esti-
mate and linear approximation is a form of “reward noise.”
It is nonzero only for finite perturbation size, as reflected by
the dependence of b and Ef on σ (which is quadratic due to
the quadratic error nonlinearity).
For a fair comparison of WP and NP, we choose σWP and

σNP such that they lead to the same effective perturbation
strength σ2eff , as measured by the total induced output
variance. This leads to σ2NP ¼ σ2eff and σ2WP ¼ 1=ðα2NeffÞ ·
σ2eff [Eq. (A22)]. Evaluated at the optimal learning rate η�,
the leading-order term of the final error is

EWP
f ¼ b�WPðη�Þ

1 − a�
≈
1

8
σ2eff ·M

2Neff ; ð13Þ

ENP
f ¼ b�NPðη�Þ

1 − a�
≈
1

8
σ2eff ·M

2T: ð14Þ

Importantly, the final error of WP is here generally smaller,
by a factor Neff=T ≤ 1. To understand this, we focus for
both WP and NP on the output perturbations that they
generate. By perturbing the weights, WP induces output
perturbations that are linear combinations of the inputs.
These are confined to the effectively MNeff -dimensional
subspace in which also the (realizable part of the) output
error gradient ðz − z�Þ=T lies. NP, on the other hand,
creates an entirely random MT-dimensional perturbation
vector [Fig. 1(a)]. Only the projection of this vector onto
the output gradient is useful for learning. This projection is
smaller for NP’s random vector, since the vector has
effectively a larger dimensionality than the output pertur-
bation vector of WP, at the same length. NP compensates
this deficit by amplifying the smaller gradient projection
more strongly. It, thus, achieves the same mean update and
convergence speed as WP. However, it also more strongly
amplifies the reward noise that comes with larger pertur-
bation sizes, which results in a larger final error. The scaling

of Ef with M2Neff or M2T reflects the effective output
perturbation dimensions, MNeff or MT of WP or NP, and
additionally the general scaling of errors with M [Eq. (8),
Supplemental Material Sec. I, and Eqs. (S55)–(S57) [28] ].
Taken together, we observe that here WP learning works

just as well as or better than NP. Both algorithms have the
same speed of convergence, but the final error Ef of WP is
smaller than or equal compared to NP. The rate of
convergence decreases with increasing M and Neff .
Longer trial durations T harm NP by linearly increasing
Ef. Larger effective input dimensionality Neff similarly
harms WP. This result differs from the observation in
Ref. [9] that WP converges much (N-times) slower than NP.
The reason is that our networks learn a single temporally
extended input-output relation, while those in Ref. [9] learn
the weights of a teacher network, by trials with random
input of duration T ¼ 1. We explore the relation between
the results in detail in Sec. II H.

D. Weight diffusion

When the input has less than maximal dimensionality,
Neff < N, only certain combinations of weights read out
nonzero components of the input. This becomes particu-
larly clear for the considered rotated inputs: If WP adds a
perturbation to a weight mediating zero input, to an
irrelevant weight, the output and the error remain
unchanged. This missing feedback leads to an unbounded
diffusionlike random walk of irrelevant weights. For
unrotated inputs, the weight strength diffuses in irrelevant
weight space directions. We see below (Sec. II G) that the
weight diffusion harms performance when learning multi-
ple input-output patterns.
We find that, for WP in the limit of infinitesimally small

perturbations σWP → 0, all weights initially change and then
converge (Supplemental Material, Fig. S1 [28]). This is
because the learning-induced drift of relevant and the
diffusion of irrelevant weights both stop when the error
converges to zero: The error E is quadratic, such that for
infinitesimally small perturbationsEpert ¼ E at itsminimum.
In contrast, for finite perturbations a residual error remains
and weights continue to change. In particular, irrelevant
weights continue to diffuse [Fig. 2(b)(i)]. The quantitative
details of the weight diffusion process can be analytically
understood [Supplemental Material Sec. II, Eqs. (S61) and
(S64) [28] ]. Standard mechanisms such as an exponential
weight decay [29,30] confine their growth. Simultaneously,
they bias the relevant weights toward zero and therewith
increase the residual error [Fig. 2(b)(ii)]. Also, input noise
confines the weight spread, by adding error feedback to
irrelevant weights. Simultaneously, the noise increases the
final task performance error and enforces a lower learning
rate; see Fig. 2(b)(iii), Sec. II I, and Figs. 5(a) and 5(b).
NP does not generate weight diffusion in noise-free

networks: The rotated inputs make it obvious that in NP the
eligibility trace [Eq. (6)] selects only the weights from
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relevant inputs to be updated, since for irrelevant inputs we
have rjt ¼ 0 for all t such that ΔwNP

ij ¼ 0. Input noise
renders irrelevant inputs and their weight updates nonzero,
such that irrelevant weights diffuse also for NP (Sec. II I).
Differences in weight spread and updates between WP

and NP suggest experimental measurements to distinguish
which one of them underlies learning of a certain task:
As long as the noise is weak compared to the signal such
that the task can be satisfied with high precision, the spread
of irrelevant weights is with NP much smaller than with
WP [Fig. 5(b)]. Furthermore, a large variance in the
weight updates that is independent of presynaptic activity
together with a resulting weight spread that is largest for
weight directions that read out weak latent inputs point
to WP [Fig. 5(b) and Supplemental Material Sec. IV,
Eq. (S126) [28] ]. Consistent with this, prominent random
walklike weight changes that are unrelated to neuronal
activity and task learning are common in biological
neural networks [31]. Weight updates whose variance
scales with input strength but whose final spread is
independent of it [Fig. 5(b) and Supplemental Material
Sec. IV, Eq. (S128) [28] ] point to NP.

E. Unrealizable targets

In the previous sections, we assume that the target
outputs z�it could be exactly realized by setting the percep-
tron weights w equal to some target weights w�, z�it ¼P

N
j¼1 w

�
ijrjt. In general, however, the target outputs may

contain components d that cannot be generated by the
network, which is limited to producing linear combinations
of the inputs. Unrealizable components are orthogonal to
all inputs when interpreted as T-dimensional vectors,P

T
t¼1 ditrjt ¼ 0 ∀ i; j. The target may be written as a

sum of realizable and orthogonal unrealizable parts,
z�it ¼

P
N
j¼1 w

�
ijrjt þ dit. An illustration of such a target is

given in Fig. 3(a). In practice, unrealizable targets occur, for

example, in machine learning classification tasks, see
Sec. II N.
WP induces output perturbations δzit ¼

P
N
j¼1 ξ

WP
ij rjt,

which are linear combinations of the inputs. The components
of zpert − z� that are orthogonal to all inputs, d, thus always
remain unchanged, irrespective of the current student
weights and applied perturbations. This leads to the same
constant additive contribution Eopt ¼ 1=ð2TÞtr½ddT � to the
perturbed and unperturbed errors Epert and E [Eq. (8)]. It
cancels in the weight update rule [Eq. (3)] such that WP
learning is unchanged and Eq. (10) still holds when shifting
its final error toEWP

f;unr ¼ EWP
f þ Eopt [Eq. (S119) [28] ]. Eopt

marks the minimum error that necessarily remains even with
w ¼ w�, due to the unrealizable components.
In contrast, NP perturbs the outputs with white noise.

This noise generally has a nonzero component along d,
which affects Epert. Since such a component cannot be
realized through an update of the weights, the resulting
change of the error is noninstructive and represents reward
noise that adds noise to the updates. Consequently, while
the convergence factor a remains unchanged, the final error
of NP increases more strongly than for WP [Fig. 3(b)]. At
the optimal learning rate, the increase in final error
due to unrealizable target components is twice that of
WP: ENP

f;unr ≈ ENP
f þ 2Eopt [Supplemental Material Sec. I,

Eq. (S58) [28] ]. For Eopt > ENP
f , the coupling of node

perturbations to unrealizable target components becomes
NP’s main contribution to the part of the final error that
exceeds the unavoidable Eopt.

F. Input and perturbation correlations

Our results hold for very general sequences. In particular,
correlations in the input may be present or absent without
affecting learning. Furthermore, the T input-output rela-
tions can be temporally permuted. These invariances follow

(a) (b)

FIG. 3. Unrealizable target components harm NP learning. (a) General targets may contain a component that is perpendicular to any
input and, thus, unrealizable (red). (b) Final error after convergence as a function of the errorEopt that necessarily remains, since the target is
unrealizable. The final error ofWP (blue) is shifted only byEopt; that of NP (orange) increases twice as fast, by approximately 2Eopt. Data
points: mean and standard deviation (averaged over ten simulated runs) of the final error. Curves: theoretical predictions. Black: Eopt.
Insets: error dynamics for Eopt ¼ 0 (left) and Eopt ¼ 2 (right). Parameters: M ¼ 10, N; T ¼ 100, Neff ¼ 50, and σeff ¼ 0.04.
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straightforwardly from the weight update equations
(Supplemental Material Sec. V [28]). We note that
overly strong input correlations reduce the effective tem-
poral dimension of the input such that its effective
dimension cannot be kept up [cf. Fig. 1(c)], which affects
learning.
WP generates output perturbations that are automatically

adapted to the inputs (Sec. II E). To adapt NP to tasks with
temporal input correlations, we modify it to time-correlated
NP, NPc. We generate the correlated perturbations by
temporal low-pass filtering of white noise, with filtering
time constant τpertcorr. Other possibilities are to compose them
from low-frequency Fourier modes or to use perturbations
that are piecewise constant. As the correlation of the
perturbation decays during τpertcorr, for a reasonable repre-
sentation of the perturbation we need to specify it at Tpert

eff ¼
T=ðτpertcorr þ 1Þ time points with temporal distance τpertcorr þ 1.
For vanishingly short correlations, τpertcorr ¼ 0, Tpert

eff ¼ T and
NPc equals NP; a large filtering time constant generates
perturbations that vary slowly and have small effective
temporal dimension Tpert

eff .
If the inputs have similar temporal correlations, the

filtering of the perturbation concentrates its perturbative

power on the realizable output subspace, since this is
spanned by the inputs. This reduces the update noise due to
the quadratic reward noise from finite perturbation sizes
[cf. Eq. (S112) [28] ], because perturbations that are more
aligned with the output gradient require less amplification
to yield a sizable expected update along the weight
gradient. Furthermore, it reduces the linear reward noise
resulting from coupling to unrealizable target components
[cf. Eqs. (S108) and (S80) [28] ]. Both noise reductions
lower the final error. We find that NPc robustly improves
upon NP over a range of filtering time constants similar to
that of the inputs (Fig. 4). If the perturbations become too
smooth, however, they also lose power in the realizable
output subspace, which slows the learning of realizable
target components with higher frequencies down. This is
because the suppressed modes with their comparably small
amplitude contribute little to the projection of the pertur-
bations onto the T-dimensional output gradients (despite
being prominent in the latter), which results in a small
contribution to the error signal [Eq. (S3) [28] ]. This
contribution, in turn, determines the magnitude of the
mean weight update used to match an output mode to
the target. Consequently, the update part used to match the
high-frequency modes is small, and the matching takes a

(a) (b) (c)

FIG. 4. Temporally correlated perturbations improve NP if the input has similar correlations. (a) Final error of NPc versus the effective
time dimension Tpert

eff of its perturbations; smaller Tpert
eff means smoother perturbations. The inputs are constructed with T input

eff ¼ 20 (red
continuous line) or T input

eff ¼ 100 (uncorrelated, red dashed line). The final error of NPc decreases compared to that of NP (orange dot) for

Tpert
eff < T ¼ 100. For correlated inputs and Tpert

eff ≤ T input
eff ¼ 20, NPc’s final error reaches that of NP in a reduced task with T ¼ 20

(orange line; WP, blue line); for uncorrelated inputs and small Tpert
eff , it increases again. This increase is not caused by lack of

convergence. (b) Convergence time, measured as the number of trials until 95% of the final error correction is reached, versus Tpert
eff .

Learning gets considerably slower if the correlation times of the perturbation are longer than those of the input, i.e., Tpert
eff < T input

eff . The
same curve markings as in (a). (c) Simultaneous plot of error and convergence time of NPc [red line, data as in (a) and (b) for correlated
(solid line) or uncorrelated input (dashed line); thus, curves are obtained by varying Tpert

eff ; faint gray line, curves for uncorrelated input
with different learning rates η] and NP (orange, curves obtained by varying the learning rate η). For correlated inputs and similarly
correlated perturbations, NPc yields a true improvement over NP: It has simultaneously a smaller error and smaller convergence time.
For considerably longer correlation times, the final error saturates, but the convergence time increases (region with ndecaytrials > 1000). NP
with reduced learning rate η there yields a smaller final error at the same convergence time. For uncorrelated input, NPc does not yield a
true improvement. In particular, the smaller final error (a) can be achieved at smaller convergence times by NP with reduced η, even if
NPc is allowed to additionally adapt its learning rate (gray curves). Parameters: Neff ¼ M ¼ 10, N ¼ T ¼ 100, σeff ¼ 0.04, Eopt ¼ 2,
and 20000 trials. (a),(b) Mean and standard error of the mean (SEM, partly occluded). (c) Mean values and SEM of final error (red and
orange lines). In gray curves, η is modified relative to the red curve by a factor ranging from 0.5 (lowest curve) to 1.2 (highest curve) in
steps of 0.1.
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long time. With optimal perturbation correlation time
τpertcorr ≈ τinputcorr (Sec. IV), NPc approaches the performance
(as measured by final error and convergence speed) of NP
on a substitute task with T input

eff bins; see Figs. 4(a) and 4(b).
This indicates that our analytical considerations for NP
transfer to those of NPc with optimally correlated noise if
we take into account that the correlations effectively reduce
the trial duration to T input

eff . In particular, in Fig. 4, optimal
NPc performs worse than WP due to the low dimension-
ality and the remaining temporal extension of the task as
well as the unrealizable target components.

G. Multiple subtasks

In general learning tasks, inputs and targets may vary
from trial to trial. To obtain an intuition for how this
affects the speed of WP and NP learning, we here consider
a simplified case: The goal is to solve a task with an
overall effective input dimension of Ntask

eff . The task has the
same properties as the tasks before where each trial was
identical. In particular, it has Ntask

eff orthogonal latent inputs
of strength α2, and the inputs are rotated such that only the
first Ntask

eff inputs are nonzero. The task is, however, not
presented as a whole, but in pieces: In each trial, a random
subset of Ntrial

eff out of the first Ntask
eff inputs are active to

train the network. The error in an individual trial then
depends only on its MNtrial

eff trial-relevant weights, while
the performance on the full task depends on the MNtask

eff
task-relevant weights. The ratio Ntask

eff =N
trial
eff ¼ Pmarks the

number of trials needed to gather information on all task-
relevant weights.
NP updates only the weights relevant in a trial (Sec. II D).

Also, for tasks consisting of multiple subtasks, it can thus
operate at the learning rate that is optimal for a trial, η�NP ¼
1=½ðMNtrial

eff þ 2Þα2� [cf. Eq. (12)]. Because an update
improves only MNtrial

eff of the MNtask
eff task-relevant weights,

the convergence rate − ln a ≈ 1 − a of the expected error,
averaged over the input distribution, is smaller by a factor of
1=P than for a single input pattern [Supplemental Material
Sec. III, Eq. (S79) [28] ]:

a�NP ¼ 1 −
1

P
1

MNtrial
eff þ 2

: ð15Þ

WP, on the other hand, updates all weights such that the
weights that are irrelevant for the trial are changed randomly
(Sec. II D). This worsens the performance for the inputs of
other trials. Because there are now MNtask

eff task-relevant
weights whose fluctuations hinder learning, WP has an
optimal learning rate of only η�WP ¼ 1=½ðMNtask

eff þ 2Þα2�.
As for NP, each trial’s progress is only on 1=P of the task-
relevant weights, such that the optimal convergence factor
for WP on the full task is [Supplemental Material Sec. III,
Eq. (S78) [28] ]

a�WP ¼ 1 −
1

P
1

MNtask
eff þ 2

: ð16Þ

The convergence of WP is, thus, slower than that of NP by
roughly 1=P, the ratio of Ntask

eff and Ntrial
eff [Fig. 6(c)].

Our results have concrete implications for learning of
multiple actions such as sequences of movements [32].
They can be learned by splitting them into subsets, which
are called (mini)batches in machine learning. If we assume
for simplicity that individual data points are pairwise
orthogonal and have no time dimension, each batch
corresponds in our terminology to a subtask, the number
of batches to P, the dimensionality of the input data to
Ntask

eff , and the batch size Nbatch to Ntrial
eff . For MNtrial

eff ≫ 2,
Eqs. (15) and (16) thus imply that the convergence rate of
NP is independent of the batch size while that of WP is
proportional to the batch size and reaches NP’s conver-
gence rate for full batch learning (Supplemental Material,
Fig. S5 [28]). The same holds for the optimal learning rates
as α2 scales inversely with the batch size [Supplemental
Material Sec. III, Eqs. (S90), (S92), and (S93) [28] ].

H. Comparison with Ref. [9]

Reference [9] investigates how a student network learns
the responses of a teacher network to arbitrary input with
GD, NP, andWP, using patterns without temporal extent. In
contrast to our tasks with typically Neff < N or Ntask

eff < N,
successful learning in Ref. [9] requires one to match all
weights of the teacher network. In other words, the student
network is trained at its capacity limit, where (only) one
weight configuration fulfills the task. It learns from random
input patterns and the teacher’s responses to them. This is a
special case of the setup introduced in Sec. II G, where
(i) the task dimension equals the input dimension, Ntask

eff ¼
N (since the employed random input patterns lie in arbitrary
directions of input space), and (ii) there is no temporal
extent of the tasks, T ¼ 1. The latter implies that a single
input pattern has effective dimension Ntrial

eff ¼ 1: All N
inputs in a single pattern are linearly dependent, since they
are scalar, temporal vectors of length 1 (we could rotate the
input pattern such that it has only one nonzero entry).
A comparison of our results for the convergence speed

in the described special case with those of Ref. [9] reveals
that they agree approximately when straightforwardly
setting Ntrial

eff ¼ 1, Ntask
eff ¼ N, and P ¼ Ntask

eff =N
trial
eff ¼ N in

Eqs. (15) and (16):

Algorithm Our results Results from Ref. [9]

WP a�WP ¼ 1 − 1
N

1
MNþ2

a�WP ¼ 1 − 1
Nþ2

1
MNþ2

NP a�NP ¼ 1 − 1
N

1
M·1þ2

a�NP ¼ 1 − 1
Nþ2

1
Mþ2

.

The reason for the remaining difference is that the individual
inputs in Ref. [9] are drawn from a Gaussian distribution,
without subsequent normalization to the same strength like
in our scheme. We obtain P → N þ 2 and, thus, perfect
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agreement if we adapt our setting such that the summed input
strength

P
N
j¼1 α

2
j fluctuates as it does in Ref. [9].

I. Input noise

Inputs in biological neural networks are noisy. To
investigate the impact of input noise on WP and NP, we
add white noise to all input neurons. Noise in the relevant
inputs causes a finite error that remains even for optimal
weights. Moreover, the irrelevant weights are not com-
pletely irrelevant anymore: They mediate noise (instead of
zero) input, have an optimal value of zero, and lead to
significant output error if they become too large. Since the
input noise is different in the perturbed and unperturbed
trials, it becomes a source of additional reward noise. We,
thus, expect that larger input noise requires stronger weight
or node perturbations to ensure that the beneficial, error
gradient-related part of the reward signal is not dominated
by reward noise (cf. also Ref. [33]). Furthermore, an
increase in overall noise and additional weights that
become more and more important should require the
integration of more trials to extract gradient information.
We, therefore, expect a reduction of the optimal learning
rate with increasing input noise strength. Our numerical
simulations confirm these points; see Fig. 5(a) (increase in
task error and optimal error) and Supplemental Material
Fig. S6 [28] (estimation of optimal learning rates and
perturbation sizes).
We find that in the presence of input noise the irrelevant

weights diffuse in WP and NP [Figs. 2(b)(iii) and 5(b)].
They settle at a finite spread, which contributes to the error
[Fig. 5(c)]. The diffusion stops because WP and NP
update irrelevant weights on average toward zero, due
to their generation of errors. For WP, the final spread
increases with decreasing noise strength and reaches
infinity for zero noise. [Note that Fig. 5(b) does not show
the final, stationary spread.] For NP, the diffusion of
irrelevant weights is caused by their noise-induced
updates and is in contrast to the noise-free case. Their
final spread is independent of the noise strength and
discontinuously drops to zero at zero noise. To explain
this, we identify (weak) noise input with (weak) deter-
ministic input and apply our findings for noise-free
networks with inhomogeneous input strength distribution:
For WP, each weight contributes equally to the final error,
and the final spread scales like one over the square root of
the input strength [Supplemental Material Sec. IV,
Eq. (S126) [28] ]. For NP, weights related to small inputs
contribute only little to the error, and the final spread is
independent of input strength [Supplemental Material
Sec. IV, Eq. (S128) [28] ].
The simulations [Fig. 5(a)] and our analytical under-

standing also show that for finite learning time or when
introducing a weight-limiting mechanism there is no
discontinuity in the error when increasing the input noise

from zero to some finite value. The previous error analysis,
therefore, stays valid as the limit of weak input noise. For
WP, this is because limiting the learning time or the weights
limits the final spread of irrelevant weights. This happens in
such a way that sufficiently small noise has only a
negligible effect on the output (Supplemental Material
Sec. IV [28]). For NP and weak input noise, the final
spread of irrelevant weights is approximately equal to that
of the relevant weights and, thus, also limited.
Finally, we observe that WP learning proceeds for weak

input noise in four phases [Fig. 5(c)]. In the first phase, the
relevant weights are learned, such that the error decreases.
Since the noise is small, the error due to its presence in
relevant inputs is small. In the second phase, the error
remains approximately constant, at a low level. In the third
phase, the irrelevant weights, which have been diffusing
all the time, become so large that they amplify the input
noise sufficiently to influence the output despite the small
noise amplitude. The error therefore increases. In the
fourth and final phase, this error becomes so large that WP
counteracts the further diffusion of weights. The error

(a) (b)

(c)

FIG. 5. Influence of input noise on the task error and on the
spread of irrelevant weights. (a) Task error (fraction of the initial
error) of WP (blue) and NP (orange) at 10 000 trials (curves,
means; shading, standard deviations) as a function of inverse
signal-to-noise ratio (SNR−1). The noise in the relevant inputs
renders the optimal error (black) nonzero. The plot covers SNRs
ranging from infinity down to 1. (b) Spread (standard deviation)
of irrelevant weights (mean and standard deviation) at 10 000
trials. (c) Evolution of error (blue, mean and SEM) and spread of
irrelevant weights (red, mean and SEM) in WP proceeds for weak
input noise (SNR−1 ¼ 0.1) in four phases (solid curve, phases
indicated by numerals). Appropriate weight decay stops the
dynamics in phase II and induces long-term results as in the
noise-free case [dashed curve; cf. also Fig. 2(b)(ii)]. (a) and
(b) use the learning rates that minimize error after 10000 trials
[gray vertical line in (c)] for a given noise level (Supplemental
Material, Fig. S6 [28]). This implies that WP’s error in (a) is the
one in phase II. Parameters: M ¼ Neff ¼ 10, N ¼ T ¼ 100,
α2 ¼ N=Neff ¼ 10, σeff ¼ 0.04, Eopt ¼ 0, and γWD ¼ 0.999 98.
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therefore saturates, at a high level. The four phases can be
clearly temporally separated. [Note the logarithmic axis
scale chosen in Fig. 5(c).] We note that we observe
divergence of the error for sufficiently large irrelevant
weights if the learning rate is too large or the perturbations
are too weak (Supplemental Material, Fig. S6 [28]). If
learning stops in the second phase, the contributions from
irrelevant weights can be neglected. The same holds if a
limiting mechanism stops the diffusion of irrelevant
weights at the level that they reach in the second phase,
while only mildly affecting the relevant weights, because
they converge at a shorter timescale [Fig. 5(c), dashed
line: network with weight decay; cf. also Fig. 2(b)(ii)].
Interestingly, WP can then reach a lower (final) error than
NP and is less affected by input noise; cf. Fig. 5(a).

J. Conclusions from the theoretical analysis
and new learning rules

Our theoretical analysis reveals a simple reason for the
differences between WP and NP: WP produces better
perturbations, while NP better solves the credit assignment
problem. Output perturbations caused by WP lie, in
contrast to NP, always in the realizable output subspace
and do not interfere with unrealizable target components.
On the other hand, NP updates only (trial-)relevant weights,
whileWP updates all weights such that the (trial -)irrelevant
weights change randomly. Small input noise does not
change the overall picture. When single trials capture only
a small part of the full task, WP learning slows down.
Training in batches reduces the disadvantage.
Based on these insights, we introduce two novel

learning rules, WP0 and hybrid perturbation (HP)
[Figs. 6(a) and 6(b)]. WP0 adds a simple modification to
WP: not to update currently irrelevant weights, i.e., weights
whose inputs are zero (or close to it). This solves part of
WP’s credit assignment problem, as changing the weights

does not improve the output, and it avoids diffusion of
irrelevant weights. The improvement is especially large
when inputs are sparse such that many inputs are (close to)
zero [Figs. 6(a) and 6(c)], which might be frequently
the case in biological neural networks [34–36]. HP aims
to combine the advantages of WP and NP by generating
the output perturbations like WP, through perturbing
the weights, and generating updates like NP, using its
eligibility trace. The learning rule performs well when all
latent inputs have (approximately) the same strength α2

[Figs. 6(b) and 6(c)].
WP0 and HP perform for the tasks used in the theoretical

analysis section as well as WP and NP or better than both
[Fig. 6(c)]. WP0 is, however, benefited by the assumption
of rotated inputs (in contrast to WP and NP), as it renders
the input maximally sparse. Furthermore, the latent inputs
have equal strengths, benefiting HP. We observe only slight
improvements of WP0 over WP for the reservoir comput-
ing and MNIST (Modified National Institute of Standards
and Technology database) task, due to the lack of coding
sparseness in our networks. HP performs much worse than
WP and NP in the reservoir computing and similar to NP in
the MNIST task. We explain this by the relevance of weak
inputs [Supplemental Material Sec. VI, Eq. (S147) [28] ].
Adding appropriately equalizing preprocessing layers may
mitigate HP’s problems. Furthermore, weak inputs may be
irrelevant for biological learning. Since HP generates
perturbations of the same class as the inputs and suppresses
the learning of weights related to small inputs, we expect it
to also work well for correlated input (as in Fig. 4) and in
the presence of input noise.

K. Simulated learning experiments

In the following, we apply WP and NP to more
general networks and temporally extended tasks with non-
linearities. We cover reservoir computing for dynamical

(c)(a) (b)

FIG. 6. New learning rules and learning of tasks consisting of multiple subtasks. (a) WP0 does not update weights that mediate zero
input, avoiding their diffusion. (b) Hybrid perturbation (HP): NP scheme with output perturbations induced by WP. (c) WP converges
approximately P ¼ 5 (number of subtasks) times slower than NP, but in the presence of unrealizable target components [or for finite σeff
and Ntrial

eff < T; Supplemental Material Sec. III, Eqs. (S87)–(S89) [28] ] to a lower final error. For the used maximally sparse and equally
strong inputs, WP0 and HP combine the higher convergence rate of NP with the low final error of WP. Error curves (solid, theoretical
predictions; shaded, ten exemplary runs) are for M ¼ 10, N; T ¼ 100, Ntask

eff ¼ 50, Ntrial
eff ¼ 10, negligible σeff , and Eopt ¼ 2.
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pattern generation, learning of recurrent weights in a delayed
non-match-to-sample task, and a temporally extended,
reward-based learning version of MNIST. The results con-
firm and extend our findings for analytically tractable tasks:
They often show similar or superior performance of WP in
temporally extended tasks relevant for biology and machine
learning.

L. Reservoir computing-based drawing task

In reservoir computing schemes, an often low-
dimensional input is given to a recurrent nonlinear network.
The network effectively acts as a nonlinear filter bench: It
expands the input and its recent past by applying a set of
nonlinear functions to them. Each unit outputs one such
function, which depends on the interactions within the
recurrent network. Like a “computational reservoir,” the
network thereby provides in its current state the results of
manifold nonlinear computations on the current and past
inputs. A desired result can be extracted by training a simple,
often linear readout of the reservoir neurons’ activities.
Reservoir computing schemes are widely used as models
of neurobiological computations [37–41], since learning in
them is simpler and seems more easily achievable with
biological machinery than learning of full recurrent and
multilayer networks. Furthermore, the schemes explain the
presence of inhomogeneity and apparent randomness in
neuron properties and connectivity in biological neural
networks as helpful for enriching the computational reser-
voir. Here, we find that, when learning temporally extended
output patterns with a reservoir computing scheme, WP can
learn as well as or better than NP and NPc.
We consider a recurrently connected reservoir of

N ¼ 500 rate neurons driven by five external inputs of
length T ¼ 500. Inspired by the behaviorally relevant task
of reproducing a movement from memory—here, drawing
a figure—the task is to generate the x and y coordinates of a

butterfly trajectory [42,43] at theM ¼ 2 outputs by training
a linear readout [Fig. 7(a)]. The trajectory is nontrivial in
that it is not realizable from the external inputs. In fact, it
requires reading out from many reservoir modes [Fig. 7(b),
dashed gray line].
Formally, the task is similar to the setting discussed

above, with the difference that there is a wide distribution
of different, nonzero input strengths α2μ. The evolution of
expected error is then best described by splitting the error
E ¼ P

N
μ¼1 E

μ into different error components, each of
which is associated with the weights that read out from
a latent input rμt [Supplemental Material Sec. IV,
Eq. (S103) [28] ]. In WP and NP, the evolution of the
error components follows a matrix exponential where
different components decay at different rates and interfere
with each other. Components that decay relatively quickly
may be the main source of improvements in the beginning
of training, whereas more slowly decaying components
dominate the error toward the end. This effect can be seen
in the approximately piecewise linear error decay in the
logarithmic plot in Fig. 7(c).
Figure 7(c) compares the performance of WP, NP, and

NPc in the drawing task. Perturbation size is finite,
σeff ¼ 5 × 10−3. WP converges faster initially, which
may be typical for tasks with distributed input strengths
[Supplemental Material Sec. IV, Eq. (S117) [28] ]. It also
achieves a lower final error. This is compatible with the
observation that the effective dimension of the reservoir
dynamics, as measured by the participation ratio (PR ≈ 5),
is much smaller than the temporal extent of the task: The
resulting smaller effective perturbation dimension of WP
(MPR versus MT for NP versus MTpert

eff for NPc) yields an
advantage for WP [Figs. 1(b) and 4(a)]. NPc reaches a
lower final error than NP. We optimize its Tpert

eff using a
parameter scan (Supplemental Material, Fig. S8 [28]).
From our simulations, we cannot completely exclude that

(a) (b) (c)

FIG. 7. WP outperforms NP on a reservoir computing-based drawing task. (a) Schematic of the recurrent, fixed reservoir receiving five
external inputs. Only readout weights are learned. (b) Target (black) and final outputs of WP (blue), NP (orange), and NPc (red). A least
squares fit (gray, dashed line) using only the first five principle components of the reservoir dynamics demonstrates that the task
critically depends on reading out further, weaker dynamical components. (c) Error curves on a logarithmic scale. WP reaches a lower
final error than NP and NPc, with NPc improving on NP; cf. also (b). Inset: early error evolution. There is a considerable improvement
already during the first 50 trials. The curves show median (solid) and interquartile range between first and third quartile (shaded) over
1000 runs of the same network with different noise configurations.
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the improvement is (in part) due to an effective decrease in
learning rate, resulting from a longer correlation time in the
perturbations than in some relevant inputs. For the bio-
logically less relevant case of infinitesimal perturbation
sizes, the performances of WP and NP are similar
(Supplemental Material, Fig. S7 [28]) (compatible with
Fig. 1 with b ¼ 0). Toward larger trial numbers, the
convergence of WP becomes slower: WP has difficulties
with adjusting weights mediating weak inputs, since the
impact of their perturbation on the error is small; the same
effect underlies the weight diffusion in Fig. 2. Simulations
indicate that the convergence is slower only by a constant
factor of the order of 1 and that the optimal learning
rate can be well estimated from the participation ratio
(Supplemental Material, Fig. S9 [28]).

M. Delayed non-match-to-sample task

To ensure analytical tractability and for simplicity, so
far we made a few biologically implausible assumptions.
Specifically, only connection weights to linear units were
trained, each trial consisted of a perturbed and an
unperturbed run, and mostly the exact same input was
used in each trial. In the following, we show that our
findings generalize to settings without these assumptions.
For this, we consider the learning of a DNMS task
(temporal XOR) by nonlinear recurrent networks.
DNMS tasks and closely related variants are widely used
in both experiment [44] and theory [14,45], where they
serve as simple working memory-reliant, not linearly
separable decision-making tasks. We use the same setting
as Ref. [14], which shows that a new variant of NP is able
to solve the DNMS task. In particular, the setting is not
adjusted to WP. The network consists of 200 nonlinear
rate neurons receiving input from two external units u1
and u2. One of the network neurons, whose rate we denote
with z, serves as its output [Fig. 8(a)]. In each trial, the
network receives two input pulses, where each pulse is a
200-ms-long period with either u1 or u2 set to 1, and
subsequently has to output 1 for 200 ms if different inputs
are presented and −1 if the same inputs are presented
[Fig. 8(b)]. There is a 200-ms-long delay period after each
input pulse.
We train all recurrent weights using the usual update

rules [Eqs. (3) and (6)] but replace the error of the
unperturbed trial by an exponential average of the errors
of the previous trials [12–14]. Hence, each trial now
consists only of a perturbed and not additionally an
unperturbed run. We first assume that the exact perturba-
tions ξ are accessible for the weight update, which seems
biologically plausible for WP (cf. Sec. III) but less so for
NP (cf. Sec. III and Ref. [14]). Therefore, we also compare
WP and NP to the biologically plausible version of NP
proposed by Ref. [14], which avoids this assumption: In the
weight update rule, it approximates the exact node pertur-
bations ξNP with a nonlinearly modulated difference

between the momentary input to a neuron and its short
term temporal average (see Sec. IV for more details).
Figure 8(c) shows the performance of the three update

rules in terms of their accuracy over the last 100 trials,
where a trial is considered successful if the mean absolute
difference between z and the target output is smaller than 1.
We find that all update rules learn the task comparably well
and reach perfect accuracy within at most 2000 trials when
considering the median of network instances. Thus, our
previous findings that WP can perform as well as or better
than NP in simplified settings extend to the considered
biologically plausible setup. That means WP can perform
well for nonlinear neuron models, recurrent connectivity,
and when the error of the unperturbed network is not
available. Furthermore, the results indicate that approxi-
mating the perturbation as in Ref. [14] only mildly impacts
the performance of NP for the considered task. Finally, we
apply NPc to the task, which does not yield an improve-
ment over NP (Supplemental Material, Fig. S12 [28]).
Together with the similar performance of WP and NP, this
indicates that the temporal dimension of the perturbation
has little effect on task performance, perhaps because the
period in which the target value needs to be assumed is
rather short and the output is otherwise unconstrained.

(a) (b)

(c)

FIG. 8. WP performs as well as NP on a DNMS task.
(a) Schematic of the recurrent network with inputs u1 and u2
and output z. All network weights are learned; i.e., for WP, all
network weights (blue) are perturbed, and for NP, all network
nodes (orange) are perturbed. (b) Inputs and outputs during
example trials. Top row: inputs u1 (green) and u2 (purple) for the
four different trial types. Bottom row: outputs for WP (blue), NP
(orange), and the version of NP proposed by Ref. [14] (black) for
trials 1000–1003 for the inputs shown above. Gray bars show
target outputs. (c) Accuracy during training. WP (blue) performs
similarly well as NP (orange) and the version of NP used by
Ref. [14] (black). There is a noticeable transient slowdown at an
accuracy of 75%, which corresponds to the successful learning of
three out of the four different trial types. Solid lines show the
median, and shaded areas represent the interquartile range
between the first and third quartile using 100 network instances.
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N. MNIST

Finally, we apply WP and NP to MNIST classification.
We use batches of images to train the networks. Each time
step thereby corresponds to the presentation of one image,
and the networks receive error feedback only at the end of
a batch. This allows us to test how well WP and NP work
on a more complicated, temporally extended task and in
networks with a multilayer structure. In addition, it allows
us to study how our analytical results for the learning of
multiple input patterns (Sec. II G) extend to real-
world tasks.
We use a two-layer feed-forward network with ten

output neurons and 100 neurons in the hidden layer
[Fig. 9(a)]. It learns via the rules [Eqs. (3) and (6)],
where T equals the batch size Nbatch. Hence, the pertur-
bation is different for each image in the case of NP, while
it is the same for WP. We test WP and NP for batch sizes of
Nbatch ∈ f1; 10; 100; 1000g. For each batch size, we deter-
mine the best-performing learning rates η and perturbation
strengths σ2WP and σ2NP via grid searches. The perturbation
strength has, however, little impact on performance,
indicating that the final error is not restricted by reward
noise due to finite size perturbations [Eqs. (13) and (14)].
We find that for WP the performance improves dras-

tically with increasing batch size [Fig. 9(b)]. The final test
accuracy is only about 69% for a batch size of 1 but
reaches 92% for Nbatch ¼ 1000. Simultaneously, the opti-
mal learning rate increases strongly, by a factor of
approximately 50 [Supplemental Material, Fig. S10(c)
and Table S2 [28] ]. For comparison, the stochastic
gradient descent (SGD) rule, which implements super-
vised not reward-based learning, reaches accuracies of
95%–98% for the considered batch sizes. In contrast, the
learning curves of NP appear to be entirely independent of

the batch size [Fig. 9(b)]; the final test accuracy is always
about 86% and the optimal learning rate is constant as
well. We also apply NPc to the task. The inputs are
temporally uncorrelated, because the elements of the
batches are drawn randomly. Based on our previous
observations for uncorrelated input [Fig. 4(c)], we there-
fore expect that NPc performs similar to or worse than NP.
The numerical experiments confirm this: Performance
deteriorates with increasing perturbation correlation time;
the effect is more pronounced with larger batch size
(Supplemental Material Fig. S12 [28]). In conclusion,
larger batch sizes, as commonly used in machine learning,
favor WP, while smaller batch sizes favor NP (and NPc).
An improvement of WP with batch size and NP’s

independence of it are in agreement with our theoretical
analysis Sec. II G. However, from this analysis we also
expected that WP’s learning rate can reach at most that of
NP for large batch size. NP’s slower convergence suggests
that it is more susceptible to deviations of the network
architecture from linear, single-layer networks. Indeed,
when using single-layer networks, NP’s performance
improves, while the opposite holds for WP and SGD
(Supplemental Material Fig. S11 [28]). In a single-layer
linear network with realizable targets, NP performs better
than WP even for large batch sizes (Supplemental Material
Fig. S11 [28]), consistent with our analytical findings that
training with different subtasks (here, different batches)
harms WP (Sec. II G) while the absence of unrealizable
targets benefits NP (Sec. II E).
The results are particularly remarkable when naively

comparing the number of perturbed nodes and weights:
For the network considered here, there are only 110 output
and hidden nodes but 79 510 weights (including biases).
Nevertheless, WP can clearly outperform NP. Also, a

(a) (b)

Input

Hidden

Output 910

FIG. 9. WP can outperform NP on MNIST. (a) Schematic of the used fully connected, two-layer network. All network weights are
learned; i.e., for WP all network weights (blue) are perturbed, and for NP all network nodes (orange) are perturbed. (b) Test accuracy as a
function of the number of weight updates for WP (blue) and NP (orange) for different batch sizes. NP does not profit from increasing the
batch size and always reaches a final accuracy of approximately 86%. WP improves considerably with increasing batch sizes and
reaches a final accuracy of approximately 92% for Nbatch ¼ 1000. Solid lines show the mean, and shaded areas show the standard
deviation using five network instances.
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comparison of the actual perturbation dimensions cannot
explain the better performance of WP in, e.g., Fig. 9(b)
lower left (WP pert. dim., 79 510; NP pert. dim.,
110 × T ¼ 11 000).

III. DISCUSSION

Our results show that WP performs better than NP for
tasks where long trials capture most of the task’s content.
This might seem paradoxical, as NP incorporates more
structural knowledge on the network, namely, the linear
summation of inputs. However, WP accounts for the fact
that the weights in a neural network are (approximately)
static. Furthermore, by perturbing the weights, it implicitly
accounts for low input dimensionality and generates only
realizable output changes. Therefore, it generates better
tentative perturbations. This leads to less noise in the
reward signal and better performance (smaller final error
and sometimes faster convergence) in the tasks where WP
is superior to NP.
Our theoretical analysis shows that the lower noise in

WP first results from an effective perturbation dimension
that is lower than NP’s if the temporal extent of a task is
larger than its input dimensionality, T > Neff . Second,
factors such as the attempt of NP to realize unrealizable
targets contribute. Temporally extended tasks with dura-
tions on the order of seconds and low dimensionality occur
frequently in biology, for example, in motor learning and
working memory tasks. In line with perturbation-based
learning, biological movements are endowed with noise,
which helps their learning and refinement [46]. The
associated neuronal dynamics in the brain are confined
to a low-dimensional space, a property shared by many
types of biological and artificial neural network activity
[47–49]. The dynamics for simple movements as inves-
tigated in typical experiments are embedded in spaces of
dimension of the order of 10 [19]. This indicates low
effective input dimensionality Neff at the different process-
ing stages. The effective muscle activation dimensionality
is similarly low [20,50]. Neurons under in vivo conditions
can faithfully follow input fluctuations on a timescale of
10 ms [51], and significant changes in neuronal trajectories
happen on a timescale of 100 ms [19,21,52]. For the
learning of a movement of duration 1 s, this suggests an
effective temporal dimension of about 10–100 similar to the
expected input dimension. This implies that WP as well as
NP and NPc are promising candidates for the learning of
simple movements. Our results indicate that WP is superior
if the movements are longer lasting or lower dimensional.
We explicitly study the learning of movement generation

(drawing task) and of a working memory task (DNMS). The
numerical simulations show thatWP performs similarly well
or better compared toNP. In a task generally investigating the
learning of complicated nonlinear, temporally extended
input-output tasks (MNIST), WP outperforms NP as soon
as the tasks have sufficient temporal extent.

As another concrete application, consider the learning
of the single song in certain birds. A single, stereotypical
input sequence in a “conductor area” (HVC) may drive the
circuit [35,53]. The effective input dimension Neff is, thus,
at most as large as the temporal dimension T of the task.
Based on recent experiments, Ref. [53] proposes that the
output of the tutor and experimenter area (LMAN) is
modified by reinforcement learning via NP, such that it
guides the motor area (RA) to learn the right dynamics.
Our analytical results predict that WP is as well or better
suited to achieve this task, since Neff ≤ T. Earlier work
suggests that WP [22] or NP [17] may directly mediate the
learning of the connections from HVC to RA. Because of
HVC’s very sparse activity, WP0 is highly suitable for such
learning. Reward-based learning of mappings between
conductor sequences and downstream neural networks
may also be important for different kinds of precisely timed
motor activity [54,55] and for sequential memory [56,57].
Biological neural networks are inherently noisy. We

find that WP and NP induce two types of weight update
noise: credit assignment and reward noise. We understand
their impact analytically. Additional feedback or output
noise implies additional reward noise with like effects.
We, thus, additionally study only the impact of input noise
on the learning of linear networks. Our simulations show
that the convergence time and the final error increase with
the input noise strength. The increase is smaller in WP
than in NP. We further find that our results with zero noise
are recovered in the limit of small noise compared to the
strength of the relevant latent inputs, if the learning time is
finite. The same holds for WP also if the weights are
appropriately limited, for example, due to weight decay.
The fact that animals can learn to perform tasks with high
precision, i.e., with small final error, indicates that the case
of small noise may be the biologically relevant one. The
results of WP and NP learning with noisy inputs can be
understood analytically from our findings on inhomo-
geneous input distributions (Supplemental Material
Sec. IV [28]). Also, the considered DNMS and MNIST
tasks contain input noise: the DNMS task because of the
randomly chosen initial conditions and the MNIST task
because of the naturally noise-afflicted input images. We
conclude that the finding of similar or better performance of
WP compared to NP in temporally extended, low-dimen-
sional tasks may readily apply to biologically plausible,
noisy networks.
WP and NP have biologically plausible implementa-

tions. NP requires that the plastic synapses can keep track
of their input and the somatic perturbations (which may
arrive from a tutor or experimenter neuron). Biologically
plausible mechanisms for this have been proposed for tasks
with both immediate reward [12,13] and reward at a
temporally extended trial’s end [14]. Their underlying
idea is to assume that the perturbation fluctuates more
quickly than the other input. The present fluctuation can
then be approximately isolated by subtracting a short-term
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temporal average of the past overall input from the present
one [12,13]. This difference replaces the injected pertur-
bation in the eligibility trace. For tasks with late reward,
the eligibility trace needs to integrate a nonlinearly
modulated version of the described difference [14].
This prevents the cancellation of a perturbation’s effect
by the subsequent change in the average that it evokes,
because the peak in the original perturbation is sharper
and higher than the one in the average. We use this
learning model of Ref. [14] in Fig. 8. The biological
implementation of WP may be even simpler. A neural
network needs to generate labile random weight changes
and keep track of them. They should be approximately
constant during a task and enhanced, deleted, or reversed
by a subsequent reward signal. Experiments on timescales
from minutes to days find spontaneous changes in the
synaptic weights, which have similar strength as changes
due to activity-dependent plasticity [31]. Such changes
might generate the perturbations required for our WP
scheme. Previous work suggests also synaptic unreli-
ability to provide the perturbations for WP [58]. This
fits into our scheme of static weight perturbations if
neurons spike once during a trial or if they burst once
and the synaptic transmission is restricted to a single
time bin. Another source of the required randomness
may be fluctuations of activity-dependent plasticity,
while the deterministic baseline acts as a useful prior.
If the baseline is unrelated to the task, it is with high
probability orthogonal to task-relevant directions (due to
the high-dimensional weight space) and not harm
learning, similar to the weight diffusion in WP. In this
way, the fluctuations of activity-dependent plasticity,
rather than their deterministic part, may be the source of
learning.
Modulation of weight changes by reward is observed in

various experiments [59,60]. As an example, the poten-
tiation of synapses is enhanced or reversed depending on
the presence or absence of a temporally close dopamine
reward signal [61]. Also, other factors play a role;
potentiation can, for example, be reversed within a “grace
period” of tens of minutes by a change of environment
[62]. The consolidation and amplification of changes may
be dependent on plasticity-related proteins, which are
upregulated by reward and for which the synapses com-
pete (synaptic tagging hypothesis) [60,63]. A posteriori
modifications of tentative synaptic weight changes are
also assumed in the reinforcement learning scheme of
reward-modulated Hebbian plasticity [64,65], which is
closely related to WP.
WP applies a random perturbation vector to the

weights, measures the error change to obtain a rein-
forcement signal, and applies as weight update the
perturbation modulated by the reinforcement signal.
The improvement, therefore, follows on average the
weight gradient. A related approach is to randomly
perturb and accept the perturbation if it leads to a better

performance [22]. This simple instance of an evolutionary
strategy [66,67] is also applicable if there is no gradient.
Our results for WP suggest that this and related evolu-
tionary learning strategies might benefit from tasks that
are low dimensional, as reported previously [68], and not
be harmed by their temporal extension. The sketched
simple evolutionary learning may in the brain generate
structural improvements: Experiments show that synaptic
turnover occurs in the presence but also spontaneously in
the absence of neuronal activity [69–72]. This may reflect
the random elimination and creation of synapses and their
consolidation by activity-dependent plasticity [73–78].
The basis of consolidation is that mainly weak synapses
are removed such that strengthening through Hebbian
learning causes the long-term presence of a synapse.
Furthermore, Hebbian learning counteracts spontaneous
synaptic weight changes, which could otherwise weaken
useful synapses and ultimately lead to their removal.
Network models show that restructuring with subsequent
selective consolidation can recruit sparse available
connectivity for task learning, prevent catastrophic for-
getting, and may explain the benefits of dividing learning
into several temporally distinct phases [73,75,77].
Furthermore, it may explain the experimental observation
that there are commonly multiple synapses between
connected neurons [74,76,78]. The signal for the strength-
ening of a tentatively established synapse may be inter-
preted as a reinforcement signal for its presence. This
signal is generated if the pre- and postsynaptic neurons are
coactive, due to external stimulation, or recall mediated by
other, already strengthened synapses. In contrast to WP,
the reinforcement signal is, therefore, specific to a neuro-
nal connection (consisting of the possible multiple direct
synapses from a presynaptic to a postsynaptic neuron),
which simplifies learning. In particular, any useful new
synapse is consolidated (unless the coactivity of the pair
of connected neurons stops due to other changes). In
contrast, in WP, tentatively applied useful weight changes
can be easily reverted due to harmful ones in other parts
of the weight perturbation vector. In a related model,
Ref. [79], consolidatory strengthening is implemented
with NP instead of Hebbian learning. This allows one
to learn tasks based on a global reward signal. The
synaptic weight fluctuations in the model induce ran-
dom changes in task-irrelevant directions similar to the
weight diffusion that we observe in WP. Our results
suggest to directly exploit the synaptic weight fluctuations
for consolidatory synaptic strengthening by using WP
when learning low-dimensional and temporally extended
reward-based tasks.
WP is proposed in several variants. They differ in (i)

the task setup, for example, instantaneous [7,9] or tempo-
rally extended tasks [8,22,58], (ii) the implementing net-
work, for example, rate [22] or spike-based [58,80]
networks, (iii) the perturbation scheme, where all weights
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are simultaneously perturbed [7,8,58] or only one weight at
a time [15], (iv) the computation of the weight update, by
correlating reward and perturbation [7–9,11,58] or direct
estimation of the gradient components (for the single
weight perturbation scheme) [9,15], (v) the estimation of
the success of the perturbed network, which may involve a
comparison of the obtained reward to an unperturbed
baseline [8,9] or a running average [22,58] or it may
consider the reward only [7,58], and (vi) the weight update,
which may be proportional to the success of the network
[7–9,11,58] or independent of its size as long as there is an
improvement [22]. A similar diversity of NP variants exists
[9–14,16,17,24,79,81,82].
The tasks considered in our article are temporally

extended. The reward is provided at the end of the trial
but influenced by earlier output states. This is consistent
with many tasks in biology [1,5,14,22] and with the
learning schemes by Refs. [8,10,14,22]. We choose a
WP rule that is biologically plausible, as it involves
simultaneous perturbations to all weights and correlates
reward and weight change. The success measure compares
the obtained reward to the reward of an unperturbed
network in order to reduce the update noise [8,9]. In
particular, this avoids unfavorable perturbations being
associated with positive reward feedback. Finally, the
weight update is proportional to the measured success in
order to ensure that it occurs on average parallel to the
reward gradient. The choices are identical to those by
Refs. [8,9] for temporally not extended tasks. Specifically,
the results in Ref. [9] appear as a special case of our results
for multiple input patterns; if the task dimension is
maximal, single trials have no temporal extent, and the
inputs have fluctuating amplitude (see Sec. II H).
We choose the NP scheme such that it matches the WP

scheme. It is a discrete-time version of the NP scheme
proposed by Ref. [10] and an extension of the scheme by
Ref. [9] to temporally extended tasks. In biologically
plausible implementations of WP and NP, the reward
should be compared to an intrinsically generated predic-
tion, such as an average of previous rewards [12–14] or the
reward of another perturbed trial [82]. In the delayed non-
match-to-sample task, we thus replace our standard unper-
turbed baseline by such an average. This also allows a
direct comparison with the NP scheme by Ref. [14]. In
Sec. II I, the perturbed and unperturbed trials have different
input noise, such that E is no longer the exact unperturbed
counterpart of Epert.
To exploit correlations in the inputs with a node

perturbation learning rule, we introduce NPc, which is
identical to standard NP apart from using temporally
correlated, smoothed node perturbations. We find that
the temporal correlations are usually beneficial if also
the inputs are (similarly) correlated. This is in contrast
to Ref. [13], which observes a detrimental effect already
of short correlations for a node perturbation variant that

relies on high-frequency perturbations. Other previous
studies inject white noise perturbations only [10,12,16,17].
Our simulations with linear networks indicate that the
perturbation correlation time of NPc should optimally match
that of the inputs; NPc then performs similar to NP in a task
with reduced temporal extension.
NP is studied in various concrete neurobiological set-

tings. Previous work uses feedforward networks with NP to
model the learning of coordinate transforms in the visual
system [83], birdsong [17,53], and motor output [12,84].
Reference [13] shows that reservoir computers with NP
trained, fed back readouts can learn periodic inputs,
routing, and working memory tasks. Reference [14] uses
a fully plastic recurrent network for the learning of a
delayed non-match-to-sample, a selective integration, and a
motor control task. Finally, NP is often employed for
reference and comparison [85–91]. WP is considered less
in studies of neurobiological learning. It is implemented in
early feedforward network models of birdsong [92] and
binary output task learning [58,80]. Furthermore, it is
occasionally used for comparison [86,88]. Very recently,
Ref. [4] has shown that recurrent neural networks can be
pretrained with WP and the reservoir computing scheme to
thereafter learn with static weights to generate fixed point
activity.
The results of our present article using feedforward,

reservoir computing and fully plastic recurrent networks
suggest that for many tasks WP is at least as suitable as NP,
while the implementation may be even simpler. This indi-
cates thatWP is a useful benchmark and a similarly plausible
model for learning in the brain as NP. Experimentally
measurable features of the learning and weight dynamics
may allow one to distinguish the learning rules in biological
neural networks.

IV. MATERIALS AND METHODS

A. Analytical error dynamics

To analytically compute the dynamics of the expected
error, we consider an arbitrary perturbation ξ. This deter-
mines the error change Epert − E and the resulting weight
update Δw via Eqs. (3) and (6). Δw, in turn, determines the
new weights and via Eq. (8) the error Eðnþ 1Þ after the
update. Eðnþ 1Þ is, thus, a function of ξ, the weight
mismatch WðnÞ before the update, and the input correla-
tions S:

Eðnþ1Þ¼1

2
trf½WðnÞþΔwðξÞ�S½WðnÞþΔwðξÞ�Tg: ð17Þ

Averaging over perturbations and using Isserlis’ theorem
yields an equation for the expected error hEðnþ 1Þi. When
assuming that all latent inputs have the same strength,
hEðnþ 1Þi becomes a function of the error hEðnÞi before
the update and the system parameters, leading to Eq. (9).
The detailed derivation is given in Appendix B.
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B. Numerical simulations accompanying
the theoretical analysis

In the numerical experiments in Sec. II B, the Neff
nonzero inputs are orthonormal functions, superpositions
of sines, scaled by α2 ¼ N=Neff to keep the total input
strength α2Neff for different Neff constant. Targets zit are
obtained by linearly combining these functions using
teacher weights w�

ij ¼ 0.1 and adding as an unrealizable
component a further, appropriately scaled, orthonormal
function. Learning rates are η�.

C. Input and perturbation correlations

NPc is applicable to general network dynamics (cf. Fig. 7
and Figs. S7, S8, and S12 [28]). In Fig. 4, we apply it to
linear networks with correlated inputs that are constructed
similar to the perturbations, by low-pass filteringNeff white
noise traces (filtering time constant τinputcorr and effective
temporal dimension T input

eff ). Subsequently, we orthonorm-
alize them, which somewhat modifies the correlation
times. The realizable components of a target are linear
combinations of these correlated inputs weighted by
w�
ij ¼ 0.1. We assume that there is an additional unrealiz-

able component, which, for simplicity, contains all modes
orthogonal to the inputs with equal strength, such that
Eopt ¼ 2.
For Tpert

eff ≥ T input
eff , NPc operates at ηNPc ¼ η�NP, the

optimal learning rate for NP. For Tpert
eff < Neff, we use

the optimal learning rate of NP for a task with reduced
Neff ¼ Tpert

eff , i.e., ηNPc ≈ ðNeff=T
pert
eff Þ · η�NP. Our intuition is

that perturbations with temporal dimension Tpert
eff < Neff can

only improve an MTpert
eff -dimensional subspace of the

weights. For NPc, Tpert
eff < Neff therefore reduces the learn-

able number of weights from MNeff to effectively MTpert
eff

independent ones. This is like in Fig. 1(c), gray curves,
where T restricts Neff . As effectively fewer weights are
learned, a higher learning rate can be chosen. We perform
additional simulations with an unadjusted (smaller) learn-
ing rate that confirms our choice, as convergence otherwise
becomes much slower.
For a given Tpert

eff , simulations of 20 000 trials are repeated
1000 times (randomly generated inputs change between
runs but not within a run). The final error of a run is
computed by averaging over the last 500 trials (in which the
error is approximately constant; Supplemental Material
Fig. S4 [28]) to determine the mean over runs and its SEM.
To determine ndecaytrials , we use ten samples of 100 runs each.
For each sample, we compute the mean error over runs and
additionally smooth it with a centered temporal running
average of window size 20. ndecaytrials is then the trial for which
the described average drops for the first time below
Ef;unr þ 0.05 · ½Eð0Þ − Ef;unr�. Figure 4(b) reports the mean

and standard error of the mean of ndecaytrials over all samples.

Figure 4(c) repeats the same analysis for NP with η varied
from 0.05 · η�NP to η

�
NP. Gray curves in Fig. 4(c) (NPc with η

adjusted by a factor of 0.5; 0.6;…, 1.2) use 100 repetitions.

D. Input noise

We extend the basic theory task, in which a single
mapping from an effectively Neff -dimensional input signal
rjt onto target outputs z�it ¼

P
N
j¼1 w

�
ijrjt is learned, by

adding independent white noise to each input at each time
step:

rnoisyjt ¼ rjt þ χjt; hχjtχksi ¼ σ2noiseδjkδts: ð18Þ

As the added white noise has a rotationally symmetric
distribution in the space of input neurons, we can still
without loss of generality rotate the input space such
that each of the first Neff input neurons carries a signal
component and additional noise, while the remaining
inputs are purely noisy. We note that, because the noise
in the task-relevant inputs is amplified by the weights, their
optimal values are closer to zero than those of the noise-
free task.
SNR is defined as the ratio of the total (summed) power

in the input signal to that in the noise. Averages are taken
over 100 repetitions [Figs. 5(a)–5(c)], the last 1000 of 100
000 trials [Figs. 5(a) and 5(b)], and over irrelevant weights
[Fig. 5(c)].

E. Reservoir computing task

The N ¼ 500 rate neurons of the fully connected
recurrent reservoir network evolve according to

xjt ¼ γxj;t−1þð1− γÞ
�XN

k¼1

wrec
jk rk;t−1þ

XNinputs

q¼1

win
jqr

in
qt

�
: ð19Þ

The rate of neuron k is rkt ¼ tanhðxktÞ. Their decay time
constant is τ ¼ 10 time steps, i.e., γ ¼ e−1=τ. Recurrent
weights wrec are drawn from a centered normal distribution;
the weight matrix is thereafter normalized to ensure that the
real part of its largest eigenvalue is grec ¼ 1. Input weights
win are drawn from win

jk ∼N ð0; 1=NinÞ. Creating various
instances of such random networks shows that performance
and participation ratio PR ¼ ðPN

μ¼1 α
2
μÞ2=

P
N
μ¼1 α

4
μ are

rather independent of the instance. The participation ratio
gives an estimate of the dimensionality of the reservoir
dynamics [19,93]. Generally, we observe PR ≈ 5; for
example, in the network in Fig. 7, PR ≈ 5.3. The Nin ¼ 5

inputs to the reservoir are orthogonal to each other, rin1t ¼ 1,
rin2t ¼

ffiffiffi
2

p
sinðωtÞ, rin3t ¼

ffiffiffi
2

p
cosðωtÞ, rin4t ¼

ffiffiffi
2

p
sinð2ωtÞ,

rin5t ¼
ffiffiffi
2

p
cosð2ωtÞ, ω ¼ 2π=T, and T ¼ 500 time steps.

The trained linear readout produces M ¼ 2 outputs
zit ¼

P
N
j¼1 wijrjt. Their target z�t is, up to scaling, the same
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as in Ref. [42]: z�1t ¼ radiust cosðωtÞ, z�2t ¼ radiust sinðωtÞ,
with radiust ¼ 0.1 · ½9− sinðωtÞþ 2sinð3ωtÞþ 2 sinð5ωtÞ−
sinð7ωtÞþ 3cosð2ωtÞ− 2cosð4ωtÞ�. Already 100 time
steps before the task starts, the reservoir is initialized and
given external input. By the time the task begins, network
activity is enslaved by the external input and settles down to
a periodic orbit. Technically, we record the reservoir activity
traces rjt once for the entire training of w, because they are
the same in each trial. The value of the participation ratio
motivates us to construct an optimal readout reading out the
largest five principal components via the least squares fit
wLS
ij ¼ P

N
k¼1

P
T
t¼1 z

�
itrktS

pinv
kj [Fig. 7(b), dashed gray line].

Here, Spinv is the pseudoinverse of the reduced correlation
matrix of the reservoir that is obtained by setting all
eigenvalues of S except the largest five to zero. Including
six principal components does not qualitatively change the
result.
From the theoretical analysis Eq. (12), we obtain an

estimate η� ¼ 1=½ðMPRþ 2Þα2� for the optimal learning

rate, by settingNeff → PR and α2 → α2 ¼ ð1=PRÞPN
μ¼1 α

2
μ.

α2 is the strengthof each latent inputwhenwe assume that the
total input strength is generated by PR equally strong ones.
We verify by a grid search that this estimated value yields for
both WP and NP close to optimal performance, as measured
by the error after 10 000 trials with infinitesimally small σ2eff ,
showing that it indeed maximizes convergence speed. We,
therefore, choose it as the learning rate for our task with
infinitesimal (Supplemental Material Fig. S7 [28]) and also
with finite perturbation size (Fig. 7), since the theoretical
analysis yields independence of η� from σ2eff [Eq. (12)]. For
NPc, we use the same learning rate as for NP and WP and
determine the optimal Tpert;opt

eff ¼ 18 by minimizing the error
after 30000 trials (Supplemental Material Fig. S8 [28]).
Simulations with finite perturbations use σeff ¼ 5 × 10−3. A
scan over σeff confirms that the final error depends quad-
ratically on it, as predicted by the theory.

F. Delayed non-match-to-sample task

The fully connected recurrent network has N ¼ 200 rate
neurons. The dynamics of neuron i, i ¼ 4;…; N, are
governed by

τ _xi ¼ −xiðtÞ þ
XN
j¼1

wrec
ij rjðtÞ þ

X2
q¼1

win
iquqðtÞ; ð20Þ

with time constant τ ¼ 30 ms. The constant activations
x1ðtÞ ¼ x2ðtÞ ¼ 1 and x3ðtÞ ¼ −1 provide biases [14].
The rate of each neuron i, i ¼ 1;…; N, is given by
riðtÞ ¼ tanh½xiðtÞ�. zðtÞ ¼ r4ðtÞ is the network output. We
use the forward Euler-method with step size dt ¼ 1 ms to
simulate the dynamics and draw the initial activations from a
uniform distribution, xið0Þ ∼ Uð−0.1; 0.1Þ for i ¼ 4;…; N.
Recurrent weights are drawn from a Gaussian distribution,

wrec
ij ∼N ð0; g2=NÞ, with g ¼ 1.5. Input weights are drawn

from a uniform distribution, win
iq ∼ Uð−1; 1Þ.

All recurrent weights wrec
ij are trained. The error function

of WP and NP is the mean squared difference between the
output z and the target within the last 200 ms of each trial.
For each of the different trial types k, k ¼ 1;…; 4, we use
an exponential average of the previous errors EpertðnkÞ for
this trial type (nk indexes the trials of type k) as the error
baseline:

EkðnkÞ ¼ Ekðnk − 1Þ þ 1

τE
½EpertðnkÞ − Ekðnk − 1Þ�; ð21Þ

where τE ¼ 4. To get the best-performing learning param-
eters, we perform a grid search, which yields ηWP ¼
1 × 10−5, σWP ¼ 4.64 × 10−3, ηNP ¼ 1 × 10−5, and σNP ¼
4.64 × 10−1.
For the details of the version of NP proposed by

Ref. [14], see this article. For the convenience of the
reader, here we briefly mention the main differences to the
vanilla NP version Eq. (6): For each network neuron,
a node perturbation is applied at a simulation time step
only with a probability of 0.3% and is drawn from a
uniform distribution, ξ ∼ Uð−16; 16Þ. The error is given
by the absolute difference between output and target.
Weight updates are computed via Δwrec

ij ðnkÞ¼−ηEkðnk−
1Þ½EpertðnkÞ−Ekðnk−1Þ�

P
T
t¼1 ½ðxit−x̄itÞrj;t−1�3 and clipped

when they exceed �3 × 10−4 (cf. code accompanying
Ref. [14]). t indexes the simulation time step of each trial,
T is the total number of simulation time steps per trial,
and x̄it ¼ x̄i;t−1 þ ð1=τxÞðxit − x̄i;t−1Þ is an exponential
average of past activations. Parameter values are η ¼ 0.1
and τx ¼ 20

19
.

G. MNIST classification task

The input layer of the fully connected feedforward network
consists of 784 units encoding the pixel values of the data. The
hidden layer consists of 100 neurons with tanh activation
function and biases. The output layer consists of ten neurons,
one for each single-digit number, with softmax activation
function and biases. We use the standard training and test
dataset but split the standard training data set into a training
dataset of 50000 images and a validation dataset of 10 000
images. No preprocessing is done on the data. We employ
vanillaWP Eq. (3), NP Eq. (6), or SGD to train all parameters
of the network. The error function is the cross-entropy loss
averaged over the batch of length Nbatch ¼ T. We also try to
combine the gradient estimates obtained from WP and NP
with Momentum, RMSProp, or Adam [29] but do not find an
improvement of performance compared to the vanilla versions
with carefully tuned parameters. The same holds for SGD.
Thismay be because of the rather simple network architecture.
To obtain the best-performing parameters (the learning

rate for all three algorithms and the standarddeviation forWP
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and NP), we perform a grid search for each of the considered
batch sizes: For each parameter set, we train the network for
50 000 trials (i.e., weight updates) on the training dataset.We
then select the best-performing parameter sets based on the
final accuracy on the validation dataset and apply them to the
test dataset. High final accuracy appears to concur with fast
convergence speed, such that a comparison to our analytical
results (where learning rate optimizes the convergence
speed) seems justified.

The supporting data for this article are openly available
from GitHub [94].
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APPENDIX A: LEARNING MODELS
AND TASK PRINCIPLES

1. Mean updates for small perturbations

To calculate the average update of WP, one uses the linear
order approximation valid for small perturbations [7,8]:

Epert − E ≈
XM
m¼1

XN
k¼1

∂E
∂wmk

ξWP
mk ; ðA1Þ

where the sum is over all weights in the network. With this
and hξWP

ij ξWP
mk i ¼ δimδjkσ

2
WP, where δ is the Kronecker delta,

the WP update rule [Eq. (3)] yields

hΔwWP
ij i≈−

η

σ2WP

XM
m¼1

XN
k¼1

∂E
∂wmk

hξWP
mk ξ

WP
ij i¼−η

∂E
∂wij

; ðA2Þ

i.e., the weight update is along the negative error gradient.
The result’s independence of σWP motivates the division by
σ2WP in Eq. (3).
NP perturbs for temporally extended tasks the total

inputs yit ¼
P

N
k¼1 wikrkt of neurons i ¼ 1;…;M by the

node perturbation vectors ξNPit . Therefore, the change in the
scalar error is, to linear order, given by the projection of ξNPit
onto the error gradient ∂E=∂yit with respect to yit [10]:

Epert − E≈
XM
i¼1

XT
t¼1

∂E
∂yit

ξNPit : ðA3Þ

Since ∂yit=∂wij ¼ rjt, the gradients with respect to weights
and sums of inputs are related via the chain rule by
∂E=∂wij ¼

P
t ∂E=∂yitrjt. This reveals that the NP weight

update [Eq. (6)] is on average along the negative error
gradient:

hΔwNP
ij i ≈−

η

σ2NP

XM
m¼1

XT
s;t¼1

∂E
∂ymt

hξNPmt ξ
NP
is irjs ¼ −η

XT
t¼1

∂E
∂yit

rjt

¼ −η
∂E
∂wij

: ðA4Þ

Equations (A2) and (A4) hold for any error function. For
corresponding more specific computations for the quadratic
error function [Eq. (8)], see Appendix A3.

2. Dependence of weight update noise on error baseline

To show that the choice of E as error baseline in Eq. (3)
minimizes the update noise for WP, we compute the
variance ⟪ΔwWP

ij ⟫ of the WP weight updates when adding
a possibly trial- and synapse-dependent baseline term Ẽij to
the update rule, ΔwWP

ij ¼ −ðη=σ2WPÞðEpert − Eþ ẼijÞξWP
ij .

The linear approximation for Epert yields

⟪ΔwWP
ij ⟫ ≈

η2

σ4WP

���XM
m¼1

XN
l¼1

∂E
∂wml

ξWP
ml þ Ẽij

�
ξWP
ij

�2�

− η2
�

∂E
∂wij

�
2

¼ η2
XM
m¼1

XN
l¼1

�
∂E
∂wml

�
2

þ η2
�

∂E
∂wij

�
2

þ η2

σ2WP
Ẽ2
ij: ðA5Þ

To show that the choice of E minimizes the update noise
for NP, we analogously compute the variance ⟪ΔwNP

ij ⟫ of
the NP weight updates [Eq. (6)] when adding a possibly
trial- and neuron-dependent baseline term Ẽi, ΔwNP

ij ¼
−ðη=σ2NPÞðEpert − Eþ ẼiÞ

P
T
t¼1 ξ

NP
it rjt:

⟪ΔwNP
ij ⟫≈

η2

σ4NP

���XM
m¼1

XT
s¼1

∂E
∂yms

ξNPms þ Ẽi

�XT
t¼1

ξNPit rjt

�2�

− η2
�

∂E
∂wij

�
2

¼ η2
XM
m¼1

XT
s¼1

�
∂E
∂yms

�
2XT

t¼1

r2jt þ η2
�

∂E
∂wij

�
2

þ η2

σ2NP
Ẽ2
i

X
t

r2jt: ðA6Þ

For both algorithms, the variance is minimal if Ẽ ¼ 0, as
apparent from its quadratic occurrence with a positive
prefactor.

3. Task setting

We train a linear readout w ∈ RM×N that maps N input
traces r ∈ RN×T of time dimension T onto M output traces
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z ∈ RM×T of the same time dimension. If not stated
otherwise, input and target traces do not change between
trials. The readout weights wij are trained to minimize the
mean squared deviation E ¼ 1=ð2TÞPM

i¼1

P
T
t¼1ðzit − z�itÞ2

of the output z from a target z�. The target reads, in general,
z�it ¼

P
N
j¼1 w

�
ijrjt þ dit, where w�

ij are target weights—i.e.,
the output error is certainly minimal for wij ¼ w�

ij—and dit
is an output component that cannot be generated by
the network, since it is orthogonal to its inputs,P

T
t¼1 ditrjt ¼ 0 ∀ i; j. It is useful to define the (symmetric,

positive semidefinite) input correlation matrix

Sij ¼
1

T

XT
t¼1

ritrjt: ðA7Þ

S can be diagonalized by a rotation O ∈ SOðNÞ into
D ¼ OTSO such that Dμν ¼ α2μδμν is the diagonal matrix
of eigenvalues α2μ ≥ 0 (where μ; ν ¼ 1;…; N). We refer to
the N-dimensional (spatial) eigenvectors of S as input
directions. Another useful characteristic is the autocorre-
lation of the inputs. We denote the autocorrelation summed
over all inputs and normalized by T by

Cts ¼
1

T

XN
j¼1

rjtrjs: ðA8Þ

We refer to the T-dimensional (temporal) eigenvectors of C
as input components. Reading out from an input direction
yields a temporal output vector parallel to the related input
component. S and C have the same nonzero eigenvalues α2μ.
(This follows, for example, from the more general fact that
the products AB and BA of an N × T matrix A and a T × N
matrix B have the same nonzero eigenvalues [95] by setting
Ait ¼ rit and Bti ¼ rit.) We call the α2μ input “strengths,”
since they equal the average strength of the μth latent input
per time step or, equivalently, the average strength of all
input activity read out from the μth input direction. The sum
of the eigenvalues, the trace

tr½S�≡ α2tot; ðA9Þ
equals the total average input strength per time step α2tot. We
call α2tot the total input strength for short.
Throughout Appendix B and Supplemental Material

Secs. I–VI [28], we mainly consider inputs with correlation
matrices S that have Neff eigenvalues equal to α2 and all
others zero (Table S1), although intermediate results can

also hold for inputs with general correlations S. The
correlation matrix then has the useful properties

S2 ¼ α2S; ðA10Þ

tr½S�≡ α2tot ¼ α2Neff : ðA11Þ

Varying the effective input dimensionality while keeping the
total input strengthα2tot constant thus implies that the strengths
of individual input components scale like α2 ∼ N−1

eff .
To measure the strength of the unrealizable target com-

ponent, we define a quantity α2d analogous to α
2. Since α2 ¼

ð1=NeffÞtr½S� ¼ 1=ðNeffTÞtr½rrT � is, in particular, the aver-
age input strength per time and latent input, we set

α2d ≡ 1

MT
tr½ddT �; ðA12Þ

α2d is the average strength of the unrealizable component of
the target per time and output.
Using the weight mismatch Wij ¼ wij − w�

ij and the
correlation matrix S, the error function can be written as

E ¼ 1

2T

XM
i¼1

XT
t¼1

ðzit − z�itÞ2 ðA13Þ

¼ 1

2T

XM
i¼1

XT
t¼1

�XN
j¼1

Wijrjt − dit

�
2

¼ 1

2
tr½WSWT � þ Eopt: ðA14Þ

Here, Eopt is the lowest achievable error corresponding to
zero weight mismatch:

Eopt ≡ 1

2T
tr½ddT � ¼ 1

2
Mα2d: ðA15Þ

We note that due to the division by T both the correlation
matrix and the error no longer scale with the task duration,
but the error does scale with the number M of outputs.
The choice of a quadratic error function allows one to

compute the evolution of the expected error analytically.
For the quadratic error function [Eqs. (8) and (A13)], the
average WP and NP weight updates [Eqs. (3) and (6)]
follow the gradient exactly; i.e., Eqs. (4), (A2), and (A4)
hold exactly for any perturbation size:

hΔwWP
ij i ¼ −

η

σ2WP
hðEpert − EÞξWP

ij i ¼ −
η

σ2WP

XM
m¼1

XN
k;l¼1

�
WmkSklhξWP

ml ξ
WP
ij i þ 1

2
SklhξWP

mk ξ
WP
ml ξ

WP
ij i

�

¼ −η
XN
k¼1

WikSkj ¼ −η
∂E
∂wij

; ðA16Þ
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hΔwNP
ij i ¼ −

η

σ2NP

XT
t¼1

hðEpert − EÞξNPit irjt

¼ −
η

σ2WPT

XM
m¼1

XT
s;t¼1

�XN
k¼1

WmkrkshξNPmsξ
NP
it i þ

1

2
hðξNPmsÞ2ξNPit i − dmshξNPmsξ

NP
it i

�
rjt

¼ −η
XN
k¼1

WikSkj þ
η

T

XT
t¼1

ditrjt ¼ −η
∂E
∂wij

: ðA17Þ

4. Effective perturbation strength

For a fair comparison of WP and NP, we consider the
output perturbations δz ¼ zpert − z that they generate. For
WP, Eqs. (2) and (7) imply

δzit ¼
XN
j¼1

ξWP
ij rjt; ðA18Þ

for NP, Eqs. (5) and (7) imply

δzit ¼ ξNPit : ðA19Þ

We choose σWP and σNP such that weight and node
perturbations lead to the same output perturbation strength
as measured by σ2eff ¼ 1=ðMTÞhPit ðδzitÞ2i, the total
induced output variance per time step and output neuron:

σ2eff;WP ¼
1

MT

XM
i¼1

XT
t¼1

��XN
j¼1

ξWP
ij rjt

�2�

¼ σ2WP · α
2Neff ; ðA20Þ

σ2eff;NP ¼
1

MT

XM
i¼1

XT
t¼1

hðξNPit Þ2i ¼ σ2NP: ðA21Þ

Here, we use hξWP
ij ξWP

mk i ¼ σ2WPδimδjk and hξNPit ξNPmsi ¼
σ2NPδimδts. Requiring σ2eff;WP ¼! σ2eff;NP ≡ σ2eff implies

σ2NP ¼ σ2eff ; σ2WP ¼
1

α2Neff
· σ2eff : ðA22Þ

We note that, although the induced output perturbations
have the same variance, they follow different distributions:

1

MT

X
it

ðδzitÞ2 ∼
8<
:

σ2eff
MNeff

χ2k¼MNeff
for WP;

σ2eff
MT χ

2
k¼MT for NP;

ðA23Þ

where χ2k is the chi-square distribution for k degrees of
freedom.

APPENDIX B: DERIVATION
OF ERROR DYNAMICS

This part starts with a derivation of the error dynamics if
our tasks are learned with pure gradient descent (GD)
learning. These are comparably simple and a useful bench-
mark. The sections thereafter provide a full derivation of
the error dynamics of WP and NP learning [main text,
Eqs. (9)–(14)]. Their analysis and interpretation follow in
Supplemental Material Sec. I [28].

1. Error curves for gradient descent

In GD, the updates directly follow the gradient:

ΔwGD
ij ¼ −η

∂E
∂wij

¼ −η
XN
k¼1

WikSkj: ðB1Þ

The error after such a deterministic update (which equals
the expected error) is

EðnÞ ¼ 1

2
trf½Wðn− 1ÞþΔwGD�S̃½Wðn− 1ÞþΔwGD�Tg

þEopt

¼Eðn− 1Þþ tr½Wðn− 1ÞS̃ðΔwGDÞT �

þ 1

2
tr½ΔwGDS̃ðΔwGDÞT �

¼Eðn− 1Þ− ηtr½WS̃SWT � þ 1

2
η2tr½WSS̃SWT �; ðB2Þ

where W stands for Wðn − 1Þ. To facilitate the tracing of
the different terms, we tag the correlation matrix that stems
from the cost evaluation at trial n by a tilde, which keeps it
distinguishable from those arising from the weight update
Eq. (B1); the entries S̃ij are identical to Sij. For a correlation
matrix S that has Neff eigenvalues equal to α2 and all others
zero (see Appendix A 3), we can use Eq. (A10) (and S̃≡ S)
together with 1

2
tr½WSWT � ¼ Eðn − 1Þ − Eopt to obtain

EðnÞ¼Eðn−1Þ−ηα2tr½WSWT �þ1

2
η2α4tr½WSWT �

¼ ð1−2ηα2þη2α4Þ · ½Eðn−1Þ−Eopt�þEopt: ðB3Þ

This leads to an exponential decay of the error to Eopt:
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EðnÞ ¼ ½Eð0Þ − Eopt�an þ Eopt; ðB4Þ

with

aGD ¼ 1 − 2ηα2 þ η2α4; ðB5Þ

which becomes zero for the optimal learning rate η� ¼ α−2

such that the task is solved in a single trial. As for WP and
NP [Eqs. (11) and (B39)], learning diverges once η > 2η�
where a > 1.

2. Error curves for weight perturbation

Since we consider only WP here, for clarity of notation
we omit the specifier “WP” in ξWP, ΔwWP, and σWP. The
error Epert as a function of the perturbations ξ applied to the
weights then reads

Epert ¼ 1

2
tr½ðW þ ξÞSðW þ ξÞT � þ Eopt

¼ Eþ tr½WSξT � þ 1

2
tr½ξSξT �; ðB6Þ

which yields a weight update [cf. Eq. (3)]

Δwij ¼ −
η

σ2
ðEpert − EÞξij

¼ −
η

σ2

�
tr½WSξT � þ 1

2
tr½ξSξT �

�
ξij: ðB7Þ

Averaging over ξ gives the expected error hEðnÞi after the
nth update:

hEðnÞi¼1

2
htrf½Wðn−1ÞþΔw�S̃½Wðn−1ÞþΔw�TgiþEopt

¼hEðn−1Þiþhtr½WS̃ΔwT �i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡ΔElin

update

þ1

2
htr½ΔwS̃ΔwT �i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≡ΔEquad
update

; ðB8Þ

where W stands for Wðn − 1Þ. Here, we again tag the
correlation matrix with a tilde, since it stems from the cost
evaluation at trial n (cf. Appendix B 1). Using Eq. (B7) and
that odd moments of ξ vanish, the first highlighted term,
ΔElin

update, which is linear in the update, gives

ΔElin
update ¼ htr½WS̃ΔwT �i

¼ −
η

σ2

�
tr



WS̃

�
tr½WSξT � þ 1

2
tr½ξSξT �

�
ξT
��

¼ −
η

σ2
htr½WS̃ξT �tr½WSξT �i

¼ −
η

σ2
XM
im¼1

XN
jklp¼1

WijS̃jkWmlSlp · hξikξmpi: ðB9Þ

Using again Eq. (B7) and that odd moments of ξ vanish, the
second highlighted term, ΔEquad

update, which is quadratic in the
updates, can be expanded as

ΔEquad
update¼

1

2
htr½ΔwS̃ΔwT �i

¼ η2

2σ4

��
tr½WSξT �þ1

2
tr½ξSξT �

�
· tr½ξS̃ξT � ·

�
tr½WSξT �þ1

2
tr½ξSξT �

��

¼ η2

2σ4
htr½ξS̃ξT �tr½WSξT �2iþ η2

8σ4
htr½ξS̃ξT �tr½ξSξT �2i

¼ η2

2σ4
XM
imn¼1

XN
jklpqr¼1

S̃jkWmlSlpWnqSqr · hξijξikξmpξnri
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ΔEquad;a
update

þ η2

8σ4
XM
imn¼1

XN
jklpqr¼1

S̃jkSlpSqr · hξijξikξmlξmpξnqξnri
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ΔEquad;b
update

: ðB10Þ

ΔEquad;a
update depends on the weight mismatch W and originates from the gradient related part of the error signal ΔEpert − E,

whereas ΔEquad;b
update originates from quadratic reward noise (Supplemental Material Sec. I [28]). The moments of

ξ can be computed using hξijξmki ¼ σ2δimδjk and Isserlis’ theorem:

hξikξmpi ¼ σ2δimδkp; ðB11Þ

hξijξikξmpξnri ¼ σ4ðδjkδmnδpr þ δimδjpδinδkr þ δinδjrδimδkpÞ; ðB12Þ
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hξijξikξmlξmpξnqξnri ¼ σ6½δjkðδlpδqr þ δmnδlqδpr þ δmnδlrδpqÞ ð¼hξijξikihξmlξmpξnqξnriÞ
þ δimδjlðδkpδqr þ δinδkqδpr þ δinδkrδpqÞ ð¼hξijξmlihξikξmpξnqξnriÞ
þ δimδjpðδklδqr þ δinδkqδlr þ δinδkrδlqÞ ð¼hξijξmpihξikξmlξnqξnriÞ
þ δinδjqðδimδklδpr þ δimδkpδlr þ δkrδlpÞ ð¼hξijξnqihξikξmlξmpξnriÞ
þ δinδjrðδimδklδpq þ δimδkpδlq þ δkqδlpÞ�: ð¼hξijξnrihξikξmlξmpξnqiÞ ðB13Þ

Inserting this into Eqs. (B9) and (B10) and performing the summations is partially lengthy but straightforward. It results in

ΔElin
update ¼ −η

XM
i¼1

XN
jkl¼1

WijS̃jkSlkWil ¼ −ηtr½WS̃SWT �; ðB14Þ

ΔEquad;a
update ¼

η2

2

XM
imn¼1

XN
jklpqr

S̃jkWmlSlpWnqSqr · ðδjkδmnδpr þ δimδjpδinδkr þ δinδjrδimδkpÞ

¼ η2

2
Mtr½WS2WT �tr½S̃� þ η2tr½WSS̃SWT �; ðB15Þ

ΔEquad;b
update ¼

η2σ2

8
ðM3tr½S̃�tr½S�2 þ 2M2tr½S̃�tr½S2� þ 4M2tr½S̃S�tr½S� þ 8Mtr½SS̃S�Þ: ðB16Þ

With this, Eq. (B8) for the evolution of expected error becomes

hEðnÞi¼WPhEðn − 1Þi þ ΔElin
update þ ΔEquad;a

update þ ΔEquad;b
update

¼ hEðn − 1Þi − ηtr½WS̃SWT � þ η2

2
Mtr½WS2WT �tr½S̃� þ η2tr½WSS̃SWT �

þ η2σ2

8
ðM3tr½S̃�tr½S�2 þ 2M2tr½S̃�tr½S2� þ 4M2tr½S̃S�tr½S� þ 8Mtr½SS̃S�Þ: ðB17Þ

The result holds for a general input correlation matrix S. In Appendix B 4, we assume same strength latent inputs (Table S1).
The resulting properties of S [Eqs. (A10) and (A11)] allow one to reexpress all right-hand-side terms of Eq. (B17) in terms
of Eðn − 1Þ instead ofW, yielding a scalar recurrence relation. We make the assumption of equally strong latent inputs also
in Secs. I–III in Supplemental Material [28] (Table S1). The convergence for general input is analyzed in Supplemental
Material Sec. IV [28].

3. Error curves for node perturbation

Similar to the previous section, we omit the specifier “NP” in ξNP, ΔwNP, and σNP in the following for notational clarity.
The error Epert then reads as a function of the NP ξ:

Epert ¼ 1

2T

XM
i¼1

XT
t¼1

�XN
j¼1

Wijrjt þ ξit − dit

�
2

¼ 1

2T

XM
i¼1

XT
t¼1

��XN
j¼1

Wijrjt þ ξit

�
2

− 2
XN
j¼1

Wijrjtdit − 2ξitdit þ d2it

�

¼ Eþ 1

T
tr½WrξT � þ 1

2T
tr½ξξT � − 1

T
tr½dξT �: ðB18Þ

The term tr½dξT � here reflects the interference of learning and unrealizable targets. The other term including d,
1=ð2TÞtr½ddT � ¼ Eopt, is only an additive constant which also occurs in GD and WP and does not enter the update
equation. Equation (B18) yields a weight update [cf. Eq. (6)]:

Δwij ¼ −
η

σ2
ðEpert − EÞ

XT
t¼1

ξitrjt ¼ −
η

σ2T

�
tr½WrξT � þ 1

2
tr½ξξT � − tr½dξT �

�XT
t¼1

ξitrjt: ðB19Þ
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Averaging over ξ gives the expected error after the update:

hEðnÞi ¼ 1

2
htrf½Wðn − 1Þ þ Δw�S̃½Wðn − 1Þ þ Δw�Tgi þ Eopt

¼ hEðn − 1Þi þ htr½WS̃ΔwT �i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡ΔElin

update

þ 1

2
htr½ΔwS̃ΔwT �i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≡ΔEquad
update

; ðB20Þ

where W stands for Wðn − 1Þ and the correlation matrix that stems from the error evaluation is tagged with a tilde. Using
Eq. (B19) and that odd moments of ξ vanish, ΔElin

update and ΔEquad
update are

ΔElin
update ¼ htr½WS̃ΔwT �i

¼ −
η

σ2T

�
tr



WS̃

�
tr½WrξT � þ 1

2
tr½ξξT � − tr½dξT �

�
rξT

��

¼ −
η

σ2T
htr½WS̃rξT �tr½WrξT � − tr½WS̃rξT �tr½dξT �i

¼ −
η

σ2T

XM
im¼1

XN
jkl¼1

XT
st¼1

WijS̃jkWmlrltrks · hξisξmti þ
η

σ2T

XM
im¼1

XN
jk¼1

XT
st¼1

WijS̃jkrksdmt · hξisξmti; ðB21Þ

ΔEquad
update ¼

1

2
htr½ΔwS̃ΔwT �i

¼ η2

2σ4T2

�
tr½ξrTS̃rξT �

�
tr½WrξT �2 þ 1

4
tr½ξξT �2 þ tr½dξT �2 − 2tr½WrξT �tr½dξT �

��

¼ η2

2σ4T2

XM
imn¼1

XN
jklp¼1

XT
stuv¼1

rjsS̃jkrktWmlrluWnprpv · hξisξitξmuξnvi ðΔEquad;a
updateÞ ðB22Þ

þ η2

8σ4T2

XM
imn¼1

XN
jk¼1

XT
stuv¼1

rjsS̃jkrkt · hξisξitξmuξmuξnvξnvi ðΔEquad;b
updateÞ ðB23Þ

þ η2

2σ4T2

XM
imn¼1

XN
jk¼1

XT
stuv¼1

rjsS̃jkrktdmudnv · hξisξitξmuξnvi ðΔEquad;c
updateÞ ðB24Þ

−
η2

σ4T2

XM
imn¼1

XN
jkl¼1

XT
stuv¼1

rjsS̃jkrktWmlrludnv · hξisξitξmuξnvi ðΔEquad;d
updateÞ: ðB25Þ

Like for WP, ΔEquad;a
update depends on the weight mismatch W and originates from the gradient-related part of the error signal

ΔEpert − E, whereas ΔEquad;b
update originates from quadratic reward noise (Supplemental Material Sec. I [28]). ΔEquad;c

update and

ΔEquad;d
update stem from the reward noise due to coupling to unrealizable target components. The moments of ξ can again be

computed from hξisξmti ¼ σ2δimδst and Isserlis’ theorem:

hξisξmti ¼ σ2δimδst; ðB26Þ

hξisξitξmuξnvi ¼ σ4ðδstδmnδuv þ δimδsuδinδtv þ δinδsvδimδtuÞ; ðB27Þ
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hξisξitξmuξmuξnvξnvi ¼ σ6½δstð1þ 2δmnδuvÞ ð¼hξisξitihξmuξmuξnvξnviÞ
þ 2δimδsuðδimδtu þ 2δinδtvδmnδuvÞ ð¼ 2hξisξmuihξitξmuξnvξnviÞ
þ 2δinδsvðδinδtv þ 2δimδtuδmnδuvÞ� ð¼ 2hξisξnvihξitξmuξmuξnviÞ

¼ σ6½δstð1þ 2δmnδuvÞ þ 8δimnδstuv þ 2δimδsuδtu þ 2δinδsvδtv�: ðB28Þ

Inserting this into Eqs. (B21)–(B25) gives after a partially lengthy but straightforward computation

ΔElin
update ¼ −ηtr½WS̃SWT �; ðB29Þ

ΔEquad;a
update ¼

η2

2
Mtr½WSWT �tr½S̃S� þ η2tr½WSS̃SWT �; ðB30Þ

ΔEquad;b
update ¼

η2σ2

8T
tr½S̃S� · ðM3T2 þ 6M2T þ 8MÞ; ðB31Þ

ΔEquad;c
update ¼

η2

2T
Mtr½S̃S�tr½ddT �; ðB32Þ

ΔEquad;d
update ¼ 0: ðB33Þ

With this, Eq. (B20) for the evolution of expected reward becomes

hEðnÞi¼NPhEðn − 1Þi þ ΔElin
update þ ΔEquad;a

update þ ΔEquad;b
update þ ΔEquad;c

update

¼ hEðn − 1Þi − ηtr½WS̃SWT � þ η2

2
Mtr½WSWT �tr½S̃S� þ η2tr½WSS̃SWT �

þ η2σ2NP
8T

tr½S̃S� · ðM3T2 þ 6M2T þ 8MÞ þ η2Mtr½S̃S� · 1

2T
tr½ddT �: ðB34Þ

As for WP, this result holds for any correlation matrix S.

4. Error curves for equally strong input components

In this section, we consider the case that there are Neff latent inputs of equal strength; see Appendix A 3. Using Eqs. (A10)
and (A11) and S̃ ¼ S, we first simplify the evolution equation ofWP’s expected error [Eq. (B17)]. By identifying occurrences
of 1

2
tr½WSWT � and replacing them with hEðn − 1Þi − Eopt [Eq. (A14)], we obtain a linear recurrence relation:

hEðnÞi¼WPhEðn − 1Þi − ηtr½WS̃SWT � þ η2

2
Mtr½WS2WT �tr½S̃� þ η2tr½WSS̃SWT �

þ η2σ2WP

8
ðM3tr½S̃�tr½S�2 þ 2M2tr½S̃�tr½S2� þ 4M2tr½S̃S�tr½S� þ 8Mtr½SS̃S�Þ

¼ ½1 − 2ηα2 þ η2α4ðMNeff þ 2Þ� · ½hEðn − 1Þi − Eopt�

þ 1

8
η2σ2WPα

6 · ðM3N3
eff þ 6M2N2

eff þ 8MNeffÞ þ Eopt: ðB35Þ

The evolution equation of NP’s expected error [Eq. (B34)] similarly simplifies to a linear recurrence relation:

hEðnÞi¼NPhEðn − 1Þi − ηtr½WS̃SWT � þ η2

2
Mtr½WSWT �tr½S̃S� þ η2tr½WSS̃SWT �

þ η2σ2NP
8T

tr½S̃S� · ðM3T2 þ 6M2T þ 8MÞ þ η2Mtr½S̃S� · 1

2T
tr½ddT �

¼ ½1 − 2ηα2 þ η2α4ðMNeff þ 2Þ� · ½hEðn − 1Þi − Eopt�

þ 1

8
η2σ2NPα

4 ·

�
M3NeffT þ 6M2Neff þ 8M

Neff

T

�
þ η2α4MNeff · Eopt þ Eopt: ðB36Þ
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Both Eqs. (B35) and (B36) have the form

hEðnÞi ¼ ½hEðn − 1Þi − Eopt� · aþ bþ Eopt; ðB37Þ

with (different) constant parameters a and b. The conver-
gence factor a characterizes the convergence speed and b the
per-update increase in error. The recurrence relation can be
solved straightforwardly by iteration, by expanding b to
½b=ð1 − aÞ�ð1 − aÞ, shifting b=ð1 − aÞ þ Eopt to the equa-
tion’s left-hand side, and considering hEðnÞi − Eopt −
b=ð1 − aÞ as a recurrently specified variable:

hEðnÞi ¼
�
Eð0Þ − b

1 − a
− Eopt

�
· an þ b

1 − a

þ Eopt: ðB38Þ

Another possibility is to consider hEðnÞi − Eopt as a recur-
rently specified variable and to observe that the iteration

gives rise to a finite geometric series that yields
ð1 − anÞ=ð1 − aÞb. The values of the constants are

a ¼ 1 − 2ηα2 þ η2α4ðMNeff þ 2Þ; ðB39Þ

bWP¼
1

8
η2σ2WPα

6 · ðM3N3
eff þ6M2N2

eff þ8MNeffÞ; ðB40Þ

bNP ¼
1

8
η2σ2NPα

4 ·

�
M3NeffT þ 6M2Neff þ 8M

Neff

T

�

þ η2α4MNeff · Eopt: ðB41Þ
Finite b due to finite perturbation size σ2 causes a finite
residual error b=ð1 − aÞ in Eq. (B38) even if Eopt is zero. To
enable a fair comparison, σWP and σNP are chosen such that
they lead to output perturbations δz of the same strength; see
Appendix A4. Expressing σ2WP and σ

2
NP through the strength

σ2eff of the output perturbation that they generate [Eq. (A22)],
the constants b become

bWP ¼
1

8
η2σ2effα

4 · ðM3N2
eff þ 6M2Neff þ 8MÞ; ðB42Þ

bNP ¼
1

8
η2σ2effα

4 ·

�
M3NeffT þ 6M2Neff þ 8M

Neff

T

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þ η2α4MNeff · Eopt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} ðB43Þ

≡ bquadNP þ blinNP; ðB44Þ

where the splitting of bNP into b
quad
NP and blinNP is motivated in

the next part. a is independent of the perturbation size and
the same for WP and NP.

5. Optimal learning rate

The optimal learning rate and convergence factor are
obtained by minimizing the quadratic function a as a
function of η with respect to η:

η� ¼ argmin
η

aðηÞ ¼ 1

ðMNeff þ 2Þα2 ; ðB45Þ

a� ¼ min
η

aðηÞ ¼ 1 −
1

MNeff þ 2
¼ aðη�Þ: ðB46Þ

Learning diverges for η → 2η� because then a → 1:

að2η�Þ ¼ 1 −
4

MNeff þ 2
þ 4

MNeff þ 2

ðMNeff þ 2Þ2 ¼ 1: ðB47Þ
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